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functionals acting on the crossing equation which are directly responsible for the optimal

bounds of the numerical bootstrap. We explain in detail that the extremal functionals probe

the Regge limit. We construct two complete sets of extremal functionals for the crossing

equation specialized to z = z̄, associated to the generalized free boson and fermion theories.

These functionals lead to non-perturbative sum rules on the CFT data which automatically

incorporate Regge boundedness of physical correlators. The sum rules imply universal
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we prove an upper and lower bound on a weighted sum of OPE coefficients present between

consecutive generalized free field dimensions. The lower bound implies the φ×φ OPE must

contain at least one primary in the interval [2∆φ + 2n, 2∆φ + 2n + 4] for all sufficiently

large integer n. The functionals directly compute the OPE decomposition of crossing-

symmetrized Witten exchange diagrams in AdS2. Therefore, they provide a derivation of

the Polyakov bootstrap for SL(2), in particular fixing the so-called contact-term ambiguity.

We also use the resulting sum rules to bootstrap several Witten diagrams in AdS2 up to

two loops.
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1 Introduction

The conformal bootstrap constitutes a set of powerful nonperturbative constraints on con-

formal field theories. Nevertheless, the extraction of concrete physical predictions from the

bootstrap equations has proven notoriously hard. As a result, existing analytic approaches

typically rely on expanding the equations around a specific point in the space of confor-

mal cross-ratios. Indeed, the subject of modern analytic conformal bootstrap started by

studying the double light-cone limit [1–5]. More recently, progress has been made also by

utilizing the Regge limit [6–9] and the deep Euclidean limit [10, 11].

In this paper, we develop an analytic approach to the conformal bootstrap which does

not rely on any kinematical expansion, building on previous work of [12, 13]. Specifically,

we derive useful sum rules satisfied by the CFT data by integrating the crossing equation

against appropriate weight-functions in the space of cross-ratios. The integration includes

both Euclidean and Lorentzian configurations and combines them in a particularly con-

straining way.

An important ingredient of our approach is that the crossing equation holds holo-

morphically as a function of independent complex variables z and z̄.1 The constraints in

the Lorentzian and Euclidean signatures, which each correspond to two-dimensional real

subsections, thus combine to more powerful constraints in two complex dimensions. The

crossing equation expressing the equality of the s- and t-channel expansions holds in this

two-complex dimensional space as long as we do not cross branch cuts where a pair of op-

erators becomes null-separated. We will refer to this region of validity of the s=t crossing

equation as the crossing region.

Analytic control is available at various boundary points of the crossing region, including

the double light-cone limit z → 0, z̄ → 1 and the u-channel Regge limit z, z̄ → i∞. On the

other hand, the numerical bootstrap is based on an expansion of the crossing equations

around the center of the crossing region z = z̄ = 1/2, going back to the seminal work

of [14].2 The numerical bootstrap effectively constructs distinguished linear functionals

acting on the space of functions of z and z̄. Those functionals which correspond to optimal

bounds on the CFT data also encode the spectra of the optimal solutions to crossing,

and are known as extremal functionals [16, 17]. The bounds of the numerical bootstrap

typically become optimal only when one goes to an arbitrarily high order in the expansion

around z = z̄ = 1/2. In this limit we probe the boundary of the crossing region, including

the analytic bootstrap limits. We are led to the conclusion that both the light-cone and

Regge limits should play an important role in the numerical bounds on the low-lying

CFT spectrum.3

We can think of the expansion around the crossing-symmetric point as providing a

specific basis for the space dual to the space of functions holomorphic in the crossing

region. Clearly, it would be of great interest to have instead a basis which extracts the

1We use the standard convention for the conformal cross-ratios u = zz̄ =
x212x

2
34

x213x
2
24

, v = (1 − z)(1 − z̄) =

x214x
2
23

x213x
2
24

, where xij = xi − xj .
2See [15] for a recent review of some of the developments since then.
3Further evidence for the interrelatedness of the light-cone and numerical bootstrap was provided in [18].
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complete information contained in the crossing region, in a manner reflecting our analytic

understanding of the corners.

In this paper, we achieve this goal for a simplified version of the crossing equation.

The simplification comes from setting z = z̄ and expanding the s- and t-channel in SL(2)

blocks. When z ∈ (0, 1), our kinematics corresponds to restricting the four operators to

lie on a line and using only the conformal group fixing the line. We stress however that

the resulting equation holds for complex z. In particular, the (u-channel) Regge limit lies

within our restricted kinematics and corresponds to z → i∞. Indeed, boundedness of

physical correlators in this limit plays a crucial role in our analysis. On the other hand,

the double light-cone limit lies outside our kinematics so we will not make contact with

the large-spin analytic bootstrap. Our conclusions will be valid for general D-dimensional

CFTs, but may not be optimal unless D = 1.

Summary of results and outline. We will introduce two bases for the crossing equation

of the four-point function 〈φφφφ〉, where φ are identical SL(2) primaries. In our restricted

kinematics, the equation takes the form

∑

O∈φ×φ
aO F∆O(z) = 0 , (1.1)

where the sum runs over the SL(2) primaries present in the φ× φ OPE and aO ≡ (cφφO)2

is the squared OPE coefficient. F∆(z) is defined as the difference of the s- and t-channel

conformal blocks

F∆(z) = z−2∆φG∆(z)− (1− z)−2∆φG∆(1− z) , (1.2)

where G∆ = z∆
2F1(∆,∆; 2∆; z). The two bases introduced in this paper are associated

to the bosonic and fermionic generalized free field solutions of this equation. Besides the

identity, these solutions involve only double-trace operators with dimensions ∆B
n = 2∆φ+2n

in the bosonic case and ∆F
n = 2∆φ + 2n + 1 in the fermionic case. For concreteness, let

us focus on the somewhat simpler fermionic case and drop the superscript on ∆F
n. As we

explain in detail in the main text, the function F∆(z) for general ∆ ≥ 0 can be written as

a linear combination of F∆n(z) and ∂∆F∆n(z) for n ∈ N≥0:

F∆(z) =
∞∑

n=0

[αn(∆)F∆n(z) + βn(∆)∂F∆n(z)] . (1.3)

The general form of the expansion coefficients αn(∆) and βn(∆) is rather involved. Here

∂F∆n(z) stands for the derivative with respect to ∆ of F∆(z) evaluated at ∆ = ∆n. This

equation tells us that if we add an operator of dimension ∆ to the generalized free solution

with a small OPE coefficient, then crossing symmetry can be preserved at this order by

modifying the scaling dimensions and OPE coefficients of the double traces.

One interpretation of this equation is that it expresses a general F∆ in a basis spanned

by the F∆n and ∂F∆n . The coefficients of the expansion above can then be obtained by

– 3 –
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acting on (1.3) with the dual basis, which consists of linear functionals αn, βn acting on

functions of complex variable z and satisfying (for n,m ∈ N≥0)

αn(∆m) = δnm, α′n(∆m) = 0

βn(∆m) = 0, β′n(∆m) = δnm ,
(1.4)

where we use shorthand notation for the action of a functional ω on the F∆(z): ω(∆) ≡
ω[F∆], and ω′(∆) = ω[∂∆F∆] by linearity of ω. We will show how to construct the func-

tionals αn and βn explicitly as contour integrals in the complex z-plane against appropriate

holomorphic kernels. The integration contour probes both the Euclidean OPE limit and the

u-channel Regge limit. In particular β0 is the extremal functional for the gap maximization

problem, constructed in [12, 13].

If we insert the decomposition (1.3) into the crossing equation (1.1) and formally

demand that the coefficient of each F∆n(z) and ∂∆F∆n(z) vanishes, we find the functional

bootstrap equations :

∑

O∈φ×φ
aO αn(∆O) = 0,

∑

O∈φ×φ
aO βn(∆O) = 0 ∀n ∈ N≥0. (1.5)

These equations can be derived rigorously by acting with the functionals αn and βn on

the crossing equation (1.1) and swapping them with the infinite sum over operators. This

swapping property does not hold for a general functional (see [19]) but it does for αn and

βn. In the main text, we explain a close connection between the swapping property and

boundedness in the Regge limit. In particular, (1.5) only hold for the OPE decomposition

of Regge-bounded correlators (which includes all correlators in unitary theories). We will

prove that (1.5) are a completely equivalent reformulation of the constraints contained in

the original crossing equation (1.1). However, they are much better suited for understand-

ing some of its consequences.

There is another way of thinking about the decomposition (1.3), namely as expressing

the crossing symmetry of the Polyakov block, defined by

P∆(z) = G∆(z)−
∞∑

n=0

[αn(∆)G∆n(z) + βn(∆)∂∆G∆n(z)] . (1.6)

The Polyakov block is just the usual conformal block G∆(z) “dressed” by double trace

operators in order to obtain a crossing-symmetric object. In fact, P∆(z) is a sum of the

s-, t- and u-channel Witten exchange diagrams in AdS2. It is possible to see that if the

functional bootstrap equations hold, then we can write

〈φ(0)φ(z)φ(1)φ(∞)〉 =
∑

O∈φ×φ
aO

G∆O(z)

z2∆φ
=

∑

O∈φ×φ
aO

P∆O(z)

z2∆φ
. (1.7)

In other words, the correlator can be expanded in a way that makes crossing symmetry

manifest. This is precisely the idea behind the Polyakov-Mellin bootstrap [20–23]. Our

functionals αn and βn thus provide a derivation of the SL(2) version of the Polyakov-Mellin

bootstrap from the standard crossing equation. In [22, 23], one needs to fix the contact-term
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ambiguity of the Witten exchange diagrams, which has not been done in full generality.

We see that in our approach this ambiguity is fixed by demanding that the coefficients αn,

βn arise from acting with linear functionals on the standard crossing equation.

Thanks to the orthonormality conditions (1.4), the functionals allow us to solve for per-

turbations around generalized free fields. Starting with the original solution and perturbing

by some fixed δS,

∞∑

n=0

anF∆n(z) = −F0(z) ⇒
∞∑

n=0

[δanF∆n(z) + anδ∆n∂F∆n(z)] = δS(z), (1.8)

we find simply

δan = αn[δS], anδ∆n = βn[δS], (1.9)

thus providing an analytic realization of the extremal flows introduced in [17].4 This

procedure generalizes to higher orders of perturbation theory, so that in principle one can

systematically correct the original solution to any desired order. In the main text, we use

this idea to find the OPE decomposition of contact diagrams with external bosons and

fermions in AdS2. Carrying the procedure to higher orders, we bootstrap the one- and

two-loop contribution to the four-point function in the φ4 theory in AdS2.

Finally, the orthonormality properties (1.4) tell us that the action of the functionals

on F∆ will have double zeros at the double-trace ∆. This implies interesting positivity

properties of this action. Since aO are positive thanks to unitarity, we can use the func-

tional bootstrap equations to derive sum rules which strongly constrain the OPE data. In

particular, we will find both upper and lower bounds on weighted sums of OPE coefficients

present between consecutive ∆n. Although nontrivial bounds exist for general n, their form

simplifies as n→∞:

lim sup
n→∞

∑

O: |∆O−∆n|≤1

4 sin2
[
π
2 (∆O −∆n)

]

π2(∆O −∆n)2

(
aO

afree
∆O

)
≤ 1 (1.10a)

lim inf
n→∞

∑

O: |∆O−∆n|≤2

16 sin2
[
π
2 (∆O −∆n)

]

π2(∆O −∆n)2(∆O −∆n−1)(∆n+1 −∆O)

(
aO

afree
∆O

)
≥ 1 (1.10b)

Here afree
∆ is an exponentially decreasing function which coincides with the squared gener-

alized free OPE coefficients at ∆ = ∆n

afree
∆ =

2Γ(∆)2Γ(∆ + 2∆φ − 1)

Γ(2∆φ)2Γ(2∆− 1)Γ(∆− 2∆φ + 1)
. (1.11)

In the bounds above the ratio aO/a
free
∆O

is weighted by a positive function bounded above

by 1. The bounds tell us that every unitary solution to crossing must be similar to the

generalized free field in an appropriate sense at sufficiently large ∆. The first bound

4Indeed, the generalized free fermion is an extremal solution to crossing, as it saturates the bound on

the gap to the leading scaling dimension.
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essentially means that the total OPE coefficient between ∆n − 1 and ∆n + 1 is bounded

from above by the mean field OPE coefficient at ∆n. This implies an upper bound on

OPE coefficients of individual primaries. The second bound in particular implies that at

sufficiently large ∆, there must be at least one operator between ∆n−1 and ∆n+1! The

inequalities are optimal since they are saturated by the generalized free field.

The outline of this paper is as follows. In the next section we make some general ob-

servations on the structure of the crossing equation and on the relationship between Regge

boundedness and bootstrap functionals. Section 3 discusses in detail how the functional

bases described above are related to Witten exchange diagrams and how they can be used

to derive a rigorous version of the Polyakov-Mellin bootstrap. The actual construction of

the functional basis is postponed to section 4. In section 5 we study the implications of

the functional bootstrap equations in detail, using them to derive upper and lower bounds

on the OPE data. The question of completeness, i.e. whether these equations are not only

necessary but also sufficient to ensure that a putative set of OPE data solves crossing, is

answered positively in section 6. Section 7 contains an application of the functional sum

rules to bootstrapping tree-level, one- and two-loop Witten diagrams in AdS2. We con-

clude with a short discussion and outlook. The paper is complemented by an appendix

containing some technical details.

2 The crossing region and bootstrap functionals

2.1 The crossing region and analytic bootstrap limits

In this paper, we will study some aspects of the crossing equation of the four-point function

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

|x12|2∆φ |x34|2∆φ
G(z, z̄) . (2.1)

We can take φ(x) to be a scalar primary operator in a unitary CFT. In fact, for most

results of this paper, it will be sufficient if φ(x) is a primary under SL(2) acting along

a spacelike line. The four-point function can be expanded using the OPE in one of the

three channels, which leads to constraints on the CFT data. For the present case of four

identical scalars, the only independent constraint comes from the equality of the s- and

t-channel expansions:

(zz̄)−2∆φ
∑

O∈φ×φ
aOG∆O,JO(z, z̄) = (z ↔ 1− z, z̄ ↔ 1− z̄) . (2.2)

Here aO ≡ (cφφO)2 are squared OPE coefficients and G∆,J(z, z̄) is the d-dimensional con-

formal block for the exchange of a symmetric traceless representation of dimension ∆ and

spin J . In the following, it will be convenient to write this equation as
∑

O∈φ×φ
aO F∆O,JO(z, z̄) = 0 , (2.3)

where we defined

F∆,J(z, z̄) = (zz̄)−∆φG∆,J(z, z̄)− (z ↔ 1− z, z̄ ↔ 1− z̄) . (2.4)
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We will call the functions F∆,J(z, z̄) bootstrap vectors, since the equation (2.2) lives in a

certain infinite-dimensional vector space of functions of z and z̄.

Eventually, we are going to specialize (2.2) to the section z = z̄ and expand both

channels in the SL(2) blocks, but first it will be useful to review the region in cross-ratio

space where the full crossing equation holds. Let us start in the Euclidean signature, where

z and z̄ are complex conjugate. The s-channel sum then converges whenever z /∈ [1,∞) and

the t-channel sum converges whenever z /∈ (−∞, 0]. Therefore, in the Euclidean signature,

the equation holds whenever z stays away from (−∞, 0]∪[1,∞). Moreover, the convergence

of both the s-channel and t-channel sum is exponentially fast for every point in the interior

of this region [24].

Crucially, equation (2.2) remains valid when we make z and z̄ complex and independent

of each other. In order to understand the full region of validity, consider first the s-

channel sum

G(z, z̄) =
∑

O∈φ×φ
aOG∆O,JO(z, z̄) . (2.5)

The conformal blocks on the r.h.s. are defined for z and z̄ complex and independent. Let

us now switch to the ρ, ρ̄ coordinates of [25] defined by

z =
4ρ

(1 + ρ)2
, z̄ =

4ρ̄

(1 + ρ̄)2
. (2.6)

The open unit ρ-disk maps to z ∈ C\[1,∞). As shown in [26], conformal blocks have

an expansion into monomials of the form ρhρ̄h̄ with positive coefficients, where h, h̄ are

generically non-integer powers. This expansion converges (to a multi-valued function!)

whenever both ρ and ρ̄ are in the open unit disk. This is also the region of convergence

of the sum over primary operators in (2.5). We conclude that (2.5) converges as long as z

and z̄ start in a Euclidean configuration and are continued from there such that neither z

or z̄ passes through the cut at [1,∞). Similarly, the t-channel expansion converges as long

as both z and z̄ both stay away from (−∞, 0].

The conclusion is that the crossing equation (2.2) is valid for z and z̄ both on the first

sheet such that (z, z̄) ∈ R×R, where

R = C\((−∞, 0] ∪ [1,∞)) . (2.7)

Correspondingly, we will call R × R the crossing region. When we leave the first sheet

through one of the branch cuts, either the s- or the t-channel OPE stops converging and the

equation (2.2) becomes meaningless. The crossing region includes the Euclidean section

z = z̄∗ ∈ R as well as the Lorentzian section 0 < z, z̄ < 1 with z and z̄ both on the first

sheet. This is the region where all four operators stay spacelike separated.

