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1 Introduction

The Heavy Quark Expansion (HQE) has become a standard tool in the theoretical descrip-

tion of inclusive decays of heavy hadrons, allowing the derivation of precise predictions

including reliable estimates of the uncertainties, see e.g. [1]. The HQE for a bottom-

hadron decay expresses observables as a combined series in αs(mb) and ΛQCD/mb, where

the hadronic inputs are forward matrix elements of local operators.

One of the master application of the HQE is the determination of Vcb from inclusive

semileptonic b→ c transitions, see e.g. [2] for a recent review. The extraction of Vcb relies

on the precise calculation of the total rate as well as of spectral moments, i.e. moments of

the charged lepton energy, the hadronic mass and the hadronic energy spectra. Current

predictions of these observables within the HQE in (αs(mb))
l(ΛQCD/mb)

k involve terms of

order (k = 0, l = 0, 1, 2) [3–6], (k = 2, l = 0, 1) [7–9] and (k = 3, 4, 5, l = 0), while k = 1

vanishes for all l. Using the experimental data on the total rate and on the energy and

hadronic mass moments [10–16] to obtain the hadronic parameters allows the extraction

of |Vcb| with a relative precision of about 2% [17, 18]. This error includes an additional

1.4% theoretical uncertainty due to the missing higher-order corrections in the expression

for the width [17, 19, 20].

With this current strategy, a model independent, meaning a fully data-driven deter-

mination of Vcb, including the extraction of the HQE parameters from the data, is possible

only up to 1/m3
b ; up to this order there are only four independent hadronic parameters.

Starting at order 1/m4
b , their proliferation complicates the extraction from data. Therefore,

one has to resort to modelling the higher-order terms in order to at least get a quantitative
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picture of their possible size. Such a model approach was suggested in [21, 22], where the

Lowest State Saturation Ansatz (LSSA) was used to estimate the effect of the orders 1/m4
b

and higher. This study indicates that such higher-order terms are likely negligible at the

current level of precision. This was confirmed by a global fit [23], where the LSSA was used

to provide loose constraints on the higher-order matrix elements. A sub-percent reduction

in Vcb was found. However, these statements depend to a large extend on the LSSA, which

is an ad hoc ansatz, and thus it is desirable to validate the smallness of the 1/m4
b terms by

a model-independent approach.

In this paper we propose an alternative method for a Vcb extraction which still makes

use of the HQE, but in a slightly different set-up. It is known that reparametrization

invariance (RPI), a symmetry within the HQE reflecting Lorentz invariance of the under-

lying QCD [24–26], induces relations between the coefficients of HQE parameters [27–31].

Recently, two of us discussed that these relations lead to a reduction of independent pa-

rameters for specific observables, in particular for the total rates [32]. Phrased differently,

these observables depend only on specific linear combinations of the most general set of

HQE parameters. This reduced set of parameters involves only three elements up to 1/m3
b

(including the chromomagnetic parameter, which can be extracted from spectroscopy as

well) and only five additional inputs once 1/m4
b are terms are included.

For the alternative Vcb determination, the observable we propose is the leptonic invari-

ant mass (q2) spectrum and, more specifically, the moments of this spectrum. In the next

section we give a short reprise of the findings in [32] and we examine the consequences

for observables other than total rates in section 3. In section 4, we use this reasoning to

compute the q2 spectrum and its moments. Finally, in section 5 we discuss the alternative

extraction, in particular the possibility to push the Vcb extraction to order 1/m4
b without

making use of models for the HQE parameters, i.e. to have a fully data-driven analysis up

to this order.

2 Reparametrization invariance of the HQE

The HQE for semileptonic b → c decays is set up starting from the time-ordered product

of two weak currents

Rµν(q) =

∫
d4x eiq·x T [b̄(x)Γνc(x) c̄(0)Γ̄µb(0)] , (2.1)

where Γµ = γµ(1−γ5). In order to set up an 1/mb expansion we re-define the b quark field

operators as

b(x) = exp(−imb(v · x))bv(x) , (2.2)

which results in

R(S) =

∫
d4x e−imb(S·x) T [b̄v(x)Γc(x) c̄(0)Γ̄bv(0)] , (2.3)

where here and in the following we have suppressed the indices for simplicity, and we define

S = v − q/mb.

– 2 –



J
H
E
P
0
2
(
2
0
1
9
)
1
7
7

The next step is to perform an Operator Product Expansion (OPE) for the time-

ordered product:

R(S) =
∞∑
n=0

C
(n)
µ1···µn(S)⊗ b̄v(iDµ1 . . . iDµn)bv , (2.4)

where the symbol ⊗ is a shorthand notation for the proper contraction of the spinor

indices of the coefficient C with the ones of the quark fields. These C coefficients depend

on 1/mn+3
b , assuming R(S) to be dimensionless. Taking the forward matrix element

〈b̄v . . . bv〉 ≡ 〈B(p)|b̄v . . . bv|B(p)〉 , (2.5)

we obtain the hadronic correlator

T = 〈R(S)〉 . (2.6)

Via the optical theorem, T yields the hadronic tensor for the inclusive transition B → Xc`ν̄:

