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1 Introduction and overview

Kinematic space has been defined as the space of intervals on a constant time slice of a

given 2-dimensional CFT [1, 2], or the space of pairs of points [3, 4]. It has the structure

of the product of two 2-dimensional de Sitter spaces, corresponding to the left-moving and

right-moving sector of the CFT. We will restrict to cases where it is simply equal to the

diagonal de Sitter. When the CFT is holographic, kinematic space can also be referred to

as the space of corresponding boundary-anchored geodesics of the AdS bulk and has been

used as a tool to study the induced dynamics of the AdS bulk [5]. In contrast, we are

interested here in the dynamics of the kinematic space itself, which we will discuss to be

the ‘dynamics’ of 2-dimensional gravity. More precisely, we will give an interpretation of

kinematic space as a theory of Jackiw-Teitelboim (JT) gravity. The results in this paper
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are complementary to the discussion of the entropic origin of JT gravity in [6], focusing on

two new aspects: kinematic space and the maximal entanglement principle.

In section 2 we summarize the original kinematic space construction of [1], with an

emphasis on the role of the one-interval entanglement entropy of the CFT as a Liouville

field, which was first pointed out in [4]. The original definition for the metric on kinematic

space in terms of entanglement [1] is then just the Liouville metric, given in equation (2.13).

The entanglement of the (2-dimensional) CFT becomes a metric field in the kinematic space

construction, and the ‘entanglement dynamics’ of the CFT, or in other words the dynamics

of kinematic space, should then naturally be described by a theory of (2-dimensional)

gravity. While pure Einstein gravity is trivial in two dimensions, the Jackiw-Teitelboim

theory we will encounter in section 3 is a theory of dilaton gravity, with not just a metric

but also a dilaton field. We end section 2 with the observation that the Liouville stress

tensor for the entanglement is given by the vacuum expectation value of the CFT stress

tensor evaluated at the interval endpoints and comments on the bulk AdS3 perspective.

It was observed in [2] that the one-interval entanglement perturbations δS obey a de

Sitter Klein-Gordon equation on the kinematic space (K). This constitutes one of four

Jackiw-Teitelboim equations of motion for a dilaton δS, in a conformal gauge determined

by the entanglement S. The Liouville equation for S is another, and we complete the

picture of δS obeying JT dynamics on kinematic space by showing the two remaining

constraint equations of motion are satisfied as well. This is done in section 3. The ‘K

on-shell identities’ in (3.6)–(3.9) are concluded to be imposed as equations of motion by a

JT theory that governs the dynamics of K. This is the main conclusion of the paper. We

can take the identification of the entanglement perturbations with the dilaton in (3.19) as

constructing principle of K.

We discuss similar ‘K∂ identities’ (4.6)–(4.9) for the boundary kinematic space K∂

of a boundary CFT2 [7] in section 4. While both K and K∂ have a Jackiw-Teitelboim

description, there are two main differences with the previous discussion. Firstly, K∂ has an

AdS2 geometry, while K has a dS2 geometry. Second, it are the lightcone coordinates of the

boundary CFT2 (rather than the interval endpoints in the case of a CFT without boundary)

that determine the lightcone coordinates of the associated kinematic space. This difference

is readily seen from comparing the metrics (2.13) and (4.3). It is this difference that allows

to interpret the construction of the boundary kinematic space of a boundary CFT as the

process of coupling that boundary CFT to AdS2 JT gravity. Such an interpretation of the

de Sitter kinematic space remains less clear.

Jacobson’s maximal entanglement hypothesis [8] shares a similar set-up and ingredients

with the kinematic space discussion. Namely, it considers a CFT on a background geometry

(without gravity) and imposes conditions on the entanglement in the CFT that can be

interpreted as a prescription to couple the CFT to semi-classical gravity. Based on the

interpretation of boundary kinematic space in the conclusion of section 4, we set out in

section 5 to examine the relation between boundary kinematic space and the maximal

entanglement hypothesis applied to a 2-dimensional boundary CFT. To this end we review

the original argument of [8], valid for dimensions greater than two, in section 5.1. Next, we

discuss in section 5.2 the coupling of a CFT to JT gravity as a 2-dimensional application
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of the Jacobson argument. This involves reformulating the JT first law as a condition on

entanglement in the CFT. In section 5.3 we interpret the constructing principle of boundary

kinematic space in equation (4.19) as such an entanglement condition, and claim that the

kinematic space of a 2-dimensional boundary CFT can thus be obtained from coupling the

boundary CFT to JT gravity through a maximal vacuum entanglement principle.

One confusing aspect of the discussion is the distinction between the CFT on a flat

background geometry in the original set-up and the CFT on an (A)dS background geome-

try in the obtained kinematic space. In section 6 we therefore consider a CFT on an AdS

background in JT gravity theory, regarding it as instructive to study this set-up without

reference to kinematic space. It can be read as a stand-alone section that discusses en-

tanglement in the JT theory (sections 6.1 and 6.2), the JT mass formula and first law

(section 6.3), and the interpretation of the vacuum contribution to the dilaton as a differ-

ential entropy (section 6.4). However, each of these discussions pertains to the kinematic

space context, in ways discussed at the end of each subsection. In particular, the discussion

of entanglement and the JT mass formula reveals a natural link between entanglement and

metric on one hand, and between modular Hamiltonian and dilaton on the other. Because

the (local) entanglement and the modular Hamiltonian are given by the same formulas

in the boundary CFT coupled to JT and in the flat space boundary CFT, this gives us

more insight into the arbitrary-looking observations (4.6)–(4.9) (as well as (3.6)–(3.9), by

analogy). The discussion of the vacuum contribution to the dilaton reveals a relation to

the Schwarzian theory and cMERA, which is quite natural in light of the relation between

JT theory and kinematic space.

We conclude with a discussion of the obtained results and possible future directions in

section 7.

2 Kinematic space

Consider a CFT on a 2-dimensional Minkowski geometry ds2 = −dx+dx− with lightcone

coordinates x± = t ± x and large central charge c. We take the theory to be in the

vacuum state

|0〉X . (2.1)

This notation refers to the state that contains no quanta that are positive frequency with

respect to time X++X−

2 , for lightcone coordinates X± that are related to x± by a general

conformal transformation

(x+, x−)→ (X+(x+), X−(x−)). (2.2)

The state is characterized by a stress tensor expectation value1

〈Tx±x±〉 = − c

24π
{X±, x±} (2.3)

1Here the curly brackets denote the Schwarzian derivative, defined as {f, x} = f ′′′

f ′ −
3
2

(
f ′′

f ′

)2

.
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Figure 1. Interval x ∈ [u, v] (in blue) on a constant time slice of a CFT2 in vacuum state |0〉X . The

kinematic space construction involves 1) promoting the t = 0 time-slice of the CFT to past infinity

of kinematic space, 2) identifying the interval endpoints u and v with kinematic space lightcone

coordinates, and 3) using the one-interval entanglement formula to define a hyperbolic metric on

kinematic space through (2.13). The yellow triangle is a sketch of the emergent dS2 kinematic

space, superimposed here on the picture of the CFT background.

that vanishes in the frame of an X±-observer, who measures a stress tensor TX+X+ related

to Tx+x+ by

Tx+x+ = − c

24π
{X+, x+}+ TX+X+

(
dX+

dx+

)2

. (2.4)

The X± coordinates are the ‘uniformizing coordinates’ of the CFT. We will moreover

restrict to states with

X+ = X− = X, (2.5)

which have equal right-moving and left-moving stress tensor components

〈Tx−x−〉 = 〈Tx+x+〉 = − c

24π
{X,x±}. (2.6)

We can then use the vacuum formula for the entanglement of an interval in the CFT

to write

S(U, V ) =
c

12
log

(V − U)2

δ2
U

, V = X+(v), U = X+(u) (2.7)

for the contribution of right-moving degrees of freedom to the entanglement, which func-

tionally depends on the (transformed) interval endpoints U and V , with δU a UV cutoff

in X coordinates. Because the cutoff transforms non-trivially under the conformal trans-

formation X(x), the entanglement as a function of the interval endpoints u and v (see

figure 1) is given by [9]

S(u, v) =
c

12
log

(X(v)−X(u))2

δ2
uX

′(v)X ′(u)
. (2.8)

It immediately follows from this expression that S satisfies

∂u∂v

(
12

c
S

)
=

2

δ2
u

e−
12
c
S . (2.9)
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Under the identification

12

c
S = −ωu + 2 log

2`

δu
, (2.10)

the equation (2.9) can be recognized as the classical Liouville equation

4∂u∂vωu + Λeωu = 0 (2.11)

for a Liouville field ω (we will not always explicitly write the subindex referring to the

coordinate system), expressing constant curvature

R = Λ, Λ =
2

`2
(2.12)

of the Liouville metric

ds2
K = eωududv =

(
2`

δu

)2

e−
12
c
S(u,v)dudv. (2.13)

On the solution (2.8), the Liouville metric becomes (a slicing of) the 2-dimensional de

Sitter metric

ds2
K =

4`2dUdV

(V − U)2
=

4`2X ′(u)X ′(v)du dv

(X(v)−X(u))2
. (2.14)

Classical Liouville theory solves the ‘uniformization problem’: given a 2-dimensional man-

ifold with local lightcone coordinates u, v, its most general metric can be parametrized by

the Liouville field ωu according to (2.13), and the solution to the Liouville equation (2.9)

lays a hyperbolic metric (in this case dS2) on the manifold. This can always be done, by

transforming the lightcone coordinates to ‘uniformizing coordinates’ U and V . We thus see

that the one-interval entanglement of the given CFT2 solves the uniformization problem

for a 2-dimensional manifold with lightcone coordinates given by the endpoints u and v

of the interval. Each point in this manifold labels a CFT interval; it is the space of CFT

intervals, which was named ‘kinematic space’2 in [1]. The kinematic space metric given

in (2.13) corresponds to the definition ds2
K = 4

Λ∂u∂u
(

12
c S
)
du dv of [1].

