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Abstract: We revisit the complexity = action proposal for charged black holes. We in-

vestigate the complexity for a dyonic black hole, and we find the surprising feature that

the late-time growth is sensitive to the ratio between electric and magnetic charges. In

particular, the late-time growth rate vanishes when the black hole carries only a magnetic

charge. If the dyonic black hole is perturbed by a light shock wave, a similar feature ap-

pears for the switchback effect, e.g. it is absent for purely magnetic black holes. We then

show how the inclusion of a surface term to the action can put the electric and magnetic

charges on an equal footing, or more generally change the value of the late-time growth

rate. Next, we investigate how the causal structure influences the late-time growth with and

without the surface term for charged black holes in a family of Einstein-Maxwell-Dilaton

theories. Finally, we connect the previous discussion to the complexity=action proposal

for the two-dimensional Jackiw-Teitelboim theory. Since the two-dimensional theory is ob-

tained by a dimensional reduction from Einstein-Maxwell theory in higher dimensions in a

near-extremal and near-horizon limit, the choices of parent action and parent background

solution determine the behaviour of holographic complexity in two dimensions.
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1 Introduction

Recent years have witnessed that quantum information theoretic notions shed new light

on deep conceptual puzzles in the AdS/CFT correspondence, and also provide useful tools

to study the dynamics of strongly-coupled quantum field theories, e.g., [1–12]. One strik-

ing, yet mysterious, entry to the gravity/information dictionary is the concept of quantum

circuit complexity: the size of the optimal circuit which prepares a target state from a

given reference state with a set of “simple” gates [13–16]. The concept of holographic

complexity naturally emerges from considerations on the bulk causality in the AdS/CFT

correspondence [17]. For instance, holographic complexity is expected to be a useful diag-

nostic for late-time dynamics and in particular, the interior of a black hole since it continues

to increase even after the boundary theory has reached thermal equilibrium. In addition,

complexity is sensitive to perturbations of the system, namely the physics of scrambling,

i.e., even tiny perturbations to the system have a measurable effect on the complexity [17].
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The original proposal for holographic complexity, known as the complexity=volume

(CV) conjecture, asserts that [17, 18]

CV(Σ) = max
Σ=∂B

[
V(B)

GN L

]
, (1.1)

where the boundary state lives on the time slice Σ and then V(B) is the volume of

codimension-one bulk surfaces B anchored to this boundary time slice. To produce a

dimensionless quantity, the volume is divided by Newton’s constant GN and the AdS

length L.1 A second proposal, known as the complexity=action (CA) conjecture, relates

the complexity of the boundary state to the gravitational action evaluated for a particular

region of the bulk spacetime [20, 21]

CA(Σ) =
IWDW

π ~
. (1.2)

Here, the subscript WDW indicates that the action is calculated on the so-called Wheeler-

DeWitt patch, which corresponds to the causal development of any of the above bulk

surfaces B anchored on Σ.

The study of holographic complexity is actively developing in two related directions.

The first is to explore the properties of the new gravitational observables which play a role

in the CV and CA conjectures and the implications of these conjectures for complexity

in the boundary theory, e.g., see [17–55]. In particular, we note that a number of new

proposals have been made for the holographic dual of complexity in the boundary theory.

For example, one new proposal is known as the complexity=(spacetime volume) (or CV2.0)

conjecture, which suggests that the bulk dual of complexity is the spacetime volume of the

WDW patch [53]. Further, more recently, a relation was conjectured between momentum

of an infalling object in the bulk radial direction and complexity of the corresponding time-

evolved operator on the boundary [54, 55]. A second direction of investigation has been to

understand the concept of circuit complexity for quantum field theory states, in particular

for states in a strongly coupled CFT, e.g., see [56–74] Developing a proper understanding

of complexity in the boundary theory is essential to properly test the various holographic

proposals and ultimately, to produce a derivation of one (or more) of these conjectures.

Our motivation for the present paper was to understand holographic complexity (and

in particular, the CA proposal) in the two-dimensional Jackiw-Teitelboim (JT) model of

dilaton-gravity [75, 76]. Recently, there has been a great deal of interest in the JT model,

as it emerges in the holographic description of the Sachdev-Ye-Kitaev (SYK) model in

a particular low energy limit, where the system acquires an emergent reparametrization

invariance [77–88]. Furthermore, the JT gravity exhibits the late-time behavior of the

spectral form factor which are natural from the perspective of random matrix theory,

e.g. [89, 90]. As such, the JT model should be an ideal platform to study the complexity

in various dynamical settings and investigate further the implications of holographic com-

plexity. However, our initial calculation of holographic complexity in the JT model using

the CA proposal (1.2) produced the surprising result that the growth rate vanishes at late

1A more sophisticated approach to choosing the latter scale was described in [19].
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times — see section 4. This result, of course, in tension with our common expectations

for complexity. It can be argued quite generally that at late times, the complexity should

continue to grow with a rate given by [17, 22]

dC
dt
∼ S T , (1.3)

where the entropy S gives an account of the number of degrees of freedom while the

temperature T sets the scale for the rate at which new gates are introduced. Further

since the JT model is supposed to capture the physics of the SYK model, which exhibits

maximal chaos, we would certainly expect the complexity should increase as fast as it

possibly can. Rather than considering the CA prescription of holographic complexity, one

can also examine the CV proposal (1.1) in this setting and in this case, we found the

extremal volume (i.e., the length of the geodesic connecting the boundary points defining

Σ) continues to grow at a constant rate for arbitrarily late times.

This apparent failure of the CA proposal motivated us to re-examine holographic

complexity for charged black holes in higher dimensions since the JT model can be de-

rived from an appropriate dimensional reduction, e.g., [86–88, 91–94]. In particular, JT

dilaton-gravity describes the near-horizon physics of certain near-extremal black holes in

higher dimensions. Previous studies of holographic complexity of charged black holes,

e.g. [20, 21, 30, 34], had not shown any odd behaviour for the CA proposal. However,

with hindsight, we note that all of these investigations involved electrically charged black

holes, whereas the usual dimensional reduction made to derive the JT model involves black

holes carrying a magnetic charge, e.g., [88, 91]. Our first calculation in the following is

to examine holographic complexity for a dyonic black hole (in four dimensions) with both

electric and magnetic charges. In this case, even if the geometry is held fixed, we find

that the complexity growth rate is very sensitive to the ratio between the two types of

charge. In particular, if the black hole is purely magnetic, we find that CA proposal yields

a vanishing growth rate at late times, and further, that the switchback effect is absent.

Of course, this vanishing matches our result for the JT model, which would arise in the

dimensional reduction of these magnetic black holes.

However, there is a boundary term involving the Maxwell field, which one might add

to the gravitational action. This term arises naturally in the context of black hole thermo-

dynamics [95] (see also [96, 97]) when defining different thermodynamics ensemble, i.e., a

canonical ensemble with fixed charge, as opposed to a grand canonical ensemble with fixed

chemical potential. We find that with the CA proposal, the holographic complexity is also

sensitive to the introduction of this Maxwell surface term. In particular, the late-time

growth rate is nonvanishing for magnetic black holes with this surface term, while tuning

the coefficient of the surface term can yield a vanishing growth rate in the electrically

charged case. Given these results, we are then lead to re-examine the dimensional reduc-

tion in the presence of the Maxwell surface term and the behaviour of the corresponding

holographic complexity for the JT model and for a related “JT-like” model, derived from

the reduction of electrically charged black holes.

To better understand the vanishing of the complexity growth for the magnetic black

holes, we might also ask whether this result is special to the Einstein-Maxwell theory.
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Alternatively, the question can be phrased as which features of the corresponding Reissner-

Nordstrom-AdS black holes are important in controlling the behaviour of the holographic

complexity for the CA proposal. As a step in this direction, we also investigate holographic

complexity for charged black holes in a family of four-dimensional Einstein-Maxwell-Dilaton

theories. Holographic complexity of Einstein-Maxwell-Dilaton theories has been previously

studied for several models [30, 36–39]. In these theories, the Maxwell field is coupled to a

scalar field (the dilaton) and as a result, the charged black holes also carry “scalar hair.”

With the dilaton excited in these solutions, the nature of the spacetime singularities and

the casual structure of the corresponding black holes can be modified. Hence we can

investigate to what extent these changes to the spacetime geometry modify the behaviour

of the holographic complexity. Our conclusion will be that the causal structure of the

spacetime geometry is the essential feature leading to the unusual (i.e., vanishing) late-

time growth rate with the CA proposal.

The remainder of our paper is organized as follows: in section 2, we study the CA

proposal for dyonic black holes carrying both electric and magnetic charges in four bulk

dimensions. We first show how for a fixed geometry, the complexity rate of change is

sensitive to the ratio between electric and magnetic charges. We also show how the inclusion

of the Maxwell surface term to the action can also have a dramatic effect on the late-time

growth rate for the CA proposal. In addition, we also briefly investigate the switchback

effect by injecting small shockwaves into the dyonic black hole. In section 3, we investigate

holographic complexity for charged black holes in a family of Einstein-Maxwell-Dilaton

theories. In section 4, we return to holographic complexity for two-dimensional black

holes. In particular, we show that the late-time growth rate vanishes for the JT model, but

that this situation can be ameliorated if the Maxwell surface term is included in reduction

from four to two dimensions. We summarize our findings and consider their implications in

section 5, as well as discussing some possible future directions. We leave certain technical

details to the appendices. In appendix A, we describe in more detail the calculations of the

holographic complexity in the dyonic shock wave geometries. In appendix B, we comment

on subtleties concerning the evaluation of the Maxwell surface term when magnetic charges

are present.

As this project was nearing its completion, we became aware of [98], which has sig-

nificant overlap with the present paper. We add that an independent approach to under-

standing holographic complexity for the JT model recently appeared in [99–101].

2 Reissner-Nordstrom black hole

In this section, we investigate applying the complexity=action (CA) conjecture [20, 21] to

evaluate the holographic complexity of the dyonic Reissner-Nordstrom black hole, while

focusing on the Einstein-Maxwell theory in four bulk dimensions, i.e., d = 3 for the bound-

ary theory. These results are easily extended to general dimensions, if one also couples the

gravity theory to a (d-2)-form potential field (i.e., the Hodge dual of the one-form Maxwell

potential). Our main objective is to understand the effect of a new boundary term associ-

ated with the Maxwell field. As mentioned in the introduction, we will find that although
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this boundary term does not modify the field equations, it has a strong influence on the

action of the Wheeler-DeWitt (WDW) patch. Hence we must ask which choices (for the

coefficient of this term) yield a WDW action which produces the behaviours expected of

holographic complexity.

We divide the action for four-dimensional Einstein-Maxwell theory in terms of the

usual Einstein-Hilbert and Maxwell actions, as well as various possible surface terms

Itot = IEH + IMax + Isurf + Ict + IµQ , (2.1)

where first two terms are integrated over the bulk of the manifold of interest

IEH =
1

16πGN

∫
M
d4x
√
−g
(
R+

6

L2

)
,

IMax = − 1

4g2

∫
M
d4x
√
−g FµνFµν .

(2.2)

The next term Isurf contains various surface terms needed to make the variational principle

well-defined for the metric,

Isurf =
1

8πGN

∫
B
d3x
√
|h|K +

1

8πGN

∫
Σ
d2x
√
ση

+
1

8πGN

∫
B′
dλ d2θ

√
γκ+

1

8πGN

∫
Σ′
d2x
√
σa ,

(2.3)

This contains the usual Gibbons-Hawking-York term [102, 103] for timelike and spacelike

boundary segments, the Hayward terms [104, 105] for intersections of these segments, and

the surface and joint terms introduced in [26] for null boundary segments — see [26] for a

complete discussion. The null surface counterterm,

Ict =
1

8πGN

∫
B′
dλ d2θ

√
γΘ log (`ctΘ) , (2.4)

is not needed for the variational principle, but it was introduced in [26] to ensure

reparametrization invariance on the null boundaries. Further, it was shown with a careful

study of shock wave geometries in [40, 41] that this surface term must be included on

the null boundaries of the WDW patch if the CA proposal is to reproduce the expected

properties of complexity.

The final contribution in eq. (2.1) is a boundary term for the Maxwell field

IµQ =
γ

g2

∫
∂M

dΣµ F
µν Aν . (2.5)

While introducing this boundary term does not change the equations of motion, it does

change the nature of the variational principle of the Maxwell field. That is, it changes the

boundary conditions that must be imposed for consistency of the variational principle. We

will also find that it modifies the WDW action, but we reserve a complete discussion of

this term for section 2.2.
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For the calculations which are immediately following, we will drop the Maxwell bound-

ary term (2.5) by setting the parameter γ = 0. That is, we examine the holographic

complexity working with the action

I0 = Itot(γ = 0) . (2.6)

With this action, we apply the CA proposal to study the holographic complexity for

a spherically symmetric dyonic Reissner-Nordstrom-AdS black hole (with d = 3 boundary

dimensions). The spacetime geometry is described by the following metric,

ds2 = −fRNA(r)dt2 +
dr2

fRNA(r)
+ r2 (dθ2 + sin2 θdφ2)

with fRNA(r) =
r2

L2
+ 1− ω

r
+
q2
e + q2

m

r2
, (2.7)

where L is the AdS length, and ω is a parameter proportional to the mass. A Penrose

diagram showing the causal structure is shown in figure 1(a), with an outer horizon r+ and

inner Cauchy horizon r− (defined by fRNA(r±) = 0). The mass, entropy and temperature

are then given by

M =
ω

2GN
, S =

π

GN
r2

+ , T =
1

4π

∂fRNA

∂r

∣∣∣∣
r=r+

. (2.8)

As indicated above, the black hole carries both electric and magnetic charges. The corre-

sponding Maxwell field strength and vector potential can be written as

A =
g√

4πGN

(
qm(1− cos θ) dφ+

(
qe
r+
− qe
r

)
dt

)
,

F =
g√

4πGN

( qe
r2
dr ∧ dt+ qm sin θ dφ ∧ dθ

)
. (2.9)

where qe and qm denote the electric and magnetic charges.

Following the conventions of [34], we write the tortoise coordinates for the black hole

spacetime (2.7), as

r∗RNA(r) = −
∫ ∞
r

dr̃

fRNA(r̃)
, (2.10)

such that limr→∞ r
∗
RNA(r) = 0. The Eddington-Finkelstein coordinates, v and u, for ingoing

and outgoing rays (from the right boundary), respectively, are given by

v = t+ r∗(r) , u = t− r∗(r) . (2.11)

2.1 Complexity growth

Next, we evaluate the growth rate of the holographic complexity for the dyonic black

hole (2.7). This analysis reveals the puzzling feature that despite the fact that magnetic and

electric charges are interchangeable at the level of the equations of motion, the complexity

growth in the CA proposal (1.2) seems to be sensitive to the nature of the charge. In the

following, we provide salient points in the calculation and we refer the interested reader

to [34] for further details.

– 6 –
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Figure 1. (a) Penrose diagram for the Reissner-Nordstrom-AdS black hole (2.7). The nonextremal

black holes have an outer event horizon at r = r+ and an inner Cauchy horizon r = r−. The shaded

blue region corresponds to a typical WDW patch anchored to symmetric boundary time slices with

tL = tR = t/2. (b) Penrose-like diagram of an Reissner-Nordstrom-AdS black hole with a shock

wave inserted on the right boundary at the boundary time tR = −tw — see eq. (2.37). In order

to not tilt the asymptotic boundary after the shock wave, we adopt the Dray-t’Hooft prescription

that the null geodesics crossing the collapsing shock wave shifts.

