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1 Introduction

After the seminal work [1, 2], the spectral form factor is intensively studied as a diagnostic

of the quantum chaotic behavior of the Sachdev-Ye-Kitaev (SYK) model [3–6], which is a

solvable example of the holographic model of a certain black hole in two-dimension. At

late times, the spectral form factor of SYK model exhibits a structure of the so-called ramp

and plateau, and it is well-approximated by the behavior of the Gaussian Unitary Ensemble

(GUE) random matrix model when the number of fermions mod 8 is 2 or 6 [7].1

In this paper, we will consider the spectral form factor g(β, t) in GUE matrix model

with non-zero inverse temperature β. We will show that g(β, t) is written exactly as a trace

of an N ×N matrix A(z) defined in (2.8). g(β, t) consists of two parts: the disconnected

part gdisc(β, t) (2.12) and the connected part gconn(β, t) (2.13). In figure 1, we show the

plot of this exact g(β, t) for β = 5 with the matrix size N = 500. As we can see from

figure 1, after the initial decay described by the disconnected part gdisc(β, t), g(β, t) has

the structure of ramp and plateau at late times. This late time behavior comes from the

connected part gconn(β, t) and it was studied extensively in the literature (see e.g. [16, 17]

and references therein).2

The ramp is closely related to the short range correlation of eigenvalues described by

the so-called sine kernel, and if we focus on the contribution from a small window around

some fixed eigenvalue the ramp grows linearly in t. However, since g(β, t) is defined by

1See also [8–15] for the study of spectral form factor in SYK model and its supersymmetric generaliza-

tions.
2The spectral form factor was first introduced in [18] as a Fourier transform of the two-level correlation

function, and it was observed that the spectral form factor exhibits a structure of dip, which was originally

called the “correlation hole” in [18].
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Figure 1. Plot of the exact spectral form factor g(β, t) in GUE for β = 5, N = 500.

integrating over the whole range of eigenvalue distribution, the actual ramp is not a linear

function of t.

In this paper, we will study the non-linearity of ramp using the exact result at finite N .

To see the deviation from the linear behavior, it is natural to consider the time derivative

of gconn(β, t), which we will call the slope of ramp. If the ramp were a linear function of t,

the slope of ramp would be a constant. However, the actual slope of ramp is not constant

in time. It turns out that the slope of ramp obeys the semi-circle law as a function of time.

This is a direct consequence of the semi-circle law of eigenvalue distribution, of course, but

there is an interesting twist: the slope of ramp corresponds to the eigenvalues and the time

corresponds to the eigenvalue density (see figure 2 for the detail of this correspondence).

In other words, the eigenvalue density manifests itself as the time direction in the graph of

the slope of ramp.

This paper is organized as follows. In section 2, we write down the exact closed form

expression of the slope of ramp ∂tgconn(β, t) at finite N . In section 3, we compute the late

time behavior of gconn(β, t) in the large N limit. We point out that after an appropriate

change of variable (3.14), the slope of ramp obeys the semi-circle law as a function of time.

In section 4, we plot the slope of ramp as a function of time using our exact result at

finite N for both β = 0 and β 6= 0 cases, and confirm that the slope of ramp exhibits

the semi-circle law. In section 5, we consider the slope of ramp in the small t regime.

Finally, we conclude in section 6. In appendix A, we explain how to compute TrA(z) and

TrA(z1)A(z2).

2 Exact slope of ramp at finite N

In this paper we consider the spectral form factor in Gaussian matrix model defined by

g(β, t) =
〈

Tr e−(β+it)H Tr e−(β−it)H
〉

=

∫
dHe−

N
2
TrH2

Tr e−(β+it)H Tr e−(β−it)H∫
dHe−

N
2
TrH2

, (2.1)
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where the integral is over the N ×N hermitian matrix H. By definition, g(β, t) is an even

function of t. Moreover, since the Gaussian measure is invariant under H → −H, g(β, t) is

independent of the sign of β. In the following we will assume that β and t are both positive

without loss of generality:

β ≥ 0, t ≥ 0. (2.2)