Because of our restriction to states |0〉X with X+ = X− = X, we focus on the case

where the kinematic space of right-moving degrees of freedom equals the one of left-moving

degrees of freedom and the general kinematic space with metric dS2 × dS2 reduces to one,

diagonal dS2 [4]. The dS2 metric has a boundary at U = V (or u = v), which can

be identified with the constant time slice of the CFT to allow a natural association of

a point in kinematic space K with an interval [U, V ] on that time-slice of the CFT. The

2Note that here we follow the ‘original’ definition of kinematic space as the space of CFT intervals

in [1, 2], rather than the more general definition as the space of pairs of points in [3, 4]. The latter makes

use of the OPE block structure of the CFT, while the first is based more directly on the entanglement of

the CFT. In this paper we are interested in the kinematic space of [1, 2], which describes the ‘entanglement

dynamics’ of the CFT, as we are interested in to which extent the entanglement of the CFT can be treated

as a dynamic field itself.
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interval endpoints become lightcone coordinates in K. The construction ofK is summarized

in figure 1.

The Liouville stress tensor associated with the Liouville field ω is [10]

TLuu = − c

24π

(
1

2
(∂uω)2 − ∂2

uω

)
. (2.15)

Substituting the relation between ω and S we find that the Liouville stress tensor for the

vacuum entanglement as a Liouville field is given by the CFT stress tensor evaluated at

the interval endpoints (see also [11])

TLuu =
1

2π

(
−6

c
(∂uS)2 − ∂2

uS

)
=

c

24π
{X+, u} = −〈Tx+x+(x+ = u)〉

TLvv =
1

2π

(
−6

c
(∂vS)2 − ∂2

vS

)
=

c

24π
{X+, v} = −〈Tx+x+(x+ = v)〉

. (2.16)

Let us comment on the AdS3 perspective to make contact to another occurrence of

Liouville theory in this set-up. If the CFT under consideration is holographic, it has an

AdS3 dual. In 3 dimensions, Einstein-Hilbert gravity with a negative cosmological constant

is trivial in the sense that there are no propagating degrees of freedom. All solutions have

constant negative curvature and are thus locally AdS3. The most general such solution

that is asymptotically AdS3 (asAdS3) is the Banados metric, with radius l. In Fefferman-

Graham notation:

ds2
Banados = l2

dρ2

4ρ2
+ l2

(
L−(x−)(dx−)2 + L+(x+)(dx+)2

)
−
(
l2

ρ
+ l2ρL+L−

)
dx−dx+

with the boundary at AdS radius ρ → 0. The L functions correspond to the Brown-York

stress tensor components of asAdS3 gravity [12], and thus through AdS/CFT with the

corresponding expectation values of the CFT stress tensor [13]:

L± =
8πG3

l
〈Tx±x±〉 (2.17)

where G3 is the 3-dimensional gravitational constant. Because there are no local bulk

degrees of freedom, the physics of AdS3 gravity is located at the boundary and different

boundary conditions generate different boundary dynamics. In particular, the Brown-

Henneaux boundary conditions, imposing an asAdS3 metric, yield an asymptotic symmetry

algebra given by the Virasoro algebra, the conformal algebra in 2 dimensions, with c =

3l/2G3. The boundary dynamics of asAdS3 gravity are then described at the classical level

by a Liouville theory whose stress tensor is such that [14–16]

TLiou±± = 〈Tx±x±(x±)〉 =
c

12π
L±(x±), c =

3l

2G3
. (2.18)

There are thus different Liouville theories at play in the context of AdS3/CFT2. The equa-

tions (2.16) and (2.18) suggest a deeper relation between the Liouville theory associated

with kinematic space and the one associated with the AdS3 boundary dynamics, a better

understanding of which is left for future work.
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3 JT theory for kinematic space

The vacuum modular Hamiltonian for the interval in figure 1 is defined by writing the

reduced density matrix of the system as ρ = e−Hmod/ tr e−Hmod and is given by [17]

Hmod(U, V ) = 2π

∫ V

U
dS

(S − U)(V − S)

V − U TX+X+(S) (3.1)

or

Hmod(u, v) = 2π

∫ v

u
ds

(X(s)−X(u)) (X(v)−X(s))

(X(v)−X(u))X ′(s)
δTx+x+(s). (3.2)

It is normalized such that its vacuum expectation value vanishes, i.e. the stress tensors in

the integral are the (covariantly transforming) vacuum-subtracted ones

δTx+x+ = TX+X+

(
dX+

dx+

)2

. (3.3)

We again focus only on the contribution of right-moving degrees of freedom, equal to the

contribution of left-moving ones.

Upon perturbing the vacuum state slightly to the state |ψ〉, with reduced density

matrix ρ′ = ρ + δρ, the entanglement entropy S = − tr(ρ log ρ) changes by an amount

δS = − tr(δρ log ρ) to first order in δρ if we make use of tr(δρ) = 0. We can write

δS = δ〈Hmod〉 (3.4)

with the notation

δ〈Hmod〉 = 〈Hmod〉ψ. (3.5)

This relation is known as the ‘first law of entanglement’.

The authors of [2] were the first to notice that the entanglement perturbations δS

satisfy a Klein-Gordon equation on an emergent 2-dimensional de Sitter geometry or kine-

matic space. This provided an alternative definition of kinematic space, that was checked

to be equivalent to the definition of [1] in [18]. It was checked for different states of the

type (2.3), with an emphasis on the thermal one, which has X = β
2π tanh(2π

β x). The deeper

reason for the equivalence is the fact that the entanglement is a Liouville field. Indeed, (2.9)

expresses the constant curvature equation for the metric (2.13), which served as kinematic

space definition in [1]. On the other hand, when linearized (S → S+δS), (2.9) gives rise to

the wave equation on de Sitter, (�+ Λ)δS = 0. The same equation is true for the modular

Hamiltonian by the first law of entanglement.

We complete the set of equations that are satisfied by S and Hmod to what we could

call the ‘kinematic space on-shell identities’:

∂u∂v

(
12

c
S

)
=

2

δ2
u

e−
12
c
S (3.6)

e−
12
c
S∂u

(
e

12
c
S∂uHmod

)
= 2π δTx+x+(x+ = u) (3.7)

e−
12
c
S∂v

(
e

12
c
S∂vHmod

)
= 2π δTx−x−(x− = v) (3.8)

∂u∂vHmod = − 2

δ2
u

e−
12
c
SHmod. (3.9)
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By expressing these equations in terms of the natural metric (2.13) on K, they take

the more transparent form

R = Λ (3.10)

∇u∂uHmod = 2π δTx+x+(x+ = u) (3.11)

∇v∂vHmod = 2π δTx+x+(x+ = u) (3.12)

(� + Λ)Hmod = 0 (3.13)

with Λ = 2
`2

, � = δ2

`2
e−ω∂u∂v and R = − δ2

`2
e−ω∂u∂vω. This set of equations is to be

compared to the equations of motion (A.14)–(A.17) of Jackiw-Teitelboim theory, reviewed

in appendix A.

The first equation is the Liouville equation (2.9), the last equation is the dS wave

equation and the second and third are Jackiw-Teitelboim constraint equations. To-

gether, these identities map to the Jackiw-Teitelboim equations of motion in conformal

gauge (A.14)–(A.17), with the entanglement identified as (minus) the Liouville field ω and

the modular Hamiltonian as (minus) the dilaton (as quantum field operator):

ω = −12

c
S + 2 log

2`

δ
, (3.14)

Φ = −4GHmod + Φ0. (3.15)

Here we included a zero-mode term Φ0 in the solution of the dilaton. Its interpretation

will be discussed in section 6.4.

We can now write a kinematic space JT action (see (A.1))

IJT [g,Φ, φm] =
1

16πG

∫
d2σ
√−gΦ(R− Λ) + Im[g, φm] (3.16)

for a metric ds2 = gµνdσ
µdσν with lightcone coordinates u and v, a dilaton Φ and con-

formal matter fields φm. On a solution (3.14)–(3.15), the JT equations give rise to the

kinematic space on-shell identities (3.6)–(3.9) when the (vacuum-subtracted) CFT stress

tensor evaluated at the interval endpoints equals the dilaton matter stress tensor living on

kinematic space
δTx+x+(x+ = u) = Tmuu(u)

δTx+x+(x+ = v) = Tmvv(v)
. (3.17)

That is, the JT theory of K is coupled to a matter CFT on the dS2 kinematic space back-

ground so that the above is true. We conclude that the entanglement dynamics or kinematic

space dynamics of a given 2-dimensional CFT are governed by the JT theory (3.16) with

metric, dilaton and matter fields specified in equations (3.14), (3.15) and (3.17).

We can write equation (3.15), with notation ΦT for Φ− Φ0, as

ΦT

4G
= −Hmod. (3.18)

We take this identification as a defining principle for the construction of kinematic space:

associate a point in K with a CFT interval by promoting Hmod to a field operator ΦT
4G living

– 8 –
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on kinematic space. Here G is just a dimensionless number, but we include it to make the

comparison to JT more direct.

We have not written explicitly but assume the presence of the Polyakov action (A.18)

in the action (3.16) to reproduce the K identities after taking the expectation value in

the state |ψ〉. The effect of the trace anomaly can be absorbed in Φ0 so that the semi-

classical dilaton contribution 〈ΦT 〉 maps to a classical ΦT (some more details are given

in appendix A). The constructing principle of the semi-classical JT theory of K is then
ΦT
4G = −〈Hmod〉ψ or

δΦ

4G
= −δ〈Hmod〉. (3.19)

This notation helps us keep in mind that the state |ψ〉 is a small reduced density matrix

perturbation away from the vacuum.