Following [34], we anchor the WDW patch symmetrically on the left and right asymp-

totic boundaries with tL = tR = t/2. A typical WDW patch is illustrated in the Penrose

diagram in figure 1(a). The time evolution of the WDW patch can be encoded in the

time dependence of points where the null boundaries intersect in the bulk, i.e., the future

boundaries meet at r = r1
m (and t = 0) while the past boundaries, at r = r2

m (and t = 0),

as shown in figure 1(a). The position of these meeting points is determined by [34]

t

2
− r∗RNA(r1

m) = 0 ,
t

2
+ r∗RNA(r2

m) = 0 , (2.12)

and then the rate at which these positions change is simply given by

dr1
m

dt
=
fRNA(r1

m)

2
,

dr2
m

dt
= −fRNA(r2

m)

2
. (2.13)
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Bulk contribution

We start by evaluating the time derivative of the two bulk terms in eq. (2.2). With the

Reissner-Nordstrom geometry (2.7) and the Maxwell field (2.9), these terms yield

Ibulk = IEH + IMax =
1

4GN

∫
WDW

dr dt r2

(
− 6

L2
+

2 (q2
e − q2

m)

r4

)
, (2.14)

where we have used the trace of Einstein equations: R = − 12
L2 . Notice that in the Maxwell

contribution (i.e., the second term in the integrand), the electric and magnetic charges

appear with opposite signs! This fact is directly related to the vanishing of the late time

rate of complexity for magnetic black holes, as we will see below. Following [34, 42], the

time derivative of the bulk action reduces to the difference of terms evaluated at the future

and past meeting points,

dIbulk

dt
=

1

2GN

[
r3

L2
+
q2
e − q2

m

r

]r1
m

r2
m

. (2.15)

Joint contributions

As shown in figure 1(a), the WDW patch is cut off by a UV regulator surface at some

large r = rmax. However, the boundary contributions coming from this time-like surface

segment and the corresponding joints yield a fixed constant, i.e., they do not contribute

to the time derivative of the action. Further, with affinely-parametrized null normals (for

which κ = 0), the null surface term in eq. (2.3) vanishes. This leaves only the joint terms

at the meeting points, r = r1
m and r2

m. The final result for these joint contributions is given

by [34]

Ijoint = − 1

2GN

[
(r1
m)2 log

[
|fRNA(r1

m)|
ξ2

]
+ (r2

m)2 log

[
|fRNA(r2

m)|
ξ2

]]
, (2.16)

where ξ is the normalization constant appearing in the null normals, i.e., k · ∂t|r→∞ = ±ξ.
In a moment, the addition of the counterterm (2.4) will eliminate the ξ dependence of the

action. Using eq. (2.12), the time derivative of eq. (2.16) becomes

dIjoint

dt
= − 1

4GN

[
2rfRNA(r) log

|fRNA(r)|
ξ2

+ r2∂rfRNA(r)

]r1
m

r2
m

. (2.17)

Note that at late times, r1,2
m approach the horizons and so the first term above vanishes.

Hence only the second term contributes to the late-time growth rate.

Counterterm contribution

The boundary counterterm (2.4) requires evaluating the expansion scalar Θ = ∂λ log
√
γ in

the null boundaries of the WDW patch and the final result is given by

Ict =
r2

max

GN

[
log

(
4ξ2`2ct

r2
max

)
+ 1

]
(2.18)

− (r1
m)2

2GN

[
log

(
4ξ2`2ct

(r1
m)2

)
+ 1

]
− (r2

m)2

2GN

[
log

(
4ξ2`2ct

(r2
m)2

)
+ 1

]
.

– 8 –
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The term in the first line comes from the UV regulator surface and again only contributes

a fixed constant. Hence the time dependence comes only from the terms evaluated at the

meeting points in the second line. The time derivative of eq. (2.18) has a compact form,

dIct

dt
= −

[
rfRNA(r)

2GN
log

(
4ξ2`2ct

r2

)]r1
m

r2
m

. (2.19)

Again at late times, this contribution vanishes and so it only changes the transient be-
haviour in the growth rate at early times. It is useful to combine eqs. (2.17) and (2.1) to
explicitly see that the ξ dependence is eliminated,

d

dt
(Ijoint + Ict) = − 1

4GN

[
2rfRNA(r) log

[
|fRNA(r)|4`2ct

r2

]
+ r2∂rfRNA(r)

]r1m
r2m

= − 1

4GN

[
2rfRNA(r) log

[
|fRNA(r)|4`2ct

r2

]
+ 2

r3

L2
− 2(q2

e + q2
m)

r

]r1m
r2m

. (2.20)

Note that in contrast to eq. (2.15), the electric and magnetic charges contribute with the

same sign above.

Total growth rate

The growth rate of the holographic complexity (1.2) is then given by the sum of eqs. (2.15)

and (2.20), which yields

dCA
dt

=
1

π

d

dt
(Ibulk + Ijoint + Ict) =

q2
e

πGNr

∣∣∣∣r1
m

r2
m

− r fRNA(r)

2πGN
log

[
|fRNA(r)|4`2ct

r2

]r1
m

r2
m

. (2.21)

At late times, the past and future meeting points meet the outer and inner horizons, re-

spectively, and so the second term vanishes (since fRNA(r±) = 0). This leaves the surprising

result

lim
t→∞

dCA
dt

=
q2
e

πGN r

∣∣∣∣r−
r+

. (2.22)

Hence if we consider a purely magnetic black hole with qe = 0, the growth rate vanishes!

More generally, we might introduce

q2
T ≡ q2

e + q2
m and χ ≡ qe

qm
, (2.23)

which allows us to re-express eq. (2.22) as

lim
t→∞

dCA
dt

=
χ2

1 + χ2

q2
T

πGN r

∣∣∣∣r−
r+

. (2.24)

Now fixing qT , which fixes the spacetime geometry (e.g., r±), this expression reveals a

nontrivial dependence of this growth rate on χ, the ratio of the electric and magnetic

charges. In particular, we see that as we put more of the charge qT into the magnetic

monopole with χ→ 0, the late-time growth rate shrinks to zero.

Figure 2 illustrates the full time-dependence of the growth rate, as we change the

ratio of the electric and magnetic charges while keeping the spacetime geometry fixed. As

expected from eq. (2.22), the rate approaches zero at late times when the black hole is

mostly magnetic.
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Figure 2. The rate of change of complexity for the dyonic black hole given by eq. (2.7), with

r− = 0.3 r+, L = 0.5 r+ and `ct = L. We fix the parameters that determine the geometry, but vary

the ratio between electric and magnetic charges. As predicted by eq. (2.22), when the charge is

mostly magnetic, the growth rate of complexity approaches zero at late times. The limit qm → 0

essentially matches the top curve for χ = 10. Similarly the qe → 0 and the χ = 0.1 curves are

indistinguishable on this scale.

2.2 Maxwell boundary term

The discussion in the previous section raises the question of whether there is a consistent

prescription for the holographic complexity that puts the electric and magnetic charges on

an equal footing? In the following, we will argue that such a prescription requires that we

modify the action with the addition of the Maxwell boundary term in eq. (2.5)

IµQ =
γ

g2

∫
∂M

dΣµ F
µν Aν . (2.25)

This surface term plays a natural role in black hole thermodynamics [95] — see [96, 97] for

a discussion in the context of the AdS/CFT correspondence. In particular, the Euclidean

version of the action I0 would yield the Gibbs free energy, associated with the grand

canonical ensemble where the temperature and chemical potential µ are held fixed. Adding

the boundary term (2.25) (with γ = 1) to the Euclidean action produces the Legendre

transform to the Helmholtz free energy, associated with the canonical ensemble where the

temperature and total (electric) charge Q are held fixed. This boundary term was also

shown to play a role in resolving the apparent tension between electric-magnetic duality

in four dimensions and the different partition functions of electric and magnetic black

holes [106–108] — see further discussion below.

As we noted above, adding this surface term (2.25) changes the boundary conditions

in the variational principle of the Maxwell field. Consider varying the Maxwell action in

eq. (2.2). Integrating by parts produces the equations of motion in the bulk but leaves a

boundary term proportional to δAµ,

δIMax =
1

g2

∫
M
d4x
√
−g∇µFµν δAν −

1

g2

∫
∂M

dΣµ F
µν δAν . (2.26)
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Hence, a well-posed variational principle requires a Dirichlet boundary condition setting

δAa = 0 on the boundary (where the index a indicates that only the tangential components

of the potential are fixed). However, the latter can be modified by introducing the surface

term (2.25), in which case the variation produces the boundary contribution

δIMax + δIµQ = · · · − 1

g2

∫
∂M

dΣµ [(1− γ)Fµν δAν + γ δF µν Aν ] . (2.27)

Of course, with γ = 1, the term proportional to δAν is eliminated and the required bound-

ary condition becomes nµ δFµa = 0, where nµ is a unit vector orthogonal to the boundary

∂M. If we choose a gauge where n · A = 0, we recognize this as the Neumann boundary

condition nµ ∂µ δAa = 0. With a general value of γ (and the same choice of gauge), the

potential would satisfy a mixed boundary condition,

γ nµ∂µδAa = (1− γ)Xa
b δAb , (2.28)

where the choice of Xa
b will depend on details of the problem of interest, e.g., [109–111].

Returning to the action (2.1), if we use the Maxwell equations ∇µFµν = 0, then the

boundary term (2.25) can be converted into a bulk term via Stokes’ theorem as

IµQ

∣∣
on-shell

=
γ

2g2

∫
M
d4x
√
−g FµνFµν , (2.29)

which is explicitly gauge invariant.2 Of course, the above expression takes the same form

as the bulk Maxwell action (2.2) and so we could just as well have re-expressed the bulk

action as a boundary term. In any event, combining eq. (2.29) with IMax yields

IMax + IµQ

∣∣
on-shell

=
2γ − 1

4g2

∫
M
d4x
√
−g FµνFµν . (2.30)

Hence in evaluating the WDW action for the general action Itot(γ), i.e., including the

contribution of the Maxwell boundary term in eq. (2.1), the only change that has to be made

to the previous calculation is to change the overall coefficient of the Maxwell contribution

in eq. (2.14). As a result, eq. (2.15) is replaced by

d

dt
(Ibulk + IµQ) =

1

2GN

[
r3

L2
− (2γ − 1)

q2
e − q2

m

r

]r1
m

r2
m

. (2.31)

Subsequently, the final result for the late-time growth rate for the complexity becomes

lim
t→∞

dCA
dt

=
(1− γ) q2

e + γ q2
m

πGNr

∣∣∣∣r−
r+

=
(1− γ)χ2 + γ

1 + χ2

q2
T

πGNr

∣∣∣∣r−
r+

. (2.32)

Therefore if we set γ = 1, the dependence on the electric charge drops out of the numerator

and the late-time growth rate is primarily sensitive to the magnetic charge. In particular

2There is a subtlety here for the magnetic monopole contribution in that the boundary term must be

integrated over the boundary of all patches where the potential is well-defined — see appendix B.
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then, with this choice of γ, the late-time growth rate drops to zero for an electrically

charged black hole at late times.

The above discussion shows us that the growth rate (or more generally the on-shell

action) is symmetric under electric-magnetic duality, i.e., Fµν ↔ F̃µν = 1
2εµνρσF

ρσ, if at

the same time we exchange the action3

Itot(γ)↔ Itot(1− γ) , (2.33)

i.e., we modify the coefficient of the Maxwell boundary term (2.25) as indicated above.

Then γ = 1/2 is singled out as the special choice which leaves the action unchanged in

eq. (2.33). Of course, looking back at eq. (2.30), we see that the combination of the bulk

and boundary terms for the Maxwell field vanishes on-shell. However, the complexity is

still sensitive to the electromagnetic field through its back-reaction on the geometry. In

particular, the holographic complexity only depends on the duality invariant combination

q2
T = q2

e + q2
m, as appears in the metric (2.7). For example, eq. (2.32) becomes

lim
t→∞

dCA
dt

∣∣∣∣
γ=1/2

=
q2
e + q2

m

2πGN r

∣∣∣∣r−
r+

, (2.34)

and as desired, the electric and magnetic charges influence the complexity growth rate on

an equal footing. However, as we discuss in section 5, this expression produces a puzzle in

the limit of zero charges.

Of course, the reader may wonder why we should expect that that magnetic and electric

black holes should compute at the same rate. First, let us recall the expectation that the

late-time growth of the complexity should be given by eq. (1.3), i.e., dC/dt ∼ ST , but both

the entropy S and temperature T are governed by the spacetime geometry, as given in

eq. (2.8). Hence it is natural to think that this rate should be controlled by q2
T = q2

e + q2
m,

the combination appearing in the metric (2.7). This conclusion can also be motivated

by the shock wave geometries, which we study in the next section. In this context, both

electric or magnetic black holes exhibit the same back-reaction and hence it is natural to

think that the holographic complexity should respond in the same manner independent of

the nature of the charge.

2.3 Shock wave geometries

Another property that holographic complexity should exhibit is the switchback effect, which

is related to the complexity of precursor operators [18, 32] — see further discussion in

section 5. We will follow closely the analysis and notation of [40, 41]. To examine this

feature, we consider a Vaidya geometry where a(n infinitely) thin shell of null fluid collapses

into a charged black hole. If the shell only injects a small amount of energy into the system,

then the black hole’s event horizon shifts by a small amount, i.e.,

r+,2

r+,1
= 1 + ε , (2.35)

3This equivalence was noted by [108] for γ = 1.
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where the subscripts 1 and 2 indicate before and after the shock wave, respectively. The

scrambling time associated with this perturbation is then given by

t∗scr =
1

2πT1
log

2

ε
. (2.36)

For the chaotic dual of the black hole, the switchback effect then predicts that for any time

t after the perturbation is introduced, the complexity remains essentially unchanged for

t < t∗scr but then the difference of complexities (for the perturbed and unperturbed states)

begins to grow linearly afterwards, i.e., t > t∗scr. Our goal here is to investigate to what

extent the CA proposal reproduces this behaviour for the charged black holes discussed in

the previous sections.

Charged shock wave geometry

Figure 1(b) illustrates the spacetime geometry for a shock wave collapsing into a Reissner-

Nordstrom black hole from the right boundary at t = −tw. Note that following [40, 41],

we adopt the Dray-‘t Hooft prescription that the null geodesics shift upon crossing the

collapsing shock wave. For simplicity, we assume that the thin shell is neutral, i.e., it

carries energy but no charges. The corresponding metric is

ds2 = −F (r, v) dv2 + 2 dr dv + r2 (dθ2 + sin2 θdφ2)

with F (r, v) =
r2

L2
+ 1− f1(v)

r
+
q2
e + q2

m

r2
(2.37)

where

fs(v) = ω1 (1−H(v − vs)) + ω2H(v − vs) .

(with H(v) denoting the usual Heaviside function). Before and after v = vs, the metric has

precisely the form given in eq. (2.7) with ω = ω1 and ω2, respectively. However, we must

evaluate the tortoise coordinate (2.10) for each region and then following eq. (2.11), define

the time coordinate as t = v − r∗(r). Note that taking the limit r →∞, we find vs = −tw
on the boundary.

