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this idea by introducing a non-zero baryon chemical potential in a deformation of the

SU(Nc)× SU(Nc) Klebanov-Witten gauge theory with broken supersymmetry and confor-

mal invariance. At low temperature, a disordered phase dual to a black brane geometry

is unstable for low chemical potentials and metastable for high values. In the metastable

phase, states with a partial Higgsing of the gauge group are favored over the normal disor-

dered phase. This is reflected in the properties of the effective potential for color branes in

the dual geometry, where the appearance of a global minimum outside the horizon signals

the onset of a brane nucleation instability. When the Higgsing involves only one of the

group factors, the global minimum remains at a finite distance from the horizon, making it

possible to construct holographic duals to metastable “color superconducting” states. We

also consider branes dual to excitations with baryon charge, but find that the extremal ge-

ometry remains marginally stable against the emission of particles carrying baryon charge

independently of the strength of the deformation.
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1 Introduction

Hot matter is typically in a very uniform and symmetric — disordered — phase, a plasma

or other type of fluid that can be effectively described using hydrodynamics. Cold matter,

on the other hand, can manifest an endless variety of forms with different types of order, as

the richness of states studied in condensed matter physics show [1]. The same trend applies

to more fundamental theories, such as QCD. At high temperature, the quark-gluon matter

as observed in heavy ion collisions is reminiscent of a plasma phase (see [2] for a review).

At low temperature, and at ultra-high densities, matter as described by perturbative QCD

is believed to organize into the color-flavor locking (CFL) phase [3] (see also [2, 4] for

reviews). Contrarily, at intermediate densities, the difference between the quark masses

starts to be relevant and there are several possible phases that could be realized, including

phases that break spacetime symmetries. Examples include an anisotropic phase consisting

of a Kaon condensate with spontaneously generated currents (known as currCFL-K0) [5, 6]

and phases showing spontaneous breaking of translation invariance, forming a crystalline
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CFL [7–9]. It is also important to recall that even the large-Nc limit of high density QCD

is assumed to be in a symmetry-broken phase, albeit different from CFL, the chiral density

wave (CDW) [10, 11].

It is nowadays apparent that strongly coupled theories with gravity duals also evolve

from disordered to ordered phases as they are cooled down and exhibit a similar rich-

ness. At high temperature, the ground state is typically in a uniform plasma phase

whose gravity dual is a black hole geometry and whose fluctuations are effectively cap-

tured by relativistic hydrodynamics [12–14]. As the temperature is lowered, the disor-

dered phase can become unstable towards the breaking of symmetries, either internal [15],

spacetime [16, 17], or both [18–20]. There is a whole zoo of ordered phases that include

superfluids [15, 18–22], anisotropic states [23–36], striped phases [37–61], and even color

superconducting phases [62–67].

The instability of the disordered phase is sometimes subtle, being present in the full

string theory even in cases where the pure gravity solution may look stable. A prime

example is brane nucleation, by which a bound state of branes becomes unstable and starts

to shed some of its components, as first described in [68] (see [69] for a clear overview). In

the context of gauge/gravity duality this kind of process has also been dubbed as “Fermi

seasickness” [70, 71] and was applied in an AdS/QCD approach to the phase diagram in

some previous works [71, 72]. An interesting string theory example of brane nucleation

occurs in the charged black branes studied in [73]. These geometries are dual to disordered

states with finite baryon density in the Klebanov-Witten (KW) theory [74], which is a

(3 + 1)-dimensional CFT. Physics thus depends only on the ratio of the two relevant

scales, temperature and chemical potential. There seems to be no obvious instabilities

in the classical gravity solution, but “color” branes, with a worldvolume parallel to the

horizon, feel an effective potential that allows them to escape from the horizon to infinity

at low enough temperature. Interestingly, a similar mechanism has been shown to exist

even in N = 4 super Yang-Mills at finite R-charge chemical potential [67].

It shold be noted, however, that there are other cases in which even the brane nucleation

instability is absent, such as the (2 + 1)-dimensional CFTs at non-zero charge of [75] or

the (3 + 1)-dimensional theories with quenched flavors and finite baryon charge of [76]. In

both cases it is found that there is a classical moduli space in the extremal limit (although

the quenched approximation in the second case is expected to break down [77]). As these

solutions are not supersymmetric, quantum or stringy corrections may lift the moduli space

and still render the classical symmetric solution unstable.

Another interesting aspect of these kind of theories is that the gravity duals [73, 75]

contain charged particles in the form of wrapped (“baryonic”) branes whose mass to charge

ratio becomes critical in the extremal limit (but it is above the critical value outside ex-

tremality). Assuming the mass to charge ratio of other states is larger or equal, this makes

the extremal black branes marginally stable with respect to emission of charged particles.

According to the weak gravity conjecture (WGC) of [78], quantum corrections should de-

crease the relative mass to charge ratio and render the extremal black branes unstable.1 As-

1Some arguments have recently been given that the WGC holds in holographic models, see, e.g., [79].

The implications for non-supersymmetric vacua with AdS duals were discussed in [80].
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suming the WGC holds, this implies that theories with a holographic dual at non-zero charge

density have no disordered phases at zero temperature, barring external sources of disorder.

One of our goals is to further explore the phase diagram of the KW theory by intro-

ducing an explicit breaking of conformal invariance in the form of a mass term for the

scalar components of the chiral multiplets. This introduces a new mass scale in the the-

ory, and the phase diagram then depends on the ratios of both temperature and chemical

potential to the new scale. This is of interest for several reasons, one of them is to check

if brane nucleation is still the mechanism by which near-extremal black branes become

unstable. Another reason is that models where finite baryon density can be introduced

without introducing flavor branes (with or without backreaction) are rarely studied, but

very interesting because they do not require additional approximations such as quenching

or smearing. In particular, non-conformal theories may serve as a theoretical laboratory

to study high density quark or nuclear matter, similar to the one expected to be found in

the interior of neutron stars. In fact, recent work shows that holographic models can have

phenomenologically viable equations of state [81–85] and can be used to model stars that

satisfy existing observational constraints [83, 86–88], but much work still needs to be done.

The paper is organized as follows. In section 2 we review the KW field theory and its

holographic dual, as well as the five-dimensional truncation we employ. In section 3 we

construct the black brane geometries dual to the disordered phase and work out some of

their thermodynamic properties. We then proceed to discuss brane nucleation instabilities,

which can be found by computing the effective potential for probe branes in the background

geometry. In section 4 we probe the geometry with an additional color D3-brane, as well

as with a “color” D5-brane, in both cases finding an instability analogous to color super-

conductivity at low temperature. In section 5 we then consider the effective potential felt

by baryonic D3-brane probes. Section 6 briefly summarizes our thoughts. We supplement

the paper with two appendices which contain computational details complementing the

discussion in the bulk part of the text.

2 Deformation of the Klebanov-Witten theory

The KW theory is a superconformal field theory (SCFT) that emerges as the low energy

effective theory of D3-branes placed at the singularity of the conifold with base T 1,1 =

(SU(2)× SU(2))/U(1). The theory is N = 1 super Yang-Mills with gauge group SU(Nc)×
SU(Nc), where Nc is the number of D3-branes. In addition to the gauge fields, there are

two sets of chiral multiplets Aα, Bα̃, α, α̃ = 1, 2, in the (Nc, N̄c) and (N̄c, Nc) bifundamental

representations, respectively, each of them a doublet of a different global SU(2) symmetry.

The chiral multiplets have charge 1/2 under a non-anomalous U(1)R symmetry, and there

is an additional global U(1)B baryon symmetry

Aα → eiθAα , Bα̃ → e−iθBα̃ . (2.1)

The exactly marginal superpotential that preserves these symmetries is

W =
λ

2
εαβεα̃β̃Tr

(
AαBα̃AβBβ̃

)
. (2.2)
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Note that there is also a discrete Z2 symmetry that simultaneously exchanges the two

gauge groups and the A and B multiplets.

Conformal invariance can be broken by adding additional terms to the potential. This

can be done in a controlled way by taking the scalar component of a BPS operator, whose

conformal dimension is protected. In our case we take the deformation to be quadratic in

the scalar components a and b of the chiral multiplets A and B:

VM = ±M2Tr
(
a† · a− b† · b

)
. (2.3)

Here M is a parameter with dimension of mass. This term preserves SU(2) × SU(2)

invariance as well as U(1)R and U(1)B symmetries. It breaks the discrete Z2 symmetry

and, as we are not including analogous terms for the fermion components, supersymmetry is

also broken. Note that for either sign the moduli space of the theory is lifted and in fact the

classical potential is unbounded from below. Therefore, the theory with this deformation

does not have a well-defined ground state. Nevertheless, in principle it is possible to make

sense of this theory if we turn on a finite temperature T . In that case we expect that the

scalar fields acquire effective masses and the effective potential at quadratic order becomes

VM,T ' (cAT
2 ±M2)Tr

(
a† · a

)
+ (cBT

2 ∓M2)Tr
(
b† · b

)
, (2.4)

where cA, cB > 0 can be determined at weak coupling by a one-loop calculation. The

effective potential in this case is bounded from below as long as the temperature is large

enough cAT
2 > M2 or cBT

2 > M2.