4 JT theory for boundary kinematic space

Now let us consider a CFT2 in flat space ds2 = −dt2 +dx2, x ≥ 0 with a boundary at x = 0

and large central charge c, that is in the vacuum state |0〉X with respect to the coordinate

X = X+ = X−. The thermal state e.g. will have X(x±) = e2πx±/β . We impose reflective

boundary conditions

Tx+x+ = Tx−x− . (4.1)

Consider the interval that connects the point P at (x+, x−) to the boundary, as indicated

in blue in figure 2. The presence of the boundary has the effect that the entanglement

formula in (2.8) now counts the entanglement through that interval from both right- and

left-moving degrees of freedom:

S(x+, x−) =
c

12
log

(X+(x+)−X−(x−))2

δ2
xX

+′(x+)X−′(x−)
=

c

12
log

(X(x+)−X(x−))2

δ2
xX

′(x+)X ′(x−)
, (4.2)

with UV cutoff δx measured in x± coordinates. This is illustrated in figure 3. We omit here

a possible constant contribution from the boundary entropy [19] and will not be concerned

with the boundary dynamics of the theory, discussed in [6]. The boundary CFT (bCFT)

has a ‘boundary kinematic space’ K∂ . Via the definition

ds2
K∂

= −eωxdx+dx− = −
(

2`

δx

)2

e−
12
c
S(x+,x−)dx+dx−, (4.3)

the entanglement determines the metric on K∂ to be (a slicing of) the AdS2 metric

ds2
K∂

= −4`2dX+dX−

(X+ −X−)2
= −4`2X ′(x+)X ′(x−)dx+dx−

(X(x+)−X(x−))2
, X+ = X(x+), X− = X(x−).

Here we follow the discussion of the boundary kinematic space of a d-dimensional bCFT

in [7], applied to d = 2: for a CFT defined on ds2 = −dt2 +dx2, x ≥ 0 in the vacuum state

|0〉X = |0〉x (or uniformizing coordinates X equal to the CFT coordinates x), the definition

– 9 –
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t

x

x−P

x+P

P

Figure 2. Interval [P , boundary x = 0] (in blue) on a constant time slice of a bCFT2 in vacuum

state |0〉X . It is specified by the location of the point P in CFT lightcone coordinates (x+P , x
−
P ). The

kinematic space construction involves 1) promoting the x = 0 boundary of the CFT to spacelike

infinity of kinematic space, 2) identifying x+ and x− with kinematic space lightcone coordinates,

and 3) using the one-interval entanglement formula to define a hyperbolic metric on kinematic

space through equation (4.3). The yellow triangle is a sketch of the emergent AdS2 kinematic space

K∂ , superimposed here on the picture of the bCFT background. Note that the kinematic space

lightcone coordinates are just given by the bCFT lightcone coordinates, which is different from the

situation in figure 1 for a CFT without boundary.

of kinematic space as the space of pairs of points [3, 7] leads to the kinematic space metric

ds2
K∂

= `2

x2
(−dt2 + dx2). A pair of points in this case refers to the point P in figure 3 and

its mirrored image across the boundary x = 0. The kinematic space metric so obtained is

the metric of AdS2, rather than dS2 in section 2. This explains our choice of sign in the

definition (4.3) of the boundary kinematic space metric in terms of the entanglement (4.2).

The construction of K∂ is summarized in figure 2. Compared to the dS kinematic

space K, it are the lightcone coordinates of the CFT that become lightcone coordinates in

K∂ , and the boundary of K∂ that allows a natural association of just one point in K∂ with

one interval in the CFT is spacelike rather than timelike.

Because of the identification between CFT and kinematic space lightcone coordinates,

the vacuum entanglement Liouville stress tensor relates directly to the vacuum expectation

value of the CFT stress tensor via

TLx+x+ =
1

2π

(
−6

c
(∂+S)2 − ∂2

+S

)
=

c

24π
{X+, x+} = −〈Tx+x+〉

TLx−x− =
1

2π

(
−6

c
(∂−S)2 − ∂2

−S

)
=

c

24π
{X−, x−} = −〈Tx−x−〉

, (4.4)

compared to the analogue observation (2.16) in section 2. We will comment on the inter-

pretation of this relation at the end of section 5.3 (without being able however to elucidate

the meaning of (2.16)).

Similar to the entanglement formula, equation (3.2) determines the full modular Hamil-

tonian (from both right- and left-moving degrees of freedom) through the interval that
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x+ = x−
x+ x−

x−P

x+P

P −P

x−P

x+P

Figure 3. To write down the expressions for S and Hmod through the interval [P , boundary x = 0],

it is instructive to consider the doubled interval stretching from the point P to its mirror image

denoted −P . The formula (4.2) counts the entanglement contribution from right-moving degrees of

freedom through the doubled interval, or the full entanglement through [P , boundary x = 0]. We

employ here the Penrose diagram representation of flat space with future and past null infinity at

45 degree angles.

connects P at (x+, x−) to the boundary:

Hmod(x+, x−) = 2π

∫ x+

x−
ds

(X(s)−X(x−)) (X(x+)−X(s))

(X(x+)−X(x−))X ′(s)
δTx+x+(s). (4.5)

Analogous to the discussion in section 3, we can write down the set of ‘boundary kinematic

space K∂ identities’

∂+∂−

(
12

c
S

)
=

2

δ2
x

e−
12
c
S (4.6)

e−
12
c
S∂+

(
e

12
c
S∂+Hmod

)
= 2π δTx+x+(x+) (4.7)

e−
12
c
S∂−

(
e

12
c
S∂−Hmod

)
= 2π δTx−x−(x−) (4.8)

∂+∂−Hmod = − 2

δ2
x

e−
12
c
SHmod (4.9)

or in more transparent form, when expressed in terms of the natural metric ds2
K∂

,

R = −Λ (4.10)

∇+∂+Hmod = 2π δTx+x+(x+) (4.11)

∇−∂−Hmod = 2π δTx−x−(x−) (4.12)

(�− Λ)Hmod = 0. (4.13)

By comparison to the JT equations of motion in AdS conformal gauge (A.10)–(A.13),

the following identifications between metric and entanglement and between dilaton and
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modular Hamiltonian can be made

ω = −12

c
S + 2 log

2`

δ
, (4.14)

Φ = −4GHmod + Φ0. (4.15)

The boundary kinematic space is thus governed by the JT action

IJT [g,Φ, φm] =
1

16πG

∫
d2σ
√−gΦ(R+ Λ) + Im[g, φm] (4.16)

for a metric ds2 = gµνdσ
µdσν with lightcone coordinates x+ and x−, and a dilaton Φ

(specified by equations (4.14) and (4.15)), and conformal matter fields φm. The matter

action Im of the JT theory of K∂ is a bCFT on the AdS2 kinematic space background,

with stress tensor

δTx+x+(x+) = Tmx+x+(x+). (4.17)

We interpret this last equation as follows: the kinematic space K∂ of a given bCFT is

obtained by coupling that bCFT to AdS2 JT gravity. Schematically, the kinematic space

action (4.16) — or in other words, the action that governs the entanglement dynamics of

the bCFT — can then be written as

IK∂ of bCFT =
1

16πG

∫
d2σ
√−gΦ(R+ Λ) + IbCFT , (4.18)

where the metric and dilaton are respectively identified with the entanglement and modular

Hamiltonian of the bCFT. This action expresses the identification of Hmod as a collective

mode of the CFT that obeys the K∂ identities given above. Why was this interpretation not

introduced in the discussion of the de Sitter kinematic space of a CFT (without boundary)

in section 3? In that case, the JT matter stress tensor and the CFT stress tensor could

not be equated. Their relation was stated in equation (3.17). Indeed, it is the fact that

the lightcone coordinates of the bCFT become the lightcone coordinates of the boundary

kinematic space that allows to construct K∂ from coupling the bCFT to JT gravity.

We take ΦT
4G = −〈Hmod〉ψ, or in different notation

δΦ

4G
= −δ〈Hmod〉, (4.19)

as constructing principle for the semi-classical JT theory of K∂ .

5 JT gravity and boundary kinematic space from maximal entanglement

principle

We have argued in the previous section that given a 2-dimensional CFT with boundary,

its one-interval vacuum entanglement can be promoted to a field in kinematic space, the

dynamics of which is described by a JT theory of 2-dimensional gravity coupled to the

given boundary CFT. Similar elements occur in the maximal entanglement hypothesis put

– 12 –
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forward in [8] (a related principle is discussed in [20]), which is reviewed below. Para-

phrased crudely, it states that imposing maximal entanglement in the vacuum state of a

d-dimensional CFT amounts to coupling said CFT to gravity. Like other claims regarding

the emergence of geometry from entanglement, it is based on reinterpreting a gravitational

first law (in a theory of gravity) as a statement about entanglement in a CFT (without

gravity). The former is given in equation (5.4) and the latter in equation (5.5) for the

original d-dimensional argument, which was valid for d > 2. We proceed to discuss a d = 2

version of the argument in section 5.2. The strategy is to reinterpret the gravitational first

law of AdS JT gravity given in equation (5.7) as a statement about entanglement, (5.10),

in a 2-dimensional boundary CFT. We propose that the semi-classical JT equations of mo-

tion can indeed be obtained from a 2-dimensional version of Jacobson’s maximal vacuum

entanglement principle. Finally, we return to the boundary kinematic space context in

section 5.3. It is argued that the construction of boundary kinematic space amounts to

imposing a maximal entanglement principle in the bCFT, effectively coupling it to semi-

classical AdS JT gravity.

5.1 Review of maximal entanglement principle

Jacobson’s maximal entanglement hypothesis [8] is set in the context of quantum fields

φm on a d-dimensional background geometry gµν . It states that the semi-classical Einstein

equations Gµν+Λgµν = 8πG〈Tmµν〉 are equivalent to, and can be derived from, the statement

that the vacuum state of the system (gµν , φm) has maximal entanglement, when gµν is a

maximally symmetric spacetime with cosmological constant Λ. The statement is most clear

in the case of conformal matter φm, which is the case we will restrict to in this paper.