In the normalization of Gaussian measure in (2.1), the eigenvalue µ of matrix H is

distributed along the cut µ ∈ [−2, 2] in the large N limit, and the eigenvalue density ρ(µ)

is given by the Wigner semi-circle law

ρ(µ) =
1

2π

√
4− µ2. (2.3)

As pointed out in [19], g(β, t) in (2.1) is formally equivalent to the correlator of 1/2

BPS Wilson loops in 4d N = 4 Super Yang-Mills (SYM) theory, which is also given by

the Gaussian matrix model via the supersymmetric localization [20–22]. Thus, we can

immediately find the exact form of g(β, t) by borrowing the known result of N = 4 SYM

in [21, 23, 24]. To do this, it is convenient to rescale the matrix

H =

√
2

N
M, (2.4)

so that the measure becomes
∫
dMe−TrM2

. In this normalization, g(β, t) is written as

g(β, t) =
〈

Tr e
β+it√
N

√
2M

Tr e
β−it√
N

√
2M
〉
. (2.5)

On the other hand, the correlator of 1/2 BPS Wilson loops with winding number ki is

given by [24] 〈∏
i

Tr e
ki

√
λ
4N

√
2M

〉
, (2.6)

where λ denotes the ’t Hooft coupling of N = 4 SYM. Comparing (2.5) and (2.6), we find

a dictionary between Wilson loops in N = 4 SYM and the spectral form factor

ki
√
λ ↔ 2(β ± it). (2.7)

As shown in [24, 25], the correlator of Tr ez
√
2M is written in terms of the N × N

symmetric matrix A(z) defined by

A(z)i,j =

√
i!

j!
e
z2

2 zj−iLj−ii (−z2), (i, j = 0, · · · , N − 1), (2.8)

where Lαn(x) denotes the associated Laguerre polynomial. The one-point function is given

by the trace of A(z) (see appendix A for a derivation of this result)〈
Tr ez

√
2M
〉

= TrA(z) = e
z2

2 L1
N−1(−z2). (2.9)
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The spectral form factor g(β, t) in (2.5) is a two-point function of Tr ez
√
2M and

Tr ez
√
2M with

z =
β + it√
N

, z =
β − it√
N

. (2.10)

One can naturally decompose g(β, t) into the disconnected part gdisc(β, t) and the connected

part gconn(β, t)

g(β, t) = gdisc(β, t) + gconn(β, t). (2.11)

The disconnected part is given by a product of one-point functions

gdisc(β, t) = TrA(z) TrA(z) = e
z2+z2

2 L1
N−1(−z2)L1

N−1(−z2), (2.12)

where z and z are defined in (2.10). This part is responsible for the early time decay of

g(β, t), which we will not consider in this paper.

The late time behavior of g(β, t), the so-called ramp and plateau, comes form the

connected part. Using the result in [21, 23, 24], gconn(β, t) is written as

gconn(β, t) = Tr
[
A(z + z)−A(z)A(z)

]
. (2.13)

Since z + z = 2β√
N

, the first term of (2.13) is independent of time and it sets the value

of plateau

gplateau(β) = TrA(z + z) = e
2β2

N L1
N−1

(
−4β2

N

)
. (2.14)

Using the result of Wilson loop in N = 4 SYM [20], the large N limit of gplateau(β) with

fixed β is given by3

gplateau(β) ≈ N I1(4β)

2β
, (2.16)

where In(x) denotes the modified Bessel function of the first kind.

The non-trivial time dependence comes from the second term of (2.13)

gramp(β, t) = −Tr
[
A(z)A(z)

]
. (2.17)

In what follows, we will consider the time derivative of gramp(β, t), which we call the slope

of ramp. Since gplateau(β) is independent of time, the slope of ramp is equal to the time

derivative of the connected part of spectral form factor

∂gramp

∂t
(β, t) =

∂gconn
∂t

(β, t). (2.18)

As explained in appendix A, we can write down a closed form expression of the slope

of ramp
∂gconn
∂t

(β, t) =
N

β
e
z2+z2

2 Im
[
LN (−z2)LN−1(−z2)

]
. (2.19)