Inside the crossing region, the sum on either side of (2.2) converges to a function

which is holomorphic in both z and z̄. This is because the individual conformal blocks

are holomorphic in both z and z̄ and the sum converges uniformly inside any compact

subregion of the crossing region. This means we can use the powerful tools of complex

analysis to study the consequences of crossing.
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0 1

z

z̄

0 1

z

z̄

Figure 1. Left: the limit when z and z̄ go to infinity in opposite half-planes is controlled by the

u-channel OPE. Right: when z and z̄ approach infinity in the same half-plane with z/z̄ fixed, we

get the Regge limit of the u-channel.

The crossing region contains various interesting limits of the four-point function where

analytic control is available. They correspond to z and z̄ approaching 0, 1 or ∞. These

limits lie on the boundary of the crossing region, but need to be approached from its interior

in order for the bootstrap equation to be valid. In particular, the point at infinity must be

approached along a path away from the real axis.

The simplest are the OPE limits. The s- and t-channel OPE limits correspond to

(z, z̄) → (0, 0) and (z, z̄) → (1, 1) respectively. The u-channel OPE limit corresponds

to (z, z̄) → (i∞,−i∞) or equivalently (z, z̄) → (−i∞, i∞).5 In this case z and z̄ lie in

opposite half-planes since the u-channel OPE limit takes place in the Euclidean signature,

where z and z̄ are complex conjugates. More generally, if z and z̄ approach ∞ in any

direction away from the real axis but in opposite half-planes, the limit is controlled by the

u-channel OPE.

Next, we have the standard double light-cone limit of the analytic light-cone bootstrap,

where x2
12, x

2
23 → 0, corresponding to (z, z̄)→ (0, 1). The other double light-cone limits are

specified by (z, z̄)→ (0,±i∞), (1,±i∞) and transpositions. For the four-point function of

identical operators, these other limits do not carry any new information.

There is precisely one remaining limit where both z and z̄ approach 0, 1 or ∞ from

within the crossing region which is not equivalent to one of the above. In this limit, we

take z and z̄ both to ∞ in the same half-plane. This very interesting limit is controlled by

the Regge limit of the u-channel. To understand this claim, note that the Regge limit of

a given channel is defined in the same way as the OPE limit of that channel, after either

z or z̄ has been taken around a crossed-channel branch cut. Thus in order to reach the

Regge limit of the u-channel, we can start near the u-channel OPE limit where |z| and |z̄|
are very large with z, z̄ in the upper, lower half-plane respectively. Let us keep z fixed and

move z̄. The u-channel OPE converges as long as z̄ stays away from z̄ ∈ [0, 1]. In order to

reach the u-channel Regge limit, we need to pass z̄ through [0, 1] to the upper half-plane

and send z and z̄ to i∞.6 See figure 1 for an illustration of how the u-channel Regge limit

5The four-point function is real in the Lorentzian subsection of the crossing region 0 < z, z̄ < 1. It

follows G(z∗, z̄∗) = (G(z, z̄))∗ inside the crossing region, where the star stands for complex conjugation.

Furthermore, we can assume G(z, z̄) = G(z̄, z).
6Strictly speaking, in the u-channel Regge we take z, z̄ → i∞ with z/z̄ fixed.
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is reached. Both the s- and the t-channel OPE stay convergent during the entire process

although they converge very slowly as we approach the u-channel Regge limit. In general,

the OPE of a given channel does not converge in the Regge limit of that channel, while the

remaining two OPEs converge slowly.

2.2 Sum rules and functionals

A fundamental problem in the conformal bootstrap is to use the crossing equation (2.2)

to extract useful constraints on the CFT data. Generally, such constraints take the form

of sum rules which arise from applying linear functionals to (2.3). Indeed, given a linear

functional ω acting on holomorphic functions of z and z̄ in the crossing region, and satisfying

certain properties detailed below, we can apply it to the equation (2.3) to find the sum rule

∑

O∈φ×φ
aO ω(∆O, JO) = 0 , (2.8)

where we defined ω(∆, J) as the action of ω on the bootstrap vectors

ω(∆, J) = ω[F∆,J ] . (2.9)

For example, functionals can take the form of finite linear combinations of derivatives

with respect to z and z̄ evaluated at the crossing-symmetric point z = z̄ = 1/2, which

is the usual strategy for the numerical bootstrap. However, more general functionals are

possible. In particular, there are functionals which directly probe the interesting limits on

the boundary of the crossing region described in the previous subsection.

Of particular interest are the so-called extremal functionals, introduced in [16]. The

extremal functionals give rise to optimal bounds on the CFT data. Since such bounds are

often saturated by interesting strongly-coupled CFTs, the extremal functionals encode the

precise manner in which the crossing equation may eventually lead to a nonperturbative

solution of such theories.

The extremal functionals should generally be expected to probe the boundary of the

crossing region, in particular the analytic bootstrap limits. This is the reason why numerical

bootstrap bounds typically become optimal only when derivatives of arbitrarily high order

are included. In the limit of infinitely many derivatives, the numerical bootstrap functionals

can effectively see all the way to the boundary of the crossing region and probe the analytic

bootstrap limits.

This expectation was confirmed in [12] and [13], where examples of extremal function-

als were constructed analytically. The functionals take the form of holomorphic contour

integrals stretching between the crossing-symmetric point and the boundary of the crossing

region. In the present paper, we will generalize the construction and explain the crucial

role of the Regge limit.

We will now give a precise definition of a general bootstrap functional. Since the

functionals of the greatest interest probe the boundary of the crossing region, where the

OPE sums stop converging, we need to be especially careful about which functionals lead
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to valid sum rules, as emphasized in [19]. To set up the definition, it will be convenient to

include the (zz̄)−∆φ prefactor in the four-point function and write

G̃(z, z̄) = (zz̄)−2∆φG(z, z̄) (2.10)

so that crossing symmetry reads

G̃(z, z̄) = G̃(1− z, 1− z̄) . (2.11)

Similarly, we define the normalized conformal blocks in the two channels

G̃
(s)
∆,J(z, z̄) = (zz̄)−2∆φG∆,J(z, z̄)

G̃
(t)
∆,J(z, z̄) = [(1− z)(1− z̄)]−2∆φG∆,J(1− z, 1− z̄) .

(2.12)

We can now define a bootstrap functional ω to be a linear functional acting on functions of

z and z̄ which are holomorphic in both variables in the crossing region, where ω is subject

to the following constraints

1. Finiteness on conformal blocks: ω[G̃
(s)
∆,J

] <∞, ω[G̃
(t)
∆,J

] <∞ for all unitary represen-

tations (∆, J).

2. Finiteness on four-point functions: ω[G̃] <∞, where G̃(z, z̄) is any crossing-symmetric

four-point function in a unitary theory.

3. Swapping condition: suppose G̃(z, z̄) is a four-point function with conformal block

expansions

G̃(z, z̄) =
∑

O∈φ×φ
aO G̃

(s)
∆O,JO

(z, z̄) =
∑

O∈φ×φ
aO G̃

(t)
∆O,JO

(z, z̄) , (2.13)

where aO > 0. Then the sums

∑

O∈φ×φ
aO ω[G̃

(s)
∆O,JO

] and
∑

O∈φ×φ
aO ω[G̃

(t)
∆O,JO

] (2.14)

are absolutely convergent and equal to ω[G̃].

When these three conditions are satisfied, the OPE decomposition of any unitary

solution to crossing must satisfy (2.8). While conditions 2 and 3 may appear at first sight

like mere technicalities, we will see that they make contact with some interesting physics.

The reason is that the functionals constructed in [12, 13] and in this paper probe the u-

channel Regge limit. As we soon review, four-point functions in unitary theories satisfy a

boundedness property in this limit. This allows us to consider functionals whose action on

physical four-point functions is finite but which diverge on more general functions that are

unbounded in the Regge limit. Such functionals lead to valid sum rules for the CFT data

which directly incorporate Regge boundedness.
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2.3 Functionals as contour integrals and Regge boundedness

In the rest of this paper, we are going to specialize the crossing equation to the section

z = z̄. z is still allowed to be complex and lie in R. When z is real and in the interval (0, 1),

this corresponds to restricting the four operators to lie on a spacelike line. This means we

have access to the s- and t-channel OPE limits, where z → 0, 1. Furthermore, we also have

access to the u-channel Regge limit, where z → i∞.7 It is a wonderful consequence of

complex analyticity of the correlator that imposing the crossing equation for operators on

a Euclidean line still gives us access to the (very Lorentzian) Regge limit.

Since we are effectively restricting the operators to lie in a line, we will simplify our

analysis further by expanding the four-point function in the conformal blocks of the 1D

conformal group SL(2) acting along this line. The 1D conformal blocks take the form

G∆(z) = z∆
2F1(∆,∆; 2∆; z) . (2.15)

The equation that we will study in the rest of this paper is then

∑

∆

a∆F∆(z) = 0 , (2.16)

where the sum runs over the scaling dimensions of SL(2) primaries in the OPE, a∆ is the

OPE coefficient squared of the primary and

F∆(z) = z−2∆φG∆(z)− (1− z)−2∆φG∆(1− z) . (2.17)

Equation (2.16) is valid for any four-point function of identical primary operators in general

spacetime dimension. For intrinsically 1D conformally-invariant systems, it encodes all

information contained in crossing of a given four-point function.

The main technical result of this paper is the construction of an interesting basis for

the space of functionals for the crossing equation (2.16). We will work with the same

general form of functionals introduced in [12, 13]. The functionals are specified by a pair

of locally holomorphic functions f(z), g(z) and take the form

ω[F ] =
1

2

∫ 1
2

+i∞

1
2

dzf(z)F(z) +

∫ 1

1
2

dz g(z)F(z) , (2.18)

where F(z) is a general test function. This form explicitly connects various interesting

corners of the crossing region. The first contour integral connects the numerical bootstrap

limit z = 1/2 with the Regge limit z, z̄ → i∞. The second contour connects the numerical

bootstrap limit with the deep Euclidean limit z, z̄ → 1. The sum rule following from the

existence of ω takes the form ∑

∆

a∆ ω(∆) = 0 , (2.19)

where we use the shorthand notation

ω(∆) ≡ ω[F∆] . (2.20)

7More precisely, we have access to the special case of the Regge limit where z/z̄ = 1.
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As a side comment, the first part of the contour corresponds to kinematics which

can be used to diagnose chaotic behaviour in out-of-time-order thermal correlators [27,

28]. Vacuum correlation functions of a CFT in flat space are related by a conformal

transformation to thermal correlation functions of the CFT quantized on the hyperbolic

space Hd−1 (see [29] or the above references). One can now compute a thermal correlation

function, where the operators φ(x1), φ(x2), φ(x3), φ(x4) are inserted in this order with equal

distances around the thermal circle at zero Rindler time. This corresponds to the point

z = z̄ = 1/2. If we evolve operators φ(x2) and φ(x4) by the same Rindler time t, we get

an out-of-time-order thermal correlator. This is equal to the flat-space vacuum correlator

at cross-ratios

z = z̄ =
1 + i sinh(t)

2
, (2.21)

thus precisely tracing out the first contour in (2.18). The t → ∞ limit is the Regge limit

z → i∞.

We would now like to explain more precisely in what sense our functionals probe the

Regge limit of physical correlators. The essential fact is that four-point functions of unitary

theories are bounded in the Regge limit. Specifically, with G̃(z, z̄) normalized as in (2.10),

we have ∣∣∣∣G̃
(

1

2
+ it,

1

2
+ it

)∣∣∣∣ is bounded as t→∞ . (2.22)

The boundedness condition can not be improved as there are correlators which approach

a constant in the Regge limit, for example the generalized free field. This means that for

the functional (2.18) to take a finite value on physical four-point functions, we must have

|f(z)| = O(z−1−ε) as z →∞ (2.23)

with ε > 0.8 In the examples of extremal functionals constructed in [12, 13] and here,

we have f(z) = O(z−2) as z → ∞ and thus the condition (2.23) is satisfied with ε = 1.

Therefore the sum rule (2.19) following from one of these functionals will restrict the

correlator G̃(z) to grow at most like z1−η for η > 0 in the Regge limit. This behaviour

is very different from the numerical bootstrap functionals which do not restrict the Regge

behaviour of the correlators unless infinitely many derivatives are included.

In other words, our extremal functionals allow one to bootstrap crossing-symmetric

correlators while making Regge boundedness manifest from the start. We will soon illus-

trate this on the example of contact and Witten exchange diagrams in AdS2.

8On the other hand, individual s- and t-channel conformal blocks decay in this limit as follows

G̃
(s)
∆ (z) = O(log(z)z−2∆φ) , G̃

(t)
∆ (z) = O(log(z)z−2∆φ) . (2.24)

It follows that assuming (2.23) holds, the finiteness on conformal blocks and the swapping conditions are

satisfied automatically, at least for the first contour integral in (2.18).
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3 Extremal functionals and the Polyakov bootstrap

3.1 The fermionic basis

We are now in a position to explain the main results of the present paper. In section 4

we will construct two distinguished bases for the space of functionals for the crossing

equation (2.16). The two bases are associated to the theory of the generalized free boson

and generalized free fermion respectively. The elements of the bases are generalizations

of the analytic extremal functionals constructed in [12, 13]. In particular, all of the basis

functionals probe the Regge limit in the sense described in the previous subsection. It

will turn out that expressing crossing in the bosonic basis provides a derivation of the

SL(2) version of the Polyakov’s approach to the conformal bootstrap [20], recently revisited

in [21–23, 30–32].

Let us focus on the fermionic case first. We claim that there exists a complete ba-

sis of functionals for the crossing equation (2.16), which is the dual basis of the vectors

F2∆φ+2n+1(z) and their ∆-derivatives ∂F2∆φ+2n+1(z) with n a non-negative integer. We

refer to this as the fermionic basis since ∆F
n ≡ 2∆φ + 2n+ 1 is the spectrum of nonidentity

primary operators in the φ×φ OPE, where φ is the generalized free fermion field. In other

words, we claim that for each ∆φ ≥ 0, there exists a set of bootstrap functionals that we

denote as αF
n and βF

n (F in the superscript stands for fermion) such that

αF
n [F∆F

m
] = δmn αF

n [∂F∆F
m

] = 0

βF
n [F∆F

m
] = 0 βF

n [∂F∆F
m

] = δmn
(3.1)

for m,n ∈ N, where we simplified notation by writing ∂F∆(z) ≡ ∂∆F∆(z).9 Thus αF
n is the

functional dual to the vector F∆F
n
(z) and βF

n is dual to ∂F∆F
n
(z). Here and in the following,

we will frequently denote the action of functionals on bootstrap vectors by the same symbol

as the functionals themselves

αF
n(∆) ≡ αF

n [F∆],

βF
n (∆) ≡ βF

n [F∆] .
(3.2)

The duality conditions (3.1) imply that αF
n(∆) has double zeros at the locations ∆F

m except

for ∆ = ∆F
n, where it is non-vanishing and has a vanishing first derivative. Similarly, βF

n (∆)

has double zeros at the same locations except for ∆ = ∆F
n, where it has a simple zero. In

particular, βF
0 is the extremal functional constructed in [12, 13], proving that the generalized

free fermion four-point function maximizes the gap above identity among SL(2)-invariant

unitary solutions to crossing.

Functionals αF
n and βF

n are in fact uniquely fixed by the conditions (3.1). In particular,

there is no bootstrap functional that has double zeros on the entire generalized free fermion

spectrum. We will construct αF
n and βF

n explicitly in section 4 in the form (2.18). We will

find that for all basis functionals f(z) = O(z−2) as z →∞.

9Here and in the rest of this paper, N stands for the set of non-negative integers.
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Most of the rest of this paper will be devoted to exploring the consequences of the sum

rules arising from applying αF
n and βF

n to the crossing equation
∑

∆

a∆ α
F
n(∆) = 0,

∑

∆

a∆ β
F
n (∆) = 0 ∀n ∈ N. (3.3)

These equations hold for every unitary solution to crossing. Furthermore, we claim not

only that these equations are a consequence of the standard crossing equation (2.16), but

also that they imply (2.16). In other words, if a putative set of OPE data consisting of

(∆i, a∆i)i=0,1,... with all a∆i positive satisfies (3.3) for all n, then it leads to a crossing-

symmetric four-point function. The proof of this claim is deferred until section 6.