The geometry of the WDW patch is characterized by a number of dynamical points:

r1
m and r2

m, the meeting points of the future and past null boundaries, respectively; and

rs and rb, the point where the null shell crosses the past right and future left boundaries,

respectively. These positions are determined by the boundary times with

tR + tw = −2r∗2(rs) ,

tL − tw = 2r∗1(rs)− 2r∗1(r2
m) ,

tL − tw = 2r∗1(rb) ,

tR + tw = 2r∗2(r1
m)− 2r∗2(rb) . (2.38)

In the following, it is sufficient to restrict our attention to the case tL = tR = 0 and to

study the behaviour resulting from pushing the perturbation to earlier times t = −tw. Let
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us note that with these choices, eq. (2.38) yields a simple result for the dynamical points

in the limit of large tw, namely,

lim
twT→∞

rs = r+,2 lim
twT→∞

r2
m = r−,1

lim
twT→∞

rb = r+,1 lim
twT→∞

r1
m = r−,2 . (2.39)

Results for switchback effect

Following [41], the switchback effect is revealed (or not) in the ‘complexity of formation’

comparing the holographic complexity of the above shockwave geometry with that of the

static black hole (2.7) with ω = ω1 (and the same charges). We begin by considering the

CA proposal for the action without the Maxwell boundary term (2.5), i.e., we again set

γ = 0 in eq. (2.1) as in section 2.1. The details of our calculations are given in appendix A.

In figure 3, we present the difference of complexities for a light shock wave producing

r+,2 = (1 + 10−6)r+,1 (i.e., ε = 10−6 in eq. (2.35)). Notice that the complexity remains

unchanged by the perturbation up until tw = t∗scr but afterwards, the difference quickly

makes a transition to linear growth.4 Several curves are shown in the figure where the

geometry is held fixed (i.e., q2
T = q2

e + q2
m is fixed) but the ratio χ = qe/qm is varied. We

see that the rate of the linear growth tw ≥ t∗scr decreases to zero as more of the charge is

put into the magnetic monopole, i.e., as χ→ 0. Hence the switchback effect vanishes (with

this choice of γ) for a black hole with pure magnetic charge. This result might be expected

since there is a close connection between the late-time rate of growth of the complexity in

the static black hole and dCA/dtw, as discussed in [41].5

The rate dCA/dtw can be evaluated analytically to find (see appendix A)

dCA
dtw
' O

(
χ2

1 + χ2
εe2πT1tw

)
for tw < t∗scr ,

dCA
dtw
' χ2

1 + χ2

q2
T

πGN

(
1

r

∣∣∣∣r−,1
r+,1

+
1

r

∣∣∣∣r−,2
r+,2

)
for tw > t∗scr . (2.40)

Hence as for the growth rate of the eternal black hole case in section 2.1, the complexity

rate after the scrambling time depends on the ratio between electric and magnetic charges

and in particular, dCA/dtw vanishes as χ→ 0.

We can confirm the scaling with χ in eq. (2.40) by simply multiplying the curves in

figure 3 by the factor (1 + χ2)/χ2 and then we see in figure 4(a) that essentially they all

collapse onto a single curve. The only exception is for the smallest ratio, χ = 0.1, which is

slightly shifted to the right. This behaviour arises because for smaller χ, there is a greater

sensitivity to the scale `ct in the null counterterm (2.4). The dependence on this ambiguity

in the definition of the WDW action is illustrated in figure 4(b). We note, however, that

this ambiguity does not effect the final rate dCA/dtw but only the transition between the

two regimes in eq. (2.40).

4For heavier shock waves, e.g., ε ∼ 10−1, the initial regime over which the complexity is constant

essentially disappears, similar to the behaviour found for neutral black holes in [41].
5Comparing eq. (2.24) with the result in eq. (2.40) for tw > t∗scr, we see that dCA/dtw ' 2 dCA/dt|t→∞,

as predicted by [41].
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Figure 3. The difference of complexities of formation in the shock wave geometry as a function of

the insertion time tw, for a light shock wave r+,2 = (1 + 10−6)r+,1 and parameters L = 0.5 r+,2,

r−,1 = 0.5 r+,2 and `ct = L (r−,2 is then fixed by the condition that qT is the same after the shock

wave). The dashed vertical line is the scrambling time for the shock wave with these geometric

parameters. We investigate the effect of varying the ratio between electric and magnetic charges:

after the scrambling time, the complexity essentially remains constant for the solution with mostly

magnetic charges, as predicted by eq. (2.40).

0 1 2 3 4

0

1

2

3

4

5

6

0 1 2 3 4

0

2
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(a) (b)

Figure 4. (a) The complexity for the shock wave geometry as a function of the insertion time

tw, for a light shock wave r+,2 = (1 + 10−6)r+,1 and parameters L = 0.5 r+,2, r−,1 = 0.5 r+,2 and

`ct = L. (Further, r−,2 is determined by fixing qT to be the same before and after the shock wave.)

We show the result for rescaling the curves in figure 3 by the factor (1 + χ2)/χ2. We essentially

see that the curves lie on top of each other, except the for smallest χ, as it is more sensitive to

the transient behaviour controlled by `ct. (b) The influence of the transient behaviour for the

complexity in the shock wave geometry. We show in solid χ = 0.1 and in dot-dashed χ = 10 to

contrast the effect of varying `ct in units of L. For `ct = 0.1L, both curves are essentially on top of

each other, but for `ct ∼ L, the curves with small χ are more sensitive to this ambiguous scale.
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Figure 5. The exponential growth for the complexity with a light shock wave, such that r+,2 =

(1+10−6)r+,1, and also with L = 0.5r+,2, r−,1 = 0.5r+,2, lct = L. We show two examples, one for a

black hole with mostly electric charge χ = 10 and one with mostly magnetic charge χ = 0.015. For

the larger χ, the dynamics is well approximated by an exponentially growing mode with Lyapunov

exponent λL = 2πT until times of the order of the scrambling time (vertical black line), as in

eq. (2.40). For the smaller value of χ, the amplitude of this initial mode is suppressed both by the

energy of the shock wave and by a factor of χ2. The exponentially growing mode only dominates at

very early times because it must compete with other transient effects. In the limit that the black

hole has only magnetic charges (i.e., χ = 0), this exponentially growing mode is absent.

Further, eq. (2.40) suggests a regime of exponential growth for tw < t∗scr. However,

this regime actually becomes smaller as the black hole becomes mostly magnetic, i.e., as χ

becomes small, as illustrated in figure 5. For the mostly electric black hole (with χ = 10),

we see a good agreement with an exponentially growing mode with the Lyapunov exponent

λL = 2πT until times of the order of the scrambling time. For the mostly magnetic black

hole (with χ = 0.015), the amplitude of the exponential mode is suppressed by a factor

of χ2, which shifts the corresponding curve down in the figure. In addition, we see that

the exponentially growing mode is only the dominant contribution at earlier times. This

reflects the fact that the analysis producing the tw < t∗scr expression in eq. (2.40) really only

applies for χ & 1 — see appendix A. When this exponential mode is suppressed by small

χ, it must compete with other transient dynamics (e.g., depending on `ct) and therefore,

its role becomes less important in this regime. In particular, if the black hole is purely

magnetic (with χ = 0), the exponentially growing mode is absent.

Of course, the above results (with γ = 0) are modified if we include the Maxwell

boundary term (2.5). In particular, eq. (2.40) is replaced by

dCA
dtw
' O

(
(1− γ)χ2 + γ

1 + χ2
εe2πT1tw

)
for tw < t∗scr ,

dCA
dtw
' (1− γ)χ2 + γ

1 + χ2

q2
T

πGN

(
1

r

∣∣∣∣r−,1
r+,1

+
1

r

∣∣∣∣r−,2
r+,2

)
for tw > t∗scr . (2.41)

Hence if we choose γ = 1, the roles of the magnetic and electric charges are reversed. For

example, with this choice, black holes with magnetic charges exhibit the desired switchback
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effect while those with a purely electric charge would not. Further, similar to the discussion

in section 2.2, if we choose γ = 1/2, the χ dependence drops out of eq. (2.41) and the

behaviour only depends on q2
T = q2

e + q2
m. Therefore, with this choice, both electric and

magnetic black holes exhibit the same switchback effect.

As a final comment here, let us note that for a light shock wave, r±,2 ' r±,1 and the

two contributions in eq. (2.41) for the rate at large tw are essentially the same. Further,

this rate is essentially twice the late-time growth rate in eq. (2.32).6 In fact, as discussed

in [41], there is a more general relationship that extends to heavy shocks, i.e.,

dCA
dtw

=
dCA
dtR
− dCA
dtL

, (2.42)

because of the symmetry of the shock wave geometry under

tR → tR −∆t , tL → tL + ∆t , tw → tw + ∆t . (2.43)

Hence for large tw, dCA/dtw is related to the late-time growth rates of the complexity on

either side of the shock wave.7 Therefore, we can anticipate that the switchback effect will

be absent in exactly the same situations where the late-time growth rate vanishes, e.g., for

magnetic black holes with γ = 0. Of course, this is precisely the behaviour found in this

subsection.

3 Charged dilatonic black hole

In this section, we investigate the CA proposal (1.2) in a broader class of charged black

holes. This investigation is motivated by the question of understanding to what extent our

results in the previous section are special to the precise couplings of the Einstein-Maxwell

theory. In particular, in many string theoretic settings, the gauge field will also be coupled

to various moduli or scalars, e.g., see [112, 113]. The presence of these new couplings lead

to scalar hair on the charged black holes, and may change the nature of the spacetime

singularities and the casual structure of the corresponding black holes. Hence we would

like to understand if these changes to the spacetime geometry modify the behaviour of the

holographic complexity in an essential way.

In the following, we consider a simple extension of the Einstein-Maxwell theory, where

Maxwell field has an “exponential coupling” to an additional scalar field, the so-called

dilaton. The corresponding charged dilatonic black holes were introduced for asymptoti-

cally flat geometries in [114, 115] and they were extended to asymptotically AdS geome-

tries in [116–118]. The AdS solutions were further explored in, e.g., [119–122]. Holo-

graphic complexity of dilatonic black holes has been previously studied for several mod-

els [30, 36, 38, 39]. Our investigation of the holographic complexity for these dilatonic

6Of course, there is a similar relationship between the rates in eqs. (2.40) and (2.24) for γ = 0.
7That is, given a large tw = t0, we use eq. (2.43) to shift (tR, tL, tw) = (0, 0, t0)→ (t0,−t0, 0). Then the

right-hand side of eq. (2.42) has a contribution corresponding to the growth rate on the right boundary at

very late times and another coming from very early times on the left boundary. In fact, the latter is probing

the white hole part of the Penrose diagram when the complexity is actually decreasing, e.g., [23]. However,

by the time symmetry of the unperturbed Penrose diagram, this early-time rate matches the late-time rate

up to an overall sign, i.e., the minus sign in eq. (2.42).
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black holes will show that the vanishing of the late-time growth rate found in the pre-

vious section (for certain choices of charges and boundary terms) is not a generic result

for charged black holes. Rather, for the theories studied here, the analog of the Maxwell

boundary term modifies the complexity growth rate but the coefficient can not be chosen

to reduce the rate to zero generally. However, we will see that the latter can still be ac-

complished in the theories where the charged black holes have the same causal structure as

the Reissner-Nordstrom black holes. Hence our conclusion is that the causal structure of

the spacetime geometry is the essential feature leading to the vanishing late-time growth

rate in the previous section.

As commented above, we will be studying holographic complexity in a theory where

gravity couples to a dilaton, as well as the Maxwell field (and cosmological constant),

Ibulk =
1

16πGN

∫
M
d4x
√
−g
(
R− 2(∂φ)2 − V (φ)

)
− 1

4g2

∫
M
d4x
√
−ge−2αφFµνF

µν (3.1)

where the dilaton potential V (φ) given by

V (φ) = − 2

(1 + α2)2L2

[
α2(3α2 − 1)e−2φ/α + (3− α2)e2αφ + 8α2e(α−1/α)φ

]
. (3.2)

The total action takes the form

Itot = Ibulk + Isurf + Ict , (3.3)

where the gravitational boundary terms, Isurf and Ict, are the same as in eqs. (2.3) and (2.4),

respectively. In subsection 3.2, we will also consider the effect of adding the analog of the

Maxwell surface term (2.5), as well as a new boundary term for the dilaton. Here, we are

again focusing on the case of four bulk dimensions for simplicity.

The parameter α controls the strength of the coupling of the dilaton to the Maxwell

field, but it also determines the shape of the potential in eq. (3.2). The latter is tuned so

that φ = 0 is a critical point (i.e., a local maximum) with V (0) = −6/L2, where L is the

curvature scale of the corresponding AdS vacuum. We also note that the global shape of

the potential depends on the value of α, namely,

• For 0 < α2 < 1/3, as well as the maximum at φ = 0, V (φ) has a minimum at

φ = − α
1+α2 log

(
1−3α2

3−α2

)
. Moreover, limαφ→±∞ V (φ) = ∓∞.

• For 1/3 < α2 < 3, Ṽ (φ) has only the global maximum at φ = 0. In this case,

limφ→±∞ V (φ) = −∞.

• For α2 > 3, V (φ) has the maximum at φ = 0 and a minimum at φ = α
1+α2 log

(
3α2−1
α2−3

)
.

Asymptotically, we find limαφ→±∞ V (φ) = ±∞.

• For the special values α2 = 1/3 , 1 and 3, V (φ) has only a maximum at φ = 0, but

it is symmetric under φ → −φ. More generally, the potential is invariant with the

following substitutions: φ→ −φ and α→ 1/α.
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Of course, if we set α = 0, the dilaton decouples from the Maxwell field and the poten-

tial (3.2) reduces to a simple cosmological constant, i.e., V (φ)|α=0 = −6/L2. Hence in

this limit, the theory (3.1) reduces to the Einstein-Maxwell theory (2.2) from the previous

section coupled to an additional massless scalar field.

For this theory (3.1), a class of static spherically-symmetric solutions describing elec-

trically charged dilaton black holes is given by [116]

ds2 = −f(r) dt2 +
dr2

f(r)
+ U2(r) (dθ2 + sin2 θ dφ2) , (3.4)

F =
g√

4πGN

qe e
2αφ

U(r)2
dr ∧ dt , eαφ =

U(r)

r
,

with

f(r) =
(

1− c

r

)(
1− b

r

) 1−α2

1+α2

+
U2(r)

L2
, (3.5)

U2(r) = r2

(
1− b

r

) 2α2

1+α2

, q2
e =

c b

1 + α2
,

where c and b are integration constants. We note that this solution interpolates between the

Reissner-Nordstrom black hole (α→ 0) and Schwarzschild (α→∞).8 Moreover, if we set

b = 0, the solution reduces to the (uncharged) Schwarzschild-AdS solution independently

of the value of α.