3The initial value of the disconnected part gdisc(β, t = 0) is order N2 in the large N limit

gdisc(β, t = 0) ≈ N2 I1(2β)2

β2
. (2.15)

Note that this is larger than the value of plateau (2.16) by a factor of N .
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By taking the limit β → 0 of (2.19), the slope of ramp for β = 0 becomes

∂gconn
∂t

(0, t) = 2te−
t2

N

[
LN−1

(
t2

N

)
L1
N−1

(
t2

N

)
− LN

(
t2

N

)
L1
N−2

(
t2

N

)]
. (2.20)

We are interested in the large N limit of the slope of ramp (2.19) and (2.20). When

β = 0, as pointed out in [16], ∂tgconn(0, t) in (2.20) happens to be equal to the eigenvalue

density in the Wishart-Laguerre ensemble, which is known to obey the semi-circle law in

the large N limit.4 However, the large N limit of ∂tgconn(β, t) with non-zero β is not well

studied in the literature. In section 3, we will numerically study the large N behavior of

the exact result (2.19) and (2.20).

Before doing this numerical study, in the next section we will review the analytic

derivation of the large N behavior of ramp in [16, 17].

3 Large N limit of the slope of ramp

The large N limit of gconn(β, t) is written in terms of the connected part of the two-level

correlation function ρ(2)(µ1, µ2)

gconn(β, t) =

∫
dµ1dµ2ρ

(2)(µ1, µ2)e
(β+it)µ1e(β−it)µ2

=

∫
dµ1dµ2ρ

(2)(µ1, µ2)e
it(µ1−µ2)+β(µ1+µ2).

(3.1)

At late times t� 1, the dominant contribution comes from the region |µ1−µ2| � 1. Thus

we can use the universal form of the short range correlation, known as the sine kernel (see

e.g. [28])

gconn(β, t) ≈ −N2

∫
dµ1dµ2

[
sinNπ(µ1 − µ2)ρ

(µ1+µ2
2

)
Nπ(µ1 − µ2)

]2
eit(µ1−µ2)+β(µ1+µ2). (3.2)

Introducing the variables ω and u by

ω = 2N(µ1 − µ2), u =
µ1 + µ2

4
, (3.3)

(3.2) is rewritten as

gconn(β, t) ≈ −4N

π2

∫
dudω

sin2 π
2ρ(2u)ω

ω2
eiωτ+4βu, (3.4)

where τ is given by

τ =
t

2N
. (3.5)

4See eq. (3.16) and eq. (3.30) in [26] (see also [27]). The eigenvalue density of Wishart-Laguerre ensemble

ρ(µ) = µρ̃(µ2) in [26] is equal to 1
2
∂tgconn(0, t) under the identification µ = t/N ; eq. (3.30) in [26] corresponds

to the exact finite N result of ∂tgconn(0, t) in (2.20), while eq. (3.16) in [26] represents its large N limit.
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In the large N limit, the integration region of ω can be extended to ω ∈ [−∞,∞], and the

ω-integral is explicitly evaluated as [16]

∫ ∞
−∞

dω
sin2 π

2ρ(2u)ω

ω2
eiωτ =


π

2

(
πρ(2u)− τ

)
, (πρ(2u) > τ),

0, (πρ(2u) < τ).
(3.6)

The condition πρ(2u) > τ limits the range of u-integration to u ∈ [−uτ , uτ ], where uτ is

determined by πρ(2uτ ) = τ . From the explicit form of eigenvalue density in (2.3), we find

πρ(2uτ ) =
√

1− u2τ = τ, (3.7)

and uτ is given by

uτ =
√

1− τ2. (3.8)

Since the maximal value of πρ(2uτ ) is one, τ = 1 is the critical value at which the behavior

of gconn(β, t) changes discontinuously from ramp to plateau. In the following, we will

consider the ramp regime τ < 1. When τ < 1, plugging (3.6) into (3.4) we find that

gconn(β, t) is written as

gconn(β, t) =
2N

π

∫ uτ

−uτ
du e4βu

(
τ − πρ(2u)

)
. (3.9)