We can get some intuition about the meaning of αF
n and βF

n by applying the sum

rules in perturbation theory around the generalized free fermion. Let us assume that we

have a continuous family of crossing-symmetric four-point functions Gg(z) parametrized by

coupling g such that it becomes the generalized free fermion for g = 0

G0(z) = 1 +

(
z

1− z

)2∆φ

− z2∆φ = 1 +

∞∑

n=0

a(0)
n G∆F

n
(z) , (3.4)

where a
(0)
n = afree

∆F
n

and

afree
∆ =

2Γ(∆)2Γ(∆ + 2∆φ − 1)

Γ(2∆φ)2Γ(2∆− 1)Γ(∆− 2∆φ + 1)
. (3.5)

Let us further assume that making g nonzero has only the following two effects at the leading

order. First, a new vector F∆O with general ∆O appears in the φ×φ OPE with coefficient

g. Second, the double-trace operators acquire anomalous dimensions and anomalous OPE

coefficients. These should be of order g2 to match the effect of O. In other words, Gg(z)

admits the following OPE decomposition valid to O(g2):

Gg(z) = 1 + g2G∆O(z) +

∞∑

n=0

an(g)G∆n(g)(z) , (3.6)

where the deformed OPE data can be expanded in g:

∆n(g) = ∆F
n + γ(1)

n g2 +O(g4)

an(g) = a(0)
n + a(1)

n g2 +O(g4) .
(3.7)

This leads to the following perturbative expansion of Gg(z)

Gg(z) = G(0)(z) + G(1)(z)g2 +O(g4) , (3.8)

where

G(1)(z) = G∆O(z) +
∞∑

n=0

[
a(1)
n G∆F

n
(z) + a(0)

n γ(1)
n ∂G∆F

n
(z)
]
. (3.9)

The coefficients a
(1)
n , γ

(1)
n are constrained by crossing symmetry

F∆O(z) +

∞∑

n=0

[
a(1)
n F∆F

n
(z) + a(0)

n γ(1)
n ∂F∆F

n
(z)
]

= 0 . (3.10)
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We can solve for a
(1)
n and γ

(1)
n by applying the functionals αF

n and βF
n . Strictly speaking,

we can only use these functionals if z−2∆φG(1)(z) is bounded in the Regge limit. We know

that z−2∆φG(g; z) is bounded in the Regge limit for any g since it is a unitary solution

to crossing by assumption. However, it can happen that Regge boundedness is spoiled at

individual orders in perturbation theory and is recovered only in the full finite-coupling

answer. Here we will assume that this does not happen at O(g2), i.e. that z−2∆φG(1)(z) is

bounded in the Regge limit. Functionals αF
n and βF

n allow us to pick individual terms from

the infinite sum and we find
a(1)
n = −αF

n(∆O)

a(0)
n γ(1)

n = −βF
n (∆O) .

(3.11)

Hence the deformation is uniquely fixed at O(g2) in terms of ∆φ and ∆O. There is a clear

interpretation of this claim in terms of field theory in AdS2. The generalized free fermion

on the boundary is described by a free massive Majorana fermion Ψ in AdS2. Introducing

O into the OPE is the same as turning on a three-point coupling Ψ2O in the bulk with

coupling proportional to g. G(1)(z) is therefore equal to the sum of the s-, t- and u-

channel Witten exchange diagrams in AdS2, with fermionic bulk-to-boundary propagators

of dimension ∆φ and scalar bulk-to-bulk propagators of dimension ∆O. More details on

the OPE decomposition of Witten exchange diagrams will be given when we discuss the

bosonic case.

Leading-order deformations of the boundary four-point function which only deform

the double traces correspond to four-point contact vertices in AdS2. Since the deformation

we found above was uniquely fixed, we just discovered using conformal bootstrap that

the Majorana fermion in 2D admits no renormalizable four-point interactions. Indeed,

Ψ4 vanishes because of fermionic statistics and the simplest interaction is the irrelevant

operator (Ψ∂Ψ)2. Irrelevant interactions lead to z−2∆φG(1)(z) which are not bounded in the

Regge limit and which therefore do not solve the sum rules following from αF
n and βF

n . In

section 7, we will explain how to use these functionals to bootstrap irrelevant interactions

as well.

3.2 The bosonic basis

The other complete set of functionals that we construct is associated to the spectrum of

the generalized free boson ∆B
n ≡ 2∆φ + 2n, n ∈ N. An important subtlety arises in this

case. By analogy with the fermionic case, we can attempt to construct αB
n , βB

n satisfying

αB
n [F∆B

m
] = δmn αB

n [∂F∆B
m

] = 0

βB
n [F∆B

m
] = 0 βB

n [∂F∆B
m

] = δmn
(3.12)

in the form (2.18). As we show in section 4, this is possible but only if we relax the

constraint on the Regge behaviour of f(z). In fact, f(z) approaches nonzero constants

rather than being O(z−2) as z → ∞ for the functionals satisfying (3.12). This means αB
n

and βB
n do not satisfy the finiteness on four-point functions and swapping criteria. However,

we can cure this problem simply by taking linear combinations which improve the Regge

behaviour of f(z) so that f(z) = O(z−2). In fact, f(z) is meromorphic at infinity and
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satisfies f(z) = f(1−z), so that a single subtraction is enough. For example, we can single

out βB
0 to improve the Regge behaviour of the remaining functionals and define

αn = αB
n − cnβB

0

βn = βB
n − dnβB

0 ,
(3.13)

where cn and dn are fixed by the requirement that the f(z) kernels defining αn and βn
satisfy f(z) = O(z−2). In practice, we find

dn =
(∆φ)4

n (4∆φ − 1)2n

(n!)2 (2∆φ)2
n (4∆φ + 2n− 1)2n

cn =
1

2
∂ndn .

(3.14)

With this definition, αn for n = 0, 1, . . . and βn for n = 1, 2, . . . together form a complete

set of consistent bootstrap functionals (β0 vanishes identically since d0 = 1). Of course,

our choice to improve the Regge behaviour using βB
0 is not canonical — we could have used

any αB
n or βB

n instead. However, it is clear that no matter how we choose to perform the

improvement, we will never find a consistent functional which vanishes at all double traces

2∆φ + 2n and has a double zero at all but one double trace, unlike what happens in the

fermionic case. To emphasize that αB
n and βB

n are not full-fledged bootstrap functionals,

we refer to them as pre-functionals.

There is a simple interpretation of these statements in terms of the crossing-symmetric

deformations of the generalized free boson four-point function. Similarly to the fermionic

case, we want to classify the deformations of G(0)(z) which are bounded in the Regge limit,

this time assuming that no new operators appear in the OPE at the leading order along

the deformation.

G(0)(z) = 1 +

(
z

1− z

)2∆φ

+ z2∆φ = 1 +

∞∑

n=0

a(0)
n G∆B

n
(z) , (3.15)

where a
(0)
n = afree

∆B
n

. We parametrize the scaling dimensions and OPE coefficients of deformed

double-trace operators as follows

∆n(g) = ∆B
n + γ(1)

n g2 +O(g4)

an(g) = a(0)
n + a(1)

n g2 +O(g4) ,
(3.16)

so that the crossing equation at order g2 becomes

∞∑

n=0

[
a(1)
n F∆B

n
(z) + a(0)

n γ(1)
n ∂F∆B

n
(z)
]

= 0 . (3.17)

Had αB
n and βB

n been consistent bootstrap functionals, we could apply them to this equa-

tion and conclude the generalized free boson admits no deformations of the kind we are

interested in. However, we know that only αn, βn are consistent. Applying them to (3.17),

we can solve for γ
(1)
n and a

(1)
n up to an overall constant

a(0)
n γ(1)

n = dna
(0)
0 γ

(1)
0

a(1)
n = cna

(0)
0 γ

(1)
0 ,

(3.18)
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with cn and dn given in (3.14). The overall constant can be absorbed into the coupling g2

and therefore we find precisely one Regge-bounded deformation. Its OPE decomposition

takes the form

A(z) =

∞∑

n=0

[
cnG∆B

n
(z) + dn∂G∆B

n
(z)
]
. (3.19)

These results exactly agree with the expectation from field theory in AdS2. The gen-

eralized free boson (3.15) is described by the free real massive scalar field Φ in AdS2.

Crossing-symmetric deformations which involve only corrections to the double traces cor-

respond to quartic vertices. Boundedness of the deformation in the z → i∞ limit restricts

us to relevant interactions. The only relevant quartic interaction that we can write down

is Φ4. Indeed, one can check that (3.19) exactly agrees with the OPE decomposition of the

corresponding tree-level Witten contact diagram.

We can generalize this logic to bootstrap higher-derivative contact diagrams in AdS2.

More derivatives in the vertex translate into faster polynomial growth of the diagram in

the Regge limit. Therefore, functionals of the form (2.18) which are consistent with higher-

derivative diagrams need to have f(z) polynomially suppressed by higher inverse powers of

z in this limit. We can construct such functionals by taking further linear combinations of

the elementary pre-functionals αB
n and βB

n . Roughly speaking, improving f(z) by a factor

z−2 costs us one dimension of the space of functionals. This reduction introduces one new

dimension in the space of allowed solutions to crossing, corresponding to a new contact

diagram. In this way, we can bootstrap all higher-derivative contact interactions, order-

by-order in the number of derivatives. We give more details in section 7, where we also

explain how to generalize the above procedure to higher orders in g to compute higher-loop

diagrams in AdS2.

3.3 Bootstrapping Witten exchange diagrams

The functionals αn and βn defined in (3.13) can be given a nice physical interpretation in

terms of Witten exchange diagrams in AdS2. This connection also provides a derivation

of the Polyakov approach to the conformal bootstrap directly from the position-space

crossing equation.

Let us consider Witten exchange diagrams in AdS2. We will denote the diagram for

the s-channel exchange of a field with dimension ∆ as

W(s)
∆ (x1, x2, x3, x4) =

1

|x12|2∆φ |x34|2∆φ
W

(s)
∆ (z) . (3.20)

A priori, W
(s)
∆ (z) is defined for z ∈ R, and has non-analyticities at z = 0, 1,∞ corresponding

to collisions of pairs of boundary operators. Thus W
(s)
∆ (z) gives rise to three complex-

analytic functions of z — the analytic continuations of W
(s)
∆ (z) from the regions (−∞, 0),

(0, 1) and (1,∞). The t- and u-channel exchanges can be obtained from the s-channel

exchange by transposing the external points

W(t)
∆ (x1, x2, x3, x4) =W(s)

∆ (x1, x4, x3, x2)

W(u)
∆ (x1, x2, x3, x4) =W(s)

∆ (x1, x3, x2, x4) ,
(3.21)
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which leads to the relations

W
(t)
∆ (z) =

∣∣∣∣
z

1− z

∣∣∣∣
2∆φ

W
(s)
∆ (1− z)

W
(u)
∆ (z) = |z|2∆φW

(s)
∆ (1/z) .

(3.22)

We will be interested in W
(s,t,u)
∆ (z) for z ∈ (0, 1) and their analytic continuation from

there to the whole crossing region R. Let us expand these functions in the s-channel OPE.

W
(s)
∆ (z) contains the “single-trace” conformal block of dimension ∆ and double traces of

dimensions ∆B
n and their ∆-derivatives

W
(s)
∆ (z) = G∆(z) +

∞∑

n=0

[
µ(s)
n (∆)G∆B

n
(z) + ν(s)

n (∆)∂G∆B
n

(z)
]
, (3.23)

where we normalized the diagram so that the single trace block appears with a unit co-

efficient. The s-channel OPE of the t- and u-channel exchange diagrams contains double

traces of dimensions 2∆φ + j with j ∈ N and their ∆ derivatives

W
(t)
∆ (z) =

∞∑

j=0

[
µ

(t)
j (∆)G2∆φ+j(z) + ν

(t)
j (∆)∂G2∆φ+j(z)

]

W
(u)
∆ (z) =

∞∑

j=0

(−1)j
[
µ

(t)
j (∆)G2∆φ+j(z) + ν

(t)
j (∆)∂G2∆φ+j(z)

]
,

(3.24)

where the equality of their OPE decomposition up to the (−1)j factor is a consequence of

a symmetry exchanging x1 and x2. We will be interested in the crossing-symmetric sum of

the exchange diagrams

W all
∆ (z) = W

(s)
∆ (z) +W

(t)
∆ (z) +W

(u)
∆ (z) . (3.25)

This function satisfies

W all
∆ (z) =

(
z

1− z

)2∆φ

W all
∆ (1− z) (3.26)

in the crossing region R. Its OPE decomposition takes the form

W all
∆ (z) = G∆(z) +

∞∑

n=0

[
µall
n (∆)G∆B

n
(z) + νall

n (∆)∂G∆B
n

(z)
]
. (3.27)

Note in particular that the double traces with dimensions 2∆φ plus odd integers cancelled

between the t- and u-channel exchange.

We would like to bootstrap the coefficients µall
n (∆), νall

n (∆) using the complete set of

bosonic functionals from the previous subsection. For that to work, we need to make sure

W all
∆ (z) is bounded in the Regge limit z → i∞. It is possible to show, for example using

the Mellin representation, that W all
∆ (z) satisfies

W all
∆ (z) ∼ w(∆φ,∆)

z
as z → i∞ (3.28)
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for some constant w(∆φ,∆). The Φ4 contact diagram in AdS2 has the same asymptotic

behaviour A(z) ∼ a(∆φ)z−1 in this limit. Therefore, there is a linear combination of

W all
∆ (z) and A(z) which decays even faster in the Regge limit

Ŵ all
∆ (z) = W all

∆ (z)− w(∆φ,∆)

a(∆φ)
A(z) , (3.29)

so that Ŵ all
∆ (z) = O(z−2) as z → i∞. Since the contact diagram A(z) contains only double

traces, the structure of the OPE decomposition is unchanged

Ŵ all
∆ (z) = G∆(z) +

∞∑

n=0

[
µ̂all
n (∆)G2∆φ+2n(z) + ν̂all

n (∆)∂G2∆φ+2n(z)
]
. (3.30)

The crossing symmetry of Ŵ all
∆ (z) translates into

F∆(z) +

∞∑

n=0

[
µ̂all
n (∆)F2∆φ+2n(z) + ν̂all

n (∆)∂F2∆φ+2n(z)
]

= 0 . (3.31)

Because of the O(z−2) decay of Ŵ all
∆ (z) in the Regge limit, we can apply the pre-functionals

αB
n and βB

n to this equation and swap them with the infinite sum over the double traces.

Thanks to the duality of pre-functionals and double-traces (3.12), only the action on the

first term and a single term of the infinite sum survives. We find

µ̂all
n (∆) = −αB

n [F∆]

ν̂all
n (∆) = −βB

n [F∆] .
(3.32)

The OPE coefficients of double traces in the Regge-improved crossing-symmetric sum of

Witten exchange diagrams Ŵ all
∆ (z) are precisely given by the pre-functional actions on the

bootstrap vectors!

3.4 Derivation of the Polyakov bootstrap

We are now one step away from deriving the Polyakov-Mellin approach to the conformal

bootstrap for SL(2). Let us first review its basic idea. One starts by postulating the

existence of distinguished functions P∆(z), which we will call Polyakov blocks. These

blocks are required to be crossing-symmetric

P∆(z) =

(
z

1− z

)2∆φ

P∆(1− z) . (3.33)

Furthermore, the OPE decomposition of these blocks is required to contain the single trace

conformal block G∆(z) (with coefficient one), as well as double trace conformal blocks

G∆B
n

(z) and their ∆-derivatives ∂G∆B
n

(z) (with coefficients that may depend on ∆φ and

∆). Finally, and most nontrivially, it is required that for any crossing-symmetric four-

point function G(z) in a unitary theory, we can replace the conformal blocks in its OPE

decomposition with the Polyakov blocks without changing the result

G(z) =
∑

∆

a∆G∆(z) =
∑

∆

a∆P∆(z) . (3.34)
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Since the latter expansion is manifestly crossing-symmetric, conformal bootstrap is trans-

formed into the statement that all the double-trace contributions to the individual Polyakov

blocks drop out after performing the sum over the physical spectrum on the r.h.s. of the

above equation.

A priori, it is not at all clear that objects P∆(z) with the above highly-constraining

properties should exist. However, we can construct them straightforwardly using the com-

plete set of bosonic functionals. Indeed, we can take

P∆(z) = G∆(z)−
∞∑

n=0

[
αn(∆)G∆B

n
(z) + βn(∆)∂G∆B

n
(z)
]
. (3.35)

Since αn and βn are related to the prefunctionals αB
n and βB

n via (3.13), this expression is

related to the Regge-improved sum of Witten exchange diagrams as follows

P∆(z) = Ŵ all
∆ (z) + βB

0 (∆)A(z) , (3.36)

where A(z) is the φ4 contact diagram with OPE decomposition (3.19). Hence, P∆(z) is in-

deed crossing-symmetric since both summands in (3.36) are. Moreover, the equations which

express the cancellation of unphysical double-trace contributions on the r.h.s. of (3.34) take

the form ∑

∆

a∆αn(∆) = 0,
∑

∆

a∆βn(∆) = 0 ∀n ∈ N. (3.37)

These equations are satisfied in every unitary solution to crossing by construction since

αn and βn are consistent bootstrap functionals. Recall that β0 = 0 identically so that the

n = 0 equation for β is satisfied trivially.

In summary, the Polyakov bootstrap equations are the usual bootstrap equations ex-

pressed in the basis of functionals αn and βn.

In practice, the quickest way to find P∆(z) is to start with W all
∆ (z) without any contact

term improvements, and add such multiple of A(z) that precisely cancels ∂G2∆φ
(z) in the

OPE decomposition. Note that just like there is no canonical choice of a basis for the

bosonic functionals, there is no canonical choice of the Polyakov blocks. Indeed, one gets

equally valid Polyakov blocks from a linear combination of W all
∆ (z) and A(z) where any

fixed double trace term is absent, not necessarily ∂G2∆φ
(z). In general, two consistent

choices of the Polyakov blocks will differ by the contact diagram times ω[F∆], where ω is

a bootstrap functional.