W (p, q) = − 1

π
Im 〈R(S)〉 = Im

∞∑
n=0

C(n)
µ1...µn(S)⊗ 〈b̄v(iDµ1 . . . iDµn)bv〉 . (2.7)

The key observation is that both (2.3) as well as its OPE (2.4), are independent of v,

as long as all orders in the OPE are taken into account. This means that both are invariant

under the reparametrization (RP) transformation δRP that shifts vµ −→ vµ + δvµ. In fact,

the transformation rules

δRP vµ = δvµ with v · δv = 0, (2.8)

δRP iDµ = −mbδvµ, (2.9)

δRP bv(x) = imb(x · δv)bv(x), in particular δRP bv(0) = 0 , (2.10)

show that reparametrization invariance (RPI), which dictates also that δRPR(S) = 0,

connects subsequent orders in the 1/mb series of eq. (2.4). This generates the well known

relations between the coefficients C at order n and n+ 1 [32]:

δRPC
(n)
µ1...µn(S) = mb δv

α
[
C(n+1)
αµ1...µn(S) + C(n+1)

µ1α...µn(S) + · · ·+ C(n+1)
µ1...µnα(S)

]
. (2.11)

In turn, the hadronic matrix elements 〈b̄v(iDµ1 · · · iDµn)bv〉 can be expressed in terms of

scalar matrix elements, such as the kinetic energy parameter µ2
π and the chromomagnetic

parameter µ2
G at n = 2. However the number of independent parameters grows factorially

in the 1/mb expansion (at tree level there are nine and 18 at order 1/m4
b and 1/m5

b ,

respectively [22, 35]) and therefore their extraction from data becomes challenging already

at order 1/m4
b .

Due to RPI, as discussed in [32], the total rate depends only on a restricted set of

parameters, which are given by fixed linear combination of the matrix elements defined

for the general case. To this end, up to order 1/m4
b there are only eight independent
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parameters at tree level, defined by [32]:

〈b̄vbv〉 = 2mBµ3 , (2.12a)

〈b̄v(iDα)(iDβ)(−iσαβ)bv〉 = 2mBµ
2
G , (2.12b)

1

2
〈b̄v
[
(iDµ) ,

[(
ivD +

1

2mb
(iD)2

)
, (iDµ)

]]
bv〉 = 2mB ρ̃

3
D , (2.12c)

〈b̄v [(iDµ) , (iDν)] [(iDµ) , (iDν)] bv〉 = 2mBr
4
G , (2.12d)

〈b̄v [(ivD) , (iDµ)] [(ivD) , (iDµ)] bv〉 = 2mBr
4
E , (2.12e)

〈b̄v [(iDµ) , (iDα)] [(iDµ) , (iDβ)] (−iσαβ)bv〉 = 2mBs
4
B , (2.12f)

〈b̄v [(ivD) , (iDα)] [(ivD) , (iDβ)] (−iσαβ)bv〉 = 2mBs
4
E , (2.12g)

〈b̄v [iDµ , [iDµ , [iDα , iDβ ]]] (−iσαβ)bv〉 = 2mBs
4
qB , (2.12h)

Here we have redefined ρ3
D to include its RPI completion as discussed in ref. [32] (see

eq. (A.8)).

In the following we discuss under which conditions observables other than the total

rate can be expressed in terms of this reduced set of parameters.

3 Generalized moments

To obtain the semileptonic decay rate we have to multiply the hadronic tensor W (p, q) by

the leptonic tensor L(k, k′) which depends on the charged lepton momentum k and the

neutrino momentum k′. The observables we will consider are generalized moments, which

are defined as

〈M [w]〉 =

∫
d4q

(2π)4
d̃kd̃k′w(v, k, k′)〈R(S)〉L(k, k′)(2π)4δ4(q − k − k′) (3.1)

where d̃k, d̃k′ denote the usual phase space elements and w(v, q) is a (smooth) weight

function of the kinematic variables k, k′ and the vector v. As an example, w = (v · k)n

yields the (unnormalized) nth charged lepton energy moment, once the velocity vector v is

identified with the velocity of the decaying B meson.

In analogy to R(S), we assume that the operator M has an OPE according to

M [w] =

∞∑
n=0

a
(n)
µ1···µn ⊗ b̄v(iDµ1 · · · iDµn)bv . (3.2)

Applying now the RP transformation to (3.2), gives a similar relation as for the total rate,

except that the left-hand side of (3.2) becomes:

δRPM [w] =

∫
d4q

(2π)4
d̃kd̃k′

[
δRPw(v, k, k′)

]
R(s)L(k, k′)(2π)4δ4(q − k − k′) . (3.3)
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We observe that for reparametrization-invariant weight-functions

δRPw(v, k, k′) = 0 ,

(which is the case if w does not depend on v), we obtain for the coefficients a(n) the

exact same relation (2.11) as for the total rate. Therefor, for reparametrization-invariant

observables we will have the same reduction of HQE parameters as for the total rates. For

the semileptonic decays considered here, the leptonic invariant mass (q2) spectrum has this

property, since the corresponding weight function,

w(v, k, k′) = δ(q2 − (k + k′)2) ,

is manifestly v independent.