Implicitly, for the following, we will only consider nonextremal solutions, with b positive

and c sufficiently large, e.g., c� b. The causal structure for these solutions is illustrated in

figure 6. The geometry has a curvature singularity at r = b where U(r) vanishes with any

finite α. In general, there are horizons determined by f(r±) = 0. However, for α2 ≥ 1/3,

one generally finds a single (real) solution r+ > b and the singularity is spacelike. Hence

in examining the CA proposal, we will find the future null boundaries of the WDW patch

meet the singularity (at late times), as illustrated in the left panel of figure 6. Furthermore,

for 0 < α2 < 1/3, there is an additional inner horizon at r− between the event horizon and

the singularity at r = b, i.e., b < r− < r+, as shown in the right panel of figure.9

Following [121], the mass of the black hole (3.4) can be shown to be

M =
1

2GN

(
c+

1− α2

1 + α2
b

)
(3.6)

8In the latter case, the coordinate transformation r → r + b yields the usual coordinate system for the

Schwarzschild-AdS metric.
9Of course, just as for the Reissner-Nordstrom-AdS solution, there is a threshold beyond which the

charged dilatonic solution (3.4) becomes a naked singularity, e.g., if we begin with large c but then reduce

its value while holding b fixed. For the theories with 0 < α2 < 1/3, the threshold corresponds to the point

where r− coincides with r+, and hence the solution becomes an extremal black hole (matching the behaviour

of the Reissner-Nordstrom-AdS black holes). However, the situation is different for α2 ≥ 1/3 where the

nonextremal black holes only have a single horizon. In this case, the threshold is reached when the event

horizon meets the singularity, i.e., r+ → b, and hence the threshold solution contains a null singularity.

– 19 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
0

Figure 6. Causal structure for the charged dilatonic black hole given by eq. (3.4). The left panel

corresponds to α2 ≥ 1/3, for which the causal structure is similar to that of the Schwarzschild-AdS

black hole, with a spacelike singularity at r = b. The right panel corresponds to 0 ≤ α2 < 1/3,

for which the causal structure is similar to that of the Reissner-Nordstrom-AdS black hole and the

timelike singularity lies behind an inner Cauchy horizon (at r = r−).

It is useful to use f(r+) = 0 to rewrite the parameter c in terms of the position of the event

horizon of the black hole,

c = r+ +
r3

+

L2

(
1− b

r+

)(3α2−1)/(1+α2)

. (3.7)

Then the temperature and entropy of the black hole can be expressed as

T =
1

4π

∂f

∂r

∣∣∣∣
r=r+

=
1

4πr+

(
1− b

r+

)(1−α2)/(1+α2)

+
3r+(1 + α2)− 4b

4πL2(1 + α2)

(
1− b

r+

)(α2−1)/(1+α2)

,

S =
πU2(r+)

GN
=

π

GN
r2

+

(
1− b

r+

)2α2/(1+α2)

. (3.8)

It would be interesting to study which black hole solutions are thermodynamically and

dynamically stable (e.g., in analogy to refs. [96, 97], however, we do not pursue this ques-

tion here).

3.1 Complexity growth

We will now study the time-dependence of the holographic complexity of the charged

dilatonic black holes presented above using the CA proposal. Of course, in contrast to

the previous discussion of the dyonic Reissner-Nordstrom-AdS black holes in section 2, we
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only have the solutions carrying purely electric charges here. We will follow the discussion

in [34], which is straightforward to adapt to these solutions. Further, we will only be

considering the action (3.3) here and defer the discussion of additional boundary terms to

the next sections. Since we are primarily interested in the late-time growth rate, for the

theories with α2 ≥ 1/3, we will assume that the WDW patch has already lifted off of the

past singularity in the following calculations, as illustrated in left panel of figure 6.

Bulk contribution

Evaluating the bulk action (3.1) yields

Ibulk =
1

2GN

∫
WDW

dtdr

[
− r2

(1 + α2)2L2

(
8α2

(
1− b

r

) 3α2−1

α2+1

+ (3− α2)

(
1− b

r

) 4α2

α2+1

+ α2(3α2 − 1)

(
1− b

r

)2α
2−1

α2+1
)

+
q2
e

r2

]
, (3.9)

The time derivative then becomes

dIbulk

dt
=

1

2GN

q2
e

r
+

r2

L2(1 + α2)

(
r(1 + α2)− b

)(
1− b

r

) 3α2−1

1+α2

r1
m

r2
m

. (3.10)

For black holes with just one horizon, i.e., α2 ≥ 1/3, r1
m corresponds to the position of the

singularity, that is r1
m = b. On the other hand, for 0 < α2 < 1/3, the past meeting point

approaches the Cauchy horizon at late times, i.e., r1
m → r− — see figure 6. Similarly, at

late times, r2
m → r+ for all α.

GHY contribution

As noted above, for 0 < α2 < 1/3, the future tip of the WDW patch is the joint where the

future null boundaries meet (with r− < r1
m < r+). In contrast for α2 ≥ 1/3, the WDW

patch ends on the spacelike singularity at r = b and so as usual, we introduce a regulator

surface at r = b+ ε0. We must evaluate the Gibbons-Hawking-York (GHY) term, given in

eq. (2.3), on this surface and consider the limit ε0 → 0. The trace of the extrinsic curvature

of the regulator surface is given by

K = − 1

2
√
−f(r)

(
∂rf(r) + 2

∂r(U(r)2)

U(r)2
f(r)

) ∣∣∣∣
r=b+ε0

. (3.11)

However, notice that in integrating this term over the surface, the spherical measure is

not r2, e.g., as in the Schwarzschild-AdS solution, but U(r)2 instead. Hence the GHY

contribution from the regulator surface becomes

IGHY = −U(r)2

2GN

(
∂rf(r) + 2

∂r(U(r)2)

U(r)2
f(r)

)(
t

2
+ r∗∞ − r∗(r)

) ∣∣∣∣
r=b+ε0

. (3.12)
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Now taking time derivative and the limit ε0 → 0 yields

dIGHY

dt
=


3

8GN

(
c− b− b3

L2

)
for α2 = 1

3

(1+3α2)
4GN (1+α2)

(c− b) for α2 > 1
3

(3.13)

Notice that subtleties in the ε0 → 0 limit produce the extra term proportional to b3 here

when we have precisely α2 = 1/3.

Joint contributions

If we focus on α2 < 1/3, the only joints which contribute to the time dependence are

those at the future and past meeting points, i.e., r = r1
m and r2

m — see figure 6. The

corresponding joint contributions are given by

Ijoint(r
1
m) + Ijoint(r

2
m) = −U

2(r1
m)

2GN
log
|f(r1

m)|
ξ2

− U2(r2
m)

2GN
log
|f(r2

m)|
ξ2

. (3.14)

The time derivative then yields

d

dt

(
Ijoint(r

1
m) + Ijoint(r

2
m)
)

=

[
U2(r)

4GN

(
∂rf(r) +

∂r(U
2(r))

U2(r)
f(r) log

|f(r)|
ξ2

)]r2
m

r1
m

(3.15)

As discussed above for α2 ≥ 1/3, the future boundary of the WDW patch is the regulator

surface just above the spacelike singularity. While there are joints where the future null

boundaries meet this surface, their size is proportional to U2(r = b + ε0) which vanishes

in the limit ε0 → 0. Hence the corresponding joint contributions vanish. Therefore in this

case, the contribution to the time derivative comes from the past meeting point and it is

precisely given by the expression above evaluated at r = r2
m.

Counterterm contribution

To evaluate the surface counterterm (2.4), we begin by choosing the affine parameter along

the null boundaries as

λ =
r

ξ
, (3.16)

which then yields

Θ =
ξ∂r(U(r)2)

U(r)2
. (3.17)

The sum of the counterterm contributions on the four null boundaries then reads

Ict =
1

GN

∫ rmax

r1
m

dr ∂r(U(r)2) log
ξ`ct∂r(U(r)2)

U(r)2
+

1

GN

∫ rmax

r2
m

dr ∂r(U(r)2) log
ξ`ct∂r(U(r)2)

U(r)2
.

(3.18)

This integration is nontrivial for general values of α. However, the time dependence has a

simple form,

dIct
dt

=
1

2GN

[
∂r(U(r)2)f(r) log

ξ`ct∂r(U(r)2)

U(r)2

]r2
m

r1
m

. (3.19)

Implicitly, the contribution evaluated at r1
m would absent at late times if we consider the

solutions for α2 ≥ 1/3. As expected, when eqs. (3.15) and (3.19) are added together, the

combined contribution to the time derivative is independent of ξ.
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Total growth rate

Now we combine all of the contributions in eqs. (3.10), (3.13), (3.15) and (3.19) and consider

the late-time limit, to find

lim
t→∞

dCA
dt

=


q2
e

πGN

[
1
r−
− 1

r+

]
for α2 < 1

3

1
π

[
2M − q2

e
GNr+

− 3b
4GN
− b3

4GNL2

]
for α2 = 1

3

1
π

[
2M − q2

e
GNr+

− b
(1+α2)GN

]
for α2 > 1

3

(3.20)

Of course, the late-time growth rate depends on the causal structure of the black hole —

see figure 6. In particular, we note that in the theories with 0 ≤ α2 < 1/3 for which the

causal structure matches that of the Reissner-Nordstrom-AdS black holes, the form of the

late-time rate above has precisely the same form as in eq. (2.22) for the latter solutions.

In fact, the result in eq. (3.20) reduces to precisely the growth rate of the (electrically

charged) Reissner-Nordstrom-AdS black holes when α → 0. We also note that in the

limit α→∞, we recover the late-time growth rate of the Schwarzschild-AdS solution, i.e.,

dCA/dt = 2M/π. Further, we observe that using (3.7), this rate will vanish as we approach

extremality, i.e., as r+ → r− for 0 ≤ α2 < 1/3, which again parallels the behaviour of the

(electrically charged) Reissner-Nordstrom-AdS black holes [34, 55]. We also note that for

the α2 ≥ 1/3 solutions, the rate vanishes in the limit r+ → b, where the black holes become

null singularities.

As an example, we show in figure 7 the full time evolution of complexity for α2 = 1/2,

for which the causal structure resembles that of an Schwarzschild-AdS black hole (left panel

in figure 6). The behaviour is very similar to that of the latter neutral black holes, as shown

in the detailed analysis of [34]. Up to a certain critical time, the WDW patch ends on both

the past and future singularities, and during this time, the complexity remains constant.

After this critical time, the past null boundaries meet at r = r2
m, as discussed above, and at

late times, this joint approaches the event horizon. In this period of time, rate of change of

the complexity exhibits a transient behaviour (which depends on the counterterm scale `ct)

and then by a time of the order of the inverse temperature, it has overshot the late-time

limit which it subsequently approaches from above.

3.2 Boundary terms

Next we examine how the growth rate of the holographic complexity (1.2) for the charged

dilatonic black holes (3.4) is effected by the addition of two boundary terms, involving the

Maxwell and dilaton fields.

Maxwell boundary term

We begin with the Maxwell boundary term for the new theory (3.1),

IµQ =
γα
g2

∫
∂M

dΣµ F
µν Aν e

−2αφ , (3.21)

where γα is a free parameter. Following the same reasoning as in section 2.2, this boundary

term changes the boundary condition imposed on the Maxwell field in the variational

– 23 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
0

0.0 0.5 1.0 1.5 2.0 2.5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 7. The time dependence of complexity for an electrically charged Maxwell-Dilaton black

hole (without the addition of the Maxwell boundary term). We evaluate for concreteness α = 1/
√

2,

which corresponds to a black hole with a causal structure that resembles that of an Schwarzschild-

AdS black hole. The parameters are chosen to be `ct = L, L = 0.9, b = 0.75 and c = 2.5.

In analogy to the Schwarzschild-AdS black hole, the complexity does not change until a certain

critical time, where the WDW patch leaves the past singularity. Then, the complexity approaches

the late time limit from above, with a transient dependence on `ct, at times of the order of the

inverse temperature.

principle. However, we should add that implicitly we would also be assuming a Dirichlet

boundary condition for the dilaton, i.e., δφ|∂M = 0. Further in analogy with (2.29), if the

Maxwell field satisfies the equation of motion ∇µ(e−2αφFµν) = 0, this boundary term is

equivalent to

IµQ

∣∣
on shell

=
γα
2g2

∫
M
d4x
√
−g e−2αφ FµνFµν . (3.22)

Hence, it is straightforward to evaluate the effect of this boundary term (3.21) on the time

dependence of the WDW action and one finds

dIµQ

dt
= −γα q

2
e

GN

[
1

r2
m

− 1

r1
m

]
(3.23)

Of course, all of the contributions calculated previously are unchanged. Hence adding in

the above expression, the late time limits in eq. (3.20) are now replaced by

lim
t→∞

dCA
dt

=


(1−γα)q2

e
πGN

[
1
r−
− 1

r+

]
for α2 < 1

3

1
π

[
2M − (1−γα)q2

e
GNr+

− 3(b+γαc)
4GN

− b3

4GNL2

]
for α2 = 1

3

1
π

[
2M − (1−γα)q2

e
GNr+

− b+γαc
(1+α2)GN

]
for α2 > 1

3

(3.24)

Notice that, if we fix γα, the limits α → ∞ and α → 0 discussed below eq. (3.20) are

unchanged, i.e., they yield the late-time growth rates of the Schwarzschild-AdS and elec-
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trically charged Reissner-Nordstrom-AdS black holes, respectively. Further, as before, the

above rate will vanish as we approach extremality for 0 ≤ α2 < 1/3, and as we approach

the limit of a null singularity for α2 ≥ 1/3.

One interesting choice to consider for the boundary coefficient is γα = 1, for which

eq. (3.24) becomes

lim
t→∞

dCA
dt

∣∣∣∣
γα=1

=


0 for α2 < 1

3

1
2π

[
M − 3b

4GN
− b3

2GNL2

]
for α2 = 1

3

1
π

[
2α2

1+α2

(
M − b

(1+α2)GN

)]
for α2 > 1

3

(3.25)

That is, for 0 ≤ α2 < 1
3 in which case the causal structure matches that of the Reissner-

Nordstrom-AdS black holes, the (electrically) charged dilatonic black holes fail to complex-

ify at late times. This precisely matches the behaviour found in section 2.2. On the other

hand, for α2 > 1
3 in which case the causal structure is similar to the Schwarzschild-AdS

black holes, the late-time growth rate remains nonvanishing. However, we observe that in

the uncharged limit (i.e., b → 0), eq. (3.25) does not yield the expected growth rate of

2M/π — see section 5 for further discussion.

Dilaton boundary term

Next we consider the following boundary term for the dilaton

Iφ =
γφ

4πGN

∫
∂M

dΣµ φ∂
µφ . (3.26)

As for the Maxwell boundary term (3.21) (or eq. (2.25) in the previous section), this

term modifies the character of the boundary condition which must be imposed on the

dilaton in the variational principle. For example, while γφ = 0 corresponds to a Dirichlet

boundary condition (i.e., δφ|∂M = 0), setting γφ = 1 yields a Neumann boundary condition

(i.e., nµ∂µδφ|∂M = 0). More general choices of this parameter lead to mixed boundary

conditions. Further, if both γφ and γα are nonvanishing, the dilaton will have a more

complicated boundary condition involving terms proportional to the integrand in eq. (3.21).

Let us first consider black holes for 0 < α2 < 1/3, in which the causal structure

resembles the Reissner-Nordstrom-AdS black hole as shown in figure 6. In this case, the

boundary term lives only on the null boundaries of the WDW patch but in this case,

the derivative appearing in eq. (3.26) is actually tangent to the boundary. Therefore the

boundary term reduces to an integral over the joints where the null boundaries intersect,

namely

Iφ =
γφ

8πGN

∫
Σ′
d2x
√
σφ2 , (3.27)

where each joint term carries a sign according to the conventions of [26]. However, one

finds in this case

lim
t→∞

dIφ
dt

= 0 . (3.28)
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Hence, adding the dilaton boundary term (3.26) does not change the complexity growth rate

at late times for these black holes. Nevertheless, the transient behaviour of the holographic

complexity at early times will be modified by this term, but we will not explore this here.