The situation in the fermionic case is even simpler. Since αF
n and βF

n are consistent

bootstrap functionals without any subtractions, we can define the fermionic Polyakov block

PF
∆(z) = G∆(z)−

∞∑

n=0

[
αF
n(∆)G∆F

n
(z) + βF

n (∆)∂G∆F
n
(z)
]
, (3.38)

and the four-point function then satisfies

G(z) =
∑

∆

a∆G∆(z) =
∑

∆

a∆P
F
∆(z) . (3.39)
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As discussed above, PF
∆(z) is the sum of Witten exchange diagrams in the s-, t- and u-

channel, where the bulk-to-boundary propagators are fermionic of dimension ∆φ and the

bulk-to-bulk propagators are bosonic of dimension ∆.

The crossing equation in D > 1 has been used to bootstrap the crossed-channel OPE

decomposition of Witten exchange diagrams in AdSD+1 in some cases in [7, 33]. Rather

general formulas for the OPE decompositions were found using Mellin-space techniques

in [32, 34]. For D = 2, 4 a closed formula for the coefficient function of the crossed-channel

Witten exchange diagrams was found in [35] by applying the Lorentzian OPE inversion

formula of Caron-Huot [6] to a single crossed-channel conformal block. The direct-channel

exchange contributes a part which is not analytic in spin, and is therefore not captured

by the standard inversion formula. Functionals of this note automatically incorporate

also the direct channel exchange. There is in fact a Lorentzian inversion formula for

the principal series of SL(2) which reproduces the full crossing-symmetric sum of Witten

exchange diagrams when applied to a single crossed-channel conformal block [36]. We

checked our results for the OPE coefficients in Witten exchange diagrams with explicit

computations whenever possible.10

Before we conclude this section, we should note that there is an an important sub-

tlety which we skimmed in the above. This is the fact that the equivalence between the

Polyakov approach and the functional bootstrap equations is only guaranteed if we are

allowed to commute the series running over the functional label n with that over ∆ upon

inserting (3.35) into (3.34). That this is indeed true follows from an upper bound on the

OPE data derived in section 5, and will be proven in section 6.

4 Construction of the dual basis

4.1 Functionals for generalized free theory

We will now find the functional bases with all the properties that were described in previous

sections. We will use the construction [13] (which itself builds on [12]), to which we refer

the reader for further details, and which we now shortly review.11

We begin with the general class of functionals given in equation (2.18) and consider

their action on the F∆:

ω[F∆] =
1

2

∫ 1
2

+i∞

1
2

dzf(z)F∆(z) +

∫ 1

1
2

dz g(z)F∆(z) , (4.1)

The pair of kernels f, g are assumed to be holomorphic in the upper-half plane, and real

along their respective contours of integration in the above definition. It is useful to extend

f(z) into the lower half-plane by setting f(z) = f(1− z). The pair f, g should satisfy the

so-called gluing condition,

Ref(z) = −g(z)− g(1− z) (4.2)

10We thank Xinan Zhou for providing us with a draft of [37] to facilitate some of these checks.
11A different perspective on this construction will be given in [36] in terms of a Lorentzian OPE inversion

formula for the principal series of SL(2).
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for z ∈ (0, 1), which essentially tells us that f(z), g(z) arise as discontinuities of a single

kernel h(z). We would like for the functional action ω(∆) to be an oscillating function of ∆,

and in particular that it should have double zeros for ∆ = ∆B
n ,∆

F
n depending on whether

we want functionals dual to the generalized free boson or fermion respectively. The trick

is to use that

lim
ε→0+

G∆(z + iε)

(z + iε)2∆φ
= eiπ(∆−2∆φ)

G∆

(
z
z−1

)

(−z)2∆φ
, for z < 0, (4.3)

to obtain the desired oscillations. Let us set

g(z) = η (1− z)2∆φ−2f

(
1

1− z

)
, 0 < z < 1, (4.4)

with in particular f(z) real for z ∈ R\(0, 1), and set η = 1,−1 for the bosonic, fermionic

cases respectively. Following [13], a simple contour-deformation argument gives us

ω(∆) ≡ ω[F∆] = [1− η cosπ(∆− 2∆φ)] g(∆), g(∆) =

∫ 1

0
dz g(z)

G∆(z)

z2∆φ
, (4.5)

which has the desired double zero structure. For z ∈ (0, 1) equation (4.2) together with (4.4)

implies the fundamental free equation :

ηRe f(z) = −(1− z)2∆φ−2f

(
1

1− z

)
− z2∆φ−2f

(
1

z

)
. (4.6)

This is the equation that the functionals dual to the generalized free solutions must obey.

4.2 General solution

We will now find a full set of solutions to the fundamental free equation subject to ap-

propriate boundary conditions, which we will discuss in detail. As it turns out the actual

construction of the solutions will then be fairly simple thanks to a nice property of the

equation which allows us to start with one particular solution and derive from it an infinite

set of other solutions.

4.2.1 Boundary conditions

We begin by discussing constraints on the behaviour of f(z) as z → ∞. One condition

arises from demanding that the functional action (4.1) on the F∆ should be finite for

∆ ≥ 0. This imposes in particular that f(z) should decay sufficiently fast as z approaches

infinity. For ∆ ≥ 0, the asymptotics of the F∆ imply that we need f(z) = O(z2∆φ−ε) for

some positive ε. However, the swapping condition [19], which is the requirement that the

functional action should commute with (crossing-symmetric) infinite sums of F∆, actually

requires the stronger falloff z−1−ε for some ε > 0. Since f(z) is analytic for z away from

(0, 1), we must have that f(z) falls off like an integer power of z−1 greater or equal than

two. Note that using (4.4) and the assumed falloff of f(z) we find g(z) = O[(1− z)2∆φ ] as

z → 1− and this is sufficient to guarantee that the contribution of g(z) to the functional

action is also finite. The swapping condition adds no further constraints on g(z).
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Next we discuss the behaviour of f(z) as z → 1+. A generic solution of the fundamental

free equation which is sufficiently bounded at infinity will be divergent as z → 1+. There

are two classes of behaviour, labelled by the presence or absence of a leading logarithmic

divergence, along with a specific power law divergence. We can fix this divergent structure

by a simple argument. Note that the contour deformation leading to the functional ac-

tion (4.5) is generically not allowed, since the integral computing g(∆) might be divergent.

However, since the original functional action was definitely finite, this divergence must

cancel against a double zero. The allowed behaviours are hence

f(z)
z→1+

∼ a0 log(z − 1) + b0
(z − 1)2+2m

, η = −1 (F ) (4.7a)

f(z)
z→1+

∼ a0 log(z − 1) + b0
(z − 1)1+2m

, η = 1 (B) (4.7b)

with m ∈ N.12 If a0 = 0, we say the functionals are of type β, otherwise of type α.

Note that a functional with a given m is only defined up to addition of lower m ones.

Furthermore, α-type functionals are also ambiguous to the addition of a β functional with

the same m. The functionals are characterized by the fact that both have double zeros for

∆p with p > m, while for ∆m the βm functionals have simple zeros and the αm functionals

are non-zero.

4.2.2 General solution

Let us denote functionals by αηm, β
η
m and write f(z) → f

∆φ,η
αm , f

∆φ,η
βm

for the corresponding

f(z) kernels, keeping in mind that η = 1,−1 corresponds to bosons, fermions respectively.

Previously we constructed those solutions with η = −1 for all ∆φ [13]. We recall their form:

f
∆φ,−
β0

(z) = − κ(∆φ)
2z − 1

w3/2

[
3F̃2

(
−1

2
,

3

2
, 2∆φ +

3

2
; ∆φ + 1,∆φ + 2;− 1

4w

)

+
9

16w
3F̃2

(
1

2
,
5

2
, 2∆φ +

5

2
; ∆φ + 2,∆φ + 3;− 1

4w

)]
, (4.8a)

f
∆φ,−
α0 (z) = κ(∆φ)

2(z − 2)(z + 1)

(2z − 1)w3/2

[
3F̃2

(
−1

2
,−1

2
, 2∆φ +

3

2
; ∆φ + 2,∆φ + 2;− 1

4w

)

+
(2∆φ + 3)(2∆φ + 5)

16w
3F̃2

(
1

2
,
1

2
, 2∆φ +

5

2
; ∆φ + 3,∆φ + 3;− 1

4w

)

− 3(4∆φ + 5)

256w2 3F̃2

(
3

2
,

3

2
, 2∆φ +

7

2
; ∆φ + 4,∆φ + 4;− 1

4w

)]
. (4.8b)

Here 3F̃2 stands for the regularized hypergeometric function, w = z(z−1) and the normal-

ization factor reads

κ(∆φ) =
Γ(4∆φ + 4)

28∆φ+5Γ(∆φ + 1)2
. (4.9)

12Actually, this argument only shows the weaker m ∈ Z. For a0 = 0 positivity of f(z) together with the

right falloff at infinity set m ≥ 0. We do not however have a general proof of this statement.
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These solutions falloff as z−2 as required, and satisfy (4.7a) with m = 0. The ambiguity in

α0 has been fixed here by demanding α′0(∆F
0 ) = 0.

In order to obtain other solutions, we will resort to the following very useful property

of the fundamental free equation. Consider some solution f
∆φ,η
ω (z), where ω = α, β, and

define a new function

f
∆̂φ,η̂

ω̂ (z) ≡ [1 + z(z − 1)]p

[z(1− z)]k
f

∆φ,η
ω (z), (4.10)

for integer k, p. Then it is easy to check that this will also satisfy the fundamental free

equation, as long as we change

η → η̂ = (−1)kη, ∆φ → ∆̂φ = ∆φ −
3

2
k + p. (4.11)

Multiplication by the prefactor modifies the behaviour near z = 1 and z = ∞, and it

can also give us a bosonic functional from a fermionic one and vice-versa (i.e. change η).

Starting from the elementary m = 0 fermionic functionals written above we can use these

shifts to obtain all other solutions of interest.

First let us obtain obtain all fermionic solutions, i.e. those with η = −1 but arbitrary

m ≥ 0. To do this we simply define

f
∆φ,−
ωm (z) =

[
1 + z(z − 1)

z(z − 1)

]2m

f
∆φ+m,−
ω0 (z). (4.12)

The resulting functionals still have the required falloff at infinity and the right divergent

structure as z → 1+. Since the prefactor is positive, they also preserve any positivity

properties of the original m = 0 kernels. Hence these provide good functionals with all the

right properties, and we remind the reader that each of them can be redefined by adding

lower m solutions. We can use this freedom to make certain nice choices detailed further

below. To obtain bosonic functionals we can define:

f
∆φ,+
ωm+1 (z) =

1

z(1− z)
f

∆φ+ 3
2
,−

ωm (z), (4.13)

since we have just obtained all solutions on the righthand side. The minus sign is included

so that positivity of the fermionic functional action translates into positivity of the bosonic

one, cf. equations (4.4) and (4.5).

This leaves a priori two other sets of solutions to be constructed, namely those bosonic

solutions which satisfy (4.7b) withm = 0. Note that multiplication of a fermionic functional

by z(1− z) could do the trick, but this ruins the falloff at infinity; we cannot correct this

by dividing by 1 + z(z − 1) since this would destroy analyticity of f(z) away from the real

axis. The only way out is to first take a specific linear combination of m = 0 fermionic

functionals which falls off as z−4 and only then multiply by z(1 − z), to obtain a bosonic

α functional with m = 0. In detail this is achieved by setting:

f
∆φ,+
α0 (z) = z(1− z)

[
f

∆φ− 3
2
,−

α0 (z) +
1

2∆φ − 1
f

∆φ− 3
2
,−

β0
(z)

]
. (4.14)

This still leaves the β+
0 functional to be constructed. However, this is fine since such a func-

tional actually does not exist for general ∆φ.13 Indeed, as we have discussed in section 3,

13An exception is the degenerate case ∆φ = 0 where f(z) = 1
z(z−1)

does the trick.
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it is precisely this missing functional which allows the deformation of the generalized free

boson solution by a contact term in AdS2. Another argument is that such a functional

would rule out the generalized free fermion solution to crossing, since the associated func-

tional action would be non-negative for all ∆φ ≥ 2∆φ and zero on the identity. Finally, this

result can also be seen directly from the fundamental equation and boundary conditions.

Suppose such a functional did exist. Then we could form a new fermionic functional with

m = 0 by dividing it by z(z − 1). But then this would mean that there exists a fermionic

functional with m = 0 that falloff as z−4, which is false: the unique m = 0 functional is

the one in equation (4.8a), which decays as z−2 [13]. We conclude the only way to recover

the missing functional is to relax the required asymptotics to O(1) instead of O(z−2). This

leads precisely to the prefunctionals discussed in section 3.2.

4.3 Orthonormal bases and special cases

The construction described above provides us with a full set of functionals with prescribed

boundary conditions. They have the property that the associated functional actions satisfy

αm(∆n) = δnm, α′m(∆n) = 0

βm(∆n) = 0, β′m(∆n) = δnm
(4.15)

for n ≥ m, for both bosons and fermions. In order to extend these orthogonality conditions

to 0 ≤ n < m we can use the freedom to redefine a given m functional by lower m ones,

and that of shifting an α functional by the corresponding β functional with the same

m. We were able to find closed form expressions for such orthogonal functionals only for

special values of ∆φ. For instance, for ∆φ = 1/2 the set of orthogonal fermionic (η = −1)

functionals is given by

fαm(z) =
1

2
∂mfβm(z) +

2

π2

Γ(2 + 2m)4

Γ(3 + 4m)Γ(4 + 4m)
G2m+2(1/z) (4.16)

fβm(z) =
2

π2

Γ(2 + 2m)2

Γ(3 + 4m)

[
P2m+1

(
z−2
z

)

z
+
P2m+1

(
1+z
z−1

)

1− z

]
(4.17)

with Pm(z) the Legendre polynomials. We have checked (numerically) that the functionals

so defined satisfy the orthogonality properties above for all n,m ∈ N.

Another case which will be useful to us later are the bosonic functionals with ∆φ = 1

and η = 1:

fαm(z) =
1

2
∂mfβm(z)− 2

π2

Γ(2 + 2m)4

Γ(3 + 4m)Γ(4 + 4m)
G2m+2(1/z)

fβm(z) =
2

π2

Γ(2 + 2m)2

Γ(3 + 4m)

[
P2m+1

(
z − 2

z

)
+ P2m+1

(
1 + z

z − 1

)

−P1

(
z − 2

z

)
− P1

(
1 + z

z − 1

)]
.

(4.18)

It can be checked that the corresponding functionals satisfy the relations:

αm(∆n) = δnm, α′m(∆n) = −cmδn0, n,m ≥ 0

βm(∆n) = 0, β′m(∆n) = δnm − dmδn0, n,m ≥ 0
(4.19)
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<latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit>

�0(�)
<latexit sha1_base64="fDLGJEGUcyFn/5QUKUquLQJ+ZC0=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCpb9fdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOI0mzg=</latexit><latexit sha1_base64="fDLGJEGUcyFn/5QUKUquLQJ+ZC0=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCpb9fdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOI0mzg=</latexit><latexit sha1_base64="fDLGJEGUcyFn/5QUKUquLQJ+ZC0=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCpb9fdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOI0mzg=</latexit><latexit sha1_base64="fDLGJEGUcyFn/5QUKUquLQJ+ZC0=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCpb9fdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOI0mzg=</latexit>

�1(�)
<latexit sha1_base64="Hb4ks3LDyVklEcMb+UKJW9Z5rzA=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCp79TdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOPVmzk=</latexit><latexit sha1_base64="Hb4ks3LDyVklEcMb+UKJW9Z5rzA=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCp79TdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOPVmzk=</latexit><latexit sha1_base64="Hb4ks3LDyVklEcMb+UKJW9Z5rzA=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCp79TdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOPVmzk=</latexit><latexit sha1_base64="Hb4ks3LDyVklEcMb+UKJW9Z5rzA=">AAACDXicbVBLSgNBEO2Jvxg/GXXpZjAIcRNmRNBlUBcuI5gPZIahp6cmadLzobtGCCFn8ABu9QjuxK1n8ARew04yC018UPB4r4qqekEmuELb/jJKa+sbm1vl7crO7t5+1Tw47Kg0lwzaLBWp7AVUgeAJtJGjgF4mgcaBgG4wupn53UeQiqfJA44z8GI6SHjEGUUt+WbVDQCp79TdWxBIz3yzZjfsOaxV4hSkRgq0fPPbDVOWx5AgE1SpvmNn6E2oRM4ETCturiCjbEQH0Nc0oTEobzI/fGqdaiW0olTqStCaq78nJjRWahwHujOmOFTL3kz811P6lCGES+sxuvImPMlyhIQttke5sDC1ZtFYIZfAUIw1oUxy/YDFhlRShjrAik7GWc5hlXTOG47dcO4vas3rIqMyOSYnpE4cckma5I60SJswkpNn8kJejSfjzXg3PhatJaOYOSJ/YHz+AOPVmzk=</latexit>
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�
<latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit>

�
<latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit>

�
<latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit><latexit sha1_base64="D6Xm+S1v11yxO928Qm0kzab1NMI=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegHjxGMA9IljA725uMmZ1dZmaFEHLzA7zqJ3gTr/6IX+BvOEn2oIkFDUVVN91dQSq4Nq775RRWVtfWN4qbpa3tnd298v5BUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD66nfekSleSLvzShFP6Z9ySPOqLFSs3uDwtBeueJW3RnIMvFyUoEc9V75uxsmLItRGiao1h3PTY0/pspwJnBS6mYaU8qGtI8dSyWNUfvj2bUTcmKVkESJsiUNmam/J8Y01noUB7YzpmagF72p+K+n7SkDDBfWm+jSH3OZZgYlm2+PMkFMQqZ5kJArZEaMLKFMcfsAYQOqKDM2tZJNxlvMYZk0z6qeW/Xuziu1qzyjIhzBMZyCBxdQg1uoQwMYPMAzvMCr8+S8Oe/Ox7y14OQzh/AHzucPb2aX1Q==</latexit>
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Figure 2. The action of the fermionic αn and βn functionals for ∆φ = 3
2 and n = 0, 1. The

functionals have double zeros at ∆ = 2∆φ + 2m+ 1 for m 6= n and m,n ∈ N≥0. The action of αn
on the identity (∆ = 0) is equal to −afree

2∆φ+2n+1, while βn vanishes there. αn(∆) and βn(∆) also

describe the OPE decomposition of the crossing-symmetric sum of Witten exchange diagrams with

exchanged dimension ∆.

where the constants cm, dm are related to a contact diagram in AdS2, cf. (3.14). Again, we

should set β0 ≡ 0.