In addition to this deformation we will consider states with non-zero baryon and R-

charge. Let us define the “current” operators

Jµa =
i

2
Tr

(
a† ·

↔
Dµa

)
, Jµb =

i

2
Tr

(
b† ·

↔
Dµb

)
, (2.5)

where Dµ are the appropriate covariant derivatives acting on the scalars. The baryon and

R-charge currents are

JµB = Jµa − J
µ
b + fermions , JµR =

1

2

(
Jµa + Jµb

)
+ fermions . (2.6)

The chemical potentials for the baryon (µB) and R-charges (µR) are naturally incorporated

by adding to the potential a term of the form

Vµ = −µRJ0
R − µBJ0

B . (2.7)

In this expression the covariant derivative appearing in (2.5) must include a coupling to

the chemical potentials, that enter similarly to background fields

D0a→
(
D0 − iµB −

i

2
µR

)
a , D0b→

(
D0 + iµB −

i

2
µR

)
b . (2.8)

Taking into account the kinetic term, the terms linear in derivatives can be removed by

factoring out a phase from the scalar fields

a = ei(µB+
µR
2 )tã , b = ei(−µB+

µR
2 )tb̃ . (2.9)
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In this case

Vµ = −
(
µB +

µR
2

)2
Tr
(
ã† · ã

)
−
(
µB −

µR
2

)2
Tr
(
b̃† · b̃

)
. (2.10)

Combined with (2.4), the total effective potential at quadratic order is

VM,T,µ'
[
cAT

2±M2−
(
µB+

µR
2

)2
]

Tr
(
ã† ·ã

)
+

[
cBT

2∓M2−
(
µB−

µR
2

)2
]

Tr
(
b̃† ·b̃

)
.

(2.11)

For large enough chemical potentials the quadratic potential is unbounded from below

even if M = 0; a similar instability has been discussed at length for the R-charge chemical

potentials of N = 4 SYM [67, 89–92]. In that case the large chemical potential instability

manifested itself in the holographic dual as a brane nucleation instability. In the case at

hand we expect that a similar identification can be done. However, the M 6= 0 instability

could either be related to brane nucleation or to an instability of the dual geometry at the

level of classical gravity. We will discuss these points in more detail later on.

2.1 Holographic dual

In the large-Nc limit, the KW theory has a dual description in terms of a weakly coupled

type IIB string theory on a manifold which is a direct product of an asymptotically AdS5

(aAdS5) spacetime and T 1,1. At strong ’t Hooft coupling, classical type IIB supergravity

provides the leading order approximation to the properties of the theory. The M 6= 0

and baryon charge sector is captured by a consistent supersymmetric truncation to five

dimensions [93], which greatly simplifies the problem of finding the dual geometries to

the deformed KW theory. We will focus on disordered states at non-zero temperature and

charge, with holographic duals that are charged black brane geometries. Similar geometries

were constructed in [73] at zero mass M = 0, using a subset of the supersymmetric trunca-

tion. Along the way, comparison with their results will be used as a check of our analysis.

The details of the truncation is in appendix A. The action for the five-dimensional

truncated theory is

S5D =

∫
d5x
√
−gL5D + SCS , (2.12)

where

L5D =R− 10

3
(∂µχ)2−5(∂µη)2−(∂µλ)2−V

− 1

4
e2η− 4

3
χ
[
cosh(2λ)

(
(Fµν)2+(FMµν−FRµν)2

)
−2sinh(2λ)(FMµν−FRµν)Fµν

]
− 1

8
e−4η+ 8

3
χ(FRµν)2−4e−4η−4χ(AMµ )2 ,

(2.13)

and the potential is

V = 8e−
20
3
χ + 4e−

8
3
χ(e−6η cosh(2λ)− 6e−η cosh(λ)) ; (2.14)

we have set the radius of curvature L = 1. The Chern-Simons term is

SCS =
1

2
√

2

∫
(AM −AR) ∧ FM ∧ FR −

1

2
√

2

∫
A ∧ F ∧ FR . (2.15)
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The potential has a critical point at λ = χ = η = 0. If the gauge fields are also set to zero,

the solution to the equations of motion is an AdS5 geometry (of radius L = 1), dual to the

KW theory at the origin of the moduli space where the theory enjoys the full conformal

invariance. Expanding around this point

λ =
1√
2
δλ , χ =

√
3

20
δχ , η =

1√
10
δη , (2.16)

the action for the scalars to quadratic order is

LS ' −
1

2

[
(∂µδλ)2 + (∂µδχ)2 + (∂µδη)2 − 4δλ2 + 32δχ2 + 12δη2

]
. (2.17)

Therefore, the scalar fields around the critical point have masses m2
λL

2 = −4, m2
χL

2 = 32,

m2
ηL

2 = 12. Following the usual AdS/CFT dictionary, we can identify λ as the field dual

to the operator of conformal dimension ∆ = 2 (2.3),2 while χ and η are dual to scalar

operators of dimensions ∆ = 8 and ∆ = 6, respectively.

In order to identify the operators dual to the vector fields we should also expand the

action to quadratic order around the critical point. Note that as the kinetic terms are

mixed, we will diagonalize the quadratic action defining

ARµ =
2√
3

(
1√
2
aRµ + aMµ

)
, AMµ =

√
3aMµ . (2.18)

The action for the vector fields becomes

LV ' −
1

4
(Fµν)2 − 1

4
(∂µa

R
ν − ∂νaRµ )2 − 1

4
(∂µa

M
ν − ∂νaMµ )2 − 12(aMµ )2 . (2.19)

The massless vector fields Aµ and aRµ are dual to the baryon and R currents in (2.6). The

vector field aMµ has mass m2
ML

2 = 24, so it is dual to a vector operator of conformal

dimension ∆ = 7.

We will allow for configurations that flow in the UV to a fixed point, this means that

we will bar sources for the irrelevant operators dual to the scalars χ and η, and for the

massive vector field aMµ . In the holographic dual the metric will approach AdS5 close to

the asymptotic boundary r →∞:

ds2
5 '

L2

r2
dr2 +

r2

L2
ηµνdx

µdxν , (2.20)

while the fields dual to irrelevant operators vanish

χ ∼ 1

r8
, η ∼ 1

r6
, aMµ ∼

1

r6
. (2.21)

An explicit breaking of conformal invariance will be realized by introducing a coupling

∼ M2 to the ∆ = 2 operator. On the gravity side, the dual scalar field will have an

asymptotic expansion of the form

λ ∼ L4M2

r2
log

r

L
. (2.22)

2This identification is also based on symmetries, λ belongs to a SU(2)× SU(2) invariant truncation and

is not charged under the field aRµ dual to U(1)R current. The only other candidate Tr (|a|2 + |b|2) is not a

BPS operator.
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Non-zero baryonic and R-charge chemical potentials can be introduced by turning on the

time components of the massless vector fields. They can be defined as the integral of the

radial electric flux between the black brane horizon of the dual geometry and the asymptotic

boundary

µB =

∫ ∞
rH

drFrt , µR =

∫ ∞
rH

dr(∂ra
R
t − ∂taRr ) . (2.23)

We will work with stationary solutions, and thermal equilibrium usually demands that the

vector fields vanish at the horizon, so that the chemical potentials coincide with the values

of the vector fields at the boundary

µB = lim
r→∞

At , µR = lim
r→∞

aRt . (2.24)

With this we have all the necessary ingredients to construct solutions to the five-dimensional

action that are dual to finite temperature and charge density states, with the conformal

symmetry breaking coupling M turned on.

3 Black brane geometries and thermodynamics

The five-dimensional action (2.12) admits a family of black brane solutions based on the

following Ansatz for the metric and vector fields

ds2
5 = −ge−wdt2 +

dr2

g
+
r2

L2

3∑
i=1

(dxi)2

A = Φ(r)dt , AR = ΦR(r)dt , AM = ΦM (r)dt .

(3.1)

The scalar fields are also non-trivial, depending on the radial coordinate: λ(r), χ(r), η(r).

Inserting this Ansatz into the equations of motion derived from the action (2.12) gives a

system of eight differential equations involving eight functions of r. This system is first

order in the derivatives of the metric functions g(r) and w(r) and second order in the other

functions. It is fairly complicated, but we can simplify it by noting that the equations for

the two massless gauge fields can be integrated, allowing us to replace them with two first

order equations written in terms of two integration constants QB and QR:

QB =
e
w(r)

2
+2η(r)− 4χ(r)

3 r3

16πG5

[
cosh(2λ(r))Φ′(r)+sinh(2λ(r))

(
Φ′R(r)−Φ′M (r)

)]
QR =

e
w(r)

2
−4η(r)− 4χ(r)

3 r3

32πG5

[
2e6η(r)

(
cosh(2λ)

(
Φ′R(r)−Φ′M (r)

)
+sinh(2λ)Φ′(r)

)
+e4χ(r)Φ′R(r)

]
.

(3.2)

The constants QB and QR will be related to the baryonic and R-charge densities below.

We thus end up with a simpler system of four first order and four second order differ-

ential equations that we wish to solve numerically. In order to do this, we will employ a

double-sided shooting method: we expand the equations both near the aAdS boundary at

r → ∞ and near the black brane horizon at r = rH . Each of these expansions leaves us

– 7 –
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with some free parameters. By choosing initial values for these, we can numerically solve

the system of equations by integrating from both the boundary and the horizon up to some

midpoint in the bulk, say r = r0. At this midpoint we compute the vector

X ≡
{
g, w,Φ,ΦR,ΦM ,Φ

′
M , η, η

′, χ, χ′, λ, λ′
}

(3.3)

for both solutions. We then require that the difference between the two X’s so computed

is zero, in order to have a well-behaved solution in the whole region between the boundary

to the horizon: ∣∣∣X(r0)|horizon→bulk −X(r0)|boundary→bulk

∣∣∣ < small . (3.4)

This last step is accomplished by using the FindRoot function in Mathematica to tune the

free parameters until (3.4) is satisfied. Note that in (3.3) we only needed to include the first

derivatives of the functions whose second derivatives appear in the system of equations.