Next, we turn to the case α2 ≥ 1/3, in which the causal structure resembles the

Schwarzschild-AdS black hole. In this case, the contribution from the null boundaries of the

WDW patch still reduce to contributions on various joints, which again do not contribute

to the late-time growth rate. However, there is an additional contribution coming from the

(spacelike) regulator surface at the future singularity — see figure 6. Evaluating eq. (3.26)

on this boundary and considering the late time limit, we find

lim
t→∞

dIφ
dt

= lim
ε0→0

γφ
U(r)2f(r)φ∂rφ

2GN

∣∣∣∣
r=b+ε0

. (3.29)

Unfortunately, for γφ 6= 0, this expression is divergent. Therefore adding the dilaton

boundary term (3.26) spoils the good behaviour of the regularization procedure at the

singularity. Therefore, we do not consider these boundary terms further here.

Hence, our general results for the late-time growth rate of the holographic complexity

including the Maxwell boundary term (3.21) are summarized eq. (3.24) for the electrically

charged black holes. Of course, these results match the growth rates without the Maxwell

boundary term in eq. (3.20) when we set γα = 0. However, when the Maxwell boundary

term (3.21) was included, we also showed in eq. (3.25) that choosing γα = 1 sets the

late-time growth rate to zero for the cases where the causal structure was like that of

the Reissner-Nordstrom-AdS black holes, i.e., for α2 < 1/3. No such choice was possible

when the causal structure had the form of the Schwarzschild-AdS black holes, i.e., for

α2 ≥ 1/3. The former behaviour was analogous to that found in the Einstein-Maxwell

theory in section 2 and therefore it appears that the causal structure of the black hole was

one of the essential features producing the unusual behaviour found there. However, we

note that our analysis here focused only on electrically charged black holes and we did not

consider dyonic or magnetically charged black holes. Unfortunately the latter solutions are

not yet known for the Einstein-Maxwell-Dilaton theory (3.1). We return to this point in

section 5.

4 Black holes in two dimensions

In this section, we will focus on studying dilaton gravity models in two bulk spacetime di-

mensions. Our main motivation is evaluating the growth of holographic complexity for the

Jackiw-Teitelboim (JT) model [75–77], which has a simple action linear in the dynamical

dilaton field. This theory has received great deal of attention recently as the gravitational

dual of the Sachdev-Ye-Kitaev (SYK) model in the low energy limit, where the system

acquires an emergent reparametrization invariance [78–83]. One perspective of JT gravity

is that it describes physics (of the spherically symmetric sector) in the near-horizon region

of near-extremal charged black holes in higher dimensions, e.g., [86–88, 91–94]. More

specifically, we focus on deriving the action for JT gravity by reducing the action (2.1)
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to two dimensions while assuming the background is spherically symmetric and magneti-

cally charged in four dimensions, i.e., the four-dimensional gauge field has the form (2.9)

with qe = 0. In addition in this section, we will analyze an analogous two-dimensional

theory that can describe the near-horizon physics of four-dimensional black holes carry-

ing a purely electric charge, i.e., eq. (2.9) with qm = 0. The two-dimensional Maxwell

field is an essential ingredient for this JT-like theory and so it has a form reminiscent of

the Brown-Teitelboim model [123, 124], where the effective cosmological constant is dy-

namically controlled by the energy density of an antisymmetric d-form field strength in d

dimensions. Further, our analysis of holographic complexity in the previous sections has

shown the important role of the Maxwell boundary term (2.5). Hence while we begin by

examining the dimensional reduction without this term, i.e., by reducing I0 in eq. (2.6),

we also consider the dimensional reduction of this boundary term and its contribution to

the holographic complexity for both the JT and JT-like models. As might be expected,

we will find the holographic complexity for both models behaves in the same way as for

the corresponding four-dimensional black holes discussed section 2. We will discuss these

theories and the holographic complexity in more detail in an upcoming work [125].

4.1 Jackiw-Teitelboim model

We begin with the dimensional reduction of the action (2.1) but without the addition of the

Maxwell boundary term, i.e., setting γ = 0 [126–129]. We decompose the four-dimensional

metric as

ds2 = gab(x) dxa dxb + Ψ2
(
dθ2 + sin2 θdφ2

)
. (4.1)

If we assume that the Maxwell field in four dimensions corresponds to a pure magnetic

charge, we can use this metric ansatz to solve for F , and the result is precisely that

given by eq. (2.9) with qe = 0. Substituting eq. (4.1) and this magnetic field into the

bulk action (2.2), we integrate out the spherical directions to produce the following two-

dimensional action

I2D
mag =

1

4GN

∫
M
d2x
√
−g
(

Ψ2R+ 2 (∇Ψ)2 − U(Ψ)
)

+
1

2GN

∫
∂M

dx
√
|γ|nµ∇µΨ2 ,

(4.2)

with the potential given by

U(Ψ) = −2− 6
Ψ2

L2
+ 2

q2
m

Ψ2
. (4.3)

The boundary term in the second line of eq. (4.2) results from integrating by parts in the

dimensional reduction. We emphasize that it arises from the bulk terms (2.2) in the four-

dimensional action and is unrelated to the surface terms (2.3) or the null counterterm (2.4),

whose dimensional reduction we will explicitly examine below. The action (4.2) illustrates

the fact that restricted to spherically symmetric solutions, our theory can be recast as

a two-dimensional gravity model with a dilaton field. However, no approximations have
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been made at this point, and so the full four-dimensional solution (2.7) can be recovered

from eq. (4.2).

Next, we are interested in describing the near-horizon region of the near-extremal

black holes. Recall that in extremal limit, the charged black holes develop an infinitely

long throat of a fixed radius rh [88]. That is, the near-horizon region of the extremal

solutions is described by a constant dilation profile Ψ2 = r2
h. For latter purposes, we define

the extremal horizon area as

Φ0 ≡ 4πr2
h . (4.4)

For the extremal solutions, we have fRNA(rh) = 0 = f ′RNA(rh) which allows us to express

the extremal charge in terms of the horizon radius,

q2
T,ext = r2

h

(
1 + 3

r2
h

L2

)
. (4.5)

Further, in the extremal throat, the two-dimensional geometry described by gab has a

constant negative curvature, which is related to the higher dimensional parameters by

Λ2 = − 1

L2
2

= −
(

1

r2
h

+
6

L2

)
. (4.6)

Now, in considering small deviations from the extremal throat, we expand the dilaton

around the extremal value in eq. (4.4). That is, we write

Ψ2 =
1

4π
(Φ0 + Φ) , (4.7)

with the understanding that Φ/Φ0 � 1. In particular, applying this expansion (to linear

order in Φ) to the action (4.2) yields the Jackiw-Teitelboim action,

IJT
bulk =

Φ0

16πGN

∫
M
d2x
√
−gR+

1

16πGN

∫
M
d2x
√
−gΦ (R− 2Λ2) . (4.8)

The solutions derived from this action can be written as

Φ = Φb
r

rc
, ds2 = −f(r)dt2 +

dr2

f(r)
with f(r) ≡ r2 − µ2

L2
2

. (4.9)

In the dilaton solution, we have introduced the cut-off radius rc. As depicted in figure 8,

this time-like surface r = rc determines the position of the physical boundary of our system.

The dynamics of the boundary position reproduces the IR physics of the SYK model, as

has extensively been studied in recent years [79–85]. The boundary value of the dilaton

is denoted Φb and the linear approximation remains valid as long as Φb/Φ0 � 1. The

metric has an outer and inner horizon at rJT
± = ±µ. The black hole is characterized by the

following parameters

MJT =
Φb µ

2

16πGNL2
2 rc

, SJT =
Φ0 + Φ(rJT

+ = µ)

4GN
, TJT =

µ

2πL2
2

. (4.10)

The mass MJT and temperature TJT are taken as energies conjugate to the coordinate time

t (which will be taken as the time in the boundary theory). Of course, one can treat the JT

model as an independent theory, or one can match the JT solutions (4.9) with a description

of the near-extremal throats of the Reissner-Nordstrom-AdS black holes (2.7) (within the

linear approximation applied above).
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Figure 8. AdS2 solution of the JT model and the WDW patch. Physical boundary is depicted

with a blue curve. The outer and inner horizons appear at r = rJT
± = ±µ.

Complexity growth

Next, we consider the growth of holographic complexity for the JT model using the CA

proposal. As depicted in figure 8, we consider the WDW patch anchored on the physical

boundary r = rc. As in section 2 following [34], we anchor this region at the boundary

times tL = tR = t/2. Further, as illustrated in the figure, we denote the meeting points of

the future and past null boundaries as r = r1
m and r = r2

m, respectively.

First, we evaluate eq. (4.8) on the WDW patch, which yields

I JT
bulk =

[
Φ0

8πGN
log |f(r)|

]r1
m

rc

+

[
Φ0

8πGN
log |f(r)|

]r2
m

rc

. (4.11)

However, recall that the reduced action (4.2) included a surface term which was not incor-

porated in the JT action (4.8).10 Substituting eq. (4.7) in this surface term, we find a term

that is linear in Φ and when it is evaluated on the null boundaries of the WDW patch, this

surface term yields

IJT
totder =

1

8πGN

∫
B′
dλ kµ∇µΦ =

Φ

4πGN

∣∣∣∣r1
m

rc

+
Φ

4πGN

∣∣∣∣r2
m

rc

. (4.12)

10One might also wish to consider JT gravity (4.8) in its own right, without any reference to higher

dimensions. In this case, we would not include the total derivative contribution (4.12) as part of the WDW

action. However, dropping this contribution would not change the vanishing growth rate (4.16) at late

times, but the transient behaviour for tTJT . 1 would be slightly modified, e.g., in figure 9.
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Here, we are assuming that the null boundaries are affinely parametrized, with the null

normal normalized as kµ∂µ = ∂λ.

The remaining boundary terms introduced in eqs. (2.3) and (2.4) have a simple dimen-

sional reduction. Of course, with affine parametrization along the null boundaries of the

WDW patch, we have κ = 0 and we can ignore the corresponding surface term in eq. (2.3).

This leaves only the null joint terms (proportional to a) and the null surface counterterm.

Dimensionally reducing these two terms and substituting eq. (4.7) then yields the relevant

boundary terms for the JT model,

IJT
joint =

1

8πGN

∑
i

(Φ0 + Φ) a
∣∣
Σ′i
,

IJT
ct =

1

8πGN

∫
B′
dλ (Φ0 + Φ) Θ2d log (`ctΘ2d) , (4.13)

where the two-dimensional ‘scalar expansion’ reads Θ2d = ∂λ log (Φ0 + Φ). Combining

these surface terms with eq. (4.12) yields the total of the boundary contribution for the

WDW patch illustrated in figure 8,

IJT
totder + IJT

joint + IJT
ct =

1

8πGN

[
2Φ− (Φ0 + Φ) log

(
`2ctΦ

2
b |f(r)|
r2
c Φ2

0

)]r1
m

rc

+
1

8πGN

[
2Φ− (Φ0 + Φ) log

(
`2ctΦ

2
b |f(r)|
r2
c Φ2

0

)]r2
m

rc

. (4.14)

Adding this expression to eq. (4.11) in eq. (1.2) yields the holographic complexity for the

CA proposal.

As the higher dimensional calculations in section 2.1, the complexity growth rate is

determined by the dynamics of the meeting points, r1
m and r2

m, of the future and past null

boundaries of the WDW patch. In analogy to eq. (2.12), we find dr1
m/dt = f(r1

m)/2 and

dr2
m/dt = −f(r2

m)/2 where f(r) is defined in eq. (4.9). The growth rate of the holographic

complexity is then given by

dCJT
A

dt
= − Φb

16π2 rcGN

[
f(r) log

(
`2ctΦ

2
b |f(r)|
r2
c Φ2

0

)]r1
m

r2
m

. (4.15)

At late times, r1
m and r2

m approach the inner and outer horizons, respectively, i.e., r1
m →

rJT
− = −µ and r2

m → rJT
+ = µ. Hence the prefactor of f(r) in eq. (4.15) is vanishing in both

contributions and thus we have

lim
t→∞

dCJT
A

dt
= 0 . (4.16)

It is interesting to recast eq. (4.15) into an expression involving the boundary or phys-

ical parameters of the JT model, e.g., the mass, temperature and entropy in eq. (4.10).

First, we define dimensionless coordinates for the meeting points.

x1
m ≡

r1
m

µ
= − tanh

(
πTJT t− tanh−1(µ/rc)

)
,

x2
m ≡

r2
m

µ
= tanh

(
πTJT t+ tanh−1(µ/rc)

)
. (4.17)
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Figure 9. Complexity growth in the JT model from eq. (4.19). Different colours correspond to

different temperatures. We set Φb

Φ0
= 10−3 and `ct = L2. As we can see, the curves are qualitatively

similar to the purely magnetic curve in 2, with a negative transient behaviour, and the vanishing

late time rate of change.

Then we write the blackening factor as

f(r) =
µ2

L2
2

f̃(r/µ) where f̃(x) ≡ x2 − 1 . (4.18)

Finally we can rewrite eq. (4.15) as

dCJT
A

dt
= −MJT

π

[
f̃(x) log

(
`2ct
L2

2

Φ2
b

Φ2
0

µ2

r2
c

|f̃(x)|
)]x1

m

x2
m

. (4.19)

Hence apart from the overall factor of the mass, the above expression is a function of the

dimensionless ratios, Φb/Φ0 and

2π
TJT

µc
=
µ

rc
where µc ≡

rc
L2

2

. (4.20)

That is, µc is the conformal breaking scale in the boundary theory. Both of these ratios

should be small as the near-extremal and near-horizon limit requires both Φb
Φ0
, µ
rc
� 1.

Note that the result (4.19) also depends of the ratio `ct/L2, which is an ambiguity that

arises in defining holographic complexity with the CA proposal [41] — see also [26, 29, 40].

We show examples of the time evolution of the holographic complexity for different values

of the temperature in figure 9.

As we already saw in eq. (4.16), the late-time limit of the complexity growth is zero.

Further, we note that this limit is generically approached from below, given the expression

in eq. (4.19), in contrast to the expectation from higher dimensional black holes. The

leading contribution at late times is given by

dCJT
A

dt
= −32MJT

2π µc TJT

µ2
c − (2πTJT)2

e−2πTJT t TJT t+O
(
e−2πTJT t

)
. (4.21)

– 31 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
0

The vanishing of the complexity growth rate at late times may seem puzzling for the JT

gravity when we consider that this model is supposed to capture the low energy dynamics

of the SYK model, which is maximally chaotic and hence would be expected to exhibit

nontrivial complexity growth for very long times. However, from the perspective of the

dimensional reduction, this feature is not so surprising. The action (4.8) was derived from

the four-dimensional action (2.1) with γ = 0, i.e., we did not include the Maxwell boundary

term (2.5), and with a purely magnetic solution, i.e., qe = 0. Recall that in section (2),

we found that the late time growth rate also vanished in this case, e.g., see eq. (2.24)

with χ = 0. The result in eq. (4.16) was our main motivation to revisit the holographic

complexity of charged black holes.