These examples illuminate a more general pattern of orthonormal functionals. The

basic building blocks

f
∆φ,η
β,m (z) =

(
P2m+1

(
z−2
z

)

z2−2∆φ
+ η

P2m+1

(
1+z
z−1

)

(z − 1)2−2∆φ

)
(4.20)

f
∆φ,η
α,m (z) =

1

2
∂mf

∆φ,η
β,m (z)− η Γ(2 + 2m)2

Γ(4 + 4m)
G2m+2(1/z) (4.21)

satisfy the free fundamental equation for all m, for η = 1 and integer ∆φ or η = −1 and

half-integer ∆φ. Note the asymptotic behaviour near z = 1 takes the form

f+
β,m(z)

z→1+

= O[(z − 1)−1−2m], m ≥ ∆φ − 1, ∆φ ∈ N

f−β,m(z)
z→1+

= O[(z − 1)−2−2m], m ≥ ∆φ −
1

2
, ∆φ ∈ N +

1

2

(4.22)

and similarly for the α-type functionals with extra logarithmic factors. This means that

as we increase ∆φ we have the freedom to include building blocks with lower m, which we

must use to obtain a sufficiently fast falloff (i.e. O(z−2)) near z =∞. As we increase ∆φ by

one unit the behaviour near infinity of the building blocks gets multiplied by z(z− 1), but

at the same time we gain two new lower m blocks (α and β), so it may seem the system is

under-constrained. However, experimentally we find that there are always identities among
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these lower m building blocks which reduces the number of degrees of freedom in precisely

the right way. Furthermore, the net result is always that after properly orthonormalized

βm functionals have been constructed, the αm functionals are always given by

f
∆φ,−
αm (z) =

1

2
∂mf

∆φ,η
βm

(z)

+
2

π2

Γ(1 + 2∆φ + 2m)4

Γ(2 + 4∆φ + 4m)Γ(1 + 4∆φ + 4m)
G2m+1+2∆φ

(1/z), (4.23a)

f
∆φ,+
αm (z) =

1

2
∂mf

∆φ,η
βm

(z)

− 2

π2

Γ(2∆φ + 2m)4

Γ(4∆φ + 4m)Γ(4∆φ − 1 + 4m)
G2m+2∆φ

(1/z), (4.23b)

for half-integer and integer ∆φ respectively.

As a simple example, the fermionic basis for ∆φ = 3
2 is given by

f
3
2
,−

βm
(z) =

2

π2

Γ(4 + 2m)2

Γ(5 + 4m)Γ(6 + 4m)

(
f

3
2
,−

β,m+1(z)− 1

3
cmf

3
2
,−

β,0 (z)

)
(4.24)

with cm = 23 + 28m + 8m2, and αm kernels given as above with ∆φ = 3
2 . The identity

among lower m kernels in this case is:

f
3
2
,−

β,0 (z) = f
3
2
,−

α,0 (z) = −3. (4.25)

As a concrete illustration, the actions of the first few fermionic functionals at ∆φ = 3
2

are plotted in figure 2.

5 Functional bootstrap equations and their implications

5.1 General idea

The functional bases constructed in the previous section provide us with an infinite but

countable set of constraints on the CFT data. These constraints are obtained by acting

with the functionals on the crossing equation and using the swapping property to find the

functional bootstrap equations (1.5) which we repeat here:

∑

∆

a∆αn(∆) = 0,
∑

∆

a∆βn(∆) = 0, n ∈ N (5.1)

where one may choose to use the bosonic or fermionic basis. In either case, these equations

provide necessary, and as we will argue in the next section, sufficient conditions for the OPE

data to satisfy the crossing equation. In other words, these equations contain the same

information as the original crossing equation, but in a form that is much more amenable to

analytic (and numeric [38]) studies. In this section we will use these equations to extract

universal properties that must hold for any solution to crossing.

Previous work [10, 11, 24] appealing to Tauberian theory has been able to derive pow-

erful constraints on moments of OPE density at large ∆. These results may be summarized
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Figure 3. Functional α̃n used to prove the upper bound on the OPE coefficients (5.12), here

shown in the fermionic case for ∆φ = 5
2 , n = 2. The contribution to the sum rule from operators

in [∆n − 1,∆n + 1] (shown in red) must be bounded above by minus the contribution from where

α̃n(∆) < 0 (shown in green). The negative region stays finite in extent as n→∞ and is dominated

by the identity in this limit, giving rise to the r.h.s. of (5.12).

as establishing that 1) the OPE decomposition converges exponentially fast in the crossing

region R away from its boundary and 2) the integrated or average OPE density of any

solution to crossing must behave asymptotically like that of a generalized free field (with

calculable corrections). Here we will be able to make more refined statements: we will

prove an upper bound on individual OPE coefficients, as well as the total OPE density

present inside intervals of finite size. We can establish these bounds for any value of ∆, but

they take a particularly simple form for ∆ � 1. Moreover, we will obtain a lower bound

on a suitable average of the OPE density. The result is that both upper and lower bounds

strongly constrain variations of the OPE density away from the generalized free answer.

In both cases the derivation of the bounds follows in a straightforward manner from

the functional bootstrap equations, and in particular from the αn sum rules. The αn
functionals satisfy αn(∆m) = δnm and also know about the generalized free OPE density

since αn(0) = −afree
∆n

, which follows from the existence of the generalized free solutions to

the functional equations. For both upper and lower bounds this will essentially imply that

contributions to the sum rule from the OPE density in the vicinity of ∆n will have to cancel

the contribution of the identity, which is controlled by the generalized free result. For the

upper (lower) bound we will take αn (−αn) and modify it appropriately by β functionals

so as to obtain an object with suitable positivity properties. The positive contributions

can be ignored to obtain inequalities, and potential undesired negative contributions are

always sub-leading for large n, which leads to the desired bounds.

Throughout this section, it will be useful to keep in mind the definition:

afree
∆ = 2

Γ(∆)2

Γ(2∆− 1)

Γ(∆ + 2∆φ − 1)

Γ(2∆φ)2 Γ(∆− 2∆φ + 1)
, (5.2)

which yields the correct GFF OPE coefficients when evaluated for ∆ = ∆F
n,∆

B
n .
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5.2 Upper bound on the OPE data

We will work with the fermionic functional bootstrap equations and at the end we will

comment on how similar results may be derived by resorting to the bosonic ones. We want

to find a functional for which contributions to the corresponding sum rule from values of

∆ in a neighbourhood of ∆n must cancel that of the identity. Unfortunately, the basic αn
functional will not do, but a simple modification will suffice.

Let us begin from the αn equations. Ignoring various positive contributions to the

corresponding sum rules, they imply the following bound:

∑

∆∈Bn

a∆αn(∆) ≤ afree
∆n

+
∑

∆∈S−n

a∆[−αn(∆)] (5.3)

Here we have defined the bins Bn ≡ [∆n − 1,∆n + 1] centered around the generalized

free fermion values ∆F
n = 1 + 2∆φ + 2n, and the set S−n where the functional is negative,

formally S−n = {∆ > 0 : (∆ /∈ Bn) ∩ (αn(∆) ≤ 0)}. We have also used αn(0) = −afree
∆n

.

The equation above establishes a bound on a certain average OPE density inside any given

bin, but it is not very useful as one can check that the set S−n contains operators with

arbitrarily large ∆. Our strategy is to introduce new functionals:

α̃n ≡ αn + bnβn. (5.4)

The coefficient bn is chosen so that the associated functional kernel has a stronger falloff

behaviour,14

fα̃n(z)
z→∞∼ O(z−4). (5.5)

The shape of the resulting functional is illustrated in figure 3. The point of this improved

definition is that the functional action α̃n(∆) turns out to have much nicer positivity

properties, namely

α̃n(∆) ≥ 0 for ∆ > ∆pos
n , (5.6)

with ∆pos
n roughly 2∆φ for all n. We have checked this numerically in several cases. It

can also be proven rigorously at large n for specific, half-integer values of ∆φ using the

asymptotic expressions for the functional actions derived in appendix A, as we will see

momentarily. With the α̃ functionals our new improved bound is

∑

∆∈Bn

a∆α̃n(∆) ≤ afree
∆n

+
∑

0<∆≤∆pos
n

a∆[−α̃n(∆)]. (5.7)

This is an exact bound valid for any n, constraining the average OPE density in the bin

Bn. The bound is non-trivial, as the α̃n(∆) are bounded from below in Bn by an order one

number. Although valid, this result is perhaps not so useful as expressions for the α̃n(∆)

14To justify this prescription, we point out that for fαn(z) we have limz→∞ z2fαn(z) > 0, which implies

the functional action (4.5) will be necessarily negative for sufficiently large ∆. On the other hand sub-leading

terms turn out to have positive coefficients, so it is natural to remove the offending piece.
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are generically quite complicated. However we can obtain a cleaner version of the bound

by considering large n. For a generic functional ωn let us define:

ωn(∆) =
4 sin2

[
π
2 (∆−∆n)

]

π2

(
afree

∆n

afree
∆

)
Rω(∆,∆n|∆φ). (5.8)

The goal of this rewriting of ωn(∆) is to factor out the fast, exponential dependence on ∆

and n. Using the results of appendix A we can obtain

Rβ(∆,∆n|∆φ) ∼
∆,∆n→∞

4∆∆2
n

∆4 −∆4
n

, (5.9a)

Rα̃(∆,∆n|∆φ) ∼
∆,∆n→∞

16∆∆5
n

(∆4 −∆4
n) 2

, (5.9b)

where the limits are taken holding the ratio ∆/∆n fixed. To be precise, we have checked

these expressions hold for several half-integer ∆φ where the functionals take a simpler

form.15

If we make ∆n large but keep ∆ fixed, we again find simplifications, but the result now

depends on ∆φ. In the simplest case ∆φ = 1/2 we find:

Rβ(∆,∆n|12)

(2∆− 1)

∆n→∞∼ − 2

∆2
n

− Γ(∆)4

Γ(2∆)

sin[π(∆−∆n)]

π∆2∆
n

, (5.10a)

Rα̃(∆,∆n|12)

(2∆− 1)

∆n→∞∼ 8

∆3
n

− afree
∆

2∆− 1

Γ(∆)2

∆2∆
n

cos2

(
π∆

2

)
(5.10b)

We have written the last expression in a funny way because the ratio afree
∆ /(2∆ − 1) is

positive for ∆ > 0. From the expression above we see explicitly that for large n the

functional action α̃n(∆) is positive beyond ∆ > 3/2. Furthermore for ∆ < 3/2 we obtain

α̃n(∆) = −
afree

∆n

∆2∆
n Γ(1−∆)2

. (5.11)

In particular, in the large n limit all values of α̃n(∆) for ∆ < 3/2 are suppressed relative

to the value at the identity α̃n(0) = −afree
∆n

. This means that in equation (5.7) we can

safely neglect the sum on the righthand side for sufficiently large n. For other values of

∆φ we find the same pattern: the Rα̃ functions contains two pieces, one analytic and one

non-analytic, with the latter dominating for small enough ∆, and for which the identity

contribution is always leading in the limit n→∞.

Overall, we can now write the bound in following simple form:

lim sup
n→∞

∑

|∆−∆n|≤1

4 sin2
[
π
2 (∆−∆n)

]

π2(∆−∆n)2

(
a∆

afree
∆

)
≤ 1 (5.12)

15We believe that the expressions hold for general ∆φ. For instance, assuming this is indeed the case it is

easy to show that the generalized free boson OPE density will satisfy the (fermionic) βn sum rule at large

n for any ∆φ, which follows from

P

∫ ∞
0

dx
x

x4 − 1
= 0

.
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Figure 4. Functional ∪n used to prove the lower bound on the OPE coefficients (5.18), here shown

in the fermionic case for ∆φ = 5
2 , n = 2. The contribution to the sum rule from operators in

[∆n − 2,∆n + 2] (shown in red) must compensate the contribution from where ∪n(∆) > 0 (shown

in green). The latter always contains the identity, which gives rise to the r.h.s. of (5.18). There

could be an additional negative region (shown in blue), but its extent stays finite as n → ∞ and

its contribution sub-leading compared to that of the identity in this limit.

Although we have only derived this bound for a few specific values of ∆φ, we believe this

to be actually true for all ∆φ. A few notes are in order. Firstly, we have found the very

same bound by working with the bosonic functional basis, upon suitably reinterpreting the

meaning of the ∆n above (i.e. changing them from ∆F
n to ∆B

n ). Secondly, by using the fact

that the bound above holds for all large n together with the specific form of the averaging

kernel, we are free to extend the sum over a wider range in both directions, as long as ∆

stays large. Finally, it is clear that an equally good bound can be obtained by shrinking

the region over which we are averaging as much as we wish, so that the result above implies

also a bound on individual OPE coefficients, namely:

lim sup
∆→∞

a∆

afree
∆

≤ C, 1 ≤ C ≤ π2/4. (5.13)

The bound is strongest when ∆ is at the centre of the bin, where C = 1, weakening as we

move close to the edge by up to a factor of π2/4. However, we can combine this bound

with the one obtained from the bosonic basis (where the bins are shifted by one unit) to

improve the upper range of C to π2/8 ∼ 1.2. While we cannot rigorously prove it, it is

tempting to conjecture that the actual bound is actually

lim sup
∆→∞

a∆

afree
∆

≤ 1. (5.14)

5.3 Lower bound on the OPE data

We will now establish a lower bound on the OPE density. The strategy to obtain such a

bound is to cook up a functional ∪n, such that its action looks essentially as illustrated in

figure 4. The functional action is negative for [∆n−2,∆n+2], with all other negative regions
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being suppressed for large n. The functional is constructed such that its action on the

identity is positive and given by the generalized free OPE coefficient afree
∆n

. This implies

then that in the sum rule for ∪n, the OPE in the aforementioned negative region must be

large enough to at least cancel the identity contribution, establishing a lower bound.

Consider then the following combination which we call the double bin functional:

∪n ≡
afree

∆n

4

[
βn+1

afree
∆n+1

− βn−1

afree
∆n−1

]
−
[
αn −

∂na
free
∆n

2afree
∆n

βn

]
. (5.15)

The reason for this name is that the functional action dips to negative values when ∆ ∈
[∆n−1,∆n+1]. This particular combination of functionals is chosen so that the functional

action looks like in figure 4, in particular it has first order zeros at ∆n±1, ∪n(∆n) = −1

and ∪n(0) = afree
∆n

.

Let us denote the second square bracket above by α̂n. For large ∆,∆n we have Rα̂ =

∂∆nRβ with exponentially small corrections. We find then

∪n(∆) ∼
∆,∆n,|∆−∆n|→∞

4 sin2
[
π
2 (∆−∆n)

]

π2

(
afree

∆n

afree
∆

) [
2

3
∂3

∆n
Rβ(∆,∆n|∆φ)

]
, (5.16)

which is positive, as can be checked using (5.9a). In the limit of large ∆n with fixed ∆ we

again lose universality in ∆φ and must check case by case. For ∆φ = 1/2, we get:

∪n(∆)
∆n→∞∼ 4 sin2

[
π
2 (∆−∆n)

]

π2
afree

∆n

Γ(2∆)

Γ(∆)2

[
Γ(∆)4

Γ(2∆)

cos2
(
π∆
2

)

∆2∆
n

+
16

∆5
n

]
, (5.17)

where we have shown the leading analytic and non-analytic pieces in ∆n. In particular, this

shows that the functional is positive in this limit, and positive contributions to the sum rule

can always be ignored when we want to obtain a bound. For more general ∆φ, we find a

similar story. One always finds that for ∆ larger than 2∆φ, the functional action is always

non-negative, apart from the double bin region (∆n−1,∆n+1). On the identity it is clearly

positive, since it must be equal to the free OPE value. For intermediate values of ∆ we find

that there can be negative regions of ∪n(∆), but these turn out to be always suppressed

in the large ∆n limit, much as we saw in the previous subsection in the determination of

the upper bound on the OPE density.