Before discussing the q2 spectrum in more detail, we consider weight functions which

are not reparametrization invariant. In such cases we obtain the relation:

δRPM [w] =

∫
d4q

(2π)4
d̃kd̃k′

[
δRPw(v, k, k′)

]
L(k, k′)(2π)4δ4(q − k − k′)R(s) (3.4)

=

∞∑
n=0

[∫
d4q

(2π)4
d̃kd̃k′

[
δRPw(v, k, k′)

]
L(k, k′)(2π)4δ4(q − k − k′)C(n)

µ1···µn(S)

]
⊗ b̄v(iDµ1 · · · iDµn)bv

=
∞∑
n=0

[
δRPa

(n)
µ1···µn

]
⊗ b̄v(iDµ1 · · · iDµn)bv

−m
∞∑
n=0

a
(n)
µ1···µn ⊗

[
δvµ1 b̄v(iD

µ2) · · · (iDµn)bv

+δvµ2 b̄v(iD
µ1)(iDµ3) · · · (iDµn)bv

· · ·+ δvµn b̄v(iD
µ1) · · · (iDµn−1)bv

]
from which we get a relation for the a(n) of the form

δRPa
(n)
µ1···µn = mb δv

α
(
a

(n+1)
αµ1···µn + a

(n+1)
µ1αµ2···µn + · · ·+ a

(n+1)
µ1···µnα

)
+ g

(n)
µ1···µn n = 0, 1, 2, . . .

(3.5)

with the “inhomogeneous” term

g
(n)
µ1···µn =

[∫
d4q

(2π)4
d̃kd̃k′

[
δRPw(v, k, k′)

]
L(k, k′)(2π)4δ4(q − k − k′)C(n)

µ1···µn(S)

]
. (3.6)

This term eventually requires the introduction of the complete set of HQE parameters at

least in the general case, as it happens for the lepton energy and hadronic invariant mass

spectrum and the forward-backward asymmetry proposed in [33]. It remains to be seen, if

one can reduce the parameter set even for weight functions that are not reparametrization

invariant.
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4 The q2 spectrum and its moments

The differential q2 spectrum and the q2 moments are most easily obtained by first inte-

grating the triple differential decay rate over the lepton energy E`. The double differential

decay rate can then be expressed in terms of the scalar functions Wi as

d2Γ

dq̂2ds
= 96 Γ0

√
s2 − q̂2θ(s−

√
q̂2)θ(q̂2)

[
q̂2W1(q̂2, s) +

1

3
(s2 − q̂2)W2(q̂2, s)

]
, (4.1)

Γ0 =
G2
Fm

5
b |Vcb|2

192π3
. (4.2)

The normalized variables are defined as

q̂2 ≡ q2

m2
b

, s ≡ v · q
mb

, ρ =
m2
c

m2
b

, (4.3)

and the functions Wi(q
2, s) are the imaginary parts of the Lorentz decomposed hadronic

correlator in eq. (2.7):

Wµν = −gµνW1 + vµvνW2 − iεµνρσvρqσW3 + qµqνW4 + (qµvν + qνvµ)W5 .

where the optical theorem relates Wi = −ImTi/π. At tree-level, the required Ti are most

conveniently derived following [22, 35, 36] by introducing a background field propagator

SBGF =
1

mb/S + i /D −mc
, (4.4)

that must be evaluated including the necessary Dirac matrices for the hadronic current.

The expression up to order 1/mn
b is obtained by expanding this propagator according to

SBGF =
1

mb/S −mc

∞∑
n=0

(
(i /D)

−1

mb/S −mc

)n
(4.5)

up to the desired order in the residual momentum (i /D). Forward matrix elements contain-

ing strings of covariant derivatives must be expressed in terms of scalar matrix elements.

To this end, thanks to the equations of motion, dedicated trace formulas can be derived

to project matrix elements of the form b̄v(iD
µ1 . . . iDµnΓ)bv onto the complete set of HQE

operators, i.e. the RPI parameters in (2.12) as well as the redundant ones in (A.6). The

required Ti are eventually obtained in terms of the full set of operators and inverse powers

of the propagator ∆0:

∆0 = m2
b −m2

c + q2 − 2mbv · q . (4.6)

The imaginary part can be obtained from the Ti using the relation

− 1

π
Im

(
1

∆0

)n+1

=
(−1)n

n!

1

(m2
b)
n+1

δ(n)(1− ρ+ q̂2 − 2s) . (4.7)

Finally, the integration over s gives the differential rate in terms of δ(n)(ẑ) where

ẑ ≡ 1− 2
√
q̂2 + q̂2 − ρ . (4.8)
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We proved that indeed, the differential q2 spectrum only depends on the reduced set of

matrix elements in eq. (2.12). The same reduction holds also for the (normalized) q̂2

moments defined as

Qn ≡
1

Γ0

∫ ∞
q̂2=0

dq̂2(q̂2)n
dΓ

dq̂2
. (4.9)

We have verified this explicitly by calculating the moments up to n = 4. Their lengthy

expressions are attached to the arXiv version of this paper. However, we can present them

in a compact form by taking the limit mc → 0, i.e. keeping only the non-vanishing terms

in the ρ→ 0 limit:

Q1 =
3

10
µ3 −

7

5

µ2
G

m2
b

+
ρ̃3
D

m3
b

(19 + 8 log ρ)−
r4
E

m4
b

(
1292

45
+

40

3
log ρ

)
−
s4
B

m4
b

(8 + 2 log ρ)

+
13

120

s4
qB

m4
b

+
s4
E

m4
b

(
63

5
+ 4 log ρ

)
+
r4
G

m4
b

(
827

45
+

22

3
log ρ

)
, (4.10)

Q2 =
2

15
µ3 −

16

15

µ2
G

m2
b

+
ρ̃3
D

m3
b

(
358

15
+ 8 log ρ

)
−
r4
E

m4
b

(
2888

45
+

64

3
log ρ

)
−
s4
B

m4
b

(
259

15
+ 4 log ρ

)
+
s4
qB

m4
b

(
251

180
+

1

3
log ρ

)
+
s4
E

m4
b

(
908

45
+

16

3
log ρ

)
+
r4
G

m4
b

(
1373

45
+

28

3
log ρ

)
, (4.11)

Q3 =
1

14
µ3 −

6

7

µ2
G

m2
b

+
ρ̃3
D

m3
b

(
2888

105
+ 8 log ρ

)
−
r4
E

m4
b

(
33098

315
+

88

3
log ρ

)
−
s4
B

m4
b

(
5867

210
+ 6 log ρ

)
+
s4
qB

m4
b

(
3763

1260
+

2

3
log ρ

)
+
s4
E

m4
b

(
1787

63
+

20

3
log ρ

)
+
r4
G

m4
b

(
27373

630
+

34

3
log ρ

)
, (4.12)

Q4 =
3

70
µ3 −

5

7

µ2
G

m2
b

+
ρ̃3
D

m3
b

(
213

7
+ 8 log ρ

)
−
r4
E

m4
b

(
47252

315
+

112

3
log ρ

)
−
s4
B

m4
b

(
1389

35
+ 8 log ρ

)
+
s4
qB

m4
b

(
4031

840
+ log ρ

)
+
s4
E

m4
b

(
3893

105
+ 8 log ρ

)
+
r4
G

m4
b

(
17978

315
+

40

3
log ρ

)
. (4.13)

These expressions in the massless limit can be used for b → u transitions by replacing

log ρ → log(µ2/m2
b). In this case four-quark operators contribute as well to the OPE

expansion in eq. (2.4).

5 An alternative method to determine Vcb

As discussed, the q2 moments are Lorentz invariant and RPI and therefore up to 1/m4
b ,

they only depend on the reduced set of eight parameters given in eq. (2.12). Currently,

Vcb is extracted from inclusive decays by fitting the HQE matrix elements to the experi-

mental data of the electron energy and hadronic invariant mass moments. However, these

quantities are not RPI, and therefore depend on the full set of matrix elements.
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Moreover, from the experimental side momentum cuts need to be implemented, since

the full phase space cannot be covered. To this end, one may either extrapolate using

the theoretical expression for the differential rate, or one needs to take into account the

cut in the theoretical prediction. Specifically, the analysis of the charged lepton energy

and hadronic invariant mass require a cut on the charged lepton energy. The moments

including such a cut are defined as

〈xn〉E`>Ecut
=

∫
E`>Ecut

dxxn dΓ
dx∫

E`>Ecut
dx dΓ

dx

, (5.1)

with x = E`, for the electron energy moments, and x = MX for the hadronic invariant

mass moments.

The fit performed in [17, 18, 34] makes use of these moments, including the energy

cut. In fact, the moments up to n = 4 and their computable cut-dependence allow for a

fully data-driven analysis up to 1/m3
b , which means that Vcb, the quark masses as well as

the HQE parameters µ2
π, µ

2
G, ρ

3
D and ρ3

LS can be fitted from data. Accessing higher order

in the 1/mb expansion requires to model the HQE parameters starting at 1/m4
b ; this has

been investigated in [23] using the LSSA proposed in [21, 22].

We therefore propose to determine Vcb from the moments in q2. As these moments

only depend on the reduced number of independent HQE parameters, this would allow

for a fully data-driven extraction of Vcb up to 1/m4
b . However, the q2 moments as defined

in (5.1), i.e. inserting x = q2, will depend on the complete set of parameters, since the

electron energy v · k is not an RPI quantity. This can be solved either by removing the

cut by extrapolating the data to the full phase space, or by implementing a cut in an RPI

quantity, such as q2.

5.1 Employing a q2 cut

In the following, we further discuss the implementation and concequences of a cut in q2.

We define the moments as follows:〈
(q2)n

〉
q2≥q2cut

≡
∫ m2

b(1−√ρ)2

q2cut

dq2 (q2)n
dΓ

dq2

/∫ m2
b(1−√ρ)2

q2cut

dq2 dΓ

dq2
= (m2

b)
nQn(q̂2

cut)

Q0(q̂2
cut)

,

(5.2)

where the Qn(q̂2
cut) are defined as in eq. (4.9), but with q̂2

cut as lower limit of integration

instead of q̂2 = 0. We also define the fraction R∗:

R∗ ≡
Γq2≥q2cut

Γtot
=
Q0(q̂2

cut)

Q0
, (5.3)

The explicit expressions of Qn(q̂2
cut), with n = 0, . . . , 4 are also given as an ancillary file.