To check that (3.4) fixes all parameters, we briefly discuss the two expansions. For

r →∞ we need to impose that the spacetime really is asymptotically AdS5 — this means

the different functions should have the asymptotic behavior given in (B.2). This leaves us

with ten unfixed parameters in the near-boundary expansion. On the other hand, near the

black brane horizon, which we fix to be at r = rH = 1, time components of the metric

and the vector fields should vanish in order to have a smooth continuation to Euclidean

signature, as expected for a geometry dual to a state at thermal equilibrium:

g(r) ∼ Φ(r) ∼ ΦR(r) ∼ ΦM (r) ∼ O(r − rH) . (3.5)

The other functions should be regular at the horizon. Imposing this, we are left with seven

unfixed parameters in the near-horizon expansion of the equations of motion. There is

some overlap in the expansions, since QB and QR are part of the parameters in both cases.

Thus, we have a total of fifteen independent parameters from these expansions. As will be

discussed more below, we elect to be in a mixed ensemble: grand canonical for the baryon

symmetry, fixing the chemical potential µB corresponding to Φ0,0 in (B.2), and canonical

for the R-symmetry, fixing the charge density which is given by QR. Lastly, we fix the

source of the scalar dual to λ, corresponding to λ2,1 in (B.2). This takes us down to twelve

parameters, which matches exactly with the number of conditions imposed by (3.4).

We note that the solutions found in [73] are a subset of the family described by the

Ansatz above with

λ = 0 , ΦM = ΦR = 0 . (3.6)

This fixes the coupling to the scalar ∆ = 2 operator to zero M = 0, implying that conformal

invariance remains unbroken. The R-charge and chemical potential are also zero for these

solutions. When searching for black brane solutions dual to M 6= 0 deformations we have

started with the M = 0 solutions, introducing a small M (in units of temperature or

chemical potential) and then make the mass incrementally bigger. We have checked that

our M = 0 solutions reproduce the results of [73]. A particular example solution is shown

in figure 1.
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Figure 1. An example solution, at T/M = 0.19 and µB/M = 3.1. The horizon is at r = rH = 1.

3.1 Thermodynamics

The temperature, T , and entropy density, s, in the dual field theory can be identified with

the Hawking temperature and Bekenstein-Hawking entropy of the black brane, respectively.

They are straightforward to compute from the metric close to the horizon, the first as the

inverse of the period of the Euclidean time direction and the second as the area of the

black brane in Planck units

T =
e−

w(rH )

2

4π
g′(rH) , s =

r3
H

4G5
. (3.7)

Other thermodynamic quantities such as the energy density ε, pressure p, and baryon

and R-charge densities QR, QB, respectively, are computed as expectation values of the

energy-momentum tensor and the corresponding currents

〈T00〉 = ε , 〈Tij〉 = pδij ,
〈
J0
B

〉
= QB ,

〈
J0
R

〉
= QR . (3.8)

The details of this calculation using holographic renormalization are relegated to

appendix B.

Some of these quantities can be computed at any radius in the bulk. From the vector

and Einstein equations of motion one can identify several functions that remain constant

along the radial direction

∂rQB = ∂rQR = ∂rH = 0 , (3.9)

where QB and QR where introduced before in (3.2) and

H =
1

16πG5

(
r3e−

w(r)
2 g′(r)− r3e−

w(r)
2 g(r)w′(r)− 2r2e−

w(r)
2 g(r)

)
− Φ(r)QB − ΦR(r)QR − ΦM (r)QM .

(3.10)

Here we have also made use of

QM =
e
w(r)

2
+2η(r)− 4χ(r)

3 r3

16πG5

[
− sinh(2λ(r))Φ′(r) + cosh(2λ(r))

(
Φ′M (r)− Φ′R(r)

)]
, (3.11)
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which can be thought of as the quantity that would be conserved if the field ΦM was

massless (which it is not). When these quantities are evaluated at the boundary they

coincide with the charges and a combination of thermodynamic potentials

lim
r→∞

QB = QB , lim
r→∞

QR = QR

lim
r→∞

H = ε+ p− µBQB − µRQR .
(3.12)

When they are evaluated at the horizon and equated with the boundary values, one obtains

expressions for QB and QR in terms of the fields at the horizon yielding the thermodynamic

relation

ε+ p = Ts+ µBQB + µRQR . (3.13)

Therefore, the enthalpy ε + p can also be expressed in terms of fields evaluated at the

horizon. We emphasize that the solutions to the equations of motion are rather involved,

so having established the equality (3.13) on the solutions is far from fortuitous and should

be viewed as a highly non-trivial check of our analysis.

In the family of solutions constructed in [73] the scalar field dual to the ∆ = 2 operator

is set to zero λ = 0 and the R-charge density of the dual vanishes QR = 0. The expression

for the function associated to the baryonic charge in this simpler case is

QB = e
w
2

+2η− 4χ
3 r3Φ′ , M = 0 . (3.14)

We generalize these results by allowing for a breaking of conformal invariance, λ 6= 0. This

necessarily turns on the R-charge gauge field ΦR, forcing us to choose an ensemble —

the typical choices being grand canonical (fixed µR) or canonical (fixed QR). We elect to

work in the canonical, and we set QR = 0 throughout. Thus we are focusing on a two-

dimensional slice of the full three-dimensional phase diagram. The advantage to setting

QR = 0 is two-fold: it simplifies the equations of motion somewhat, and in section 4 it will

allow us to use arguments from [67] to set the probe brane angular momenta to zero. Since

we also fix µB, we are working in a mixed ensemble of fixed R-charge and baryon chemical

potential. Note that the R-charge chemical potential is in general non-zero, as it cannot

be tuned independently.

We show the resulting phase diagram in the temperature and baryon chemical potential

plane in figure 2. In general, we find that there are two distinct black brane solutions at

each point of the diagram. As we move towards low values of temperature and chemical

potential, these two branches approach each other and finally merge. Beyond the point of

merging, we find no black brane solutions at all — this is the orange region in figure 2.

In figure 3, the left panel shows the expectation value of the scalar dual to λ. The two

branches, and their merging at low temperature and chemical potential, can be seen. Note

that the branch with smaller expectation values is the one which at large temperatures and

chemical potentials connects with the solutions of [73]. This branch is also the one that

always has the lower free energy (see the right panel of figure 3), and will thus dominate

the phase diagram. In the rest of the paper, we will therefore focus on this branch.
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Figure 2. The phase diagram. Within the orange region we find no black brane solutions. Within

the purple region the dominant black brane solutions are unstable to brane nucleation. The four

horizontal lines correspond to the curves in figure 4.

μB/M=0

μB/M=2.0

μB/M=2.7

μB/M=3.5

0.0 0.2 0.4 0.6 0.8 1.0

1

5
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50

T/M

〈λ〉

M
2

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

T/M

ℱ

M
4

Figure 3. Expectation value of the operator dual to λ (Left panel; note the logarithmic vertical

axis) and the free energy (Right panel) as functions of the temperature, at various chemical poten-

tials. The branch of solutions with lower expectation value on the left corresponds to the one with

lower free energy on the right, and is thus dominant. As the orange region in figure 2 is approached,

the two branches merge.

At µB = µR = 0, a natural interpretation of the lack of black brane solutions at low

temperatures would be that the temperature at the boundary of the orange region corre-

sponds to the critical temperature where the effective potential (2.4) becomes unbounded

from below. As the chemical potential is increased one would then expect the instability

to grow worse. This is however not reflected in the classical gravity solution, as the phase

diagram boundary moves to lower temperatures. However, we will see that the brane nu-

cleation instability is present in all the region of lower temperatures and that the boundary

of the unstable region in the phase diagram moves to higher temperatures as the chemical

potential is increased. We have depicted the unstable region in purple in figure 2.

– 11 –



J
H
E
P
0
2
(
2
0
2
0
)
0
0
7

T/M=0.6
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vs
2

Figure 4. Speed of sound squared. The horizontal black line corresponds to the conformal value

of 1/3. We observe that the speed of sound decreases rapidly to zero when the boundary of the

phase diagram is approached.

We have also computed the stiffness determined by the thermodynamic derivative

v2
s =

(
∂p

∂ε

)
s

. (3.15)

At zero charge, the stiffness equals the speed of sound squared, so the system is expected to

become thermodynamically unstable if v2
s < 0, or be inconsistent with causality if v2

s > 1.

One can thus use the value of v2
s as a diagnostic of thermodynamic stability. In figure 4,

we display the results for the branch of solutions with lower free energy. We observe that

v2
s is always below the conformal value and decreases significantly until it reaches zero as

the boundary of the phase diagram is approached. Very near this boundary the solutions

are therefore thermodynamically unstable.

4 Brane nucleation and color superconductivity

String theory of course allows for phenomena not captured by pure supergravity alone. In

particular, holographic states can exhibit instabilities mediated by stringy processes. In this

section, we will search for such instabilities. We recall that our gravitational backgrounds

are sourced by a stack of Nc “color” branes as well as a density of wrapped, “baryonic”

branes. Following [67, 73], we will compute an effective potential for a probe brane of each

type, as well as that of a D5-brane, as a function of the radial coordinate. If this potential

has a global minimum outside the horizon, we interpret this as a sign of an instability —

the branes want to condense outside of the black brane. In this section we will concentrate

on the condensation of color branes, while the effective analysis for the baryonic branes

follows in section 5. To gain some geometric intuition of the brane embeddings, we have
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produced the table below. A dot means that the brane is localized3 and a crossed circle

that it is extended along the corresponding direction. The slashed circle on several of the

internal directions corresponds to the branes wrapping a diagonal two-cycle.

t x y z r θ1 φ1 θ2 φ2 ψ

Nc color D3 (background) : ⊗ ⊗ ⊗ ⊗ · · · · · ·
Color probe D3 : ⊗ ⊗ ⊗ ⊗ · · · · · ·

Probe D5 : ⊗ ⊗ ⊗ ⊗ · � � � � ·

When discussing the embedding of the branes, we will denote their spacetime coordi-

nates by capital letters Xµ. The timelike coordinate on the brane worldvolume will always

be denoted by τ — we will sometimes choose a gauge where this equals the proper time of

a certain observer on the brane, and sometimes where it equals the brane’s 10D spacetime

time-coordinate T . Derivatives with respect to τ will be denoted by a dot throughout.