Ignoring subleading and positive contributions, the sum rule arising from ∪n leads to

a simple bound:

lim inf
n→∞

∑

|∆−∆n|≤2

16 sin2
[
π
2 (∆−∆n)

]

π2(∆−∆n)2(∆−∆n−1)(∆n+1 −∆)

(
a∆

afree
∆

)
≥ 1. (5.18)

Here the averaging kernel can be obtained by considering the functional action in the

limit of large ∆,∆n with fixed difference. This result establishes a lower bound on the

OPE density, which is valid in the limit of large n. Just like in the previous subsection,

we have explicitly derived this bound for several half-integer ∆φ, and have also done the

same with the bosonic basis of functionals (for integer ∆φ), finding the exact same result
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upon reinterpreting the meaning of ∆n. We conjecture the bound holds for all ∆φ and

for either basis.

A few comments are in order. It is possible to obtain a lower bound for finite n,

just like we did for the upper bound in the previous subsection, but we will not write

it down explicitly here. The bound above is optimal, in the sense that it is saturated

by the generalized free solutions. Moreover, it is possible to check that the fermionic

bound is satisfied by the bosonic solution and vice versa. A more non-trivial test is that

the 〈σ(0)σ(1)σ(z)σ(∞)〉 correlator for the 2d Ising model satisfies the above bound non-

trivially, with the left-hand side evaluating to ≈ 1.06.

A straightforward consequence of the bound is that one cannot have large gaps in the

OPE, since there must always be at least one state in between ∆n and ∆n+2. Combining

the bosonic and fermionic bounds we find the remarkable result that the spacing between

consecutive primaries can be no larger than five at sufficiently large ∆.

6 Completeness

In this section we will demonstrate that the full set of functional bootstrap equations are

equivalent to the crossing equation, assuming unitarity. That is, we will prove
∑

∆

a∆F∆(z) = 0 ⇔
∑

∆

a∆αn(∆) = 0,
∑

∆

a∆βn(∆) = 0, ∀n ∈ N, (6.1)

where the sums range over ∆ ≥ 0, and a∆ ≥ 0. The rough intuition for why this should

be the case is that equation (6.5) below allows us to express F∆ in a basis formed by the

F∆n , ∂F∆n , with uniqueness of the decomposition guaranteed by demanding that the coef-

ficients are functional actions. The functional bootstrap equations are then the coefficients

of this basis decomposition of the crossing equation.

For thoroughness, let us first briefly review why the functional equations follow from

crossing, i.e. why they are necessary. Necessity follows from

∑

∆

a∆F∆ = 0
?⇒ ωn

[∑

∆

a∆F∆

]
=
∑

∆

a∆ωn(∆), (6.2)

that is to say, if the swapping condition holds, with ω = α, β. By linearity of the functionals

this is proven if

lim
∆∗→∞

ωn

[ ∑

∆>∆∗

a∆F∆

]
= 0. (6.3)

Our functionals were defined by integrals with kernels f, g as in our basic definition (2.18).

Then, as long as ωn(∆) is finite for all ∆ ≥ 0, the only danger comes from the region of

integration close to z =∞ [19]. In that region we bound
∣∣∣∣∣
∑

∆>∆∗

a∆F∆

∣∣∣∣∣ ≤
∑

∆>∆∗

a∆

[
G∆

(∣∣ z
z−1

∣∣)

|z|∆φ
+
G∆

(∣∣ z−1
z

∣∣)

|z − 1|∆φ

]

.
|z|→∞

G∆0 (1/|z|) ∼
|z|→∞

O(|z|−∆0) (6.4)
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where in the second step we have assumed crossing holds and that ∆0 is the smallest

dimension for which a∆ > 0. Equation (6.3) will hold if the f(z) kernel behaves near

z =∞ as z∆0−1−ε for some ε > 0. Depending on ∆0 we have different possibilities, which

leads to different possible choices of functional bases. Here we are interested in the case

∆0 = 0, and our functionals were constructed so as to satisfy this precise requirement.

This proves necessity.

To show that the functional equations are also sufficient, we will use the crucial relation:

F∆(z) =

∞∑

n=0

[αn(∆)F∆n(z) + βn(∆)∂F∆n(z)] . (6.5)

Establishing that (6.5) actually holds is a priori no easy feat. Luckily we already know

that such expressions do exist, as they follow from the conformal block decomposition of

(crossing-symmetric sums of) Witten exchange diagrams. More precisely, those objects

guarantee that decompositions of F∆ exist in terms of F∆n , ∂F∆n . Once this is established,

the coefficients in the decomposition can be chosen as functional actions as we have proven

in section 3.

Using the decomposition (6.5), sufficiency can be rephrased as the commuting of a

double series:

∑

∆

a∆F∆ =
∑

∆

∞∑

n=0

a∆αn(∆)F∆n +
∑

∆

∞∑

n=0

a∆βn(∆)∂F∆n

?
=

∞∑

n=0

(∑

∆

a∆αn(∆)

)
F∆n +

∞∑

n=0

(∑

∆

a∆βn(∆)

)
∂F∆n (6.6)

If this is true, the functional bootstrap equations are not only necessary but sufficient. The

detailed argument proving this below is somewhat technical, but the main idea is that to

show the double series commutes we need to have sufficient control over the OPE density

at large ∆, and this is possible thanks to the upper bound derived in the previous section.

Let us argue why it is indeed possible to commute the series. We will show this for

the αn functionals, the other case being completely analogous. We will start from the top

expression and show that the functional equations imply it is zero. First note that

∑

∆

∞∑

n=0

a∆αn(∆)F∆n(z) =
∑

∆

(
N−1∑

n=0

+
∞∑

n=N

)
a∆αn(∆)F∆n(z)

=
∑

∆

∞∑

n=N

a∆αn(∆)F∆n(z) (6.7)

We have commuted the sum with the series since each individual series is finite by assump-

tion (and zero). Next we do the following manipulation:

∑

∆

∞∑

n=N

a∆αn(∆)F∆n(z) = lim
∆M→∞

∑

∆<∆M−1

∞∑

n=N

a∆αn(∆)F∆n(z)

= − lim
∆M→∞

∞∑

n=N

∑

∆≥∆M−1

a∆αn(∆)F∆n(z) (6.8)
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where in the second step we commuted a finite sum with an infinite one and used the

functional equations once more. The unit shift in ∆M is for later convenience. If we can

show that this last expression vanishes we are done.

Let us then examine the limit. We begin by pointing out that since for any finite sum

in n the limit is indeed zero, it is not hard to see that the desired result can be established

by showing that:

∀ε > 0, ∃Nε,Mε :

∣∣∣∣∣∣

∞∑

n=Nε

∑

∆≥∆Mε−1

a∆αn(∆)F∆n(z)

∣∣∣∣∣∣
< ε. (6.9)

To prove this we will use the upper bound (5.12) on the OPE density. First, we bound the

lefthand side by the double sum of the modulus of the summands, and consider the inner

sum, which we rewrite as:

∑

∆≥∆Mε−1

|a∆αn(∆)|

=

∞∑

k=Mε

∑

∆∈Bk

|a∆αn(∆)|

= afree
∆n

∞∑

k=Mε

∑

∆∈Bk

∣∣∣∣∣
a∆

afree
∆

{
2 sin

[
π
2 (∆−∆n)

]

π(∆−∆k)

}2

Rα(∆,∆n|∆φ)(∆−∆k)
2

∣∣∣∣∣. (6.10)

As we show in appendix A, the important property of Rα(∆,∆n|∆φ) is that for ∆,∆n

both large, it is given by a simple rational function with a double pole for ∆ = ∆n. For

those bins Bk such that |∆n −∆k| � 1, we can use the OPE upper bound to get:

∑

∆∈Bk

∣∣∣∣∣
a∆

afree
∆

4 sin2
[
π
2 (∆−∆n)

]

π2(∆−∆k)2
Rα(∆,∆n|∆φ)(∆−∆k)

2

∣∣∣∣∣ ≤ Rα(∆k,∆n|∆φ) < 1(6.11)

In particular,

Rα(∆k,∆n|∆φ) ∼ O(∆−3
k ), ∆k � ∆n � 1. (6.12)

For those bins where |∆n −∆k| ∼ 1 we have

Rα(∆,∆n)(∆−∆k)
2 ∼ Rα(∆,∆n)(∆−∆n)2 ∼ 1 (6.13)

and we can use the OPE upper bound again to obtain

∑

∆∈Bk

∣∣∣∣∣
a∆

afree
∆

[
2
π sin

(
π∆
2

)]2

(∆−∆k)2
Rα(∆,∆n)(∆−∆k)

2

∣∣∣∣∣ . 1 (6.14)

It is clear that the full sum over bins converges, and we conclude
∣∣∣∣∣∣
∑

∆≥∆Mε

a∆αn(∆)

∣∣∣∣∣∣
≤ afree

∆n
pn (6.15)
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where pn is some n-dependent polynomial of fixed degree independent of Mε. We are now

nearly done since we have shown:

∞∑

n=Nε

∣∣∣∣∣
∑

∆≥∆Mε

a∆αn(∆)F∆n(z)

∣∣∣∣∣ ≤
∞∑

n=Nε

|pn|afree
∆n
|F∆n(z)|. (6.16)

Since we know that the OPE for the generalized free field solution converges exponentially

fast [24], the extra polynomial growth factor is irrelevant and hence by choosing Nε appro-

priately we can make this arbitrarily small. We conclude that (6.9) is true, and that the

functional bootstrap equations are indeed necessary and sufficient to establish that a set

of OPE data satisfy the crossing equation.

7 Witten diagrams in AdS2

7.1 Continuous families of solutions to crossing

Let us imagine we are given the full set of CFT data of a conformal-invariant theory,

satisfying unitarity and crossing. The theory may or may not include the stress tensor. It

is natural to ask whether the theory admits a deformation of the CFT data which preserves

unitarity and crossing. We can further restrict to deformations which do not introduce any

additional degrees of freedom. Thus the deformation is described by a continuous family

of CFT data ∆i(g), cijk(g) where i, j, k run over all primary operators in the theory, and

where g is a real deformation parameter such that for g = 0 we recover the original theory.

For simplicity, let us focus on the four-point function Gg(z, z̄) of identical scalar primaries

along such deformation. Thanks to crossing and unitarity, Gg(z, z̄) is bounded in the Regge

limit for any g. If we assume the CFT data admit a series expansion for small g, we get a

corresponding expansion of Gg(z, z̄)

Gg(z, z̄) = G(0)(z, z̄) + G(1)(z, z̄)g2 + G(2)(z, z̄)g4 + . . . , (7.1)

where we chose g2 as the small parameter for future convenience. While Gg(z, z̄) has to

be bounded in the Regge limit, there is in general no guarantee that the terms in the

expansion G(m)(z, z̄) with m > 0 are themselves bounded in the Regge limit. However, one

expects that the Regge boundedness of the finite-coupling correlator constrains the rate of

growth of the perturbative terms in the Regge limit.16

The situations where we start with a theory with a stress tensor and where the stress

tensor is present along the deformation are quite rare. Indeed, the only known examples of

local theories with nontrivial conformal manifolds are two-dimensional or supersymmetric

and come from deforming the path integral by an exactly marginal local operator. On

the other hand, the existence of deformations is presumably more generic in non-local

conformal theories. For example, the 3D Ising CFT admits a non-local deformation in the

form of the long-range Ising model [39–42]. Therefore, the picture of the space of conformal

theories that our current understanding suggests is that of a finite-dimensional space of

16Consider the toy example fg(z) = 1
1−g2z , which is bounded as z → ∞, but whose terms of the

perturbative expansion diverge there. The rate of growth of the perturbative terms is proportional to the

order in perturbation theory.
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non-local theories, where local theories arise generically as isolated points, or sub-manifolds

of nonzero codimension.

Many examples of non-local conformal theories can be obtained as the boundary duals

of standard local, UV-complete quantum field theories placed in AdS [43, 44]. Any defor-

mation of the bulk QFT preserving its UV-completeness and overall consistency will give

rise to a family of unitary and crossing-symmetric boundary CFT data. In the simplest

case, we can start with the theory of a single free massive scalar field in AdSd+1. Its set

of boundary correlators is known as the generalized free scalar theory. The theory can

be deformed by local interaction vertices in the bulk Lagrangian. If we want to preserve

UV-completeness in the bulk and thus get a full-fledged theory on the boundary, the in-

teraction should be renormalizable. The simplest example is the mass term, which simply

interpolates between generalized free fields of different scaling dimensions.

Non-renormalizable bulk vertices still give rise to perturbative deformations of the

boundary CFT data, but there is no guarantee that such perturbative expansion can be

completed to a non-perturbative family of conformal theories. References [45, 46] found

that (in d ≥ 2) there is in fact a one-to-one correspondence between bulk four-point vertices

and leading-order deformations of the scalar four-point functions G(1)(z, z̄) on the boundary,

assuming the deformation only modifies the double-trace data at this order. Note that of

these infinitely many vertices, only the scalar Φ4 interaction gives rise to G(1)(z, z̄) which

is bounded in the Regge limit.

7.2 Scalar contact diagrams

We can use the bases of functionals constructed in this paper to repeat this exercise in

AdS2, and then carry the procedure to higher orders in the coupling. Consider the theory

of a real scalar field Φ in AdS2 with mass fixed in the units of the AdS scale so that

the boundary φ has dimension ∆φ. The counting of physically distinct bulk four-point

vertices is equivalent to the counting of crossing-symmetric polynomial S-matrices in 2D

Minkowski space. In 2→ 2 s-channel scattering in 2D, the Mandelstam variable u vanishes,

while s + t = 4m2. Since crossing corresponds to s 7→ 4m2 − s, the crossing-symmetric

S-matrices are linear combinations of sb(4m2 − s)b with b = 0, 1, . . .. The corresponding

complete and independent set of quartic vertices can be written schematically as (∂bΦ)4

with b = 0, 1, . . ..17 In a 2→ 2 scattering process in 2D, there is only one way to take the

high-energy limit, namely s → ∞. We can think of it as the u-channel Regge limit since

we can get it by boosting particles 1 and 3 by a large boost to the right and particles 2

and 4 by the same boost to the left. In other words, u = 0 stays fixed, while s and t are

becoming large. In this limit, the S-matrix of vertex (∂bΦ)4 behaves as s2b.

In the boundary theory, we consider the four-point function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉
and proceed exactly as in section 3.2. We want to solve for the double-trace data at tree-

level γ
(1)
n and a

(1)
n , which yield the OPE decomposition of the tree-level four-point function

G(1)(z) =

∞∑

n=0

[
a(1)
n G2∆φ+2n(z) + a(0)

n γ(1)
n ∂G2∆φ+2n(z)

]
. (7.2)

17The notation simply means that the vertex contains four Φ fields and 4b derivatives.
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What is the expected Regge behaviour of G(1)(z) corresponding to the bulk vertex (∂bΦ)4?

In general, if the S-matrix goes as s2j at large s with u fixed, we expect

z−2∆φG(1)(z) ∼ zj−1 as z → i∞ . (7.3)

This can be derived for example from the Mellin representation of the contact diagrams.

Therefore, for the vertex (∂bΦ)4 we expect z−2∆φG(1)(z) ∼ z2b−1. In particular, only the

interaction with no derivatives is bounded in the Regge limit.

This structure is reproduced in the language of functionals in the following way. As

explained in section 3.2, the bosonic prefunctionals αB
n , βB

n imply there is no consistent

deformation of the form (7.2) which decays at infinity as z−2∆φG(1)(z) = O(z−1−ε) with

ε > 0. This of course agrees with our counting of bulk vertices, since the interaction with

the softest Regge behaviour goes as z−1. The functionals αB
n , βB

n are defined using the

contour integrals (2.18) with f(z) = O(1) as z → ∞. In order to construct functionals

which are compatible with solutions to crossing with worse Regge behaviour, we need to

take linear combinations of αB
n and βB

n with improved Regge behaviour of f(z). This can

be accomplished from knowing the large-z expansion of f(z) for the prefunctionals. Recall

that f(z) = f(1− z) for all functionals. As in section 3.2, we can subtract an appropriate

multiple of βB
0 from the remaining prefunctionals to cancel the constant term of f(z) at

z =∞. Thanks to the symmetry f(z) = f(1−z), this automatically cancels the coefficient

of 1/z as well. Therefore, we obtain functionals α0,n for n ≥ 0 and β0,n for n ≥ 1 which are

compatible with any crossing-symmetric deformation such that z−2∆φG(1)(z) = O(z1−ε)

with ε > 0. The first subscript refers to them being obtained by a subtraction of βB
0

from the other elementary prefunctionals. These functionals fix all the double-trace data

in terms of γ
(1)
0 and therefore, they allow precisely one linearly independent solution to

crossing. This is precisely the contact diagram with no derivatives, which is indeed the

unique solution with the stated Regge behaviour.

We can generalize this procedure to encompass solutions with arbitrarily fast Regge

growth as follows. Let us single out the functionals βB
n with n = 0, . . . , N and use them

to improve the Regge behaviour of the remaining functionals. Thanks to the symmetry

f(z) = f(1 − z), we can thus cancel all inverse powers of z up to and including z−2N−1.