Consider a spherical entangling surface B with causal domain of dependence D(B) in

a d-dimensional maximally symmetric background gµν (gravity is ‘turned off’, Gd → 0).

The entanglement of quantum matter fields in B with the rest of the system typically has

UV divergences, arising from infinitely many degrees of freedom at the boundary surface

∂B. The leading divergence scales with the area of ∂B:

S = #
A(∂B)

εd−2
+ subleading divergences + Srenormalized. (5.1)

One can now assume that unknown quantum gravity mechanisms impose finiteness of the

entanglement S by effectively imposing a UV cutoff equal to the Planck length ε = lP
(effectively ‘turning on’ gravity, Gd 6= 0). As a consequence, the entanglement will contain

an effective ‘geometrical part’ SUV that represents the contribution from UV degrees of

freedom, and a ‘matter part’ S for the IR degrees of freedom. The distinction between

these contributions is ambiguous and renormalization scheme dependent, but the choice

can be made to have metric variations only affect SUV and matter variations only affect

SIR. Under a simultaneous variation of gµν and φm, one can then write3

δg,φmS = δgSUV + δφmS. (5.2)

3In what follows we will simply write δ for all variations.
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The difference between the surface area A(∂B) of a ball B in the perturbed geometry

gµν + δgµν and a ball B with the same volume in the unperturbed geometry gµν is denoted

δA|V . A purely geometric relation relates the surface area difference to the Einstein tensor

variation. The value of the cosmological constant Λ of the maximally symmetric spacetime

is not fixed by the argument but given at the onset.4 On the other hand, δS can be written

as a function of the variation of the matter stress tensor by making use of the first law

of entanglement δS = δ〈Hmod〉. For d > 2, these considerations allow to interpret the

maximal entanglement condition

δS|V = 0 (5.3)

as expressing the linearized semi-classical Einstein equations. By the use of Riemann

Normal Coordinates these imply the non-linear equations of motion at the center of each

ball, provided the radius of the ball is small enough compared to the curvature radius of the

geometry, and thus the non-linear semi-classical Einstein equations Gµν+Λgµν = 8πG〈Tmµν〉
if the argument is to hold for all points in the geometry and in all frames.

First law derivation of maximal entanglement principle. The equivalence of

δS|V = 0 and the Einstein equations can alternatively be derived from a ‘first law of

causal diamond mechanics’ [8, 21]. To obtain such a first law in a gravitational theory

consisting of a metric and matter fields, one evaluates the relation (B.6) for the region

Ξ = B with conformal Killing vector ξ satisfying ξ|∂B = 0:∫
∂B
δQξ − δHg

ξ − δHm
ξ = −

∫
B
δCξ (5.4)

for variations δ to a nearby solution. We imagine replacing all stress tensors in this iden-

tity by their (covariant) expectation value to obtain the semi-classical, linearized constraint

equations on the right hand side. It is shown in [8, 21] that δHg
ξ is proportional to the

variation of the volume of the ball in the case of general relativity. Combined with the

relation δ〈Hm
ξ 〉 ∼ δS, which follows from the direct proportionality of the matter Hamil-

tonian with the modular Hamiltonian and the first law of entanglement, the left hand side

can be written as

κ

2π
δSWald|V +

κ

2π
δS =

κ

2π
δS|V . (5.5)

It follows immediately that δS|V = 0 when the semi-classical, linearized constraint equa-

tions are satisfied, δCξ(〈Tab〉) = 0. The ‘first law of causal diamond mechanics’ is not to

be interpreted as a physical process first law [22], but as an equilibrium state first law [21].

5.2 Maximal entanglement principle applied to JT

The goal of this section is to reinterpret the JT first law as a maximal entanglement

principle in a 2-dimensional CFT on an AdS background. We follow the standard Iyer-

Wald formalism in the discussion of the JT first law, and refer to section 6.3 for a more

detailed derivation of both the JT mass formula and first law.
4A similar remark applies in [20].
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z=
∞

z=
∞

−PP

Figure 4. Left : the AdS2-black hole solution of JT (yellow) and the Poincaré solution (largest

triangular region), described by Poincaré covering coordinates t and z. The Killing vector ξJT
associated with the Killing horizon of the black hole solution vanishes at the point {t = 0, z = 1√

µ}
labeled by the dot. The boundary is at z = 0. The coordinate axes refer to global AdS2 coordinates,

see e.g. [23, 24]. Right : the AdS2-black hole solution has a metric Killing vector ξg, with flow lines

in green, that vanishes in P . The point P at location (X+, X−) or (t = t0, z = R) in Poincaré

covering coordinates marks the boundary ∂Σ of the interval Σ = [P , boundary z = 0] (in blue).

Imposing reflective boundary conditions at z = 0, the interval can be effectively doubled to a region

with diamond-shaped domain of dependence �.

JT first law. We discuss here the ‘first law’ (or variational version of the JT mass formula

derived in section 6.3) for the AdS2 black hole solution of JT gravity. This solution is

illustrated in figure 4 and reviewed at some length in appendix A. The standard formalism

for discussing gravitational first laws is that of Iyer and Wald [25], as reviewed in appendix B

where the (standard) notation is set.

JT theory has gravitational fields φg = {gµν ,Φ} and matter fields φm. Evaluating

equation (B.4) for the Killing vector ξJT of the black hole solution gives rise to an expression

of the form δM = TδSbh + δEK , with EK the Killing energy of matter fields, M the mass,

T the temperature and Sbh the Bekenstein-Hawking entropy of the black hole. In the

standard interpretation, this formula compares to first order the thermodynamic quantities

of a stationary black hole solution and another stationary black hole solution that is a

linear perturbation away. Alternatively, in the ‘physical process’ interpretation of [22], it

expresses the change in thermodynamic quantities as matter is thrown into an initially

stationary black hole and it settles down into a final stationary state.

Now we similarly write a first law, not for the Killing vector ξJT that vanishes at the

real horizon of the black hole solution, but for the Killing vector ξg that vanishes at the

‘horizon’ at any point P : the JT solution in Poincaré covering coordinates (A.26)–(A.27)

has a metric Killing vector ξg that vanishes at the boundary ∂� = {P,−P} of the doubled

interval with diamond-shaped domain of dependence � presented in figure 4 (right). By

considering the diamond-shaped region we are assuming reflective boundary conditions at

the AdS2 boundary. We evaluate the off-shell identity (B.6) for the region Ξ = � and vector
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ξ = ξg to obtain

δHg
ξg

+ δHm
ξg =

∫
∂�
δQξg +

∫
�
δCξg(E) (5.6)

(with Hamiltonian H, Noether charge Q and C(E) the constraint equations) for variations

in the fields to a nearby solution.

Let us discuss each term. The first term vanishes on account of the vector ξg being a

Killing vector of the metric, δξggµν = 0, and on account of the JT feature that the metric

remains invariant, δgµν = 0. The gravitational part of the symplectic current ωg, which

contains terms in δξgΦδgµν , δΦδξggµν and δξggµνδgµν , then vanishes, even though the dila-

ton is not everywhere invariant under ξg. The second term is the matter Hamiltonian for

flows along ξg, and is per definition [17, 26] given by the modular Hamiltonian5 HP
mod of the

interval Σ in figure 4 (right). That is, δHm
ξg

= −2
` δH

P
mod. By standard Iyer-Wald formula-

tion, the first term on the right hand side in (5.6) is equal to the Wald entropy 2
` δSWald,

which is a generalized Bekenstein-Hawking entropy for non-Einstein gravity theories. We

thus find

−δHP
mod = δSWald + `

∫
Σ
δCξg(E). (5.7)

It follows that on-shell,

δHP
mod = −δΦ|P

4G
, (5.8)

because the Wald entropy of a dilaton gravity theory is given by the dilaton evaluated at

the ‘horizon’, SWald = Φ
4G [27, 28].

Reinterpreting JT first law as entanglement principle in bCFT on AdS back-

ground. It follows from equation (5.7) that the semi-classical, linearized constraint equa-

tions of motion of JT gravity can alternatively be expressed as a first law

δSWald + δ〈HP
mod〉 = 0 (5.9)

at any point P , or for any interval Σ. The first law of entanglement δ〈HP
mod〉 = δS in the

matter CFT of JT can subsequently be used.6 The statement that the ‘total entanglement’

is maximal

δS = 0, δS = δSWald + δS (5.10)

5Here we use the notation HP
mod for the modular Hamiltonian of the CFT on the AdS2 background

(with radius `), to distinguish it from the modular Hamiltonian Hmod of the bCFT on a flat background

considered in (4.5). In section 6.2 we will see however that they are in fact equal.
6Here we could have employed the notation δSP for the entanglement perturbations across the point

P of the CFT on the AdS2 background, to distinguish it from the entanglement perturbations δS of the

bCFT on a flat background (as encountered in the context of section 4). However, based on the comment

in footnote 5 which implies δS = δSP , we can avoid this redundant notation.
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for all intervals Σ in the matter bCFT and in all frames, then becomes equivalent to the

semi-classical, linearized JT equations of motion (see (A.7))

δ

(
gµν�Φ−∇µ∇νΦ− 1

2
gµνΛΦ

)
= 8πG2 δ〈Tµν〉. (5.11)

As the variation on the left hand side only works on the dilaton (δgµν =0), (5.11) reduces to

gµν�δΦ−∇µ∇νδΦ−
1

2
gµνΛδΦ = 8πG2 δ〈Tµν〉. (5.12)

Making use of the linearity in the dilaton of the left hand side, these equations can be

integrated directly to the full JT equations of motion

gµν�Φ−∇µ∇νΦ− 1

2
gµνΛΦ = 8πG2 δ〈Tµν〉. (5.13)

Compared to the general Jacobson argument there are some differences. One, we don’t

need to impose constant volume since δHg
ξg

= 0 in the JT theory. Second, the interval Σ

has arbitrary size, rather than being small. Indeed, we don’t require the use of Riemann

Normal Coordinates (and thus small radius of Σ) to integrate the linearized JT equations

of motion to the full JT equations of motion, because of the linear (in the dilaton) nature

of the JT model.