4.2 JT-like model

We now turn our attention to another possible two-dimensional theory that is derived from

a purely electrically charged black hole in four dimensions. In the latter black holes, the

Maxwell field strength (2.9) has a single component Frt and hence the dimensionally re-

duced theory incorporates a Maxwell potential and the corresponding field strength is a

form of maximal rank in two dimensions. In this sense, the two-dimensional theory has a

form reminiscent of the Brown-Teitelboim model [123, 124], with a dynamical cosmological

constant controlled by a field strength of maximal rank. A similar two-dimensional action

was also studied in in [126, 127, 129] and more recently in [130]. In [130] it was argued to

describe the physics of the extended SYK models with complex fermions with conserved

charge studied in [131, 132]. When we evaluate the complexity growth for the new dimen-

sionally reduced theory, we find nonvanishing complexity growth at late times, as expected

from the higher dimensional analysis in section 2.1.

Consider again the action (2.1) with γ = 0, assuming the metric ansatz (4.1) but

a purely electric field, i.e., F is supported on the (x1, x2)-plane. In this case, the bulk

action (2.2) reduces to the following two-dimensional action

I2D
electric =

1

4GN

∫
M
d2x
√
−g
(

Ψ2R+ 2 (∇Ψ)2 − Ũ(Ψ2)
)
− π

g2

∫
M
d2x
√
−gΨ2F 2

+
1

2GN

∫
∂M

dx
√
|γ|nµ∇µΨ2 ,

(4.22)

with the potential

Ũ(Ψ2) = −2− 6
Ψ2

L2
. (4.23)

We note that it is possible to show that (4.22) leads to the same equations of motion

as (4.2) after putting the gauge field on-shell [86]. However, we will show that holographic

complexity derived with this action using the CA proposal yields a different result from

the JT model studied above.

We recall that the four-dimensional geometry (2.7) is identical for black holes with

(qe, qm) = (0, qT ) and (qe, qm) = (qT , 0). In particular, the throat of an electrically charged

extremal black hole is identical to that of a magnetic extremal black hole. Therefore the

corresponding two-dimensional geometry and the (constant) dilaton are identical in the
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present case as in the previous subsection, i.e., as described by eqs. (4.4)–(4.6). Of course,

the difference is that the electric throat is supported by a Maxwell field proportional to

the two-dimensional volume form εab, i.e.,

(F0)ab =

√
4π g√
GN

qT,ext

Φ0
εab ≡ E0 εab . (4.24)

Now, as in the previous subsection, we wish to construct a theory which captures small

deviations from the extremal throat. Hence, we expand the dilaton as in eq. (4.7) with

Φ/Φ0 � 1. However, in the present case, we also wish to capture small corrections to the

extremal field strength in eq. (4.24). As a consequence, we also expand the field strength as

Fab = (F0)ab + f̃ab = 2 ∂[a(A0)b] + 2 ∂[aãb] , (4.25)

where f̃ captures corrections of order Φ/Φ0 relative to F0. When we expand the bulk

action in eq. (4.22) to linear order in both Φ and f̃ , the resulting action takes the form

IJT-like
bulk = IJT

bulk +
E2

0

2g2

∫
M
d2x
√
−g [Φ0 − Φ] (4.26)

− 1

4g2

∫
M
d2x
√
−g
[
(Φ0 + Φ)(F0)2 + 2Φ0 (F0)abf̃ab

]
.

where IJT
bulk is precisely the action given in eq. (4.8). We will call this theory the “JT-like”

model. As before, Φ0 is simply treated as a constant parameter defining the theory, as is the

constant E0 defined in eq. (4.24). In contrast, we treat A0 as a dynamical field, however,

our prescription is that the solution is always chosen to yield precisely the extremal field

strength in eq. (4.24). Again, the deviations from this extremal form are captured by f̃ .

It is useful to write out the full equations of motion

δãa : 0 = ∇a(F0)ab , (4.27)

δΦ : 0 = R− 2Λ2 −
4πGN
g2

(
(F0)2 + 2E2

0

)
, (4.28)

δ(A0)a : 0 = ∇af̃ab +
∇aΦ

Φ0
(F0)ab , (4.29)

δgab : 0 = −∇a∇bΦ + gab
(
∇2Φ + Λ2Φ

)
−2πGN

g2
Φ0

(
4(F0)a

c(F0)bc + gab
(
2E2

0 − (F0)2
))

(4.30)

−2πGN
g2

Φ
(
4(F0)a

c(F0)bc − gab
(
2E2

0 + (F0)2
))

−2πGN
g2

Φ0

(
4(F0)a

cf̃bc + 4f̃a
c(F0)bc − 2gab(F0)cdf̃cd

)
Of course, eq. (4.27) yields the solution (F0)ab ∝ εab and again, our prescription is that we

should choose the prefactor to be the extremal electric field E0, defined in eq. (4.24). When

we set F0 to its extremal value, we note that (F0)2 = −2(E0)2 and eq. (4.28) reduces to the

expected 0 = R− 2Λ2. That is, the two-dimensional geometry becomes locally AdS2 with
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a curvature set by Λ2 and hence we may write the solution as in eq. (4.9) for the JT model.

Further, the mass, entropy and temperature all take the same form as given in eq. (4.10).

Now in eq. (4.29), we have dropped two terms proportional to ∇a(F0)ab since this

factor already vanishes according to eq. (4.27). We can write the solution of eq. (4.29) as

f̃ab =

[
δE − Φ

Φ0
E0

]
εab . (4.31)

The first term represents a small shift in the background electric field,11 which is allowed

by the dynamical Maxwell field — note that we assume δE/E0 . Φb/Φ0. The second term

represents the leading correction to the field strength created by the running of the dilaton.

Lastly, we turn to the dilaton equation of motion in eq. (4.30). We note that the

second line is actually the leading contribution since it is not suppressed by a factor of Φ

or f̃ . However, when we substitute (F0)ab = E0εab, this collection of terms vanishes. Upon

substituting this extremal field as well as the perturbation (4.31), eq. (4.30) reduces to

0 = −∇a∇bΦ + gab
(
∇2Φ + Λ2Φ

)
+

8πGN
g2

Φ0E0 δE gab . (4.32)

We can absorb the last term with a simple constant shift of the dilaton, i.e.,

Φ̃ = Φ + Φq where Φq ≡
8πGN
g2

E0Φ0

Λ2
δE , (4.33)

Then Φ̃ satisfies the dilaton equation appearing for the JT model. Hence our final dilaton

solution for the JT-like model becomes

Φ = Φq

(
r

rc
− 1

)
+ Φb

r

rc
. (4.34)

The parameters are chosen so that Φb again corresponds to the value of the dilaton at the

boundary r = rc. However, as a result, the dilaton has a new value when evaluated at the

horizon r = µ and so the entropy (4.10) is shifted by a small amount proportional to δqT
(relative to the JT model).

As described above the geometry is precisely the same as in the JT model and so the

Penrose diagram in figure 8 still describes the solution for the JT-like model (4.26). The

new features are a small shift of the dilaton proportional to δqT in eq. (4.34) (i.e., compared

to the solution (4.9) for the JT model), and the field strengths F0 and f̃ which capture the

extremal Maxwell field and the leading correction to this extremal two-form.

Complexity growth

Given the close connection of eq. (4.26) to the JT action (4.8), we can express the on-shell

bulk action as

IJT-like
bulk |on-shell = IJT

bulk|on-shell +
Φ0E

2
0

g2

∫
M
d2x
√
−g
(

1 +
δE

E0
− Φ

Φ0

)
, (4.35)

11One might also think of this as a shift in the extremal charge, with δqT = qT,ext δE/E0.
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Further, while this expression only refers to the bulk action, it is clear that the surface

terms for the null boundaries of the WDW patch are dimensionally reduced in exactly the

same way as before, i.e., the null joint terms and the null surface counterterm are given

by eq. (4.13). Hence we can easily extend the analysis of the holographic complexity for

the JT model from the previous subsection by simply investigating the contribution of the

second term in eq. (4.35) to the CA proposal (1.2). In fact, we found that the late-time

growth rate of the holographic complexity vanished for the JT model, and so in the JT-like

model, the late-time growth rate will come entirely from the time derivative of this term,

d

dt

[
Φ0E

2
0

g2

∫
M
d2x
√
−g
(

1 +
δE

E0
− Φ

Φ0

)]
(4.36)

=
Φ0E

2
0

g2

[(
1 +

δE

E0
+

Φq

Φ0

)
r − Φq + Φb

2Φ0rc
r2

]r2
m

r1
m

.

Again at late times, we have r1
m → −µ and r2

m → µ and therefore the complexity growth

rate becomes12

lim
t→∞

dCJT-like
A
dt

=
2Φ0E

2
0 µ

πg2

(
1 +

δE

E0
+

Φq

Φ0

)
. (4.38)

for the JT-like model. Again, the nonvanishing result here may not be so surprising since

the corresponding (electrically charged) black holes in four dimensions also exhibited a

constant growth rate at late times. In fact, a careful translation of the parameters shows

that eq. (4.38) matches the higher dimensional result in eq. (2.22) to leading order in the

near extremal limit.13 The expression in eq. (4.36) (divided by π) can be combined with

eq. (4.15) to give a full description of the growth rate for the holographic complexity in the

JT-like model. Some examples of the full time profile of the growth rate are illustrated in

figure 10.

4.3 Boundary terms?

For both the JT and the JT-like model, we found that the growth of the holographic

complexity matched (at least qualitatively) the results found in section 2.1 for the corre-

sponding black holes in four dimensions. In section 2.2, we also found that the Maxwell

surface term (2.5) can have a dramatic effect on the growth rate and so in the following, we

investigate the dimensional reduction of this surface term and its effect on the holographic

complexity in the two-dimensional gravity theories.

12Given the prefactor in eq. (4.33), we note that

Φq
Φ0

= −2

(
L2 + 3r2

h

L2 + 6r2
h

)
δE

E0
(4.37)

and hence both of the corrections are the same order in the second factor of eq. (4.38). In fact for large

black holes, i.e., rh/L� 1, these two corrections will cancel one another.
13That is, we substitute r4D

± = rh ± µ and and (qe, qm) = (qT,ext + δqT, 0) (with δqT from footnote 11) in

eq. (2.22) and expand to linear order in both µ and δqT. Then the leading terms for the late-time growth

in eqs. (2.22) and (4.38) agree, i.e., the O(µ) terms agree, the O(δqT) terms agree in that they vanish, but

the O(µ δqT) terms disagree.
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Figure 10. Complexity growth in the dimensionally reduced model derived from the RN black holes

with qm = 0, the “JT-like” model given by the action in eq. (4.26). We fix the dimensionless ratios

Φb = 10−3Φ0, 4πL2
2 = 10−4Φ0, δE = 0.01E0 and lct = L2. The solid curves are the complexity

growth without the addition of the counterterm γ = 0, the dashed curves correspond to γ = 1
2

and the dot-dashed correspond to γ = 1 . As in the electrically charged black holes discussed in

section 2, a higher value of the parameter γ decreases the late time growth of complexity for the

“JT-like model”.

JT-like model

We start by analyzing the role of the Maxwell surface term in the JT-like model. In this

case, the Maxwell field is still a dynamical field in the two-dimensional theory and so

eq. (2.5) reduces in a straightforward way to a boundary term for the WDW patch in two

dimensions. Substituting the ansatz (4.1), the two-dimensional surface term becomes

I2D,elec
µQ =

4πγ

g2

∫
∂M

dΣaF
abAbΨ

2 . (4.39)

Expanding to linear order in the dilaton with eq. (4.7) and in the Maxwell perturbation

ãa in eq. (4.25), we find

IJT-like
µQ =

γ

g2

∫
∂M

dΣa

(
(F0)ab(A0)b(Φ0 + Φ) + Φ0

(
(F0)ab ãb + f̃ab(A0)b

))
. (4.40)

Alternatively, when the Maxwell field is on-shell, we can also use eq. (2.29) to express

the Maxwell surface term in terms of a bulk integral. The two-dimensional version of this

bulk integral becomes

I2D,elec
µQ

∣∣
on-shell

=
2πγ

g2

∫
M
d2x
√
−gΨ2 F abFab , (4.41)

or after the usual linear expansion, we arrive at

IJT-like
µQ

∣∣
on-shell

=
γ

2g2

∫
M
d2x
√
−g
(

(F0)ab(F0)ab (Φ0 + Φ) + 2Φ0 (F0)abf̃ab

)
. (4.42)
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Next, we evaluate eq. (4.40) (or equivalently eq. (4.42)) on the WDW patch, with the

solution given by the metric (4.9), the dilaton (4.34), the extremal field strength (4.24) and

the perturbation (4.31) to the Maxwell field. The time derivative then yields

dIJT-like
µQ

dt
= −γ E

2
0

g2

[
r

(
Φ0 + 2Φ0

δE

E0
+ Φq

)
− r2

2rc
(Φb + Φq)

] ∣∣∣∣r2
m

r1
m

. (4.43)

Without the Maxwell surface term, the late-time growth rate for the JT-like model was

given by eq. (4.38) and so combining this result with the contribution from the Maxwell

surface term (4.40) then yields

lim
t→∞

dCJT-like
A
dt

=
2Φ0E

2
0 µ

πg2

[
(1− γ)

(
1 +

Φq

Φ0

)
+ (1− 2γ)

δE

E0

]
. (4.44)

Comparing this expression to the late-time growth for four-dimensional black holes in

section 2.2, we find agreement between eqs. (2.32) and (4.44) to leading order in the near-

extremal limit — see footnote 13.

JT model

As we described in section 4.1, the JT model arises from the dimensional reduction of a

magnetically charged black hole and in this case, the Maxwell field is completely “integrated

out” in the dimensional reduction. Further, as we explained in appendix B, the evaluation

of the Maxwell surface term (2.5) for the magnetically charged black holes is more subtle.

The interesting contributions to the surface term actually live on the surface(s) dividing

the patches where the gauge potential is well defined, e.g., see eq. (B.6). Alternatively,

we can again use the bulk expression in eq. (2.29) for the on-shell Maxwell field, which

yields precisely the same result as shown in eq. (B.4). Expressing the former in terms of

the two-dimensional variables, the surface term becomes

I2D,mag
µQ =

γq2
m

GN

∫
M
d2x
√
−g 1

Ψ2
. (4.45)

Then substituting eq. (4.7) and expand to first order in Φ, we see that the Maxwell surface

term contributes as

IJT
µQ =

4πγq2
m

Φ0GN

∫
M
d2x
√
−g

(
1− Φ

Φ0

)
, (4.46)

in the JT model. Recall that in these formulas the two-dimensional model describes gravity

in the near-extremal throat with the magnetic charge equal to the extremal charge qm =

qT,ext given by eq. (4.5). Note that since the magnetic Maxwell field and the relevant surfaces

are integrated out in the dimensional reduction, there is no way to think of eqs. (4.45)

or (4.46) as a surface term in the two-dimensional theory. Rather, here we are modifying

the standard CA prescription in the JT model by adding a new bulk contribution to the

holographic complexity. In particular, we observe that the first contribution in eq. (4.46) is

simply proportional to the spacetime volume of the WDW patch and so this contribution is

reminiscent of the CV2.0 proposal [53] where the holographic complexity is equated with the

spacetime volume to the WDW patch. That is, when the Maxwell surface term is included
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in the usual complexity=action prescription in four dimensions, the dimensional reduction

produces a complexity=(action + spacetime volume) prescription for the JT model.