Similar as for the charged lepton energy moments and hadronic invariant mass moments,

central moments are less correlated, therefore we define

q1 ≡
〈
q2
〉
q2≥q2cut

for n = 1, (5.4)

qn(q2
cut) ≡

〈
(q2 −

〈
q2
〉
)n
〉
q2≥q2cut

for n > 1, (5.5)

– 8 –
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Figure 1. Gray areas are the kinematically allowed regions in the E`-Eν plane where B → Xc`ν

events can acquire a leptonic invariant mass larger than q2cut = 3.60 GeV2 (left) and q2cut = 8.43 GeV2

(right). Decay modes which require a hadronic invariant mass larger than mD populate the plots

in areas closer to the origin, for instance, B → Dπ`ν and B → DKK`ν events only appear below

the dot-dashed and dashed lines, respectively.

which are related to the moments in (5.2) via the binomial formula

〈
(q2 − a)n

〉
=

n∑
i=0

(
n

i

)〈
(q2)i

〉
(−a)n−i. (5.6)

To further study the effect of the q2 cut, we show in figure 1 the allowed phase space

for a B → Xc`ν decay in the E`-Eν plane with q2
cut = 3.6 GeV2 and q2

cut = 8.4 GeV2. The

phase space is limited from below by

q2
cut

4E`
≤ Eν , (5.7)

and all events with q2 > q2
cut lie above this curve. This illustrates that the cut on q2

removes all the events with low lepton energy E`, therefore a cut on q2 can replace a cut

on E`. In addition,

m2
D ≤ m2

X = m2
B−2mb(E`+Eν)+2E`Eν(1−cos θ`ν) ≤ m2

B−2mb(E`+Eν)+4E`Eν , (5.8)

determines the upper limit of the phase space in figure 1. Increasing the value of q2
cut

makes the inclusive B → Xc`ν measurement less and less inclusive, as is illustrated by the

dot-dashed and dashed lines, which show where the B → Dπ`ν and B → DKK`ν modes

populate the plot, respectively. Hence the situation is similar to a cut in the lepton energy.

Rewriting the phase space equations, we find

E` ≥
m2
b + q2

cut −m2
D − λ1/2(m2

B, q
2
cut,m

2
D)

4mB
. (5.9)
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where λ(m2
B, q

2
cut,m

2
D) is the Källén function. Therefore, if q2

cut is chosen to be larger than

the critical value

q2
cr = 2EcutmB −

2Ecutm
2
D

mB − 2Ecut
, (5.10)

then the q2-moments do not depend Ecut since the lepton energy always respects Ecut ≤
E` via the constraint (5.9). A typical Ecut = 0.4 GeV, would then correspond to

q2
cut = 3.6 GeV2.

5.2 Extracting Vcb

We propose to extract Vcb based on the reduced set of HQE parameters, using measurements

of the total rate and the q2 moments, including a cut on q2. This strategy is identical to the

approach in ref. [23], however with theoretical expressions depending on fewer parameters

(even for a fit including terms up to 1/m3
b only). Since there are only five additional

parameters at order 1/m4
b , precise input from the q2 spectrum would allow us to perform

a fully data driven analysis, i.e. an extraction of the HQE parameters at 1/m4
b entirely

from data.

To this end, the expressions for the q2 moments can be inverted to extract the HQE

parameters. Therefore, it is important that the (q2)n moments depend in a different way on

the HQE parameters for different values of n. To show explicitly that the first four moments

are linearly independent, we give the centralized moments in eq. (5.4) for q2
cut = 0 GeV:

q1 =
m2
b

µ3

(
0.23µ3 − 0.59

µ2
G

m2
b

− 1.4
(µ2
G)2

m4
bµ3
− 6.0

ρ̃3
D

m3
b

+ 17
r4
E

m4
b

− 6.2
r4
G

m4
b

− 1.9
s4
E

m4
b

+ 0.26
s4
B

m4
b

− 0.072
s4
qB

m4
b

)
,

q2 =
m4
b

µ3

(
0.024µ3 − 0.13

µ2
G

m2
b

− 0.66
(µ2
G)2

m4
bµ3
− 1.9

ρ̃3
D

m3
b

+ 8.7
r4
E

m4
b

− 2.4
r4
G

m4
b

− 0.80
s4
E

m4
b

+ 0.31
s4
B

m4
b

− 0.098
s4
qB

m4
b

)
,

q3 =
m6
b

µ3

(
1.4 · 10−3 µ3 − 0.016

µ2
G

m2
b

− 0.27
(µ2
G)2

m4
bµ3
− 0.42

ρ̃3
D

m3
b

+ 3.4
r4
E

m4
b

− 0.69
r4
G

m4
b

− 0.25
s4
E

m4
b

+ 0.14
s4
B

m4
b

− 0.21
s4
qB

m4
b

)
,

q4 =
m8
b

µ3

(
1.2 · 10−3µ3 − 0.014

µ2
G

m2
b

− 0.12
(µ2
G)2

m4
bµ3
− 0.28

ρ̃3
D

m3
b

+ 2.1
r4
E

m4
b

− 0.42
r4
G

m4
b

− 0.15
s4
E

m4
b

+ 0.077
s4
B

m4
b

− 0.024
s4
qB

m4
b

)
. (5.11)

These expressions are obtained from eq. (5.2) by re-expanding the ratio in 1/mb up to

1/m4
b . We observe that the higher moments are more sensitive to the higher order terms,

as is also the case for the energy and hadronic mass moments.