We formulate our conclusion as follows. Given a 2-dimensional CFT on a background

with a boundary and negative cosmological constant Λ, imposing that the entanglement

across any point P in figure 4 is maximal in the vacuum state, δS = 0, amounts to coupling

the bCFT to semi-classical JT gravity.

Let us remark that we can also obtain the above as a 2-dimensional limit of the original

derivation in [8] (from the formula for δA|V rather than the first law argument), by making

use of the techniques in [29]. That paper describes a d→ 2 limit of Einstein gravity giving

rise to dilaton gravity7

lim
d→2

1

8πGd
Gµν =

1

8πG2

(
gµν�Φ−∇µ∇νΦ− 1

2
gµνΛΦ

)
(5.14)

if the d-dimensional gravitational constant Gd scales as

lim
d→2

8πGd =

(
1− d

2

)
8πG2. (5.15)

5.3 Maximal entanglement principle applied to boundary kinematic space

Because of the remarks in footnote 5 and 6, we could also interpret (5.10) as a maximal

entanglement principle for a given 2-dimensional CFT on a background with a boundary

and zero cosmological constant Λ (rather than negative Λ, as in the conclusion of the

7We don’t write the kinetic term in Φ that appears in the resulting action in [29], because such an

explicit kinetic term for the dilaton can be tranformed away by a Weyl transformation (e.g. [30]) to obtain

the form of the JT action as used throughout the paper. Alternatively, [31] obtains a Liouville dilaton

gravity theory from a d→ 2 limit of Einstein gravity.
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previous subsection). For the maximal entanglement principle to then be the expression of

a gravitational first law of the type (5.6), the type of gravity that the bCFT couples to has

to have δHg
ξ = 0, where ξ is the kernel in the modular Hamiltonian (4.5) of the bCFT. As

discussed in section 5.2, this will be the case when both δξgµν = 0 and δgµν = 0. The first

condition imposes a hyperbolic metric — in this interpretation Λ is also emergent. The

second condition is moreover true when the bCFT couples to JT dilaton gravity specifically,

which has the property that the metric is always AdS2.

It was argued in section 4 that equation (4.19) can be taken as a constructing prin-

ciple for the boundary kinematic space K∂ of a given bCFT2: the modular Hamiltonian

Hmod(x+, x−) defines a propagating field at the location (x+, x−) in kinematic space via
δΦ
4G = −δ〈Hmod〉. This constructing principle takes the form of the 2-dimensional maximal

entanglement principle (5.10), which expresses the coupling of the given bCFT2 to JT grav-

ity. We conclude that the boundary kinematic space of a bCFT2 as defined in [7] is obtained

by coupling the bCFT2 to AdS2 JT gravity through a maximal entanglement principle.

The JT kinematic space theory is obtained from writing the kinematic space princi-

ple (4.19) in the form (5.12) with δΦ = −4Gδ〈Hmod〉, and integrating (5.12) to (5.13) while

keeping the metric fixed, to find the K∂ identities in (4.7)–(4.9). Alternatively, the lin-

earized equations (5.12) with δΦ = −4GδS, having used the first law of entanglement (3.4),

can be integrated to the Liouville equation (4.6) and the Liouville stress tensor in (4.4):

TLµν = −〈Tµν〉. (5.16)

This corresponds to integrating the linearized JT equations with the metric coordinates ad-

justed at each step to the uniformizing coordinates according to the Liouville field solution

S, instead of keeping the metric coordinates fixed.

6 JT model: entanglement considerations

In this last section, we elaborate on some aspects of the JT model (with AdS2 metric

and conformal matter). It can be read as a stand-alone section, discussing respectively

entanglement of the coupled CFT, the JT mass formula and the vacuum contribution to

the dilaton. Nonetheless, we will conclude each subsection with comments relevant to

kinematic space.

Consider the Jackiw-Teitelboim model

I[g,Φ, φm] =
1

16πG

∫
d2σ
√−gΦ (R+ Λ) + Im[g, φm]. (6.1)

The matter part of the action Im describes a conformal field theory coupled to the metric

ds2 = gµνdσ
µdσν . This is a general Jackiw-Teitelboim theory with the assumption that the

matter part of the action is independent of the dilaton. It is the action used in [24, 32, 33]

as bulk dual of a Schwarzian theory but we will not be concerned with that interpretation

here (except for one related comment in section 6.4.1). Instead we discuss the mass formula

and first law that allow us to relate the modular Hamiltonian of conformal matter φm in an

‘entanglement wedge’ with the value of the non-homogeneous contribution to the dilaton

at the ‘entanglement wedge horizon’, see equation (6.22).
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6.1 Entanglement

Let us consider the CFT described by Im in the action (6.1). It is a 2-dimensional boundary

CFT coupled to the AdS2 metric given in (A.26) or (A.28). The boundary of the metric is

at X+ = X− in Poincaré coordinates or at x+ = x− in black hole coordinates.

We consider the CFT to be in the vacuum state |0〉X . When the parameter µ is non-

zero in the JT solution, this corresponds through (A.31) with a thermal state with respect

to the black hole coordinate system. We will work in the covering coordinate system X±

for the remainder of this section for the purpose of notational simplicity.

The presence of the boundary allows us to associate an entanglement entropy and

modular Hamiltonian with a point P , which we will refer to in this section as SP and

HP
mod. We repeat that these are associated with the matter CFT on the AdS2 geometry

ds2 = −eωXdX+dX− of the JT solution. Consider a point P with coordinates (X+, X−)

and a Cauchy slice through P that is divided in an ‘inside-P ’ and ‘outside-P ’ region, as

shown in figure 4 (right). We want to write down the expression for the entanglement SP
across P (see also [23]). We will follow [34] in order to do so, where the following formula8

is given for the entanglement of an interval of length (X+−X−) in a curved 2-dimensional

background ds2 = −eωXdX+dX−:

SP =
c

12
ωX +

c

6
log

X+ −X−
δi

. (6.2)

Here δi is a UV cutoff measured in local inertial coordinates at P . This expression includes

the contribution from both right-moving and left-moving degrees of freedom, thanks to the

reflective boundary conditions. In the metric under consideration (A.26), the conformal

factor is

ωX = 2 log
2`

X+ −X− (6.3)

so that after substitution we find

SP =
c

6
log

2`

δi
. (6.4)

That is, we find that the entanglement for the interval Σ = [P, boundary z = 0] takes

the form of a Rindler entropy [34] with an IR cutoff that is given by the AdS radius. It

follows that

ω = −12

c
S + 2 log

2`

δi
(6.5)

ω = −12

c
S +

12

c
SP (6.6)

where we have used the notation S for the ‘local’ entanglement c
6 log X+−X−

δi
.

8This formula is derived by applying the standard formula for the vacuum one-interval entanglement in

flat space ds2 = −dx+i dx
−
i (with the index i referring to inertial), but for a vacuum state |0〉X that is defined

with respect to coordinates X±(x±i ), in terms of which the metric takes the form ds2 = −eωXdX+dX−.

Then SP = c
6

log LX
δX

= c
6

log δi
δX

+ c
6

log LX
δi

= c
12
ωX + c

6
log LX

δi
, where LX denotes the length of the

interval measured in X coordinates, δX the UV cutoff measured in X coordinates and δi the UV cutoff in

xi coordinates. The resulting expression is then reinterpreted to give the formula in curved spacetime.
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The local vacuum entanglement S of the bCFT on AdS2 maps to the conformal mode

ω according to equation (6.5). The JT equation of motion (A.10) for the conformal mode

thus imposes S to satisfy the Liouville equation (4.6).

It further follows from equation (6.6) that δS = δSP (this is the result referred to in

footnote 6) if we make use of δω = 0, i.e. using once more that the background metric is

unchanged under the variation to a nearby stationary JT solution.

Relevance to kinematic space. Since the expression for S above matches the one for

the entanglement (4.2) across the point P in a bCFT on a flat background, the result in

equation (6.5) explains why the vacuum entanglement of a boundary CFT satisfies a Liou-

ville equation, i.e. the first of four JT equations of motion, which was the starting point for

the construction of boundary kinematic space. By extension, it gives immediate intuition

for the perhaps arbitrary-looking identification in (2.10) of the vacuum entanglement in a

CFT (without boundary) with the conformal mode of its kinematic space, which served as

the definition of the kinematic space metric.

Furthermore, the equality of δS and δSP allowed us to reinterpret the JT first law as

an entanglement principle in a bCFT on a flat background in section 5.3.

6.2 Modular Hamiltonian

To write down the formula for the modular Hamiltonian HP
mod for the same set-up, we need

to discuss the ‘thermodynamics’ associated with the point P , with which we can associate

a Killing ‘horizon’ by considering the Killing vector ξg that vanishes in P . The flow lines

of ξg are shown in figure 4 (right). Indeed the modular Hamiltonian will be determined by

the Killing energy along those flow lines.

The Killing vector of the AdS2-Poincaré metric (A.26) that acts within the triangular

domain of dependence / of the interval depicted in figure 4 (right) is given by

ξg = −π(−R2 + (t− t0)2 + z2)

R`
∂t −

2π (t− t0) z

R`
∂z. (6.7)

It vanishes at the point P with coordinates z = R, t = t0. The subscript g emphasizes ξg
is a Killing vector of the metric. The dilaton transforms non-trivially under it. We could

introduce black hole coordinates x± whose full range cover only the domain of dependence /:

they are related to the Poincaré covering coordinates X± = t±z via X± = R tanh x±

R +t0.

In terms of these coordinates the above Killing vector is just a black hole time translation

ξg = 2πR∂τ .