We call the resulting subtracted functionals αN,n (with n ≥ 0) and βN,n (with n ≥ N +

1). These functionals are compatible with any crossing-symmetric deformation such that

z−2∆φG(1)(z) = O(z2N+1−ε) with ε > 0, and they fix the double-trace data in terms of

γ
(1)
n with n = 0, . . . , N . Thus, there are precisely N + 1 linearly independent crossing-

symmetric deformations of the form (7.2) with the stated Regge behaviour. These are

exactly the contact interactions (∂bΦ)4 with b = 0, . . . , N .

We have used the above procedure to find the OPE decomposition of the first few

contact interactions.18 For the contact diagram with no derivatives, we find

γ(1)
n (0) =

(2n)! (∆φ)4
n (4∆φ − 1)2n

(n!)2 (2∆φ)2
n (2∆φ)2

2n

, (7.4)

18In practice, we can perform this procedure fully rigorously only when we have full control over the

functional kernels, i.e. ∆φ ∈ N in the bosonic and ∆φ ∈ N + 1
2

in the fermionic case. The presented results

are obtained by analytic continuation from these values.
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in agreement with the known result. Here the argument in the round bracket refers to the

label b = 0 of the interaction. The normalization is chosen so that γ
(1)
0 = 1. For the contact

diagram with four derivatives (up to a possible addition of the non-derivative diagram),

we find

γ(1)
n (1) =

(
16∆5

φ − 13∆3
φ − 3∆2

φ + 16n4∆φ + 8n4 + 64n3∆2
φ

+16n3∆φ − 8n3 + 96n2∆3
φ + 8n2∆2

φ − 24n2∆φ − 2n2

+64n∆4
φ − 28n∆2

φ − 2n∆φ + 2n
) n (4∆φ + 2n− 1)

(∆φ + n− 1) (2∆φ + 2n+ 1)
γ(1)
n (0) .

(7.5)

We also verified that the corrections to the OPE coefficients in all contact diagrams are

given by the standard relation

a(1)
n =

1

2

∂(a
(0)
n γ

(1)
n )

∂n
. (7.6)

7.3 Fermionic contact diagrams

It is straightforward to repeat the reasoning of the previous section for the theory of a single

massive Majorana fermion Ψ in AdS2. The boundary correlators in the free theory are those

of the generalized free fermion. In this case we can not write down any renormalizable bulk

interactions. There is no Ψ4 vertex because it vanishes thanks to the fermionic statistics.

Similar counting as in the bosonic case leads to the conclusion that the independent quartic

vertices have 4b+ 2 derivatives with b ≥ 0 and there is a unique vertex for each b.

In order to bootstrap these contact diagrams in the boundary theory, we consider the

four-point function 〈ψ(x1)ψ(x2)ψ(x3)ψ(x4)〉, where ψ is a 1D Majorana fermion opera-

tor, dual to the one-particle state in the bulk. The set-up is the same as in section 3.1.

Power-counting suggests that the bulk four-point vertex with 4b + 2 derivatives will give

a correction to a four-point function such that z−2∆ψG(1)(z) ∼ z2b+1 as z → i∞. The

fermionic functionals αF
n and βF

n show that there are indeed no deformations of the kind

we are interested in such that z−2∆ψG(1)(z) = O(z1−ε) as z → i∞ with ε > 0. Simi-

larly to the previous section, we can subtract appropriate linear combinations of βF
n with

n = 0, . . . , N from the remaining functionals to obtain functionals which are compatible

with any crossing-symmetric four-point function such that z−2∆ψG(1)(z) = O(z2N+3−ε)

with ε > 0. The subtracted functionals fix the double-trace data in terms of γ
(1)
n with

n = 0, . . . , N . There are thus precisely N + 1 independent deformations involving only

corrections to the fermionic double-trace data such that z−2∆ψG(1)(z) = O(z2N+3−ε) with

ε > 0 in the Regge limit. These are precisely the fermionic four-point interactions with

4b+ 2 derivatives and b = 0, . . . , N .

We used the large-z expansion of the f(z) kernel of the functionals αF
n , βF

n to find

the OPE data for the first few values of b. The expressions quickly get complicated so we
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include only the leading contact interaction (with b = 0, i.e. two derivatives)

γn =
(
64∆4

φ + 64∆3
φ − 4∆2

φ − 16∆φ + 64n4 + 256n3∆φ + 64n3 + 384n2∆2
φ

+192n2∆φ − 8n2 + 256n∆3
φ + 192n∆2

φ − 16n∆φ − 12n− 3
)

× Γ
(
n+ 3

2

)
Γ
(
n+ ∆φ − 1

2

)
Γ
(
n+ ∆φ + 1

2

)
Γ
(
n+ 2∆φ + 1

2

)

Γ(n+ 1)Γ (n+ ∆φ + 1) Γ (n+ ∆φ + 2) Γ (n+ 2∆φ)
.

(7.7)

The corrections to the OPE coefficients are again given by the formula (7.6).

7.4 Higher orders: universality up to two loops

Intuition from flat space indicates that loop-level diagrams are not independent of tree-

level diagrams. Indeed, if one knew all tree-level scattering amplitudes in a perturbative

QFT, one could fix all the vertices in the Lagrangian, which could then be used to find the

amplitudes at arbitrarily high order in perturbation theory, at least in principle. Therefore,

tree-level determines the theory to all orders. At its core, this principle is just unitarity

of the underlying theory. Quantitatively, it can be expressed as cutting rules for Feynman

diagrams [47]. We expect a similar principle to apply for weakly-coupled field theory in

AdS, or equivalently for the perturbation theory in CFTs around the generalized free field.

Indeed, the authors of [35, 48] found that the conformal bootstrap equations fix certain

one-loop diagrams in AdSd+1 for d ≥ 2. Here we would like to explain how one can use

bootstrap functionals to find some one- and two-loop Witten diagrams in AdS2.

Before we compute the diagrams, we will make general comments about what kinds

of contributions can be expected at increasing orders in perturbation theory. We consider

the most general renormalizable Lagrangian for a real scalar field in 2D which preserves

the global Z2 symmetry

L =
1

2
(∂Φ)2 − 1

2
m2Φ2 −

∞∑

n=2

λ2n

(2n)!
Φ2n . (7.8)

All UV divergences of Feynman graphs coming from this Lagrangian can be removed by

normal-ordering the vertices. We want to perform the standard perturbation theory in the

number of loops. This is equivalent to writing

λ2n = µ2ng
2n−2 , (7.9)

and performing perturbation theory in g while keeping µn fixed. Consider the Feynman

graphs contributing to the flat space 2 → 2j scattering amplitude in this theory. The

leading contribution comes from the tree-level diagram produced by vertex Φ2j+2 and the

amplitude is thus proportional to g2j . Thanks to unitarity, the 2→ 2 scattering amplitude

will have branch cuts starting at s = (2jM)2 corresponding to the production of the 2j-

particle states, where M is the physical mass of the single-particle states. The discontinuity

across the branch cut is proportional to the square of the 2 → 2j amplitude, and hence

to g4j . Since any L-loop graph for the 2 → 2 scattering goes as g2L+2, we see that the
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2j-particle cut appears first at 2j − 1 loops. In particular, diagrams up to and including

two loops only contain two-particle cuts.

Let us place the theory with Lagrangian (7.8) inside AdS2 in a way respecting the

isometries. We adjust m2 in such a way that ∆φ is independent of g. For g = 0, the

spectrum of the primary operators on the boundary consists of the identity, the single-

particle state φ of dimension ∆φ, two-particle states [φ2]n of dimensions ∆n = 2∆φ + 2n,

as well as k-particle states [φk]I of dimensions k∆φ + integers for all k ≥ 3. Consider the

φ × φ OPE. For g = 0, only the identity and two-particle states appear in the OPE. For

g > 0, higher-particle states can appear in this OPE. By the global Z2 symmetry, only

states with even k can appear. The set of Witten graphs contributing to the boundary

three-point function of two φs and one 2j-particle state is the same as the set of Feynman

graphs contributing to the 2→ 2j amplitude. Therefore, this three-point function goes as

g2j as g → 0. If we expand the four-point function 〈φφφφ〉 in the OPE, we find that the

leading contribution of the exchange of 2j-particle states goes as g4j for j > 1 and therefore

these states first appear at 2j−1 loops.19 In other words, the four-point function up to and

including two loops comes entirely from perturbative corrections to the two-particle states.

7.5 Using functionals to calculate loop diagrams

We will now explain how to use bootstrap functionals to compute the one- and two-loop

contributions to the four-point function 〈φφφφ〉. The basic idea is that once we have

determined all double-trace data at a given order in perturbation theory, we can use the

functionals αn and βn to compute the OPE coefficient and anomalous dimension of [φ2]n
at the next order. Let us write the perturbative expansion of the four-point function up

to two loops as follows

G(z) = G(0)(z) + G(1)(z)g2 + G(2)(z)g4 + G(3)(z)g6 +O(g8) . (7.10)

Figure 5 shows the Witten diagrams contributing at the various orders of perturbation the-

ory. Except for O(g0), we only include connected diagrams. The only role of higher-order

disconnected diagrams is to renormalize m2 of the boundary-to-boundary propagators,

which we are fixing by keeping the external dimension fixed at ∆φ. Similarly, only am-

putated diagrams are included, since we are keeping ∆φ fixed in the bulk-to-boundary

propagators. Finally, one might think that the four-point function at O(g6) can depend on

the Φ6 coupling thanks to the diagram including one four-point and one six-point vertex,

shown in figure 6. However, this diagram is in fact proportional to the four-point con-

tact diagram already included at O(g2), and therefore its only effect is to renormalize the

four-point coupling.

In summary, one can think of our set-up as a kind of on-shell renormalization scheme,

where the renormalization conditions are to keep ∆φ and ∆φ2 fixed, the perturbative

19We can include the j = 1 case by saying that the double discontinuity of the four-point function first

receives contribution from the exchange of 2j-particle states at 2j − 1 loops. In this way, the statement is

completely analogous to the flat-space discussion of the previous paragraph if we replace double discontinuity

of the four-point function with the discontinuity of the scattering amplitude.
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O(g2) :O(g0) : O(g4) : O(g6) :

+perms. +perms.

+

+perms.

Figure 5. The Witten diagrams contributing to the four-point function at increasing orders in

perturbation theory. “+perms.” means that diagrams obtained by permuting the external legs

should be included.

Figure 6. This O(g6) diagram does not need to be included because it is proportional to the

four-point contact diagram, and therefore only renormalizes the four-point coupling.

parameter being ∆φ2 − 2∆φ ∼ g2. The four-point function up to O(g6) is uniquely fixed

in terms of ∆φ and ∆φ2 .

We will assume that z−2∆φG(i)(z) for i = 1, 2, 3 are bounded as z → i∞. This assump-

tion is presumably possible to prove from the fact that all interaction vertices are relevant,

and is ultimately justified by the self-consistency of the answers we find. Let us write the

perturbative expansion of the double-trace data up to two loops as follows

∆n(g) = 2∆φ + 2n+ γ(1)
n g2 + γ(2)

n g4 + γ(3)
n g6 +O(g8)

an(g) = a(0)
n + a(1)

n g2 + a(2)
n g4 + a(3)

n g6 +O(g8) .
(7.11)

We would like to fix the anomalous dimensions and OPE coefficients from crossing symme-

try. Before we do that, note that the bulk coupling g2 does not map to any natural boundary

observable. Thus instead of parametrizing the deformation by g2, we will parametrize it

by the anomalous dimension of φ2. Thus we define a new coupling

g̃2 = ∆0(g)− 2∆φ = γ
(1)
0 g2 + γ

(2)
0 g4 + γ

(3)
0 g6 +O(g8) (7.12)

and express all OPE data in terms of g̃2. This procedure is well-defined since γ
(1)
0 6= 0.

In fact, we will drop the tilde and call the new coupling g2 by a small abuse of nota-

tion. In other words, we are fixing the gauge of the coupling reparametrization invariance

by requiring

γ
(1)
0 = 1, γ

(j)
0 = 0 for j ≥ 2 . (7.13)

Note that as a result of this reparametrization, our results for the OPE data at one and

two loops will in general contain contributions from Witten diagrams of lower loop orders.
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The OPE data yields the following OPE sums for the perturbative correlator, where

we introduced the shorthand notation ∆n = 2∆φ + 2n

G(0)(z) =

∞∑

n=0

a(0)
n G∆n(z) (7.14)

G(1)(z) =
∞∑

n=0

[
a(1)
n G∆n(z) + a(0)

n γ(1)
n ∂G∆n(z)

]
(7.15)

G(2)(z) =

∞∑

n=0

{
a(2)
n G∆n(z) +

[
a(0)
n γ(2)

n + a(1)
n γ(1)

n

]
∂G∆n(z) +

1

2
a(0)
n (γ(1)

n )2∂2G∆n(z)

}

(7.16)

G(3)(z) =
∞∑

n=0

{
a(3)
n G∆n(z) +

[
a(0)
n γ(3)

n + a(1)
n γ(2)

n + a(2)
n γ(1)

n

]
∂G∆n(z) (7.17)

+

[
a(0)
n γ(1)

n γ(2)
n +

1

2
a(1)
n (γ(1)

n )2

]
∂2G∆n(z) +

1

6
a(0)
n (γ(1)

n )3∂3G∆n(z)

}
,

where ∂jG∆n(z) denotes the jth derivative of the conformal block with respect to ∆,

evaluated at ∆ = ∆n. G(j)(z) includes ∆-derivatives of the double-trace conformal blocks

of maximal order j. The OPE data γ
(j)
n and a

(j)
n appear in G(j)(z) only in coefficients

of ∂G∆n(z) and G∆n(z) respectively, but not in any terms with a higher ∆-derivative of

conformal blocks.

The last fact implies that we can solve for γ
(j)
n and a

(j)
n recursively in the order of

perturbation theory. In section 7.2, we have already found the tree-level quantities γ
(1)
n

and a
(1)
n , see equations (7.4) and (7.6). We will now use the crossing symmetry and Regge

boundedness of G(2)(z) to solve for γ
(2)
n and a

(2)
n . The crossing equation at one loop reads

∞∑

n=0

{
a(2)
n F∆n(z) +

[
a(0)
n γ(2)

n + a(1)
n γ(1)

n

]
∂F∆n(z) +

1

2
a(0)
n (γ(1)

n )2∂2F∆n(z)

}
= 0 . (7.18)

Recall from section 7.2 the complete basis of bosonic functionals αm and βm obtained by

an appropriate subtraction of βB
0 from αB

m and βB
m:

αm = αB
m −

a
(1)
m

a
(0)
0 γ

(1)
0

βB
0 = αB

m −
a

(1)
m

2
βB

0

βm = βB
m −

a
(0)
m γ

(1)
m

a
(0)
0 γ

(1)
0

βB
0 = βB

m −
a

(0)
m γ

(1)
m

2
βB

0 ,

(7.19)

where we used (7.13) to simplify the expressions. Let us apply βm to the one-loop crossing

equation (7.18). βm commutes with the infinite sum because of Regge boundedness. Inside

the sum, we get zero contribution from the term proportional to F∆n(z) since βm(∆)

vanishes on all double traces. From the term proportional to ∂F∆n(z), only the summands

with n = m and n = 0 contribute thanks to the defining Kronecker-delta behaviour of βm
on derivatives of double traces. Therefore, we find the equations

a(0)
m γ(2)

m + a(1)
m γ(1)

m + r(2)
m =

a
(0)
m γ

(1)
m

a
(0)
0 γ

(1)
0

[
a

(0)
0 γ

(2)
0 + a

(1)
0 γ

(1)
0 + r

(2)
0

]
, (7.20)
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where we defined the infinite sums

r(2)
m =

∞∑

n=0

1

2
a(0)
n (γ(1)

n )2∂2βB
m(∆n) . (7.21)

Note that r
(2)
m is fixed by the tree-level OPE data. The m = 0 equation is satisfied trivially,

and the m ≥ 1 equations allow us to solve for the one-loop anomalous dimensions

γ(2)
m = −r

(2)
m

a
(0)
m

+

[
γ

(2)
0

γ
(1)
0

+
a

(1)
0

a
(0)
0

− a
(1)
m

a
(0)
m

+
r

(2)
0

a
(0)
0 γ

(1)
0

]
γ(1)
m =

= −r
(2)
m

a
(0)
m

+

[
a

(1)
0

2
− a

(1)
m

a
(0)
m

+
r

(2)
0

2

]
γ(1)
m .