Evaluating the above expression (4.46) on the WDW patch with the solution (4.9) and

considering the time derivative then yields

dIJT
µQ

dt
=

4πγq2
m

Φ0GN

(
r − Φb r

2

2Φ0rc

) ∣∣∣∣r2
m

r1
m

. (4.47)

Without the Maxwell surface term, the late-time growth rate for the holographic complexity

vanished, as shown in eq. (4.16). Hence once we reconsider the holographic complexity with

the addition of the “surface” term (4.46), the late-time growth rate is governed entirely by

eq. (4.47) which yields

lim
t→∞

dCJT
A

dt
=

8γq2
mµ

Φ0GN
. (4.48)

Comparing this result to those in four dimensions, we see that this new expression matches

to linear order in µ the rate in eq. (2.32) with (qe, qm) = (0, qT,ext), as well as r4D
± = rh± µ.

5 Discussion

We began in section 2, by investigating the complexity=action proposal (1.2) on the holo-

graphic complexity of charged four-dimensional black holes in the usual Einstein-Maxwell

theory (2.2). We found that the results were very sensitive both to the type of charge

(i.e., electric versus magnetic) and to the inclusion of the Maxwell boundary term (2.5).

Without the latter surface term (i.e., γ = 0), the late-time growth rate vanished for black

holes carrying purely magnetic charge, while for the electrically charged case, it is a non-

vanishing constant in accord with the general expectations of eq. (1.3). The general result

for dyonic black holes carrying both kinds of charge is given in eq. (2.24). In section 2.3, we

also noted that the switchback effect exhibited a similar sensitivity to the type of charge.

However, this picture changes dramatically when the Maxwell boundary is included.

For example, with γ = 1, the roles of the electric and magnetic charges described above are

reversed, i.e., the late-time growth rate vanishes with electric charge and is nonvanishing

with magnetic charge. The behaviour of the late-time growth for general γ is given in

eq. (2.32). In particular, we found that the electric and magnetic charges contribute on an

equal footing with the choice γ = 1/2. We might recall that when we are evaluating the

Maxwell boundary term for an on-shell gauge field that we can express the contribution

as a bulk integral of FµνF
µν , i.e., with the same form as the bulk Maxwell action (2.2).

Hence with γ = 1/2, these boundary and bulk contributions precisely cancel, as is evident

in eq. (2.30). A possible alternative then would be to define complexity=(gravitational

action). That is, we could drop both the bulk and boundary terms involving the Maxwell

field for eq. (2.1) to define the “gravitational action” (i.e., we only keep the geometric

contributions to the action) and then define the complexity by evaluating this action on

the WDW patch. Of course, because the charges only enter the metric (2.7) through the

combination q2
T = q2

e +q2
m, the complexity only depends on the same combination with this

definition. It might be interesting to investigate this proposal in other settings.

– 38 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
0

In section 3, we investigated the CA proposal (1.2) for charged black holes in a family

of Einstein-Maxwell-Dilaton theories (3.1). As the value of the parameter α (controlling the

coupling between the dilaton and the Maxwell field) is varied, the nature of the curvature

singularities and the causal structure of the black holes change, as shown in figure 6.

Generally, the late-time growth rate of the holographic complexity was nonvanishing for

the electrically charged black holes. However, when the Maxwell boundary term (3.21) was

included, we showed in eq. (3.25) that choosing γα = 1 sets the late-time growth rate to zero

for the cases where the causal structure was like that of the Reissner-Nordstrom-AdS black

holes, i.e., for α2 < 1/3. No such choice was possible when the causal structure appeared

as in the Schwarzschild-AdS black holes, i.e., for α2 ≥ 1/3. The former behaviour was

analogous to that found in the Einstein-Maxwell theory and therefore it appears that the

causal structure of the black hole was one of the essential features producing the unusual

behaviour found in section 2.

Let us note, however, that the analysis in section 3 did not consider dyonic or mag-

netically charged black holes for the simple reason that, to the best of our knowledge, such

solutions have not yet been constructed for the Einstein-Maxwell-Dilaton theory (3.1). In

the Einstein-Maxwell theory (2.2), it is straightforward to produce magnetic solutions given

the electrically charged black holes using electric-magnetic duality. This operation is not

as straightforward for the Einstein-Maxwell-Dilaton theories, in which case it is natural to

replace

Fµν → F̃µν =
e−αφ

2
εµνρσF

ρσ , φ→ φ̃ = −φ . (5.1)

The action of the “dual” theory is then

Ibulk =
1

16πGN

∫
M
d4x
√
−g
(
R− 2(∂φ̃)2 − V (−φ̃)

)
− 1

4g2

∫
M
d4x
√
−ge−2αφ̃F̃µνF̃

µν ,

(5.2)

which matches eq. (3.1) except for the appearance of V (−φ̃). Generally then, with the

transformation (5.1), the electrically charged solutions (3.4) of the original theory would

become magnetically charged solutions of the new theory (5.2). However, as we noted above

eq. (3.4), there are three special cases for which V (−φ) = V (φ) and hence for which eq. (5.1)

leaves the theory invariant. Note that all three of these special cases, i.e., α2 = 1/3, 1 and

3, lie in the regime where the causal structure matches that of the Schwarzschild-AdS black

hole. Hence at least of these three cases, it is straightforward to verify that the late-time

growth of the magnetic black holes is nonvanishing. It would, of course, be interesting to

construct magnetic or dyonic black holes for the Einstein-Maxwell-Dilaton theories (3.1)

more generally and to fully investigate holographic complexity in these theories.

In section 4, we turned to holographic complexity for black hole in two dimensions.

In particular, we showed that the late-time growth rate vanishes for the JT model in

eq. (4.16). The latter mirrored the behaviour for the magnetic Reissner-Nordstrom-AdS

black holes in four dimensions, which play a role in constructing the JT action (4.8) via

dimensional reduction. This situation can be ameliorated by instead considering a dimen-

sional reduction describing the near-horizon physics of near-extremal electric black holes
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(in four-dimensions). In the resulting JT-like theory (4.26), the late-time growth rate is

nonvanishing, as shown in eq. (4.38). We also considered the dimensional reduction of

the Maxwell boundary term (2.5) in both cases. Again, the effect of this surface term

mimicked that found in four dimensions. In particular, the late-time growth rate of the JT

model is now nonvanishing, as shown in eq. (4.48). The slightly unusual feature is that as a

result of including the Maxwell boundary term in four dimensions, the complexity=action

prescription becomes a complexity=(action + spacetime volume) prescription for the JT

model, i.e., we have a mixture of the CA and CV2.0 proposals in two dimensions. We will

discuss the two-dimensional results further below.

Maxwell boundary term, revisited

In section 2, we found that the Maxwell boundary term played an essential role in order

for the CA proposal to produce the expected properties of the complexity (e.g., late-time

growth and the switchback effect) for dyonic black holes carrying both electric and magnetic

charges. A priori, this surface term would not appear to be an essential part of the Einstein-

Maxwell action, e.g., obviously, it does not affect the equations of motion. It should

not be surprising that holographic complexity, or more specifically the CA proposal, can

be sensitive to surface terms since an analogous behaviour was already observed with

the null counterterm (2.4) in the gravitational action [40, 41]. In particular, in shock

wave geometries, this surface term plays an essential role in ensuring that the holographic

complexity exhibits both late-time growth and the switchback effect. Of course, another

guiding principle that suggests that this boundary term should be included is to ensure

that the action is invariant under reparametrizations of the null boundaries, as emphasized

in [26, 27]. In fact, it is this principle that fixes the overall coefficient with which the null

counterterm is added to the action. In the present case, we have not definitely fixed the

coefficient of the Maxwell boundary term. We did find that γ = 1/2 seems to be special as

it allows both magnetic and electric charges to participate in“computations” on an equal

footing, as can be seen from eq. (2.32). Hence it may be that electric-magnetic duality (or

S-duality) provides the guiding principle to fix γ. However, it is not immediately obvious

(to us) that this is the correct choice — see further comments below.

While Maxwell boundary term does not effect the equations of motion, it does play

a role in the variational principle by changing the boundary conditions imposed on the

gauge field, as described around eq. (2.28). As we noted previously, in this way, this surface

term plays a role in black hole thermodynamics, i.e., it becomes an important part of the

Euclidean action depending on the thermodynamic ensemble of interest [95–97]. Hence

one might ask if different ensembles will “compute” differently, i.e., if the electric and

magnetic charges would make distinct contributions in different ensembles.14 Preliminary

investigations with simple qubit models seem to indicate that this is indeed the case [133],

but of course, it would be interesting to study this question further.

14Implicitly, we are suggesting that the action used to evaluate the holographic complexity (1.2) would

be the same as that used to evaluate the Euclidean action for the thermodynamic ensemble.
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Even though the Maxwell term is associated with modifying the boundary conditions

for the field equations, we are not suggesting that these boundary conditions should be

applied on the boundary of the WDW patch. For example, irrespective of the choice of

γ, if we are evaluating the holographic complexity with CA prescription for a boundary

state dual to a solution in which various charges are circulating in the bulk spacetime,

the bulk solution should not be modified and the charges would appear to freely flow

into or out of the WDW patch, as discussed in [20, 21]. On the other hand, we might

wonder if “quantum” (i.e., finite-N) corrections to this saddle point evaluation of the holo-

graphic complexity would involve fluctuations of fields on the WDW patch which respect

the boundary conditions determined by our choice of surface terms.

In passing, we note that while the holographic complexity defined by the CA proposal

is sensitive to the presence of the Maxwell boundary term, it is only the infrared properties

which exhibit this sensitivity. The asymptotic contributions to action are essentially inde-

pendent of the choice of the coefficient γ. For example, for an electrically charged black

hole given in eqs. (2.7) and (2.9), we find

IµQ(UV) ∼ 4γ q2
e

GN r+

∫ rmax dr

fRNA(r)
+ · · ·

∼ − 4γ L2 q2
e

GN r+ rmax
+ · · · . (5.3)

Hence the leading UV contribution vanishes in the limit rmax → ∞, i.e., there are no

UV divergent contributions coming from the Maxwell boundary term. Therefore the holo-

graphic complexity has the same UV structure [29], independent of the choice of γ in the

boundary term.

However, to close our discussion here, we observe that the limit of zero charge is subtle.

Naively, from perspective of the boundary CFT, nothing particularly strange should happen

in the limit qT → 0. On the other hand, from the bulk perspective, there is a nontrivial

and abrupt change in the causal structure of spacetime with qT → 0. If we consider this

limit for the late-time growth rate (2.32), we find

lim
t→∞

dCA
dt

∣∣∣∣
qT→0

=
2M

π

(1− γ)χ2 + γ

1 + χ2
. (5.4)

The first factor corresponds to the late time growth rate of a neutral black hole [20, 21],

and hence we only recover this expected rate when the second factor is equal to one. That

is, for each choice of the coefficient γ, there will only be one class of black holes, i.e., with

χ2 = (γ − 1)/γ, for which the expected rate is recovered in the zero-charge limit.15 We

do not have any insight into this issue, but let us add that similar subtleties arise in the

zero-charge limit for the Einstein-Maxwell-Dilaton theory studied in section 3, and also

with higher curvature corrections [134].

15Notice that we can only produce the desired limit with a physical charge ratio (i.e., χ2 ≥ 0) for either

γ ≥ 1 or γ ≤ 0.
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Back to two dimensions

In section 3, the causal structure was identified as an essential feature in determining

the unusual behaviour of the holographic complexity for charged black holes. Therefore,

since the AdS2 black holes (4.9) inherit a causal structure with an outer and inner

horizon from the near-extremal black holes in higher dimensions [135], it is not surprising

that the holographic complexity exhibits behaviour analogous to that found for the

four-dimensional charged black holes in section 2. For example, the vanishing of the

late-time growth rate for the CA proposal found for the JT model in eq. (4.16) matches

with the vanishing rate found for the four-dimensional black holes carrying only magnetic

charge (and using γ = 0) in eq. (2.22).

On the other hand, the close parallels between the two- and four-dimensional results

may seem unexpected when one recalls that the dimensional reduction producing the JT

and JT-like models focuses on the near-horizon region of near-extremal black holes in four

dimensions. That is, the cut-off surface at r = rc introduced for the two-dimensional black

holes in figure 8 is implicitly a constant radius surface deep in the interior of the corre-

sponding four-dimensional solution. Hence the WDW patches correspond to very different

regions of the spacetime in the two different contexts. That is, the four-dimensional WDW

patch is anchored to a cut-off surface near the asymptotic AdS4 boundary, while the two-

dimensional WDW patch is anchored to a constant radius surface deep in the throat of the

four-dimensional black hole.

Given these differences, one must examine the results more closely to understand the

similarities in the complexity growth rates in two and four dimensions. First, in eqs. (2.21)

and (2.31), we see that all of the contributions to the four-dimensional growth rate corre-

spond to terms evaluated at the meeting junctions at r = r1,2
m . Of course, both of these

junctions are in the throat and at late times, they approach the inner and outer horizons,

i.e., r1
m → r− and r2

m → r+. That is, the growth rate is determined “infrared” part of the

four-dimensional geometry, i.e., by the near-AdS2 throat of the near-extremal black holes.

Further, in these geometries with two horizons, the late-time rate is completely determined

by quantities evaluated at the corresponding bifurcation surfaces. Of course, we find the

same behaviour for the contributions to the growth rate in the two-dimensional geometry,

e.g., see eqs. (4.15) and (4.36), and this explains the close match between the results in

two and four dimensions.16

In fact, one finds that the same late-time growth rate will be derived for WDW

patches anchored to any fixed r surfaces in the four-dimensional geometry [136]. This

again points to the importance of the causal structure in determining the behaviour of

the holographic complexity for the CA proposals. However, we note that when the cut-off

or anchor radius is varied, the details of the early-time transients are modified. Further,

let us add that there have been significant developments concerning the holographic

interpretation of moving the AdS boundary into the bulk as a T T̄ deformation of the

16We should add that the dimensional reduction does not require any modification of the time coordinate

and hence another important ingredient in this match is that the rates in two and four dimensions are

measured with respect to the same time coordinate [125].
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boundary theory [137–143]. Some recent progress in connecting these developments with

holographic complexity was reported in [99],17 however, it remains an interesting future

direction to fully develop these connections.

One of our most interesting results in section 4 was that when the Maxwell surface

term is included in the usual complexity=action prescription in four dimensions, the di-

mensional reduction produces a complexity=(action + spacetime volume) prescription for

the JT model.18 Note that with the latter prescription, the purely “topological” sector

(representing extremal black holes with Φ = 0) exhibits complexity growth. Of course, this

is in keeping with the recent results of [55] indicating that the entire entropy of the extremal

black hole contributes to the late-time complexity growth (1.3). This also reminds one of

the suggestion that the JT model should be interpreted as a low-energy sector embedded in

a quantum gravity theory with a larger Hilbert space [145]. Of course, the latter is a natu-

ral perspective here where the two-dimensional model and the prescription for holographic

complexity were both derived with a dimensional reduction from four dimensions.