The surface gravity9 of P is

κ =

√∣∣∣∣12∇µξνg∇µξgν
∣∣∣∣
∣∣∣∣∣
P

=
π(R2 − (t− t0)2 + z2)

`Rz

∣∣∣∣
t=t0,z=R

=
2π

`
(6.8)

and its temperature

T =
κ

2π
=

1

`
. (6.9)

9We will drop quotes on the ‘thermodynamic’ quantities associated with P from now on.
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The Wald entropy, following the definition in terms of the Noether charge Q(ξg) of [25, 35],

becomes

SWald =
2π

κ

∫
P
Q(ξg) =

2π

κ

1

16πG

(
εµνΦ∇µξνg + 2εµνξ

µ
g∇νΦ

)∣∣
P

=
Φ|P
4G

(6.10)

because εµν∇µξνg |P = 2κ and εµνξ
µ
g∇νΦ|P = 0 for any P different from the horizon of the

background.

The spacelike interval Σ at t = t0, with induced metric hzz = `2/z2, has a normal

nt = −1/
√
|gtt| = −`/z and a directed surface element dΣt = −nt

√
|h|dz = `2dz/z2,

consistent with dΣµ = εµαdx
α. Note that dΣt = −dz is then past-directed per convention,

leading us to define the Killing energy through Σ with a minus sign:

EK,/ = −
∫

Σ
dΣµTmµνξ

ν
g =

2π

`

∫ R

0
dz
R2 − z2

2R
Tm00(t0, z). (6.11)

In terms of the lightcone coordinates (X+ = t0 + R, X− = t0 − R) of the point P , we

rewrite the energy to

EK,/ =
2π

`

∫ X+

X−
ds

(s−X−)(X+ − s)
X+ −X− TmX+X+(s = t0 + z) (6.12)

with Tm00 = 2TmX+X+ because of reflective boundary conditions. The modular Hamiltonian

of the CFT on the AdS2 background is then given by [17, 26]

HP
mod =

2π

κ
EK,/ (6.13)

or

HP
mod = 2π

∫ X+

X−
ds

(s−X−)(X+ − s)
X+ −X− TmX+X+(s). (6.14)

From comparison with the dilaton solution (A.33) we can make the observation that the

dilaton at location (X+, X−) is related to HP
mod at that point by

ΦT = −4GHP
mod. (6.15)

In the upcoming subsection we discuss the JT mass formula in order to derive the above

relation between Φ and HP
mod. From this relation it immediately follows that HP

mod satisfies

the JT dilaton equations of motion (A.11)–(A.13).

Relevance to kinematic space. The Killing vector ξg of the conformally flat back-

ground AdS2 is also a conformal Killing vector ξ of 2-dimensional flat space. As a result,

HP
mod of the AdS2 bCFT and Hmod of the flat space bCFT, discussed in section 4, are

given by the same formula, (6.14) and (4.5) respectively. It then follows that Hmod of the

flat space bCFT should also satisfy JT equations of motion, as we indeed observed they

do in (4.6)–(4.9), interpreted there as kinematic space identities. This reasoning implicitly

equated the stress tensors of both bCFT’s in equating their modular Hamiltonians, consis-

tent with the interpretation of boundary kinematic space in (4.18) as the coupling of the

bCFT to AdS2 JT gravity.
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6.3 Mass formula

We are still considering the AdS2-black hole solution of JT. Its metric has a horizon at

X± = ± 1√
µ , and with that horizon we can associate a mass formula. For this purpose, we

write down the Killing vector of the solution

ξµJT = ` εµν∇νΦ. (6.16)

Indeed, the dilaton is automatically constant along the Killing vector lines δξJTΦ =

ξµJT∇µΦ = 0 and so is the metric δξJT gµν = ∇νξJTµ +∇µξJTν = 0.

In 2 dimensions, a divergenceless current is always dual to the gradient of a scalar M

through Jµ = ε ν
µ ∇νM . For the JT black hole solution in absence of matter, the current

Jµ = Tµν ξ
ν
JT = TΦ

µν ξ
ν
JT , with TΦ

µν given in (A.5), is conserved by the definition of the

Killing vector ξJT in (6.16). The corresponding mass function reads [36]

M = − `

16πG

(
(∇Φ)2 − 1

`2
Φ2

)
. (6.17)

It is constant on-shell, ∂αM = εµαT
µνξJTν , evaluating to a2µ

16πG` . This leads to a mass formula

of the form M∞ = Mh or 2M = TSbh relating the mass, temperature and Bekenstein-

Hawking entropy of the black hole solution [28].

A stationary JT black hole solution in the presence of matter will in general have a

Killing vector ξ that is not equal to the one of the homogeneous solution ξJT . The Killing

vector ξ would equal ξJT only when Tmµν ∼ gµν , which is the case when the matter action

Im is of the form Im =
∫ √

g Lm(φm,Φ) (while we rather make the assumption that Im is

independent of the dilaton, not the metric). But even for ξ different from ξJT , the current

Jµ = Tµν ξ
ν will be conserved as long as ξ is the Killing vector of the metric10 and the

energy-momentum tensor is conserved. The latter follows from diffeomorphism invariance

of the gravitational theory. Because both the gravity part and the matter part of the action

are separately diffeomorphism invariant we have ∇µTµν = ∇µTµνΦ = ∇µTµνm = 0 and the

divergenceless current Jµ = TΦ
µν ξ

ν allows the definition of a mass function (e.g. [37]),

via ∂αM = εµαT
µν
Φ ξν , that is not constant on-shell, ∂αM = −εµαTµνm ξν . Integrating the

last equation over the outside-horizon region gives rise to a mass formula with an extra

contribution EK being the Killing energy of a matter fluid surrounding the black hole.

For the JT Poincaré solution with matter or the JT black hole solution with matter

in Poincaré covering coordinates one can consider the mass formula associated with the

vector ξg, a Killing vector of the metric (but not of the dilaton) that vanishes at the point

P at the position (t = t0, z = R) (see figure 4). In direct analogy with the preceding

discussion, the conservation of the current Jµ = TΦ
µν ξ

ν
g , with TΦ

µν defined in (A.5) and ξg
in (6.7), determines an associated mass function through ∂αMg = εµαTΦ

µν ξ
ν
g . We find

Mg = − 1

8πG

π

`R

(
R2 − (t− t0)2 + z2

z
Φ + (R2 − (t− t0)2 − z2)∂zΦ− 2 (t− t0) z ∂tΦ

)
.

10Note that ξ need not be a Killing vector of the dilaton but only of the metric for this argument.
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Since Mg is linear in Φ, we have Mg(Φ) = Mg(Φ0) + Mg(ΦT ) for which we will use the

notation Mg = M0
g + MT

g . On the dilaton solution (A.27) of the homogeneous equations

TΦ
µν = 0, per definition Mg is constant. Its constant value is related to the value of the

dilaton at P by M0
g = −Φ0|P /4G`. In the presence of matter however, TΦ

µν = −Tmµν and

MT
g instead of being constant depends on z (and t). When evaluated at the point P , MT

g

does take the value of the dilaton MT
g = −ΦT |P /4G`. We also wish to evaluate MT

g at the

boundary z → 0 of Σ. This requires us to substitute the solution (A.33) for ΦT (X+, X−)

written as a function of t and z using X± = t± z,

ΦT (t = t0, z) = −8πG

∫ −z

z
ds
s2 − z2

2z

T00(s)

2
. (6.18)

It follows that in the limit z→ 0, MT
g (t = t0, z)→ 0. A mass formula is then obtained from

the integration of ∂αMgdx
α = εµαTΦ

µν ξ
ν
gdx

α over Σ and on-shell evaluation TΦ
µν = −Tmµν :∫

∂Σ
Mg = −

∫
Σ
Tmµνξ

ν
gdΣµ. (6.19)

The right hand side is the canonical energy EK,/ through Σ as defined in (6.11). Further

making use of equations (6.13) and (6.9), the right hand side is then given by HP
mod/`. The

left hand side reduces to (leaving the evaluation at t = t0 implicit)

Mg(R)−Mg(0) = M0
g (R) +MT

g (R)−M0
g (0)−MT

g (0) (6.20)

= MT
g (R) = −ΦT |P

4G`
, (6.21)

where in the second line we made use of the constancy of M0 as well as the fact that

MT
g (z→ 0) vanishes. We finally are left with

−ΦT |P
4G

= HP
mod , (6.22)

meaning we have succeeded in understanding the origin of the observation (6.15) from the

JT mass formula for the Killing vector ξg. We have shown that, schematically, that mass

formula takes the form M∞ −Mh = EK or M∞ = TSWald + EK . Subtracting from it the

vacuum mass formula, and making use of the JT theory feature that all back-reaction is

carried by the dilaton rather than the metric, gives T∆SWald +EK = 0, with EK = HP
mod/`

per definition vacuum-subtracted and T∆SWald = ΦT
4G` , resulting in (6.22).

Relevance to kinematic space. The variational version of the JT mass formula or JT

first law for the AdS2 black hole solution was used in sections 5.2 and 5.3, see in particular

equation (5.8), to argue for a maximal entanglement principle interpretation of boundary

kinematic space.

6.4 Interpretation of Φ0

Having established in (6.22) a relation between entanglement properties of the matter

CFT of the JT black hole solution and the stress tensor dependent part of the dilaton, we
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investigate in this section the interpretation of the vacuum part Φ0 of the dilaton solution.

Can Φ0 also be linked to entanglement of the matter CFT?