– 10 –



J
H
E
P
0
2
(
2
0
1
9
)
1
7
7

Finally, as discussed, Vcb could also be determined by making use of the q2
cut dependence

of the moments. In figure 2, we show the ratio R∗ and the centralized moments q1,2,3,4

as a function of q2
cut. We present their prediction up to 1/m4

b together with the different

contributions given by µ3, µ2
G, ρ̃3

D and the sum of the five operators of order 1/m4
b . Also in

this case, they are evaluated by re-expanding (5.2) and (5.3) up to 1/m4
b . The size of the

various 1/mb terms is then obtained by selecting only the relative term in the expansion,

multiplied by the residual m2n
b /µ3 ≈ m2n

b , as in eq. (5.11). Note that after the re-expansion

there are terms proportional to (µ2
G)2/m4

b ; they are much smaller than the genuine 1/m4
b

contribution and therefore not presented in figure 2. For the numerical values of the HQE

parameters, we use those obtained in [23] as a benchmark scenario. We list the conversion

of our basis to the one of refs. [22, 23] in appendix A.

The expressions in eq. (5.11) and the plots presented in figure 2, show a good behaviour

of the OPE expansion for the ratio R∗ and the first moment, which are dominated by

the leading contribution proportional to µ3. Centralized moments of higher order on the

contrary have a strong dependence on the higher order terms, since the subtraction q2−〈q2〉
removes the bulk of the contribution from µ3. For the third and fourth moments, higher

order terms form a non-negligible fraction of total contribution. As for the individual

contributions of the 1/m4
b terms to the centralized moments, we observe that the largest

contribution of the 1/m4
b comes from the parameter r4

E , followed in size by s4
E , s

4
B and

s4
qB. On the contrary, r4

G gives a much smaller contribution to the moments. Due to the

numerical values adopted for these parameters in eq. (A.11), the suppression of the spin-

dependent s4 terms seen in eq. (5.11) is lifted and therefore the centralized moments seem

sensitive also to the spin-dependent parameters. We emphasize that especially for values of

q2
cut > 3, which as discussed would correspond to a lepton energy cut of E` = 0.4 GeV, their

contribution becomes more pronounced, showing the feasibility of the proposed strategy in

employing a q2 cut.

6 Conclusion

The extraction of Vcb from inclusive decays based on the HQE provides a determination

with a relative uncertainty of about 2%; in combination with the exclusive measurement

obtained from B → D(∗)`ν̄ and precise lattice data of the relevant form factors, Vcb will be

among the best known CKM matrix elements.

Among the main theoretical challenges of the inclusive determination there is the

proliferation of HQE parameters as soon as one includes higher orders in 1/mb, which

complicates their extraction from data. As we have discussed in this paper, one may make

use of reparametrization invariance, which leads to relations between different order in the

HQE, to reduce the set of parameters for specific observables like total rates, the leptonic

invariant mass spectrum and its moments.

In the context of the inclusive Vcb determination this may open the road to perform a

purely data-driven analysis including also higher order terms. We discussed a new method

based on the leptonic invariant mass spectrum and its moments. The proposed strategy
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Figure 2. Dependence of the ratio R∗ and the first four centralized moments on the different

orders in the 1/mb expansion. Black dashed, blue and green lines represent the contributions from

µ3, µ2
G and ρ̃3D, respectively. The sum of the 1/m4

b terms are depicted in green. Black solid lines

are the final predictions for R∗ and the moments including terms up to order 1/m4
b .

is similar to the one pursued in the Vcb fits relying on the charged lepton energy and the

hadronic invariant mass moments.

From the experimental side, the proposed strategy requires the reconstruction of the

neutrino momentum which is possible only at e+e− colliders. B-tagging algorithms are

well established methods at B factories to identify BB̄ events. They provide kinematical
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constraints that allows for a precise momentum reconstruction of the B meson which decays

semileptonically, and therefore the direction of the undetected neutrino can be constructed

using energy conservation. Already with the existing Υ(4S) data from Belle (711 fb−1) and

BABAR (433 fb−1) it should be possible the test our alternative method by measuring the

q2 moments and extracting Vcb. Finally, it would be interesting to perform a dedicated

analysis of the new method at Belle-II in order to fully exploit our new method and to

determine Vcb in a fully data-driven method including 1/m4
b corrections.
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A Conversion between different conventions

In the following, we discuss the conversion between the HQE parameter definitions in this

work and those in [22, 23]. These Vcb determinations are done with operators defined in a

basis in which the covariant derivative is split into a spatial and a time derivative via

iDµ = vµivD +D⊥µ . (A.1)