Let us consider the time derivative of gconn(β, t) in (3.9). The t-derivative of the boundary

term ±uτ vanishes due to the condition (3.7). Thus, the t-derivative of (3.9) comes only

from the derivative of integrand

∂gconn
∂t

(β, t) =
2N

π

∫ uτ

−uτ
du e4βu

∂τ

∂t
=

1

π

∫ uτ

−uτ
du e4βu =

sinh 4βuτ
2πβ

. (3.10)

Let us take a closer look at the case of β = 0. By setting β = 0 in (3.10), one can see

that ∂tgconn(0, t) is proportional to uτ

∂gconn
∂t

(0, t) =
2

π
uτ . (3.11)

Introducing the rescaled slope of ramp s(0, t) by

s(0, t) :=
π

2

∂gconn
∂t

(0, t) = uτ , (3.12)

it follows from (3.8) that s(0, t) obeys the semi-circle law

s(0, t)2 + τ2 = 1. (3.13)

When β 6= 0, one can similarly define the quantity s(β, t) by applying the inverse

function of sinh to ∂tgconn in (3.10):

s(β, t) :=
1

4β
arcsinh

(
2πβ

∂gconn
∂t

(β, t)

)
= uτ . (3.14)

– 6 –
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Figure 2. This figure shows the interpretation of τ and s(β, t) in the eigenvalue distribution. The

blue semi-circle is the graph of eigenvalue density πρ(2u) =
√

1− u2. The time slice πρ(2u) = τ is

represented by the horizontal red line. The slope of ramp s(β, t) = uτ corresponds to the length of

solid red line.

Again, from (3.8) it follows that s(β, t) obeys the semi-circle law

s(β, t)2 + τ2 = 1. (3.15)

In the rest of this paper, we will use the name “slope of ramp” for both ∂tgconn(β, t) and

s(β, t) interchangeably.

In figure 2, we show the interpretation of s(β, t) in the Wigner semi-circle distribution.

Here we comment on some feature of this figure:

• The time τ corresponds to the vertical axis in figure 2. Namely, τ probes the value

of eigenvalue density (see (3.7)).

• The slope of ramp s(β, t) in (3.14) corresponds to the horizontal direction in figure 2.

In other words, s(β, t) plays the role of eigenvalue.

• The point (s(β, t), τ) lies on the unit semi-circle (3.15).

Before closing this section, we note in passing that the large N limit of gconn(β, t) is

easily obtained by integrating ∂tgconn in (3.10)

gconn(β, t) = gconn(β, 0) + 2N

∫ τ

0
dτ ′

sinh 4β
√

1− τ ′2
2πβ

. (3.16)

After a change of variable τ = sin θ, this integral can be performed by using the relation

sinh(4β cos θ) = 2
∞∑
n=1

I2n−1(4β) cos(2n− 1)θ. (3.17)

– 7 –
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Then we find

gconn(β, t) = gconn(β, 0) +
N

πβ

[
I1(4β)θ +

∞∑
n=1

I2n+1(4β) + I2n−1(4β)

2n
sin 2nθ

]
, (3.18)

where θ is related to time τ by

θ = arcsin(τ). (3.19)

Note that the initial value gconn(β, 0) is given by

gconn(β, 0) = Tr

[
A
( 2β√

N

)
−A

( β√
N

)2]
. (3.20)

When β = 0 this initial value vanishes gconn(0, 0) = 0, but it is non-zero for β 6= 0. The

large N limit of gconn(β, 0) in (3.20) can be obtained by borrowing the result of two-point

correlator of 1/2 BPS Wilson loops in N = 4 SYM [24, 29, 30]

gconn(β, 0) = βI0(2β)I1(2β) +O(N−2). (3.21)

When β = 0, (3.18) reproduces the known result in [16, 17]

gconn(0, t) =
2N

π

(
θ +

1

2
sin 2θ

)
=

2N

π

(
arcsin(τ) + τ

√
1− τ2

)
. (3.22)

We have also checked that the small β expansion of our result (3.18) is consistent with the

O(β2) term of gconn(β, t) computed in [17].