Components of the 10D metric are denoted by gµν ; the metric components gxixi with

i = {1, 2, 3} are all equal and are collectively denoted by gxx.

4.1 D3-branes

A global minimum for the effective potential outside of the horizon signals an instability.

This leads to the “brane nucleation” process and corresponds to what the authors of [70]

call “Fermi seasickness”. Since these branes are of the same type as those who furnish the

field theory, this instability would lead to a Higgsing of the gauge group, i.e., there is a

spontaneous breaking of the gauge symmetry as SU(Nc + 1) × SU(Nc + 1) → SU(Nc) ×
SU(Nc)×U(1). We interpret this as analogous to color superconductivity [94].

Let us compute the on-shell D3-brane action. To achieve this goal we need to be

scrupulous on how to localize the probe brane in the internal directions. As can be seen

from the 10D metric (A.3), a non-zero ΦR actually means that the black brane is rotating

— there are off-diagonal time-angle components of the metric, much like in the Kerr black

hole in the standard Boyer-Lindquist coordinates. This is typical for R-charged black

branes — from the 10D point-of-view, the R-charge corresponds to angular momentum.

Moreover, if ΦR asymptotes to a non-zero constant, corresponding to a non-zero chemical

potential for the R-charge, then the coordinates are rotating even at the asymptotically

AdS (aAdS) boundary. We refer the reader to an exposition of the brane nucleation in a

clean, analytic, framework of [67] to gain better intuition on the relevant physics.

Thus, we need to let the brane to rotate in the ψ coordinate of (A.3).4 To implement

this, let us parametrize the worldvolume of the brane by coordinates ξα = (τ, χ1, χ2, χ3) ∈
(−∞,∞). We then make the following Ansatz for the embedding:

T = T (τ) , R = R(τ) , Xi = χi (i = 1, 2, 3) ,

Θ1 = θ0
1 , Φ1 = φ0

1 , Θ2 = θ0
2 , Φ2 = φ0

2 , Ψ = Ψ(τ) .
(4.1)

3We have picked a co-rotating frame relative to the background geometry: in the Ansatz we write down

for the probes the embedding rotates in the angular direction ψ ∼ ωt.
4One could be slightly more general and consider the brane revolving in the (φ1, φ2)-plane. However,

it is possible to show that this leads to an increase of the potential energy of the brane, making it less

interesting when searching for potential minima.
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In (4.1) the quantities with superscript “0” are constants specifying the location of the

D3-brane in the internal directions — these will not enter into the final result. The action

of the D3-brane reads

SD3 = −T3

∫
d4ξ
√
− det(P [gµν ]) + T3ε3

∫
P [C4] ≡

∫
d4ξ LD3 , (4.2)

where we defined the Lagrangian density LD3. Here, P [·] denotes the pullback of a 10D

spacetime field to the brane worldvolume, and ε3 = +1 (ε3 = −1) for a D3-brane (D3-

brane). The dilaton is constant in our backgrounds, and T3 = (2π)−3g−1
s α′−2 where α′−2 =

4πgsNc · 27
16 . To evaluate the DBI term it is convenient to consider an observer located on

the brane at fixed worldvolume coordinates (χ1, χ2, χ3). Taking the derivative with respect

to τ gives the velocity vector

U ≡ dXµ

dτ
∂µ = Ṫ ∂t + Ṙ∂r + Ψ̇∂ψ . (4.3)

The induced line element can then be written as

ds2
4 = UµU

µdτ2 + gxx
(
dχ2

1 + dχ2
2 + dχ2

3

)
, (4.4)

and the square root in the DBI term as√
− det(P [gµν ]) = g3/2

xx

√
−UµUµ , (4.5)

where

UµU
µ =gttṪ 2 + grrṘ2 + gψψΨ̇2 + 2gtψṪ Ψ̇ . (4.6)

Below, after performing the variations of the action, we fix τ to be the proper time of the

observer, such that the velocity squares to minus one: UµU
µ = −1. Finally, the WZ term

P [C4] in (4.2) becomes

P [C4] =
[
(C4)tṪ + (C4)ψΨ̇

]
dτ ∧ dχ1 ∧ dχ2 ∧ dχ3 , (4.7)

where (C4)t and (C4)ψ denote the (t, x1, x2, x3)-component and the (ψ, x1, x2, x3)-component

of C4, respectively.

Recall that our probe D3-brane is not a static object in the ambient background metric.

Rather, it is bound to geodesics with radial and angular sway. The probe D3-brane has

two conserved quantities: the total energy and the angular momentum which we extract

from the action. The energy and angular momentum can be determined by varying the

Lagrangian density LD3 with respect to Ṫ and Ψ̇, respectively. We arrive at the following

expressions

E ≡ − 1

T3

∂LD3

∂Ṫ
= g3/2

xx

(
−gttṪ − gtψΨ̇

)
− ε3(C4)t (4.8)

Jψ ≡
1

T3

∂LD3

∂Ψ̇
= g3/2

xx

(
gtψṪ + gψψΨ̇

)
+ ε3(C4)ψ . (4.9)
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We have simplified the result of the variations using UµU
µ = −1. We can now use (4.8)

and (4.9) together with UµU
µ = −1 to solve for the energy in terms of the angular mo-

mentum. Since UµU
µ given in (4.6) is quadratic in Ṫ we get two branches; we pick the one

with Ṫ > 0. Our result is

ED3 =−ε3(C4)t−gtψ
Jψ−ε3(C4)ψ

gψψ
+

√√√√(−gtt+ g2
tψ

gψψ

)(
g3
xx

(
1+grrṘ2

)
+

(Jψ−ε3(C4)ψ)2

gψψ

)
.

(4.10)

The effective potential is defined to be the energy with Ṙ = 0:

VD3 = −ε3(C4)t − gtψ
Jψ − ε3(C4)ψ

gψψ
+

√√√√(−gtt +
g2
tψ

gψψ

)(
g3
xx +

(Jψ − ε3(C4)ψ)2

gψψ

)
.

(4.11)

We note that this expression only depends on Jψ and the radial position. Plugging in the

explicit metric components, we arrive at

VD3 = −ε3(C4)t −
3ΦR√

2
(Jψ − ε3(C4)ψ) + e−

w
2
− 10

3
χ√g

√
r6 + 9e4η+4χ (Jψ − ε3(C4)ψ)2 .

(4.12)

Expanding this for large radii we find

VD3 = (1− ε3) r4 +O(r2) . (4.13)

This result confirms that ε3 = −1 corresponds to a brane of opposite charge to the ones

sourcing the background — such a D3-brane is always attracted towards the horizon at

large radii. By also plotting the full potential for various backgrounds, we find that the

force on D3-branes is directed toward the horizon for all values of the radial coordinate, in

all of the available phase diagram.

On the other hand, ε3 = +1 corresponds to a D3-brane of the same type as those

sourcing the background. In this case, one can see that the potential instead approaches a

constant value:

VD3 = C − 3µR√
2
Jψ +O(r−1) . (4.14)

The overall sign of this depends on the parameters of the background, in addition to

the angular momentum of the probe Jψ.5 As was argued in [67], the magnitude of the

angular momentum is given by the average angular momentum of the branes that source

the background (other values are statistically suppressed). Since our backgrounds all have

zero angular momentum (zero R-charge), we will set Jψ = 0.

In figure 5 we have depicted the effective potential to illustrate that at low temperatures

relative to the baryon chemical potential, the asymptotic value for the potential dives below

zero, which is the value at the horizon. This suggests that the D3-branes which are cloaked

5Explicitly, C can be written in terms of coefficients of the boundary expansion (B.2) as C = g2,0/2 −
λ2

2,0/6 + λ2,0λ2,1/8− 5λ2
2,1/192− ΦR 2,0ΦR 0,0.
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Figure 5. The effective potential for a probe color D3-brane at T/M = 0.5, with Jψ = 0.

by the event horizon can lower their energy by tunneling through the potential barrier and

moving away towards the boundary of spacetime. In doing so, the gauge group is Higgsed

as was discussed above. We find that this nucleation instability occurs for T ≤ 0.20µB,

in agreement with [73] for the special case of zero source for the operator dual to λ. In

fact, our numerical analysis suggests that T/µB ≈ 0.20 for all M/µB, implying that the

on-set of the instability is insensitive to the conformal symmetry breaking of the type we

are considering. The region for the instability is displayed in the phase diagram of figure 2.