As we stressed before [32], this basis is less useful when considering RPI quantities. Chang-

ing between these bases involves the absorption of higher-order terms. In particular,

we find:

(µ2
π)⊥ = 2m2

b(1− µ3) + µ2
G −

r4
G

8m2
b

−
s4
B

4m2
b

+
δ4
G1

4m2
b

+
δ4
G2

4m2
b

(A.2)

(µ2
G)⊥ = µ2

G +
ρ3
D

mb
+
ρ3
LS

mb
, (A.3)

(ρ3
LS)⊥ = ρ3

LS −
r4
E

2mb
−

s4
E

2mb
, (A.4)

(ρ3
D)⊥ = ρ3

D . (A.5)

Here, we have introduced four additional non-RPI parameters;

1

2
〈Q̄v {iDα , [ivD , iDβ ]} (−iσαβ)Qv〉 = 2mBρ

3
LS , (A.6a)

1

2
〈Q̄v

[
(iDµ) ,

[
(iD)2 , (iDµ)

]]
Qv〉 = 2mBδρ

4
D , (A.6b)

1

2
〈Q̄v

{
iDα ,

[
(iD)2 , iDβ

]}
(−iσαβ)Qv〉 = 2mBδρ

4
LS , (A.6c)

〈Q̄v(iD2)2Qv〉 = 2mBδ
4
G1 , (A.6d)

〈Q̄v
{

(iD)2 , σ ·G
}
Qv〉 = 2mBδ

4
G2 , (A.6e)
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which do not occur in the total rate and the q2 moments. Here

σ ·G ≡ −iσµν(iDµ)(iDν) , γµγν = gµν + (−iσµν) . (A.7)

We note that, in eq. (2.12), we have defined ρ̃3
D including its RPI completion, where

ρ̃3
D = ρ3

D +
1

2mb
δρ4
D . (A.8)

We emphasize that ρ̃3
D is sometimes defined without a commutator, which makes a dif-

ference at higher orders. Similar, the additional matrix elements in eq. (A.6) contain a

completion of the ρ3
LS via

ρ̃3
LS ≡ ρ3

LS +
1

2mb
δρ4
LS . (A.9)

The 4th order parameters first introduced in ref. [22] and determined in [23] are related

to our parameters via

m1 = 1
3

(
r4
E + 1

2r
4
G + 2δρ4

D + δ4
G1

)
, m6 = −s4

B + s4
E ,

m2 = −r4
E , m7 = 2δρ4

LS + 2s4
E + 1

2s
4
qB,

m3 = −2r4
E + r4

G, m8 = 4δ4
G2,

m4 = 2r4
E − 2r4

G − 2δρ4
D, m9 = −2s4

B + 2s4
E + 1

2s
4
qB .

m5 = −s4
E ,

(A.10)

For our numerical analysis, we used these transformations to estimate our parameters

from the determinations of the mi in [23]. We find

r4
E = 0.019, r4

G = −0.006, s4
E = −0.072, s4

B = −0.13, s4
qB = −0.80. (A.11)

For the terms up to 1/m3
b , we use

µ3 = 1 +
µ2
G − µ2

π

2m2
b

= 0.998 (A.12)

and

µ2
G = 0.362, and ρ̃3

D = 0.127. (A.13)

which we obtained by inserting the values found in [23] in eq. (A.3) and (A.8), respectively.

In addition, we used [23]

mkin
b = 4.546, and m̄c(3GeV) = 0.987 . (A.14)
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For completeness, we also give the total rate in terms of our matrix elements;

Γ

Γ0
= µ3 z(ρ)− 2

µ2
G

m2
b

(ρ− 1)4 + d(ρ)
ρ̃3
D

m3
b

+
2

3
(−1 + ρ)3(1 + 5ρ)

s4
B

m4
b

− 8

9

r4
E

m4
b

(
2 + 9ρ2 − 20ρ3 + 9ρ4 + 6 log ρ

)
+

4

9

r4
G

m4
b

(
16− 21ρ+ 9ρ2 − 7ρ3 + 3ρ4 + 12 log ρ

)
+

1

9

s4
E

m4
b

(
50− 72ρ+ 40ρ3 − 18ρ4 + 24 log ρ

)
+

1

36

s4
qB

m4
b

(
− 25 + 48ρ− 36ρ2 + 16ρ3 − 3ρ4 − 12 log ρ

)
+O(1/m5

b) , (A.15)

where

z(ρ) ≡ 1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 log ρ , (A.16)

d(ρ) ≡ 2

3

(
17− 16ρ− 12ρ2 + 16ρ3 − 5ρ4 + 12 log ρ

)
. (A.17)
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pNRQCD revisited, arXiv:1811.05184 [INSPIRE].

[27] Y.-Q. Chen, On the reparametrization invariance in heavy quark effective theory, Phys. Lett.

B 317 (1993) 421 [INSPIRE].

[28] M.E. Luke and A.V. Manohar, Reparametrization invariance constraints on heavy particle

effective field theories, Phys. Lett. B 286 (1992) 348 [hep-ph/9205228] [INSPIRE].