In a coordinate system where the vacuum JT solution is static, the dilaton solution

of the equations of motion (A.13) and (A.11)–(A.12), −eω∂±(e−ω∂±Φ) = 0, can be writ-

ten as11

Φ0 = − a

2`2

∫ z

dz′eω(z′), (6.23)

where by equation of motion (A.10) we have eω = 1
Λ∂

2
zω, so that

Φ0 = −a
4
∂zω. (6.24)

Under the identification (6.5) between the local entanglement S across a point P in the

JT solution background and its conformal mode ω, it follows Φ0 can be written in terms

of S as

Φ0 = 3
a

c
∂zS. (6.25)

Writing this as

Φ0 = 3
a

c

S(z + ε)− S(z)

ε
(6.26)

explains the misalignment interpretation of Φ0 in [6]: a small change in the location of the

boundary results in a removal of entanglement in an amount equal to Φ0,

Φ0

4G2
= S(z + ε)− S(z), a = 4G2

cε

3
(6.27)

if a is related to the central charge c via a = 4G2cε/3 (or C = cε/12π in the notation

of [6]).

The JT solution can be seen as the spherical dimensional reduction of an asymptotically

AdS3 parent theory [38, 39], which has a 2-dimensional dual CFT with central charge c̃

(distinguishing c̃ here from the central charge c of the 2-dimensional matter CFT in the JT

bulk). We can then alternatively identify ω with the entanglement S of an interval of that

CFT through ω = −6
c̃S (up to a constant), allowing Φ0 to be interpreted as differential

entropy

Φ0

4G2
= Sdiff , a = 4G2π

c̃R
3

(6.28)

where R is the radius of the conformal boundary of asymptotically AdS3 and Sdiff is

defined [40] as

Sdiff = π ∂αS |αR=2z (6.29)

in terms of the entanglement S of an interval of length 2z or angular size 2α. The re-

lation between the dilaton and the differential entropy follows very naturally from the

3-dimensional ‘parent’ picture and is illustrated in figure 5. We discuss it in some more

detail below.

11The coordinate z is here e.g. X
+−X−

2
= z in the Poincaré solution (A.26)–(A.27) (with µ = 0) or x+−x−

2

in the black hole solution (A.28)–(A.29).
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= r

r+

Figure 5. Left : dilaton as differential entropy (6.29) from considering the parent asAdS3 theory

with possible horizon at r = r+. This relates the dilaton with the entanglement of the interval in

blue, different from the interpretation (6.25) that relates the dilaton with the entanglement of the

interval in blue in figure 4 (right). Right : differential entropy measures ‘entanglement’ of the strip

of width 2z.

6.4.1 Intuition from dimensional reduction

For a 3-dimensional metric that is separable and spherically symmetric,

ds2
3 = g3,µν(x)dxµdxν = g2,ij(x

i)dxidxj + ψ2(xi)dφ2, (6.30)

one has
√
g3 =

√
g2ψ and R3 = R2−2�ψ

ψ , so that the 3-dimensional Einstein-Hilbert action

IEH takes the form

16π IEH =
1

G3

∫
d3x
√
g(R3 + Λ) =

2π

G3

∫
d2x
√
g2ψ(R2 + Λ). (6.31)

A solution of the form (6.30) then directly gives rise to a solution of the 2-dimensional

dilaton gravity action [38]

ds2
2 = g2,ij(x

i)dxidxj , ψ(xi), (6.32)

where the dilaton ψ measures the radial coordinate in (6.30). For example, the BTZ

solution

ds2
3 = −

(
r2 − r2

+

`2

)
dτ2 +

(
r2 − r2

+

`2

)−1

dr2 + r2dφ2 (6.33)

with horizon

r+ =
√
µ`R , µ =

2π

β
, (6.34)

given in terms of the radius R of the conformal boundary of BTZ (ds2
3

r→∞→
r2

R2ds
2
conformal bdy) and the inverse temperature β, gives rise to the AdS2-black hole solution

ds2
2 = −

(
r2 − r2

+

`2

)
dτ2 +

(
r2 − r2

+

`2

)−1

dr2, ψ = r (6.35)
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with the same parameter µ. The dilaton ψ in (6.31) will always appear in the dimensionless

combination ψ/G3. It is then useful to introduce a dimensionless dilaton Φ so that

2π
ψ

G3
=

Φ

G2
(6.36)

defines a type of effective, running gravitational constant G2,eff . In terms of Φ the ac-

tion (6.31) takes the JT form, and the AdS2-black hole solution above matches the notation

in (A.28)–(A.29) (with R = `) if we define

G3 =
2π`R
a

G2 (6.37)

Φ =
a

`Rψ. (6.38)

Here the arbitrary length scale a was introduced to extract a dimensionless dilaton from

ψ (it is related to the arbitrary mass scale λ of [39] via λ = a
`R). Note also that ψ =

r+ coth(2
√
µ z) matches the expression for the depth reached by a geodesic anchored to a

BTZ boundary interval of length 2z, as it should.

It follows directly from (6.36) that the dilaton

Φ

4G2
=

A

4G3
(6.39)

measures the area A = 2πr of the ‘hole’ of radius r in the 3-dimensional background. It is

argued in [40] that, while the area of a Ryu-Takayanagi surface in the locally AdS3 bulk

is measured by one-interval entanglement S of the dual CFT, the area of the hole in the

bulk has to be measured as the envelope of a collection of Ryu-Takayanagi geodesics of

fixed opening angle α as illustrated in figure 5. It is then the quantity π ∂αS or ‘differential

entropy’ Sdiff that forms the CFT dual of the gravitational entropy A
4G3

of the hole,

Sdiff =
A

4G3
, (6.40)

and thus by the previous relation Φ
4G2

. This establishes equation (6.28). In particular, the

relation in (6.28) between a and the (effective) central charge c̃ of the dual CFT follows

from the standard 3d/2d holographic dictionary entry [41]

c̃ =
3`

2G3
(6.41)

and equation (6.37) for G3 as a function of G2. The same relation a(c̃) appeared in [32] as

a condition under which the Bekenstein-Hawking entropy of the JT solution takes the form

of a Cardy formula. Indeed, this similarly follows from spherical dimensional reduction

of the statement [42] that the Bekenstein-Hawking entropy of BTZ maps to the Cardy

formula for the entropy of a thermal CFT2 counting the number of states with a given

conformal dimension on the cylinder.

In the dual CFT, Sdiff has the interpretation of ‘entanglement’ of the strip of width 2z

in the time direction, with caveats for referring to it as an actual entanglement discussed
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in [40, 43]. Let us remark here that equation (6.28) is then suggestive of the JT dilaton

being holographically dual to the ‘entanglement’ of a time-like interval of length 2z. It is

unclear how to interpret such an object in the 1-dimensional dual theory. In this context it

is perhaps important to stress that the one-interval entanglement S in (6.28)–(6.29) is the

one for a small interval compared to the size of the system. This means that for e.g. the

BTZ background with conformal boundary the torus T (2πR, β), it is given by

S =
c̃

3
log

(
β

επ
sinh

2παR
β

)
. (6.42)

This is the correct expression for the entanglement in the high temperature limit R/β →∞
or for small enough intervals. For intervals larger than a certain threshold known as

the ‘entanglement shadow’, S measures the length of winding geodesics in the bulk or

‘entwinement’ [44] in the dual CFT (rather than the length of the minimal geodesic in the

bulk or entanglement in the dual CFT). The 1-dimensional theory dual to JT is obtained

from the Liouville description of the 2-dimensional dual of asymptotically AdS3 in the limit

R/β → 0 [45, 46], where S becomes pure entwinement.

Relevance to kinematic space. The interpretation of the vacuum contribution to the

dilaton in (6.26) as the amount of entanglement removed as a result of a displacement

of the boundary, is used in [6] to obtain an entropic derivation of the Schwarzian theory

that describes the dynamics of the boundary in JT gravity. The argument makes use of

entanglement renormalization, and is reminiscent of the concept of cMERA [47], short

for continuous Multiscale Entanglement Renormalization Ansatz, with MERA a real-space

renormalization group method in quantum many-body physics [48]. The description of

kinematic space as a JT theory makes the relation between cMERA and the Schwarzian

theory particularly natural, given the kinematic space/MERA proposal put forward in [1],

which argues to consider MERA a discretization of kinematic space. It would be interesting

to study the relation between cMERA and the Schwarzian theory further.

7 Discussion

We have discussed the JT dynamics of the kinematic space of 2-dimensional CFT’s with

or without a boundary. The corresponding kinematic space respectively has an AdS or

dS metric. The motivation for treating the ‘kinematic space identities’ in (3.6)–(3.9)

and (4.6)–(4.9) as equations of motion initially was the mere observation that they co-

incided with the JT equations of motion. Doing so results in the concept of treating

entanglement itself as a dynamic field. The goal of the paper is to provide an interpreta-

tion for the resulting JT theory, which turned out to be more straightforward in the case

of boundary kinematic space, without claiming a complete analysis of the construction or

a full understanding of its generality. In section 5 it was argued that the constructing

principle (4.19) of boundary kinematic space K∂ can be interpreted as a 2-dimensional

version of Jacobson’s maximal entanglement principle that couples the given bCFT to JT

gravity on AdS. This discussion complements the results on the entanglement dynamics of
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a boundary CFT in [6] by providing a kinematic space point of view. It remains less clear

however if a similar statement can be made for the de Sitter kinematic space K discussed

in section 3. What can be repeated for de Sitter, with the same conclusions, is the JT

gravity discussion in section 6 leading to equation (6.22), with the remark that ξg being a

spacelike rather than a timelike Killing vector renders the ‘thermodynamic quantities’ of

section 6.2 less physical meaning.

There is another context in which the coupling of a CFT to JT(-like) gravity appears,

namely in the T T̄ theory obtained by turning on a T T̄ deformation of the CFT [49–51]. It

would be interesting to study any connection of the T T̄ theory to this work.

We would also like to understand better the relations between the different Liouville

theories that appear in the AdS3/CFT2 context: the kinematic space Liouville theory of

section 2 and the Liouville theory describing the asymptotic dynamics of AdS3, as well as

the Liouville theory associated with complexity of [52]. Related questions are raised by the

discussion of the interpretation of the JT dilaton from a dimensional reduction from AdS3

standpoint in section 6.4.