4.2 D5-branes

The backgrounds we are probing are built up out of only D3-branes, so one might ask

why studying D5-branes is interesting. D5-branes actually play an interesting role on the

conifold. The base space T 1,1 is topologically S2 × S3. It is natural then to wrap the D5-

brane on the S2 and extend it in the field theory dimensions. This forms a domain wall in

the radial direction6 and leads to a step in the rank of one of the gauge groups [95]: on one

side, SU(Nc)×SU(Nc), on the other SU(Nc)×SU(Nc−1). A configuration with a D5-brane

of this type outside the horizon thus describes the Higgsing of one of the gauge groups. In

order to keep the fluxes of the theory unchanged, an D5-brane should also be present, so

this configuration is not reached directly by the emission of color branes by the black brane

but by the formation of a pair of five-branes that become separated in the bulk. Note that

supersymmetry is broken when both branes and anti-branes are present, but this is natural

as temperature and chemical potentials are already breaking it. By studying the effective

potential of the five-branes we can determine if the background becomes unstable due to

pair production or, from the field theory point of view, if asymmetric Higgsing is possible.

6Such a wrapped D5-brane is also related to fractional D3-branes. These are D5-branes pinned to the

conifold singularity.
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We now write down our Ansatz for the embedding. Following [96, 97], we consider the

D5-brane to wrap an S2 of the conifold, schematically S2
1 − S2

2 where S2
1 and S2

2 are the

two-spheres furnishing the base of the conifold. To accomplish this, we introduce brane

worldvolume coordinates (τ, χ1, χ2, χ3, α, β), where 0 ≤ α < π and 0 ≤ β < 2π are angular

coordinates on the S2, while the other coordinates take values from −∞ to∞. Our Ansatz

for the embedding is then as follows:

T = T (τ) , R = R(τ) , Xi = χi (i = 1, 2, 3) ,

Θ1 = α , Φ1 = β , Θ2 = α , Φ2 = −β , Ψ = Ψ(τ) .
(4.15)

Notice that besides the radial motion, the brane has an angular velocity Ψ̇. Note also

that we could had considered letting the D5-brane rotate in the φi-directions, however, as

was the case for the extended D3-branes, this will only add a positive contribution to the

effective potential and is thus not very interesting.

We have learned that the primary reason for the brane nucleation to occur is due to

having non-trivial WZ terms in the action. The only form-field turned on in our back-

grounds is C4. Thus, to obtain a non-zero WZ part of the D5-brane action we seek to turn

on a worldvolume gauge field F . This can be simply done by turning on a magnetic flux

on the S2 that the D5-brane wraps. The action for the D5-brane is then

SD5 = −T5

∫
d6ξ
√
− det(P [gµν ] + F) + T5 ε5

∫
P [C4] ∧ F , (4.16)

where T5 = (2π)−5g−1
s α′−3, and ε5 = +1 (ε5 = −1) corresponds to a D5 (D5). We turn on

the following worldvolume flux:

F = f sinα dα ∧ dβ . (4.17)

This gives a D3-brane charge to the D5-brane — effectively we dissolve a number of D3-

branes in the D5-brane. For a D5-brane (ε5 = +1), a positive flux corresponds to dissolving

D3-branes while a negative flux corresponds to dissolving D3-branes. For an D5-brane

(ε5 = −1), the opposite is true. The flux f is in fact quantized, f = πα′n for integer n [98].

However, since α′ ∼ 1/
√
gsNc, we can regard it as a continuous parameter in the limit

we are working in. Dissolving exactly one D3-brane would correspond to choosing n = 1.

Below we consider fluxes of order 1 and are therefore dissolving a large number
√
gsNc of

D3-branes (though not larger than what is allowed by the probe limit).

From the previous subsection we know that adding D3’s should add to the attractive

force between the D5-brane and the stack of background D3-branes. Dissolving D3-branes

should on the other hand add a repulsive component to the force in the low-temperature

region of the phase diagram. We therefore expect that dissolving a sufficient number of

D3-brane charge in the D5-brane will give rise to an instability in the effective potential.

To check if this is borne out, we proceed along similar lines as in the previous subsec-

tion. We consider an observer located on the D5-brane at fixed worldvolume coordinates

(χ1, χ2, χ3, α, β). Taking the derivative with respect to τ , yields the velocity

U ≡ dXµ

dτ
∂µ = Ṫ ∂t + Ṙ∂r + Ψ̇∂ψ , (4.18)
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for which

UµU
µ =gttṪ 2 + grrṘ2 + gψψΨ̇2 + 2gtψṪ Ψ̇ . (4.19)

This velocity squares to minus one, UµU
µ = −1, upon fixing τ to the proper time. We can

then write the induced line element on the brane worldvolume as

ds2
6 = UµU

µdτ2+gxx
(
dχ2

1 + dχ2
2 + dχ2

3

)
+(gθ1θ1 + gθ2θ2) dα2+(gφ1φ1 − 2gφ1φ2 + gφ2φ2) dβ2 ,

(4.20)

and the square root in the DBI term as√
− det(P [gµν ] + F) = Υ

√
−UµUµ , (4.21)

where we defined the quantity

Υ ≡ g3/2
xx

√
(gθ1θ1 + gθ2θ2) (gφ1φ1 − 2gφ1φ2 + gφ2φ2) + f2 sin2 α . (4.22)

The non-vanishing components of the P [C4] are

P [C4] =
[
(C4)tṪ + (C4)ψΨ̇

]
dτ ∧ dχ1 ∧ dχ2 ∧ dχ3 (4.23)

building up the WZ term

T5 ε5

∫
d6ξ

{[
(C4)tṪ + (C4)ψΨ̇

]
f sinα

}
. (4.24)

Above, (C4)t and (C4)ψ denote the (t, x1, x2, x3)- and (ψ, x1, x2, x3)-components of C4,

respectively.

To obtain the effective potential, we consider the two obvious conserved quantities of

the resulting D5-brane action, the energy and the angular momentum. Recall that these

are all really densities, since the worldvolume is infinite. The energy and the angular

momentum can be determined by varying with respect to Ṫ and Ψ̇, respectively. We use

UµU
µ = −1 after varying to simplify the resulting expressions. We also want to integrate

over the angular coordinates α and β. The dependence on these coordinates is in the

expression for Υ as well as in the WZ term, both of which are proportional to sin α. We

thus define the quantity Υ̃ ≡ V −1
S2

∫
S2 Υ, where VS2 = 4π. We can then write down the

following conserved quantities:

E ≡ − 1

T5VS2

∫
S2

∂L
∂Ṫ

=
1

VS2

∫
S2

{
Υ
(
−gttṪ − gtψΨ̇

)
− ε5(C4)tf sinα

}
= Υ̃

(
−gttṪ − gtψΨ̇

)
− ε5(C4)tf (4.25)

Jψ ≡
1

T5VS2

∫
S2

∂L
∂Ψ̇

=
1

VS2

∫
S2

{
Υ
(
gtψṪ + gψψΨ̇

)
+ ε5(C4)ψf sinα

}
= Υ̃

(
gtψṪ + gψψΨ̇

)
+ ε5(C4)ψf . (4.26)
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We can now use (4.25) and (4.26) together with UµU
µ = −1 to solve for the energy in

terms of the angular momentum and the flux f . Since (4.19) is quadratic in Ṫ we get two

branches; we pick the one with Ṫ > 0. The result is

E=−ε5(C4)tf−gtψ
Jψ−ε5(C4)ψf

gψψ
+

√√√√(−gtt+ g2
tψ

gψψ

)(
Υ̃2
(

1+grrṘ2
)

+
Jψ−ε5(C4)ψf

gψψ

)
.

(4.27)

Again, the effective potential is defined to be the energy with Ṙ = 0:

VD5 =−ε5(C4)tf−gtψ
Jψ−ε5(C4)ψf

gψψ
+

√√√√(−gtt+ g2
tψ

gψψ

)(
Υ̃2+

Jψ−ε5(C4)ψf

gψψ

)
. (4.28)

After plugging in the explicit metric components, this becomes

VD5 =−ε5(C4)tf−
3ΦR√

2
(Jψ−ε5f(C4)ψ)

+e−
w
2

√
9e4η− 8

3
χg (Jψ−ε5f(C4)ψ)2+r6 g e−

20
3
χ

(
1

9
e2(η+χ) cosh2(2λ)+f2

)
. (4.29)

Finally, let us study the large radius asymptotics of the effective potential as was also done

in the case of D3-brane probes. Expanding the potential (4.29) for large radii we find

VD5 =

(
1

3

√
1 + 9 ε25f

2 − ε5f
)
r4 + . . . . (4.30)

The quantity in parentheses is always positive, approaching zero only for ε5f →∞. So for

finite flux the D5-brane will never shoot off to the aAdS boundary. However, by making

the flux large and positive we can push the region where this r4 growth dominates to large

radii, so depending on the subleading behavior we might get a global minimum at finite

radius. Indeed this is the case, as can be seen in on the right panel in figure 6. More

precisely, at low temperature, as the flux is increased from zero, a minimum forms at finite

radius. Increasing the flux further pushes down this minimum until it dips below zero —

this signals the onset of a nucleation instability. At high temperature, increasing the flux

does not lead to the formation of a minimum, however, as is shown on the left panel in

figure 6. As one might have expected, the onset of the instability seems to occur exactly

at the same T/µB as the D3-brane instability of the previous subsection. (Note that we

have taken Jψ = 0 for the same reason as in the previous subsection.)

It is worthwhile to compare the potential for the D5-brane to the potential for the

D3-brane worked out in the previous subsection. As argued above, the flux f counts the

number of D3-branes dissolved in the D5-brane. One might then anticipate that for large

flux, the D5-brane potential is more and more dominated by these dissolved D3-branes.