– 16 –

https://doi.org/10.1103/PhysRevD.71.051103
https://arxiv.org/abs/hep-ex/0502003
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0502003
https://doi.org/10.1103/PhysRevD.70.032002
https://arxiv.org/abs/hep-ex/0403052
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0403052
https://doi.org/10.1140/epjc/s2005-02406-7
https://arxiv.org/abs/hep-ex/0510024
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0510024
https://doi.org/10.1103/PhysRevD.69.111104
https://arxiv.org/abs/hep-ex/0403030
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0403030
https://doi.org/10.1103/PhysRevD.81.032003
https://arxiv.org/abs/0908.0415
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0415
https://doi.org/10.1103/PhysRevD.75.032001
https://arxiv.org/abs/hep-ex/0610012
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0610012
https://doi.org/10.1103/PhysRevD.75.032005
https://arxiv.org/abs/hep-ex/0611044
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0611044
https://doi.org/10.1103/PhysRevD.89.014022
https://doi.org/10.1103/PhysRevD.89.014022
https://arxiv.org/abs/1307.4551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4551
https://doi.org/10.1103/PhysRevLett.114.061802
https://arxiv.org/abs/1411.6560
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.6560
https://doi.org/10.1016/S0550-3213(03)00452-8
https://arxiv.org/abs/hep-ph/0302262
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0302262
https://doi.org/10.1007/JHEP09(2011)055
https://arxiv.org/abs/1107.3100
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3100
https://doi.org/10.1016/j.nuclphysb.2014.09.017
https://arxiv.org/abs/1407.4384
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4384
https://doi.org/10.1007/JHEP11(2010)109
https://arxiv.org/abs/1009.4622
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4622
https://doi.org/10.1016/j.physletb.2016.10.023
https://arxiv.org/abs/1606.06174
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06174
https://doi.org/10.1016/j.physletb.2003.09.100
https://arxiv.org/abs/hep-ph/0306107
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0306107
https://doi.org/10.1103/PhysRevD.86.094020
https://arxiv.org/abs/1208.0601
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0601
https://arxiv.org/abs/1811.05184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.05184
https://doi.org/10.1016/0370-2693(93)91018-I
https://doi.org/10.1016/0370-2693(93)91018-I
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B317,421%22
https://doi.org/10.1016/0370-2693(92)91786-9
https://arxiv.org/abs/hep-ph/9205228
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9205228


J
H
E
P
0
2
(
2
0
1
9
)
1
7
7

[29] A.V. Manohar, Reparametrization invariance constraints on inclusive decay spectra and

masses, Phys. Rev. D 82 (2010) 014009 [arXiv:1005.1952] [INSPIRE].

[30] A. Gunawardana and G. Paz, On HQET and NRQCD operators of dimension 8 and above,

JHEP 07 (2017) 137 [arXiv:1702.08904] [INSPIRE].

[31] A. Kobach and S. Pal, Reparameterization invariant operator basis for NRQED and HQET,

arXiv:1810.02356 [INSPIRE].

[32] T. Mannel and K.K. Vos, Reparametrization invariance and partial re-summations of the

heavy quark expansion, JHEP 06 (2018) 115 [arXiv:1802.09409] [INSPIRE].

[33] S. Turczyk, Additional information on heavy quark parameters from charged lepton

forward-backward asymmetry, JHEP 04 (2016) 131 [arXiv:1602.02678] [INSPIRE].

[34] P. Gambino and N. Uraltsev, Moments of semileptonic B decay distributions in the 1/m(b)

expansion, Eur. Phys. J. C 34 (2004) 181 [hep-ph/0401063] [INSPIRE].

[35] B.M. Dassinger, T. Mannel and S. Turczyk, Inclusive semi-leptonic B decays to order

1/m(b)4, JHEP 03 (2007) 087 [hep-ph/0611168] [INSPIRE].

[36] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Calculations in external

fields in quantum chromodynamics. Technical review, Fortsch. Phys. 32 (1984) 585 [INSPIRE].

– 17 –

https://doi.org/10.1103/PhysRevD.82.014009
https://arxiv.org/abs/1005.1952
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1952
https://doi.org/10.1007/JHEP07(2017)137
https://arxiv.org/abs/1702.08904
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.08904
https://arxiv.org/abs/1810.02356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.02356
https://doi.org/10.1007/JHEP06(2018)115
https://arxiv.org/abs/1802.09409
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.09409
https://doi.org/10.1007/JHEP04(2016)131
https://arxiv.org/abs/1602.02678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.02678
https://doi.org/10.1140/epjc/s2004-01671-2
https://arxiv.org/abs/hep-ph/0401063
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0401063
https://doi.org/10.1088/1126-6708/2007/03/087
https://arxiv.org/abs/hep-ph/0611168
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0611168
https://inspirehep.net/search?p=find+J+%22Fortsch.Phys.,32,585%22

	Introduction
	Reparametrization invariance of the HQE
	Generalized moments
	The q**2 spectrum and its moments
	An alternative method to determine V(cb)
	Employing a q**2 cut
	Extracting V(cb)

	Conclusion
	Conversion between different conventions