4 Plot of the exact slope of ramp

In this section, we will study numerically the behavior of the exact slope of ramp s(β, t)

at finite N . Plugging the exact result of ∂tgconn(β, t) (2.19) into (3.14), we find the exact

form of s(β, t) at finite N

s (β, t) =
1

4β
arcsinh

(
2πNe

β2−t2
N Im

[
LN

(
−(β + it)2

N

)
LN−1

(
−(β − it)2

N

)])
. (4.1)

When β = 0, using the result of ∂tgconn(0, t) in (2.20) the exact form of s(0, t) at finite

N becomes

s (0, t) = πte−
t2

N

[
LN−1

(
t2

N

)
L1
N−1

(
t2

N

)
− LN

(
t2

N

)
L1
N−2

(
t2

N

)]
. (4.2)

In figure 3, we plot the exact slope of ramp s(β, t) at N = 500 as a function of time

τ = t/2N . One can clearly see that s(β, t) obeys the semi-circle law as predicted by the

large N analysis in the previous section. We emphasize that s(β, t) is independent of β

in the large N limit and it obeys the semi-circle law for both β = 0 and β 6= 0 as shown

in (3.13) and (3.15). On the other hand, gconn(β, t) itself has a non-trivial β-dependence,

whose explicit form in the large N limit is given by (3.18).

– 8 –
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(b) s(5, t)

Figure 3. Plot of s(β, t) for (a) β = 0 and (b) β = 5. The horizontal axis is the rescaled time

τ = t/2N . The blue dots are the exact values of s(β, t) at N = 500 while the red curve represents

the semi-circle law s =
√

1− τ2.

Note that the vertical and horizontal axes in figure 2 are flipped in figure 3. As we

explained in the previous section, the τ -axis corresponds to the eigenvalue density and the

s-axis corresponds to the eigenvalues. In other words, the eigenvalue density manifests

itself as the time direction in figure 3.

As we can see from figure 3, the slope of ramp vanishes beyond the critical value τ = 1,

which corresponds to the so-called Heisenberg time tH = 2N where the plateau regime sets

in. This critical time is determined by the maximal value of the eigenvalue density.

5 Small t behavior of the slope of ramp

In this section we will consider the small t behavior of the slope of ramp s(β, t). Since s(β, t)

is an odd function of t, its Taylor expansion starts from the linear term in t.5 From the

exact result of s(β, t) at finite N in (4.1), we can compute the coefficient of this linear term

s (β, t) = πe
β2

N

[
LN−1

(
−β

2

N

)
L1
N−1

(
−β

2

N

)
− LN

(
−β

2

N

)
L1
N−2

(
−β

2

N

)]
t+O(t3).

(5.1)

In the large N limit this becomes

s(β, t) = π
[
I0(2β)2 − I1(2β)2

]
t+O(t3). (5.2)

One can in principle compute the coefficient of t3, t5, · · · , as a function of β using the exact

result in (4.1). However, the computation for general β becomes tedious when we go to

higher order terms.

Instead, here we focus on the β = 0 case where the higher order coefficients are easily

extracted from the exact result at finite N in (4.2)

s(0, t) =
π

2

[
2t− 2t3 + t5 +

(
− 5

18
− 1

18N2

)
t7 +O(t9)

]
. (5.3)

5In [31] it was observed numerically that in the small t regime gconn(0, t) behaves as gconn(0, t) ∼ t2.

This behavior simply follows from the fact that gconn(0, t) is an even function of t with the initial value

gconn(0, 0) = 0, hence its Taylor expansion starts from t2.

– 9 –
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Figure 4. Plot of s(β = 0, t) in the small t region. The dots are the exact values of s(0, t) for

N = 500. The blue line is the first term s = πt in the Taylor expansion of s(0, t) in (5.3), while the

red curve represents the Bessel function in (5.5). This figure is a closeup of the small t region of

figure 3a.

This expansion is valid until the first and the second terms in (5.3) become comparable.