To verify this, set ε5 = +1 in VD5, then scale Jψ → fJψ and expand for large f , keeping

only the leading order. Finally, divide by the number of dissolved D3-branes, which is set

by f . Doing this, we indeed recover the result (4.12) for a single D3-brane. More precisely,

for f large and positive we recover (4.12) with ε3 = 1, and for f large and negative we

recover (4.12) with ε3 = −1.
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Figure 6. The effective potential for a probe D5-brane, with Jψ = 0 and varying the worldvolume

flux, in backgrounds with T/M = 0.5. On the left, T/µB = 0.5, which is outside the region where

the nucleation instability occurs — thus no minimum forms as the flux is increased. On the right,

we are inside the unstable region with T/µB = 0.1 — increasing the flux then leads to the formation

of a minimum.

5 Wrapped D3-branes and baryon condensation

Our black brane backgrounds are charged under the baryonic U(1). In finite density holog-

raphy, one often encounters instabilities in charged black branes at low temperature, where

the black brane prefers to shed its charge. This is the case in the famous holographic “su-

perconductor”, where at low temperature it is preferential for the charge to be carried by

a scalar field in the bulk, rather than by the black brane. One might ask if the same hap-

pens in our geometries. A significant difference is that since no elementary field is charged

under the baryonic symmetry, the objects condensing would have to be the baryonic D3-

branes wrapping parts of the internal space [99]. Constructing the geometry resulting from

such condensation will therefore be complicated. However, we can still go ahead and com-

pute the effective potential for a probe brane, which will tell us if an instability towards

condensation exists.

Before going into the details of the calculation, it is useful to recall what the dual

interpretation of a bulk state with condensed D3-branes would be. In condensed matter

applications of holography, the division into charge carried by black hole horizons and

charge carried by matter fields outside the horizon has been discussed in depth. In the

dual field theory, this is thought to correspond to the charge density being distributed over

“fractionalized” and “cohesive” degrees of freedom [100], respectively. Here, “fraction-

alized” essentially means color-charged, e.g., quarks, while “cohesive” essentially means

color-neutral, e.g., hadrons. This should be compared with the criteria for confinement

in the bulk, which essentially depends on the existence of a horizon. If the state is con-

fined, no horizon exists, and all charge is necessarily carried by non-dissipative cohesive

excitations. However, in a deconfined state with a horizon, there are several options: the

charge can be carried by cohesive excitations, by fractionalized excitations, or by a mix of

the two. In the presence of fundamental fermionic matter, when all the charge is cohered,
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the corresponding dual field theory state can have an interpretation in terms of gapped

quantum Hall states [101, 102].

Let us now describe the computation for the effective potential by wrapping D3-branes

on a 3-cycle in the internal space. Recall that the conifold is a U(1) fiber over S2×S2. The

two simplest possibilities [95] are then to wrap the U(1) fiber together with one of the S2’s.

As pointed out in [97], however, there is a larger family of embeddings, where the brane

wraps the first S2 an integer m1 times and the second S2 an integer m2 times. We will

see explicitly below that the winding numbers m1 and m2 together set the baryonic charge

and the R-charge of the corresponding dual operator (roughly, higher winding numbers

correspond to larger charges).

To implement this embedding, let us parametrize the brane worldvolume by the coor-

dinates (τ, ζ, β, γ), where −∞ < τ < ∞, 0 ≤ ζ < ∞, 0 ≤ β < 2π, and 0 ≤ γ < 4π. (Note

that this is somewhat different from the parametrization chosen in [97].) The embedding

where the brane winds m1 times around φ1 and m2 times around φ2 can then be written as

T = T (τ) , R = R(τ) , Xi = x0
i (i = 1, 2, 3) ,

Θ1 = 2 tan−1(c1ζ
m1) , Φ1 = m1β ,

Θ2 = 2 tan−1(c2ζ
m2) , Φ2 = m2β ,

Ψ = γ .

(5.1)

Here, x0
i are arbitrary constants representing the location of the wrapped brane in the field

theory directions — these are unimportant due to translational invariance. Moreover, c1

and c2 are arbitrary positive constants. When the winding number m1 is zero, c1 sets the

θ1-coordinate of the brane, and similarly for c2. The somewhat peculiar form of Θ1 and

Θ2 ensures that (
c−1

1 tan
Θ1

2

)m2

=

(
c−1

2 tan
Θ2

2

)m1

(5.2)

holds, which is our version of (3.23) in [97]; to compare, set m1 = 1, m2 = m.7 We can

visualize this embedding with the following diagram:

t x y z r θ1 φ1 θ2 φ2 ψ

Nc color D3 (background) : ⊗ ⊗ ⊗ ⊗ · · · · · ·
Baryonic probe D3, m1 6= 0, m2 = 0 : ⊗ · · · · ⊗ ⊗ · · ⊗
Baryonic probe D3, m1 = 0, m2 6= 0 : ⊗ · · · · · · ⊗ ⊗ ⊗
Baryonic probe D3, m1 6= 0, m2 6= 0 : ⊗ · · · · � � � � ⊗

According to a straightforward generalization of the arguments from [97], this embedding

should be dual to a field theory operator of the schematic form(
A|m1|B|m2|

)Nc
, (5.3)

with conformal dimension 3(|m1|+ |m2|)Nc/4 and baryon number (|m1| − |m2|)Nc.

7Note that the brane could have some non-zero angular velocity (and associated angular momentum) in

the φ-directions (one linear combination of angular velocities in the (φ1, φ2)-directions is pure gauge, but

there remains a physical velocity as well). However, it seems obvious that this will only increase the energy,

and so we set it to zero here. We have explicitly checked this for (m1,m2) = (1, 0) and (0, 1).
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If we take Ṙ = 0, the brane is not moving at all in our embedding, and the effective po-

tential for these baryonic D3-branes is essentially given by minus their on-shell Lagrangian.

We again start from the D3-brane action (4.2). To evaluate it on the above baryonic em-

bedding, we go to static gauge where T = τ and integrate the resulting action over the

internal directions. The pullback of C4 in (A.8) becomes

P [C4] =−
√

2

9

{(
c2

1m
2
1 ζ

2m1−1(
1+c2

1 ζ
2m1
)2− c2

2m
2
2 ζ

2m2−1(
1+c2

2 ζ
2m2
)2
)

Φ

+

(
c2

1m
2
1 ζ

2m1−1(
1+c2

1 ζ
2m1
)2 +

c2
2m

2
2 ζ

2m2−1(
1+c2

2 ζ
2m2
)2
)

(ΦM−ΦR)

}
dτ∧dζ∧dβ∧dγ ,

(5.4)

while the DBI term evaluates to√
− det(P [gµν ]) =

2

9
e−

w
2
−η+ 2χ

3
√
g

(
c2

1m
2
1 ζ

2m1−1(
1 + c2

1 ζ
2m1
)2 eλ +

c2
2m

2
2 ζ

2m2−1(
1 + c2

2 ζ
2m2
)2 e−λ

)
. (5.5)

Integrating over the internal directions is fairly simple; the integrals over β and γ are trivial

and give a factor of 8π2, while the integral over ζ takes the form∫ ∞
0

dζ
c2m2 ζ2m−1

(1 + c2 ζ2m)2 =
|m|
2
. (5.6)

The full action then becomes

SbD3 =−T3 8π2

∫
dτ

{
1

9
e−

w
2
−η+ 2χ

3
√
g
(
|m1|eλ+|m2|e−λ

)
+ε3 (|m1|−|m2|)

Φ

9
√

2
+ε3 (|m1|+|m2|)

ΦM−ΦR

9
√

2

}
≡
∫
dτLbD3 ,

(5.7)

where we have defined the effective Lagrangian LbD3. Since all kinetic terms are set to

zero, the effective potential is just minus the Lagrangian,

VbD3 ≡ −
1

T3VS3

LbD3 =
1

18
e−

w
2
−η+ 2χ

3
√
g
(
|m1|eλ + |m2|e−λ

)
+ ε3 (|m1| − |m2|)

Φ

18
√

2
+ ε3 (|m1|+ |m2|)

ΦM − ΦR

18
√

2
,

(5.8)

where VS3 = 16π2. Note that |m1| − |m2| sets the coupling to the baryonic gauge field Φ,

while |m1|+ |m2| sets the coupling to the R-charge gauge field ΦR, in agreement with (5.3).

Moreover, when λ = 0, |m1| + |m2| is proportional to the mass as well as the R-charge.

This is a consequence of the field theory being superconformal in which case the R-charge

and the conformal dimension of the corresponding operator are related.

Expanding (5.8) for large radius we get

VbD3 =
|m1|+|m2|

18
r+ε3 (|m1|−|m2|)

Φ0,0

18
√

2
−ε3 (|m1|+|m2|)

ΦR0,0

18
√

2
+O(r−1 logr) , (5.9)
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Figure 7. The effective potential for a probe baryonic D3-brane wrapped around the S3

parametrized by {θ1, φ1, ψ} (left) and {θ2, φ2, ψ} (right). The curves are all at T/M = 0.5, with

varying T/µB .

which shows that the potential always grows linearly in r for any non-trivial winding, and

thus the global minimum of the potential cannot be at the asymptotic boundary.

We see from (5.8) that while we can indeed get operators with arbitrarily large baryon

charge, for example by taking m2 large, these operators will also be very massive. Taking,

e.g., m2 large and m1 = 0 just multiplies the potential with an overall |m2|, which cannot

change the sign of the potential to create a minimum away from the horizon. Since we

should take ε3 = +1 and Φ > 0 in the bulk (while ΦM − ΦR < 0 mostly), one possibility

of getting such a minimum could be if we took m2 6= 0 and m1 = 0 in a background with

λ large in the bulk. The large λ in the bulk makes the S2 the brane wraps small, and thus

the mass remains small while the baryon charge is unaffected by λ. In this case it might be

possible that the potential changes sign. Unfortunately we have not been able to construct

backgrounds with λ large enough to study this possibility.