(7.22)

Thus the one-loop anomalous dimensions are determined provided we can evaluate the

sums r
(2)
m . Similarly, in order to find the one-loop OPE coefficients a

(2)
m , we apply the

functional αm to the crossing equation (7.18). We find

a(2)
m = −q(2)

m +
a

(1)
m

a
(0)
0 γ

(1)
0

[
a

(0)
0 γ

(2)
0 + a

(1)
0 γ

(1)
0 + r

(2)
0

]
= −q(2)

m +
a

(1)
0 + r

(2)
0

2
a(1)
m , (7.23)

where

q(2)
m =

∞∑

n=0

1

2
a(0)
n (γ(1)

n )2∂2αB
m(∆n) . (7.24)

In the next subsection, we will present a worked example at ∆φ = 1, where the infinite

sums can be found analytically. Having found the double-trace OPE data at one loop, it is

straightforward to carry the argument to two loops. The two-loop crossing equation takes

the form
∞∑

n=0

{
a(3)
n F∆n(z) +

[
a(0)
n γ(3)

n + a(1)
n γ(2)

n + a(2)
n γ(1)

n

]
∂F∆n(z)

+

[
a(0)
n γ(1)

n γ(2)
n +

1

2
a(1)
n (γ(1)

n )2

]
∂2F∆n(z) +

1

6
a(0)
n (γ(1)

n )3∂3F∆n(z)

}
= 0 .

(7.25)

If we apply the functional βm to this equation, we can solve for γ
(3)
m in terms of the OPE

data at lower orders. Similarly, we can solve for a
(3)
m by applying the functional αm. The

result is

γ(3)
m = −r

(3)
m

a
(0)
m

− a
(1)
m

a
(0)
m

γ(2)
m +

[
r

(3)
0 + a

(2)
0

2
− a

(2)
m

a
(0)
m

]
γ(1)
m

a(3)
m = −q(3)

m +
a

(2)
0 + r

(3)
0

2
a(1)
m ,

(7.26)

where we defined the following infinite sums over the lower-order OPE data

r(3)
m =

∞∑

n=0

{[
a(0)
n γ(1)

n γ(2)
n +

1

2
a(1)
n (γ(1)

n )2

]
∂2βB

m(∆n) +
1

6
a(0)
n (γ(1)

n )3∂3βB
m(∆n)

}

q(3)
m =

∞∑

n=0

{[
a(0)
n γ(1)

n γ(2)
n +

1

2
a(1)
n (γ(1)

n )2

]
∂2αB

m(∆n) +
1

6
a(0)
n (γ(1)

n )3∂3αB
m(∆n)

}
.

(7.27)
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7.6 Example: ∆φ = 1

We will now carry out the above algorithm in practice for ∆φ = 1. In this case, we have

a(0)
n =

(2n+ 1)!(2n+ 2)!

(4n+ 1)!
. (7.28)

From (7.4) and (7.6), we get the OPE data at tree-level

γ(1)
n =

1

(n+ 1)(2n+ 1)

a(1)
n = − [2H4n+1 −H2n −H2n+1]

2(2n+ 1)!(2n)!

(4n+ 1)!
,

(7.29)

where Hx is the harmonic number. The tree-level four-point function can in fact be found

in closed form

G(1)(z) = 2z2

[
log(1− z)

z
+

log(z)

1− z

]
. (7.30)

We can now use formula (7.22) to find γ
(2)
n . It is possible to find a closed formula valid for

general n

γ(2)
n =− 2n(2n+ 3)

(n+ 1)(2n+ 1)
ζ(3) +

H2n

(n+ 1)2(2n+ 1)2
+

n
(
2n2 + 5n+ 4

)

2(n+ 1)3(2n+ 1)2

− 1

(2n+ 2)(2n+ 1)

2n∑

j=1

(−1)j(2n− j + 1)2j+2

j((j + 1)!)2

(
H2
j +H

(2)
j

)
.

(7.31)

Here we use the following notation for harmonic numbers of higher rank

H(r)
n =

n∑

j=1

1

jr
, (7.32)

so that in particular Hn = H
(1)
n . In practice, the result was found by evaluating the sums

r
(2)
n to a high precision, recognizing them as a rational linear combination of ζ(3) and 1, and

finally recognizing the form for general n. For the first few values of n, the formula gives

γ
(2)
0 = 0 (by definition of the coupling)

γ
(2)
1 = −5

3
ζ(3) +

317

144

γ
(2)
2 = −28

15
ζ(3) +

25127

10800
.

(7.33)

Similarly, we can apply formula (7.23) to find the corrections to OPE coefficients at one

loop. In this case, we were not able to find a formula valid for general n. The first few

values read

a
(2)
0 =

π4

15
− 4ζ(3) +

5

2

a
(2)
1 =

π4

25
+

19

15
ζ(3)− 612119

108000

a
(2)
2 =

π4

126
+

1177

2835
ζ(3)− 3889170127

3000564000
.

(7.34)
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We were able to determine the full four-point function at one loop, from which the coeffi-

cients a
(2)
n can be read off

G(2)(z) =
1

(1− z)2

{
4(z − 2)z3Li4(1− z) + 4(1− z)2

(
z2 − 1

)
Li4(z)

+ 4(2z − 1)Li4

(
z

z − 1

)
− π4

90
z2
(
z2 − 2z − 6

)
− 4z − 2

3
log(z) log3(1− z)

− 2(1− z)2
[(
z2 − 1

)
log(1− z) +

(
z2 + 2

)
log(z)

]
Li3(1− z)

− 2z2
[
(z − 2)z log(z) +

(
z2 − 2z + 3

)
log(1− z)

]
Li3(z)− (z − 1)z2 log(z)

+

[
2 log(z)− 2

(
2z3 − 3z2 + 4z − 1

)
log

(
z

1− z

)]
ζ(3) +

2z − 1

6
log4(1− z)

+

[
π2

3
(2z − 1)− (z − 1)2

(
z2 + 1

)
log2(z)

]
log2(1− z)

+(1− z)2

[
π2

3

(
z2 + 2

)
log(z) + z

]
log(1− z)

}
. (7.35)

One can explicitly check that this expression is crossing symmetric. We also checked that

it agrees with the crossing-symmetric combination of one-loop bubble diagrams in AdS2,

up to a tree-level contact interaction.

Finally, let us present the results at two loops, coming from formulas (7.26). The

evaluation of the infinite sums over double-trace operators becomes much more demanding.

We could find the first few anomalous dimensions and the first OPE coefficient:

γ
(3)
0 = 0 (by definition of the coupling)

γ
(3)
1 = −20ζ(3)2

3
− 10ζ(5) +

π4

18
− 329ζ(3)

36
+

1225π2

2592
+

209

486

γ
(3)
2 = −112ζ(3)2

15
+

56ζ(5)

5
+

7π4

150
− 29503ζ(3)

2700
+

174979π2

162000
− 45033217

16200000

(7.36)

a
(3)
0 =

4π4ζ(3)

15
+

22π6

945
− 56ζ(3)2 − 10π2ζ(3) + 136ζ(5) +

π4

90
− π2

2
+ 3 . (7.37)

These results are a prediction of the conformal bootstrap for two-loop Witten diagrams in

AdS2. It would be interesting to check them against an explicit evaluation of said diagrams.

8 Discussion

In this paper, we have constructed two interesting bases for the SL(2) crossing equation.

The bases provide a direct bridge between the analytic and numerical bootstrap. Express-

ing the crossing equation in either basis leads to sum rules satisfied by the OPE data of

any crossing-symmetric four-point function in a unitary theory. Regge boundedness of

such four-point functions plays a crucial role in deriving the sum rules, and indeed the sum

rules will not be satisfied by a general crossing-symmetric four-point unless it is bounded

in the Regge limit. The sum rules can be obtained rigorously by applying suitable linear

functionals to the standard crossing equation.
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The elements of our bases are labelled by the double-trace operators in mean field

theory. More precisely, we get two functionals (basis elements) for every double trace,

denoted αn and βn, where n labels the double traces. The contribution of a primary

operator of dimension ∆ to the sum rules is weighted by universal functions αn(∆) and

βn(∆). These functions coincide with coefficients of the double-trace conformal blocks in

the OPE decomposition of the crossing-symmetric sum of Witten exchange diagrams in

AdS2 with exchanged dimension ∆. We call the latter objects the Polyakov blocks. The

validity of the sum rules discussed in this paper implies that the four-point function can

be expanded not only in conformal blocks but also in Polyakov blocks, with the same

coefficients. In this way, our approach gives a derivation of the Polyakov-Mellin approach

to the conformal bootstrap for the SL(2) crossing equation.

We have discussed several applications of the sum rules. One of them is the analytic

bootstrap of the anomalous dimension and OPE coefficients in perturbative theories in

AdS2 up to two loops. Another application is the derivation of upper and lower bounds

on OPE coefficients in general unitary solutions to crossing, valid for sufficiently heavy

exchanged operators. These results are similar to those of the analytic Euclidean bootstrap

of [11], which studied the large-∆ tails of the OPE density. The advantage of our bounds

is that they apply to individual primary operators at large but finite scaling dimension.20

Our bounds apply to squared OPE coefficients of primary operators aO ≡ (cφφO)2 divided

by an exponentially decreasing function afree
∆ which interpolates between the squared OPE

coefficients in the generalized free field. The upper bound implies that the sum of aO/a
free
∆O

over all primary operators in the φ×φ OPE with ∆O between 2∆φ+2n−1 and 2∆φ+2n+1

is at most π2

4 +εn, where εn → 0 as n→∞. This implies the same upper bound on aO/a
free
∆O

for any individual primary O ∈ φ× φ present in the same interval.

The lower bound implies that the sum of aO/a
free
∆O

for ∆O between 2∆φ + 2n− 2 and

2∆φ + 2n+ 2 must be at least 1 − ε′n, where ε′n → 0 as n→∞. In particular, there must

be at least one operator in this interval for sufficiently large n. Since this result holds also

for the fermionic mean field theory, we conclude that there are no gaps larger than 5 in the

spectrum of primaries in the OPE, from some finite ∆ onwards.

The existence of the upper bound discussed above allowed us to prove that the func-

tional bootstrap equations are completely equivalent to the standard crossing equation. In

other words, if a putative set of OPE data satisfies all the sum rules from our basis, then

it gives rise to a crossing-symmetric four-point function.

The essential feature of the sum rules of this article are the prefactors

sin2
[
π
2 (∆− 2∆φ)

]
, which provide the double zeros at double traces while maintaining

positivity. This structure is reminscent of the double discontinuity which enters in the

Lorentzian OPE inversion formula of Caron-Huot [6]. It turns out that there is indeed a

version of the Lorentzian inversion formula which underlies the functionals of the present

article, as will be explained in an upcoming work [36].

There are several natural generalizations and possible future directions stemming from

this work. We believe the logic presented here should carry over universally to various

20Of course, the advantage of the results of [11] is that they apply to OPE density of primaries under

SO(2, D) for D > 1 rather than SO(2, 1) primaries as is the case in our work.
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problems governed by a version of the crossing equation. Most importantly, these are the

crossing equation in D > 1. The notions of the mean field theory and also of Witten

exchange diagrams exist also in that case so that a generalization should be feasible. The

case of nonidentical external operators, and systems of multiple correlators should also

be addressed.

Another natural avenue is the modular bootstrap, where there exists a direct connec-

tion between our approach and the recent solution of the sphere-packing problem in 8 and

24 dimensions [49–51]. It is likely that adapting the techniques of the present work would

be effective for improving the bounds of [52–54] at large central charge.

The construction of the functionals αn and βn central to this paper came directly

from an effort to understand the optimal functionals of the numerical bootstrap and how

optimal solutions may be smoothly deformed or “flowed” into each other [17]. Indeed, our

functionals are the optimal functionals whenever the generalized free field is the optimal

solution to crossing. It is therefore natural to expect that αn and βn are a much better

starting point for the numerical bootstrap even in the cases when the optimal solution is

not the mean field theory. This will be explored in an upcoming work [38].

In some sense, αn and βn exist precisely because mean field theory saturates appro-

priate bootstrap bounds. Should we expect that a similarly useful basis of functionals

exists for every theory that saturates some bootstrap bound? This seems to be the case

perturbatively around mean field theory and probably also more generally in 1D. Further

developments in our understanding of the analytic conformal bootstrap will be needed to

answer this important question in D > 1.
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A Functional actions and asymptotics

In this appendix we will show how to determine the bosonic (fermionic) functional actions

for ∆φ (half-)integer for the building blocks constructed in section 4.3. We will then show

how these may be expanded in various regimes.

A.1 Building block actions

For convenience let us work with the g kernel:

g(z) ≡ η(1− z)2∆φ−2f

(
1

1− z

)
. (A.1)
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For ∆ sufficiently large, the functional actions are computed by:

ω(∆) = [1− η cosπ(∆− 2∆φ)]

∫ 1

0
dzg(z)

G∆(z)

z2∆φ
. (A.2)

In the end the result will be valid for generic ∆ by analytic continuation. We will find the

actions for the building blocks introduced in section 4, which correspond to:

g
∆φ,η
β,h = z2∆φ−2Ph−1

(
2− z
z

)
+ ηPh−1(2z − 1) (A.3)

g
∆φ,η
α,h = ∂hg

∆φ,η
β,h (z)− Γ(h)2

Γ(2h)

Gh(1− z)

(1− z)2−2∆φ
(A.4)

where we have swapped the m label by h ≡ 2 + 2m. We can now compute

∫ 1

0

dz

z2
Ph−1

(
2− z
z

)
G∆(z) =

Γ(∆)2

Γ(2∆φ)

1

∆(∆− 1)− h(h− 1)
(A.5)

∫ 1

0
dz Ph−1(2z − 1)

G∆(z)

z2∆φ
=:

Γ(2∆)

Γ(∆)2
s(h; ∆|∆φ) (A.6)

∫ 1

0

dz

z2
Gh(1− z)

(
z

1− z

)2−2∆φ

G∆(z) . =:
Γ(2∆)

Γ(∆)2

Γ(2h)

Γ(h)2
s̃(h; ∆|∆φ) (A.7)

with

s(h; ∆|∆φ) =
Γ(∆)2Γ(∆− 2∆φ + 1)2

Γ(2∆)Γ(∆− h− 2∆φ + 2)Γ(h+ ∆− 2∆φ + 1)

× 4F3

(
∆,∆,∆− 2∆φ + 1,∆− 2∆φ + 1

2∆,∆− h− 2∆φ + 2, h+ ∆− 2∆φ + 1
; 1

) (A.8)

and

s̃(h; ∆|∆φ) =
π [s(h; ∆|∆φ)− s(∆;h|1−∆φ)]

sin[π(∆− h− 2∆φ)]
. (A.9)

With these ingredients we may compute any functional action for fermionic functionals

with half-integer ∆φ or bosonic with integer ∆φ, after the functional kernels are con-

structed as explained in section 4.3. In some cases, s(h; ∆|∆φ) can be expressed in terms

of more elementary functions. See [55] for an illustration of the techniques involved in such

simplifications.

A.2 Asymptotic expansions

The basic tool for performing asymptotic expansions of the above integrals is the formula

Jt(h) ≡ Γ(h)2

Γ(2h)

∫ 1

0
dzz−2Gh(z)

(
1− z
z

)t
=

Γ(t+ 1)2Γ(h− t− 1)

Γ(h+ t+ 1)
. (A.10)

It has the following expansion for h� 1

Jt(h) = Γ(t+ 1)2h−2t−2 ×
[
1 +O(h−1)

]
. (A.11)

– 49 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
3

This makes it easy to find the asymptotic expansion of s̃(h; ∆|∆φ) for h � 1. We simply

need to expand
(

z
1−z
)2∆φG∆(1−z) in powers of y = 1−z

z . The leading terms is just y∆−2∆φ

so that we find

s̃(h; ∆|∆φ) =
Γ(∆)2Γ(∆− 2∆φ + 1)2

Γ(2∆)
h4∆φ−2∆−2 ×

[
1 +O(h−1)

]
. (A.12)

Similarly, we can find the asymptotic expansion of s(h; ∆|∆φ) for ∆� 1 by writing

s(h; ∆|∆φ) =
Γ(∆)2

Γ(2∆)

∫ 1

0

dz

z2
G∆(z)z2−2∆φPh−1(2z − 1) (A.13)

and expanding z2−2∆φPh−1(2z − 1) in powers of y = 1−z
z . We find

s(h; ∆|∆φ) =
1

∆2
+

1

∆3
+

2∆φ − h2 + h− 1

∆4
+O(∆−5) . (A.14)

In order to find the asymptotic expansion of s(h; ∆|∆φ) for h � 1, we can first use the

relation between s(h; ∆|∆φ), s(∆;h|1−∆φ) and s̃(h; ∆|∆φ)

s(h; ∆|∆φ) = s(∆;h|1−∆φ) +
sin[π(∆− h− 2∆φ)]

π
s̃(h; ∆|∆φ) (A.15)

and use the expansions derived above to find

s(h; ∆|∆φ) =
1

h2
+

1

h3
+

1− 2∆φ −∆2 + ∆

h4
+O(h−5)

− Γ(∆)2Γ(∆− 2∆φ + 1)2

πΓ(2∆)
sin[π(h−∆ + 2∆φ)]h4∆φ−2∆−2 ×

[
1 +O(h−1)

]
.

(A.16)

Which term dominates depends on the value of ∆. Finally, it is useful to find the expansion

of s(h; ∆|∆φ) in the regime where both h and ∆ are becoming large with a fixed ratio.

One way to do this is to first perform the expansion of s(h; ∆|∆φ) in 1/∆ and fixed h and

keep only the maximal power of h at each order

s(h; ∆|∆φ) ∼ 1

∆2
− h2

∆4
+
h4

∆6
− h6

∆8
+ . . . =

1

∆2 + h2
. (A.17)
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