The order of this time scale is

t ∼ O(N0). (5.4)

Summing over the order N0 terms in (5.3), we find that the large N limit of s(0, t) in the

small t regime is given by the Bessel function

s(0, t) = πt
[
J0(2t)

2 + J1(2t)
2
]

+O(N−2). (5.5)

In figure 4, we plot the exact s(0, t) at N = 500 in the small t region. s(0, t) grows

linearly at very early time and then starts to oscillate around s = 1. The linear behavior

of s(0, t) around t = 0 comes from the first term in the Taylor expansion (5.3), while the

oscillating behavior is captured by the Bessel function (5.5) as discussed in [16].

When t becomes of order N , the expression (5.5) is no longer valid; s(0, t) is described

instead by the semi-circle law (3.13) when t ∼ O(N).

6 Conclusion

In this paper, we have studied the slope of ramp s(β, t), which is related to ∂tgconn(β, t)

by (3.14), in the Gaussian matrix model. We found the exact closed form expression

of s(β, t) in (4.1) and confirmed numerically that s(β, t) obeys the semi-circle law as a

function of time for both β = 0 and β 6= 0 cases. Interestingly, in the plot of s(β, t) the

time direction plays the role of eigenvalue density.

There are many interesting open questions. We list several avenues for future research.

The relation between gconn and the eigenvalue density ρ(µ) in (3.2) is expected to be quite

universal, and hence it is not restricted to the Gaussian matrix model. It would be very
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interesting to study the slope of ramp in other models, such as the SYK model, and see if

the eigenvalue density manifests itself in the time direction for other models as well.6

It would be also interesting to generalize our study to the higher point correlation

function of Tr e−(β±it)H . In the case of Gaussian matrix model, the exact form of the

connected part of higher point function was recently studied in [24]. It would be interesting

to see if the multi-point correlator of eigenvalues ρ(n)(µ1, · · · , µn) appears in the time

dependence of higher point functions of Tr e−(β±it)H in the large N limit. To see this, we

need to go beyond the “box approximation” used in [17].
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A Computation of TrA(z) and TrA(z1)A(z2)

As discussed in [24], the correlator of Tr ez
√
2M in Gaussian matrix model with measure∫

dMe−TrM2
is easily computed by using the harmonic oscillator

[a, a†] = 1, (A.1)

which is basically equivalent to the method of orthogonal polynomials for solving hermitian

matrix models. The result is written in terms of the N ×N symmetric matrix A(z) with

matrix element

A(z)i,j = A(z)j,i = 〈i|ez(a+a†)|j〉, (i, j = 0, · · · , N − 1), (A.2)

where |i〉 is the orthonormal basis

|i〉 =
(a†)i√
i!
|0〉, 〈i|j〉 = δi,j . (A.3)

Using the generating function of Laguerre polynomial

(1 + t)αext =

∞∑
n=0

Lα−nn (−x)tn, (A.4)

one can evaluate the matrix element in (A.2) as

A(z)i,j = e−
z2

2 〈i|ezaeza† |j〉 =
1√
i!j!

∂is∂
j
t e
− z

2

2 〈0|e(s+z)ae(t+z)a† |0〉
∣∣∣
s=t=0

=
1√
i!j!

∂is∂
j
t e
− z

2

2 e(s+z)(t+z)
∣∣∣
s=t=0

=
1√
i!j!

∂ise
z2

2
+zs(s+ z)j

∣∣∣
s=0

=

√
i!

j!
e
z2

2 zj−iLj−ii (−z2).

(A.5)

6See [32] for a study of spectral form factor in hermitian matrix model with a non-Gaussian potential.
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Let us first consider the trace of A(z)

TrA(z) =

N−1∑
i=0

A(z)i,i =

N−1∑
i=0

〈i|ez(a+a†)|i〉. (A.6)

To evaluate this trace, it is convenient to rewrite this as a trace in the total Hilbert space

H of harmonic oscillator

TrA(z) = TrH
(
ez(a+a

†)P
)
, (A.7)

where P denotes the projector to the first N states

P =

N−1∑
i=0

|i〉〈i|, (A.8)

and TrH is defined by

TrHO =
∞∑
i=0

〈i|O|i〉. (A.9)

The trace on the right hand side of (A.7) can be simplified by using the following trick.