We have depicted the effective potential (5.8) as a function of the radial coordinate

in figure 7 for both embeddings. In this figure, we keep the mass of the fermions and

the temperature fixed and vary the chemical potential. We find that at high densities the

potential is flattening for the embedding wound around the {θ2, φ2, ψ} directions. The

results are qualitatively similar for any T/M .

While a minimum outside the horizon does not form for the baryons, it may be worth

noting that this would occur if we allow ourselves to take the D3-brane charge ε3 slightly

larger. This of course takes us away from the strict top-down framework, but is nonetheless

useful to study. For zero deformation, it was demonstrated in [73] that if ε3 > 1 baryon

condensation would occur at low enough T/µB. In the left panel of figure 8, we show the

smallest value of ε3 for which condensation occurs as a function of T/µB, for three different

values of M3/s̃, where8 s̃ = G5s (the results of [73] correspond to M3/s̃ = 0). It appears

that all curves hit ε3 = 1 when T goes to zero and grow monotonically with T . In the right

panel of the same figure, we show the potential along the bottom curve of the left plot.

As we approach zero temperature and the critical ε3 approaches 1, the minimum of the

potential approaches the horizon while asymptotically we still see linear growth. Together,

8In units where the aAdS radius is L = 1.
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Figure 8. Left: the critical value of ε3 where baryon condensation could occur for the (m1,m2) =

(0, 1) wrapping, as a function of T/µB , for increasing values of M3 normalized by s̃ ≡ G5 s, where

s is the entropy density. Right: the baryonic potential along the M3/s̃ = 1.41 curve on the left.

this indicates that no condensation occurs throughout the accessible phase diagram, even

in the zero temperature limit. Furthermore, the extremal T = 0 geometry appears to be

marginally stable: there is a minimum right by the horizon, which for any ε3 > 1 would

dip below zero leading to an instability.

6 Discussion

We have considered a deformation of the Klebanov-Witten theory that breaks both con-

formal invariance and supersymmetry. Since the classical potential in the deformed theory

is unbounded from below, the theory should be unstable at low temperature. This is

confirmed by the analysis of the gravity dual, albeit the instability seems to be realized

differently depending on the value of the baryon chemical potential. For small values of

the baryon chemical potential it is manifested directly in the properties of the classical

gravity solutions. In particular, stable solutions fall outside a region of the phase diagram

limited by the points where the speed of sound in the field theory dual goes to zero and the

expectation value of a scalar operator diverges. For larger values of the baryon chemical

potential the gravity solutions are classically stable, but the effective potential of probe

color branes has a global minimum outside the horizon at low temperatures, thus there

is a brane nucleation instability. Interestingly, the on-set of this nucleation instability is

independent of the conformal symmetry breaking scale. We have thus established that in

the extremal limit all the charged solutions are either unstable or metastable.

The results are in principle in accord with the weak gravity conjecture, but the re-

alization of the instability seems to deviate from the usual argument. The black brane

has baryon charge (while the R-charge is vanishing) and one might have expected that

the instability of extremal branes would be related to baryonic branes, but instead color

branes are the ones showing the nucleation instability. It is conceivable that the nucleation

instability we observe is unrelated to the weak gravity conjecture. A possible way to check

the conjecture more directly would be to modify the potential in the field theory dual in

such a way that it remains bounded from below. In the setup we have studied this could
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be partially accomplished by introducing a double-trace deformation that is the square of

the ∆ = 2 operator

∼
(
Tr
(
|a|2 − |b|2

))2
. (6.1)

This can be realized in the gravity dual by imposing mixed boundary conditions for the

dual field λ [103]. However, it is not enough because the potential remains flat along the

|a|2 = |b|2 directions, so chemical potentials will generically make the effective potential

unbounded from below. Then, the nucleation instability of color branes seems unavoidable

as long as one remains close to the classical supergravity limit and may render extremal

black holes unstable even without invoking the weak gravity conjecture. Most theories

with known gravity duals are supersymmetric or they are deformations of supersymmetric

theories with moduli spaces, so this situation is probably quite general. If it was possible

to remove the color brane nucleation instability, in principle an instability related to the

nucleation of baryonic branes may emerge once quantum corrections are taken into account

on the gravity side (1/Nc corrections on the field theory side). On the other hand, it could

as well be that quantum corrections do not trigger a new instability but that the nucleation

instability of color branes is the mechanism by which many theories with holographic duals

avoid the issues related to extremal black holes in quantum gravity.

One of our original motivations to study the Klebanov-Witten model is that it might

be used as a toy model for QCD with non-zero baryon charge, realized without having

to introduce flavor branes with their associated technical complications. In addition, by

considering larger consistent truncations [93], the Klebanov-Witten theory can be deformed

to Klebanov-Strassler [104], that shows confinement and is thus even more similar to QCD.

In this context the results related to D5-branes carrying color D3-brane flux are particularly

interesting. We have found that the effective potential has a global minimum at a finite

distance outside the horizon, so in principle metastable configurations with D5-branes

localized at the minimum can exist and will correspond to a partial Higgsing of the gauge

group. With obvious differences, this is akin to color superconductivity in QCD and it

would be very interesting to explore further. The Higgsed phase could perhaps be used to

model matter in the deep cores of the most compact objects in the universe. Therefore,

results in this direction goes beyond academic curiosity and will help us understand the

exotic phases of matter pressed in immense pressures, ultimately probed in astronomical

laboratories of merging neutron stars. To our knowledge the only other example with

similar features is N = 4 SYM compactified on a sphere [67], which is less interesting as

there is no baryon charge and metastable configurations go away in the flat space limit.

On a related direction, a deeper understanding of the instabilities on the gravity side

may also led to new interesting realizations of ordered phases. Toy versions of Chern-

Simons driven instabilities have already led to increasing understanding of breaking of

continuous symmetries in various dimensions [17, 40]. It would likewise be interesting to

understand the underlying mechanism behind the Chern-Simons terms that lead to color

superconducting ground states. In this vein, it would be possible to demonstrate the

precursor mechanism to transition to such phases in some realistic holographic models for

quantum chromodynamics, e.g., in V-QCD [105].
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A SUGRA formulas

In this section we will specify the supergravity (SUGRA) background geometry which

provides us with the dual of the gauge theory discussed in the introductory part of this

paper. We will start with the full 10D SUGRA Lagrangian and lay out the Ansatz for the

metric and for the various fluxes. However, rather than directly solving for the 10D fields,

we will simplify our task by reducing the problem to a lower 5-dimensional effective field

theory that is better fit for numerical analysis. The pay-off is that there are more fields to

be solved for, e.g., the non-trivial radially dependent 10D metric will imply various scalar

fields in the 5D case.

A.1 10D theory

The conifold gauge theory lives on the worldvolume of a stack of D3-branes placed at the

tip of the conifold T 1,1. By taking the usual near-horizon limit, it can be shown to be dual

to type IIB string theory on AdS5 × T 1,1. In the appropriate limit, this reduces to IIB

supergravity, whose action is

SIIB =
1

2κ2
10

∫ [
R− 1

2
(dφ)2 − 1

2
e−φH2 − 1

2
e2φ(F1)2 − 1

2
eφ(F3)2 − 1

4
(F5)2

]
∗ 1 + CS

(A.1)

Following [73] we will study truncations of this supergravity action where all fields except

the metric and the RR 5-form are set to zero. Our solution will be written in terms of

three vector fields: A, associated to the baryon charge, AR, associated to the R-charge,

and a massive vector field AM . The corresponding field strengths are F = dA, FR = dAR,

and FM = dAM . We define the following forms on T 1,1:

ω2 ≡
1

2
(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2)

ω3 ≡ g5 ∧ ω2

g5 ≡ dψ + cos θ1dφ1 + cos θ2dφ2

gA5 ≡ g5 +
3√
2
AR .

(A.2)
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The Ansatz for the 10D metric is

ds2
10 = e−5χ/3ds2

5 + eχ
[
eη+λ

6
(dθ2

1 + sin2 θ1dφ
2
1)

+
eη−λ

6
(dθ2

2 + sin2 θ2dφ
2
2) +

e−4η

9

(
g5 +

3√
2
AR

)2 ]
, (A.3)

where ds2
5 is a 5D line element (with AdS5 asymptotics). Note that if the scalar fields and

AR are set to zero the terms in square brackets above reduce to the canonical metric on

T 1,1 [73]. It is convenient to define the 3-forms

Q(3)
B ≡ e

2η− 4χ
3 [cosh(2λ) ?5 F − sinh(2λ) ?5 (FM − FR)] (A.4)

Q(3)
R ≡ e

2η− 4χ
3 [cosh(2λ) ?5 (FR − FM ) + sinh(2λ) ?5 F ] +

1

2
e−4η+ 8χ

3 ?5 FR (A.5)

Q(3)
M ≡ e

2η− 4χ
3 [cosh(2λ) ?5 (FM − FR)− sinh(2λ) ?5 F ] , (A.6)

where ?5 denotes the Hodge dual with respect ds5. The first two of these are related to

the conserved baryon and R-charge densities of the dual field theory, respectively. With

the help of these 3-forms, the self-dual 5-form can be written as

F5 =
1

gs
(F + ∗F)

F = − 2

27
ω2 ∧ ω2 ∧ g5 −

1

9
√

2
F ∧ ω2 ∧ gA5

+
1

18
√

2
(FM − FR) ∧ dg5 ∧ gA5 −

1

18
√

2
(AM −AR) ∧ dg5 ∧ dg5

∗F = −4e−
20
3
χvolM −

1

3
√

2
Q(3)
B ∧ ω2 −

1

6
√

2
Q(3)
M ∧ dg5

− 2
√

2

3
e−4χ−4η(?5AM ) ∧ gA5 .