Other future directions

We have already commented on various future directions above, but let us close with

a few more observations. The preceding discussion of the JT model reminds us of the

other prescriptions of holographic complexity, in particular, the CV proposal (1.1) and

the CV2.0 proposal. While our analysis in this paper focused almost entirely on the CA

proposal (1.2), it is straightforward to examine the behaviour of these other proposals to

the four-dimensional charged black holes (2.7) or to the two-dimensional near-AdS2 ge-

ometries (4.9). For the CV proposal, the techniques developed in [34] are easily generalized

to these new metrics and for the CV2.0 proposal, one need simply adapt the appropriate

results for the bulk action. In either case, the late-time growth is found to be in keeping

with the general expectations of eq. (1.3), i.e., dC/dt ∼ S T . Of course, these approaches to

describing holographic complexity are only sensitive to the spacetime geometry and they

would not be sensitive to the type of thermodynamic ensemble in question. However, it

would be an interesting question to examine either of these proposals had a well-motivated

extension where the ensemble played a role in determining the behaviour of the holographic

complexity. For instance, one might explore the role of boundary conditions in the context

of the recent understanding of the holographic dual of the bulk symplectic form [71, 72].

The JT model provides a simple setup to study traversable wormholes [146, 147] (see

also [148]) and hence another interesting extension of the present work is to consider holo-

graphic complexity growth for traversable wormholes. In order to retrieve a quantum state

which has fallen deep into the bulk, one would need to perform some operation which

17We note that refs. [99–101] suggest a very different understanding of holographic complexity for JT

gravity than developed here (and in [98]). In particular, this approach relies on defining a new cut-off

surface behind the horizon, which was originally defined using the conjectured relation [20, 21] between

the CA proposal and the Lloyd bound [144]. While we remind the reader that this relation is known to

fail [34–37], it no longer seems to be an essential ingredient for the new approach [101].
18We observe that in this construction, the spacetime volume contribution (4.46) comes with a very

specific prefactor. In general, the normalization of the holographic complexity is an ambiguity for the

CV2.0 prescription [53].
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would prevent or reverse the natural tendency of the system to complexify. Perhaps it

would be interesting to investigate the relation between the amount of quantum informa-

tion that can be transmitted through the wormhole and the corresponding holographic

complexity. Examining these ideas from the perspective of the Hayden-Preskill recovery

protocol [149, 150] may also prove fruitful.
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A More on shock waves

In this appendix, we discuss in more detail the calculation of the switchback effect in

Reissner-Nordstrom-AdS background, as we presented in section 2.3. The shock wave

geometry is represented in the Penrose-like diagram in the right of figure 1. This calcu-

lation below follows the analysis in [41], so we refer the reader there for more details (as

well as [40]).

The complexity dependence on tw can be determined by studying the time evolution

of the special positions on the boundary of the WDW patch labeled by rb, rs, r
1
m and r2

m.

From eq. (2.38), we find that the time derivatives with respect to tL, tR and tw are given by

rs :
drs
dtw

= −f2(rs)

2
,

drs
dtR

= −f2(rs)

2
,

drs
dtL

= 0 , (A.1)

r2
m :

dr2
m

dtw
=
f1(r2

m)

2

[
1− f2(rs)

f1(rs)

]
,

dr2
m

dtR
= −f1(r2

m)

2

f2(rs)

f1(rs)
,

dr2
m

dtL
= −f1(r2

m)

2
,

rb :
drb
dtw

= −f1(rb)

2
,

drb
dtR

= 0 ,
drb
dtL

=
f1(rb)

2
,

r1
m :

dr1
m

dtw
=
f2(r1

m)

2

[
1− f1(rb)

f2(rb)

]
,

dr1
m

dtR
=
f2(r1

m)

2
,

dr1
m

dtL
=
f2(r1

m)

2

f1(rb)

f2(rb)
.
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We will show next how to obtain the complexity of formation as a function of how early

the shock wave is inserted (i.e., of tw). We will assume a dyonic black hole in four bulk

dimensions and with a spherical horizon, as in the main text. Further, we only consider

neutral shock waves, i.e., the black hole charges before and after the shock wave remain

equal. For convenience, we rewrite the metric here as

ds2 = −F (r, v)dv2 + 2drdv + r2(dθ2 + sin2 θ dφ2)

with F (r, v) =
r2

L2
+ 1− f1(v)

r
+
q2
e + q2

m

r2
, (A.2)

and f1(v) = ω1(1−H(v − vs)) + ω2H(v − vs) . (A.3)

The shock wave is then inserted at vs = −tw.

Bulk contribution

The integrand of the bulk action (after integrating over the angular directions) can be

written as

Ib(r) =
4π

16πGN
(R− 2Λ)− 4π

g2
F 2 =

1

4GN

(
− 6

L2
+

2(q2
e − q2

m)

r4

)
. (A.4)

The bulk action in the Wheeler-DeWitt patch in figure 1 can be written as

Isbulk =

∫ rmax

rs

dr r2 Ib(r) (−2r∗2(r)) +

∫ rs

rb

dr r2 Ib(r) (tR + tw)

+

∫ rs

r+,1

dr r2 Ib(r)(2r∗1(rs)− 2r∗1(r)) +

∫ r+,1

r2
m

dr r2 Ib(r) (−tL + tw − 2r∗1(r) + 2r∗1(rs))

+

∫ rmax

r+,1

dr r2 Ib(r) (−2r∗1(r)) +

∫ r+,1

rb

dr r2 Ib(r) (−tw + tL − 2r∗1(r))

+

∫ rb

r1
m

dr r2 Ib(r) (tR + tw − 2r∗2(r) + 2r∗2(rb)) . (A.5)

We are interested in investigating the switchback effect, so as in section 2.3, we set tL =

tR = 0 and probe the dependence on tw, which is given by

dIsbulk

dtw
=− 1

2GN

[
r3

L2
+
q2
e − q2

m

r

] ∣∣∣∣rs
r1
m

− 1

2GN

[
r3

L2
+
q2
e − q2

m

r

] ∣∣∣∣rb
r2
m

+
1

2GN

[
r3

L2
+
q2
e − q2

m

r

]
f2(rs)

f1(rs)

∣∣∣∣rs
r2
m

+
1

2GN

[
r3

L2
+
q2
e − q2

m

r

]
f1(rb)

f2(rb)

∣∣∣∣rb
r1
m

. (A.6)

For large tw, the derivative becomes

dIsbulk

dtw

∣∣∣∣
tw→∞

= − 1

2GN

[
r3

L2
+
q2
e − q2

m

r

] ∣∣∣∣r+,1
r−,1

− 1

2GN

[
r3

L2
+
q2
e − q2

m

r

] ∣∣∣∣r+,2
r−,2

. (A.7)
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Joint and counterterm contributions

We now evaluate the joint and counterterm contributions to the shock wave spacetime. In

order to impose affine parametrization across the shock wave, we have the condition on the

null normalization ξ as [40, 41]

ξ
′

= ξ
f1(rs)

f2(rs)
, ξ

′′
= ξ

f2(rb)

f1(rb)
, (A.8)

where ξ is fixed at the boundaries with the usual prescription k · ∂t|r→∞ = ±ξ, and

the conditions for ξ
′

and ξ
′′

are to ensure κ = 0 for the null geodesic across the shock

wave. Because of the affine parametrization condition, the joints at rb and rs do not

contribute [41]. The joints at r1
m and r2

m read

Ijoint = “UV terms”− 1

2GN

[
(r1
m)2 log

|f2(r1
m)|

ξ ξ′′
+ (r2

m)2 log
|f1(r2

m)|
ξ ξ′

]
. (A.9)

The counterterms associated to each of the null boundaries of the Wheeler-DeWitt

patch (see [41] for more details), where (I) refers to the the past null boundary that extends

to the right asymptotic AdS boundary, (II) to the future one that touches the left AdS

boundary, (III) to the past one that touches the left AdS boundary and finally (IV) to the

future one that touches the right AdS boundary.

I
(I)
ct = “UV terms”− 1

2GN
(r2
m)2

[
log

(
2ξ `ct

r2
m

)
+

1

2

]
+

1

2GN

(
r2
s − (r2

m)2
)

log
f1(rs)

f2(rs)
,

I
(II)
ct = “UV terms”− 1

2GN
(r1
m)2

[
log

(
2ξ `ct

r1
m

)
+

1

2

]
(A.10)

+
1

2GN

(
r2
b − (r1

m)2
)

log
f2(rb)

f1(rb)
,

I
(III)
ct = “UV terms”− 1

2GN
(r2
m)2

[
log

(
2ξ `ct

r2
m

)
+

1

2

]
I

(IV)
ct = “UV terms”− 1

2GN
(r1
m)2

[
log

(
2ξ `ct

r1
m

)
+

1

2

]
If we add the joint and counterterm contributions, we find that the overall answer is

independent of ξ,

Ijoint +
∑

Ict = “UV terms” +
1

2GN
r2
s log

f1(rs)

f2(rs)
+

1

2GN
r2
b log

f2(rb)

f1(rb)

− 1

2GN
(r1
m)2

[
log

(
|f2(r1

m)|4`2ct

(r1
m)2

)
+ 1

]
− 1

2GN
(r2
m)2

[
log

(
|f1(r2

m)|4`2ct

(r2
m)2

)
+ 1

]
. (A.11)

Then, for large tw, the derivative simply reads

d(Ijoint +
∑
Ict)

dtw

∣∣∣∣
tw→∞

=
1

2GN

[
r3

L2
− q2

e + q2
m

r

] ∣∣∣∣r+,1
r−,1

+
1

2GN

[
r3

L2
− q2

e + q2
m

r

] ∣∣∣∣r+,2
r−,2

.

(A.12)
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Combining equations eqs. (A.7) and (A.12), we obtain the simple result for the time

derivative of the holographic with respect to tw, at very early insertion times,

dCA
dtw

=
1

πGN

q2
e

r

∣∣∣∣r−,1
r+,1

+
1

πGN

q2
e

r

∣∣∣∣r−,2
r+,2

. (A.13)

Hence this derivative is directly proportional to q2
e for large tw, such that if the black was

purely magnetic, the derivative would vanish.

More on the switchback effect

Let us evaluate more carefully the rate of complexity with respect to tw for times smaller

than the scrambling time, such that tw < t∗scr. There is one big difference with respect

to the switchback effect for Schwarzschild black holes as discussed in [41], because now

both the past and future boundaries of the Wheeler-DeWitt patch end at joints, instead

of at a spacelike singularity. Therefore, there is always a transient term for small T tw,

that depends on `ct, in analogy to the time evolution of the eternal black hole [34]. In

addition, the more magnetic charge that is present (i.e., the smaller χ becomes), these

transient effects will become important, which is the reason the curve in figure 5 for small

χ terminates long before the scrambling time, as these effects compete with each other.

The dominant contribution, for χ & 1, has a simple expression

dCA
dtw
' O

(
χ2

1 + χ2

q2
T

πGN

(
2

rm
− 1

rs
− 1

rb

)
εe2πT1tw

)
+ transient . (A.14)

We denote rm the solution for meeting point equation in eq. (2.12) with t = 0, such that

r1
m = r2

m = rm. If we include the surface term in eq. (2.25), a similar expression holds

dCA
dtw
' O

(
(1− γ)χ2 + γ

1 + χ2

q2
T

πGN

(
2

rm
− 1

rs
− 1

rb

)
εe2πT1tw

)
+ transient . (A.15)

B Bulk contribution from Maxwell boundary term

In section 2.2, we argued that by using Stokes’ theorem and the equations of motion, the

Maxwell boundary term (2.25) could be written as the bulk contribution (2.29), and this

identity was later used to simplify some of our calculations of the holographic complexity.

However, there is clearly a subtlety: if one were to consider the case of a purely magnetic

charge, it is not hard to see that evaluating the boundary term (2.25) on the boundaries

of the WDW patch yields zero while the bulk integral on the right-hand side of eq. (2.29)

is nonvanishing — see details below. We elucidate the resolution of this inconsistency in

the following.

Consider the gauge potential for the magnetic charge by setting qe = 0 in eq. (2.9)

A =
gqm√
4πGN

(1− cos θ) dφ ≡ AN . (B.1)
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Of course, we recognize that this choice is not well-defined at θ = π. As a result, this

problem is inherited by the integrand appearing in the boundary term, i.e.,

FµνAν =
g2

4πGN

q2
m

r4 sin θ
(1− cos θ) δµθ , (B.2)

is singular at θ = π. Hence we can not properly apply Stokes’ theorem in the way that

was implicitly done in deriving eq. (2.29).

We can evade this problem by describing the gauge potential on two patches, one

covering the north pole (θ = 0) and the other covering the south pole (θ = π). For

example, on a(n open) hemisphere H2
N covering 0 ≤ θ < π/2, we use the potential AN in

eq. (B.1), while on the complementary hemisphere H2
S which covers the south pole with

π/2 < θ ≤ π, we define

AS = − g√
4πGN

qm(1 + cos θ) dφ . (B.3)

Since the two gauge potentials and the corresponding integrands (as in eq. (B.2)) are well-

defined on their respective patches, we can apply Stoke’s theorem in each patch separately

but now the resulting boundary terms now include an integral over the surface θ = π/2

where the contributions involving AN and AS do not cancel.

Let us explicitly illustrate this point for the Reissner-Nordstrom-AdS black holes dis-

cussed in section 2 but in the case, where the charge is purely magnetic. Given the form

of the metric (2.7), the WDW patch has the form of a direct product M = N × S2. Now

setting qe = 0 in eq. (2.9), the field strength becomes F = g qm√
4πGN

sin θdφ ∧ dθ and so

evaluating the right-hand side of eq. (2.29) yields

1

2g2

∫
M
d4x
√
−g FµνFµν =

γ q2
m

GN

∫
N

dt dr

r2
. (B.4)

Next we turn to the boundary term as given in eq. (2.25). Certainly if we only integrate

over the boundary of the WDW patch ∂M = ∂N × S2, then the result is zero since as

we saw in eq. (B.2), the combination FµνAν only has a θ component. However, as we

discussed above, we should actually integrate over the boundaries of all of the patches

where the gauge potential is well-defined, e.g., using the prescription outlined above, the

boundary integral runs over

(∂M)′ = (∂N × S2) ∪ (N × ∂H2
N) ∪ (N × ∂H2

S ) . (B.5)

Hence if we integrate over this boundary, eq. (2.25) yields

γ

g2

∫
(∂M)′

dΣµ F
µν Aν =

γ

g2

∫
N×∂H2

N

dΣµ F
µν (AN −AS)ν

=
γ q2

m

GN

∫
N

dt dr

r2
. (B.6)

where in the first line, we have used ∂H2
S = − ∂H2

N where the sign indicates the two bound-

aries have opposite orientations. Hence with the prescription that the Maxwell boundary

term (2.25) is integrated on the boundaries of all of the patches used to define the gauge

– 48 –



J
H
E
P
0
2
(
2
0
1
9
)
1
6
0

potential, we see that the bulk and boundary integrals precisely match, i.e., eqs. (B.4)

and (B.6) yield exactly the same result.

Hence the lesson that we take away here is that when we introduce the boundary

term (2.25) to evaluate the WDW action for a magnetically charged system, we should

understand that this term is not only integrated over the (geometric) boundary of the

WDW patch but rather it is integrated over the boundaries of all of the patches introduced

to produce a properly defined gauge potential everywhere.19

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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