We first notice that

zez(a+a
†) = [a, ez(a+a

†)] = [ez(a+a
†), a†]. (A.10)

Then, using the relation

[P, a] =
√
N |N − 1〉〈N |, [a†, P ] =

√
N |N〉〈N − 1|, (A.11)

and the cyclicity of trace, we find

zTrA(z) = TrH[a, ez(a+a
†)]P = TrH e

z(a+a†)[P, a]

= TrH e
z(a+a†)

√
N |N − 1〉〈N | =

√
N〈N |ez(a+a†)|N − 1〉.

(A.12)

From the explicit form of matrix element in (A.2) we arrive at the closed form of TrA(z)

TrA(z) = e
z2

2 L1
N−1(−z2). (A.13)

Next consider the trace of the product of two A(z)’s

TrA(z1)A(z2) =
N−1∑
i,j=0

A(z1)i,jA(z2)j,i = TrH

(
ez1(a+a

†)Pez2(a+a
†)P
)
. (A.14)

One can simplify this trace using the above trick by multiplying z1 + z2

(z1+z2)TrA(z1)A(z2) = TrH

(
[a,ez1(a+a

†)]Pez2(a+a
†)P+ez1(a+a

†)P [a,ez2(a+a
†)]P

)
= TrH

(
ez1(a+a

†)[P,a]ez2(a+a
†)P+ez1(a+a

†)Pez2(a+a
†)[P,a]

)
=
√
N〈N |

(
ez1(a+a

†)Pez2(a+a
†)+ez2(a+a

†)Pez1(a+a
†)
)
|N−1〉.

(A.15)
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The last expression can be written as a single sum of matrix elements instead of the original

double sum (A.14)

(z1+z2)TrA(z1)A(z2) =
√
N

N−1∑
i=0

[
A(z1)i,NA(z2)i,N−1+A(z2)i,NA(z1)i,N−1

]
= e

z21+z
2
2

2

N−1∑
i=0

i!

(N−1)!

[
zN−i1 zN−1−i2 LN−ii (−z21)LN−1−ii (−z22) (A.16)

+zN−i2 zN−1−i1 LN−ii (−z22)LN−1−ii (−z21)
]
.

As far as we know, there is no formula to perform this summation in a closed form. However,

it turns out that the derivative of this expression can be written in a closed form.

Let us act the derivative ∂1 − ∂2 on the last expression in (A.15) with ∂k = ∂
∂zk

(k =

1, 2). One can easily show that

(z1 + z2)(∂1 − ∂2) TrA(z1)A(z2)

=
√
N〈N |

(
ez1(a+a

†)[a+ a†, P ]ez2(a+a
†) + ez2(a+a

†)[P, a+ a†]ez1(a+a
†)
)
|N − 1〉.

(A.17)

Again, using the relation (A.11) this is simplified as

(z1 + z2)(∂1 − ∂2) TrA(z1)A(z2)

=N
[
〈N |ez1(a+a†)|N〉〈N − 1|ez2(a+a†)|N − 1〉 − 〈N − 1|ez1(a+a†)|N − 1〉〈N |ez2(a+a†)|N〉

]
=Ne

z21+z
2
2

2

[
LN (−z21)LN−1(−z22)− LN−1(−z21)LN (−z22)

]
.

(A.18)

By setting z1 = z and z2 = z with z, z defined in (2.10), one can show that the above

result (A.18) leads to the exact form of ∂tgconn(β, t) in (2.19).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[12] A.M. Garćıa-Garćıa, Y. Jia and J.J.M. Verbaarschot, Universality and Thouless energy in

the supersymmetric Sachdev-Ye-Kitaev Model, Phys. Rev. D 97 (2018) 106003

[arXiv:1801.01071] [INSPIRE].

[13] H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka, Onset of Random Matrix Behavior

in Scrambling Systems, JHEP 07 (2018) 124 [arXiv:1803.08050] [INSPIRE].

[14] T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09

(2018) 041 [arXiv:1804.09934] [INSPIRE].

[15] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity,

arXiv:1806.06840 [INSPIRE].
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