(A.7)

For probe brane computations, we need to find an explicit expression for the RR four-

form potential C4 satisfying F5 = − 2
27ω2 ∧ ω2 ∧ g5 + dC4. We arrive at

C4 = − 1

9
√

2
A ∧ ω2 ∧ gA5 +

1

18
√

2
(AM −AR) ∧ dg5 ∧ gA5

+
1

6
√

2
QM ∧ g5 +

1

3
√

2
QB ∧ h+ a4(r)dt ∧ dx ∧ dy ∧ dz .

(A.8)

Here we have additionally defined the 1-form h ≡ cos θ1dφ1 − cos θ2dφ2. The function a4

is determined by the equation

a′4(r) = 2r3e−
w
2
− 20χ

3

(
2− 2ew−4η+ 8χ

3 ΦRΦM

g

)
, (A.9)

together with the condition that it goes to zero at the horizon.
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N = 2 multiplet field fluctuations m2 ∆ dual operators

gravity
3AR − 2AM

gµν

0

0

3

4
Tr(W1αW1α̇ +W2αW2α̇) + . . .

Betti vector
λ

A

−4

0

2

3
TrAeV2Ae−V1 − TrBeV1Be−V2

massive vector

η

AM

χ

12

24

32

6

7

8

Tr(W 2
1 W

2
1 +W 2

2 W
2
2 ) + . . .

Table 1. Mass eigenstates of the type IIB supergravity truncation introduced here on the super-

symmetric AdS5 × T 1,1 background, and their dual superfield operators, adapted from [93].

Plugging all this into the 10D action and integrating over the compact conifold dimen-

sions, one obtains the following 5D action:

S5D =
1

16πG5

∫
d5x
√
−gL5D + SCS , (A.10)

where

L5D = R− 10

3
(∂µχ)2 − 5(∂µη)2 − (∂µλ)2 − V

− 1

4
e2η− 4

3
χ
[
cosh(2λ)

(
(Fµν)2 + (FMµν − FRµν)2

)
− 2 sinh(2λ)(FMµν − FRµν)Fµν

]
− 1

8
e−4η+ 8

3
χ(FRµν)2 − 4e−4η−4χ(AMµ )2 , (A.11)

and the potential is

V = 8e−
20
3
χ + 4e−

8
3
χ(e−6η cosh(2λ)− 6e−η cosh(λ)) ; (A.12)

we have set the radius of curvature L = 1. The Chern-Simons term in five dimensions

reads

SCS =
1

2
√

2

∫
(AM −AR) ∧ FM ∧ FR −

1

2
√

2

∫
A ∧ F ∧ FR . (A.13)

For completeness, we have included the table 1, which summarizes the operator duals and

their dimensions of the corresponding SUGRA fields.

B Boundary analysis and holographic renormalization

In this section we will carefully discuss the necessary holographic renormalization which

we have performed in order to extract the thermodynamics for the background. Though

the methods we use are standard [106], we encounter several subtleties with logarithms,

and the associated renormalization scheme. Therefore, we prefer to essentially follow the

conventions set in [81, 82], where also a much more expanded discussion can be found.
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B.1 Boundary expansion

For large r, near the aAdS boundary, we can solve the equations of motion order by order.

To do this, we make an Ansatz for all the fields of the form

F (r) =
∑
i≥0

∑
j≥0

Fi,jr
−i log(r/L)j . (B.1)

We have assumed that the sources of the irrelevant operators dual to ΦM , η, and χ are set

to zero. The result is as follows:

g =
r2

L2
+
L2

r2

(
g2,0 +

log(r/L)

3
(4λ2,1λ2,0 − λ2

2,1) +
log(r/L)2

3
2λ2

2,1

)
+O(r−4)

Φ = Φ0,0 +
L2Φ2,0

r2
+O(r−4) , ΦR = ΦR 0,0 +

L2ΦR 2,0

r2
+O(r−4)

ΦM = O(r−4) , η = O(r−4) , χ = O(r−4) , w = O(r−4)

λ =
L2λ2,0

r2
+
L2λ2,1 log(r/L)

r2
+O(r−4) .

(B.2)

We see that rescaling of the argument of the log L → sL causes, in particular, a shift

λ2,0 → λ2,0 − λ2,1 log(s). This corresponds to a change of scheme, in the following we will

fix s = 1. Note that there appears three more independent constants at subleading orders,

related to the expectation values of the operators dual to ΦM , η, and χ — these will not

be important in the rest of our analysis.

B.2 On-shell action and counterterms

We want to show that, with the help of the equations of motion, the action can be written

as a total derivative, greatly simplifying its evaluation. First, by considering the trace of

Einstein equations, it is easy to show that the on-shell action can be written as

SOS =
1

16πG5

∫
d5x
√
−g2

3
[V + Fkin] , (B.3)

where V is the scalar potential (A.12) and Fkin contains the kinetic terms for the vector

fields:

Fkin ≡ −
1

4
e2η− 4

3
χ
[
cosh(2λ)

(
(Fµν)2 + (F̃Rµν)2

)
− 2 sinh(2λ)FµνF̃

µν
R

]
− 1

8
e−4η+ 8

3
χ(FRµν)2 .

(B.4)

With further use of the Einstein equations one also finds

V + Fkin =
3

r

(
−g′(r) +

g(r)

2
w′(r)− 2g(r)

r

)
, (B.5)

which lets us write

SOS =
1

16πG5

∫
d5x
√
−g2

r

[
−g′(r) +

g(r)

2
w′(r)− 2g(r)

r

]
. (B.6)
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By evaluating
√
−g it is easy to combine these terms into a total derivative and arrive at

the final expression

SOS =
1

16πG5

∫
d5x ∂r

[
−2
√
−g g(r)

r

]
(B.7)

= − 1

16πG5

∫
d4x

[
2
√
−g g(r)

r

]r=rΛ
r=rH

, (B.8)

where we performed the radial integral from the horizon r = rH to a cutoff near the

boundary rΛ.

As always, one needs to add to this a Gibbons-Hawking boundary term

SGH =
1

8πG5

∫
d4x
√
−γK , (B.9)

where γ is the determinant of the induced metric and K is the extrinsic curvature. Fur-

thermore, one needs a boundary “cosmological constant” term

SΛ = − 1

16πG5

∫
d4x
√
−γΛ (B.10)

to cancel out the volume divergence. Lastly, we need counterterms involving the scalar

field λ:

Sλ =
1

16πG5

∫
d4x
√
−γ
[(
c1 +

c2

log(r/L)
+

c3

log(r/L)2

)
λ2

]
. (B.11)

The full on-shell action then takes the form

S = SOS + SGH + SΛ + Sλ . (B.12)

We fix the constants ci in Sλ by requiring that the on-shell action is finite, including the

counterterms, as rΛ →∞. This results in the requirement

c1 = −2 , c2 = 1 , (B.13)

leaving us with one unfixed coefficient. By varying the action with respect to the scalar field

and inserting the boundary expansion, we can now determine the boundary expectation

value

〈Oλ〉 ≡
1

16πG5

δS

δλ
∝ 2(λ2,0 + c3λ2,1) . (B.14)

Without c3, we would recover the naive result depending only on λ2,0. Inclusion of c3 shifts

the expectation value 〈Oλ〉 by a constant proportional to λ2,1. This is reminiscent of the

shift caused by a change of scheme explained earlier. In fact, the value of c3 is scheme-

dependent, so if we change to a scheme with s 6= 1, we have to shift c3 → c3 + log(s),

in such a way that the expectation value of the scalar and other physical observables are

scheme-independent.
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B.3 Stress tensor and conserved currents

With the counterterms fixed we can compute the stress tensor as usual in holography. We

vary the action with respect to the boundary induced metric. From this variation, we get

the standard result

Tij ≡
1

16πG5

δS

δγij
=

√
−γ

16πG5

[
Kij − γijK − 3γij −

γij
2

(
−2 +

1

log(r/L)
+

c3

log(r/L)2

)
λ2

]
,

(B.15)

where Kij is the extrinsic curvature of the r = constant hypersurface. Plugging in the

near-boundary expansion, we get a result for the non-zero components of the field theory

stress tensor in terms of the asymptotics of the gravity fields:

〈T00〉=
1

16πG5

(
−3g2,0+2λ2

2,0−2λ2,0λ2,1−c3λ
2
2,1

)
(B.16)

=
1

16πG5

(
−3g2,0+2λ2

2,0−
1

2
〈Oλ〉λ2,1−λ2,0λ2,1

)
(B.17)

〈T11〉= 〈T22〉= 〈T33〉=
1

16πG5

(
−g2,0+

2

3
λ2

2,0+
2

3
λ2,0λ2,1+

(
1

3
+c3

)
λ2

2,1

)
(B.18)

=
1

16πG5

(
−g2,0+

2

3
λ2

2,0+
1

2
〈Oλ〉λ2,1−

1

3
λ2,0λ2,1+

1

3
λ2

2,1

)
. (B.19)

The conformal anomaly can be computed from this as

Tijη
ij =

1

16πG5

(
4λ2,0λ2,1 + (1 + 4c3)λ2

2,1

)
=

1

16πG5

(
2〈Oλ〉λ2,1 + λ2

2,1

)
. (B.20)

We also note that by varying the on-shell action with respect to the two massless gauge

fields, one obtains the quantities dual to the conserved baryon and R-charge currents in

the field theory. The time components of these currents agree with the quantities QB and

QR defined in (3.2), which are conserved under radial translations in the bulk.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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