We leave these problems for future study.
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A Jackiw-Teitelboim gravity

JT action and equations of motion. The Jackiw-Teitelboim theory [53, 54] is the

dilaton gravity theory

I[g,Φ, φm] =
1

16πG

∫
d2σ
√−g (ΦR− V (Φ)) + Im[g, φm] (A.1)

with a linear potential

V (Φ) = −ΛΦ, (A.2)

and a matter action Im(g, φm) that describes a field theory coupled to the metric ds2 =

gµνdσ
µdσν . We assume that field theory to be conformal, and furthermore assume Im to

be independent of the dilaton, such that variation with respect to the dilaton inforces the

constant curvature equation

R = −Λ. (A.3)
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Variation with respect to the metric gives

Tµν = TΦ
µν + Tmµν = 0 (A.4)

with

TΦ
µν = − 1

8πG

(
gµν�Φ−∇µ∇νΦ− Λ

2
gµνΦ

)
(A.5)

Tmµν = − 2√−g
δIm
δgµν

. (A.6)

The equation of motion

gµν�Φ−∇µ∇νΦ +
1

2
gµνV = 8πGTmµν (A.7)

can be split up in a traceless and a trace part

1

2
gµν�Φ−∇µ∇νΦ = 8πG(Tmµν − gµνTmσ

σ ) (A.8)

(�− Λ)Φ = 8πGTmσ
σ . (A.9)

For (classical) conformal matter, Tmσ
σ = 0, and in ‘AdS’ conformal gauge ds2 = −eω(x+,x−)

dx+dx− (⇒ � = −4e−ω∂+∂−, R = 4e−ω∂+∂−ω = −�ω), the JT equations of motion

(EOM) read

4∂+∂−ω + Λeω = 0 (R = −Λ) (A.10)

−eω∂+(e−ω∂+Φ) = ∂+Φ∂+ω − ∂2
+Φ = 8πGTm++ (−∇2

+Φ = 8πGTm++) (A.11)

−eω∂−(e−ω∂−Φ) = ∂−Φ∂−ω − ∂2
−Φ = 8πGTm−− (−∇2

−Φ = 8πGTm−−) (A.12)

∂+∂−Φ +
Λ

4
eωΦ = 0 (�Φ− ΛΦ = 0). (A.13)

If we change the sign of the potential to V (Φ) = ΛΦ such that R = Λ > 0 is imposed, then

in ‘dS’ conformal gauge ds2 = eω(x+,x−)dx+dx− (⇒ � = 4e−ω∂+∂−, R = −4e−ω∂+∂−ω =

−�ω), the JT EOM (A.10)–(A.13) are unchanged up to the sign of Λ:

4∂+∂−ω + Λeω = 0 (R = Λ) (A.14)

−eω∂+(e−ω∂+Φ) = ∂+Φ∂+ω − ∂2
+Φ = 8πGTm++ (−∇2

+Φ = 8πGTm++) (A.15)

−eω∂−(e−ω∂−Φ) = ∂−Φ∂−ω − ∂2
−Φ = 8πGTm−− (−∇2

−Φ = 8πGTm−−) (A.16)

∂+∂−Φ +
Λ

4
eωΦ = 0 (�Φ + ΛΦ = 0). (A.17)

Semi-classically, the trace anomaly Tmσ
σ = c

24πR is taken into account by considering

the effective action Ieff = IJT + IPol, with the Polyakov action [32, 55]

IPol = − c

96π

∫
d2x
√−g R 1

�
R (A.18)
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with c large. The semi-classical JT EOM then become (in AdS conformal gauge)

4∂+∂−ω + Λeω = 0 (R = −Λ) (A.19)

∂+〈Φ〉∂+ω − ∂2
+〈Φ〉 = 8πG〈Tm++〉 (−∇2

+〈Φ〉 = 8πG〈Tm++〉) (A.20)

∂−〈Φ〉∂−ω − ∂2
−〈Φ〉 = 8πG〈Tm−−〉 (−∇2

−〈Φ〉 = 8πG〈Tm−−〉) (A.21)

∂+∂−〈Φ〉+
Λ

4
eω〈Φ〉 = 8πG〈Tm+−〉 (�〈Φ〉 − Λ〈Φ〉 = 8πG〈Tmσ

σ 〉), (A.22)

with covariant stress tensor components 〈Tmµν〉, and in particular 〈Tm+−〉 = − c
24π∂+∂−ω so

that, upon use of the Liouville equation R = −Λ, the last EOM reads

∂+∂−〈Φ〉+
Λ

4
eω
(
〈Φ〉 − cG

3

)
= 0. (A.23)

It follows that the solution 〈Φ〉 is related to a solution Φ̃ of the classical EOM by 〈Φ〉 =

Φ̃ + cG
3 (and Tmµν replaced by 〈Tmµν〉). Assuming the constant shift can be absorbed in

the vacuum contribution 〈Φ0〉 = Φ̃0 + cG
3 , the vacuum-subtracted semi-classical dilaton

〈ΦT 〉 obeys

−∇2
±〈ΦT 〉 = 8πG〈Tm±±〉 (A.24)

�〈ΦT 〉 − Λ〈ΦT 〉 = 0 (A.25)

as if it were a classical dilaton Φ̃T , with 〈Tm±±〉 the vacuum-subtracted, covariant stress

tensor expectation value.

Solutions of JT. The general solution of the homogeneous JT EOM, (A.7) with Tmµν = 0,

is given by an AdS2-black hole metric and a dilaton profile, which in Poincaré covering

coordinates X± = t± z reads

ds2 =
`2

z2
(−dt2 + dz2) = −4`2dX+dX−

(X+ −X−)2
(A.26)

Φ0 = a
1− µ(t2 − z2)

2z
= a

1− µX+X−

X+ −X− . (A.27)

Here a and µ are integration constants with dimension of length and one over length squared

respectively, and we use the notation Φ0 for the dilaton to indicate it is a vacuum solution.

The geometry, illustrated in figure 4 (left), spans a triangular region with a boundary at

X+ = X− = t. The quantity µ is related to the energy of the black hole solution and

vanishes in the Poincaré solution.

The solution can alternatively be written in black hole coordinates (τ, r) or x± =
τ
2 ± z(r) that cover the black hole triangle and are natural from a dimensional reduction

viewpoint [38],

ds2 = −
(
r2 − `4µ

`2

)
dτ2 +

dr2(
r2−`4µ
`2

) = −4`2µ csch2
(√
µ(x+ − x−)

)
dx+dx− (A.28)

Φ0 =
a

`2
r = a

√
µ coth(

√
µ(x+ − x−)). (A.29)
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In these coordinates, the Killing horizon of the solution is at z → ∞ or r = `2
√
µ, where

the dilaton takes the value

Φ0,h = a
√
µ. (A.30)

The transformation to the Poincaré covering coordinates is given by

X±(x±) =
1√
µ

tanh(
√
µx±). (A.31)

The general solution of the inhomogeneous JT EOM (A.7) still has the same constant

curvature metric. The dilaton however receives a stress tensor dependent contribution,

which we will denote ΦT :

Φ = Φ0 + ΦT (A.32)

ΦT = −8πG

∫ X−

X+

ds
(s−X+)(s−X−)

X+ −X− TmX+X+(s). (A.33)

To infer this form of the solution from its more general form in terms of integration functions

I± in [55] and [32] requires two remarks. First, we have imposed reflective boundary

conditions on the stress tensor

TmX+X+(s) = TmX−X−(s). (A.34)

Second, any ambiguity in the choice of integration limit (u± in the notation of [55]) can

be absorbed in a redefinition of the integration constants in Φ0 (we are thus free to choose

u+ = u− in the notation of [55]).

B Iyer-Wald formalism

We recall the Iyer-Wald (IW) formalism, following the notation of [25]. Given a Lagrangian

L(φ, ∂φ), one defines the energy variation through a region Ξ as

δHξ :=

∫
Ξ
ω(φ, δφ, δξφ) (B.1)

in terms of the symplectic current

ω(φ, δφ, δξφ) = δJξ + ξ · E δφ− d(ξ · θ(φ, δφ)), (B.2)

where E denotes the equations of motion for the dynamical fields and θ the symplectic po-

tential (δL = Eδφ+dθ). Jξ is the current associated with the invariance of the Lagrangian

under diffeomorphisms ξ, and is conserved on-shell. The corresponding Noether charge Qξ
is defined as

Jξ = dQξ + Cξ(E) (B.3)
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with Cξ(E) the constraint equations, such that dJξ = −E δξφ [56]. An IW first law is

obtained when evaluating the relation

δHξ :=

∫
Ξ
ω(φ, δφ, δξφ) =

∫
Ξ
δJξ + ξ · E δφ− d(ξ · θ(φ, δφ)) (B.4)

for a particular choice of diffeomorphism ξ, usually a Killing vector (δξφ = 0 for gravi-

tational fields φ = φg, so that the symplectic current, which is bilinear in the variations,

vanishes).

Now let us apply the IW formalism to a gravitational theory with an action that

depends on dynamic gravitational fields φg (including the metric) and matter fields φm,

for a region Ξ and a vector ξ that obeys ξ|∂Ξ = 0. On a solution, E = 0, and as ξ|∂Ξ = 0,

δHξ =

∫
Ξ
δJξ. (B.5)

Following the partition of the action in a gravitational and a matter part, the left hand side

splits in a gravitational part ωg(φg, δφg, δξφg) and a matter part ωm(φg, φm, δφg, δφm, δξφg,

δξφm). The right hand side can be rewritten making use of (B.3) and assuming the variation

δφ is to a nearby solution (so that δdQ = dδQ), obtaining

δHg
ξ + δHm

ξ =

∫
∂Ξ
δQξ +

∫
Ξ
δCξ(E). (B.6)

This expresses that the on-shell vanishing of the linearized constraint equations is equivalent

to the on-shell identity

δHg
ξ + δHm

ξ =

∫
∂Ξ
δQξ. (B.7)

Open Access. This article is distributed under the terms of the Creative Commons
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