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1 Introduction

The dawn of gravitational-wave astronomy, heralded by the binary black-hole and neutron-

star mergers detected by the LIGO collaboration [1–5], has spawned interest in new

techniques for solving the two-body problem in gravity and generating the theoreti-

cal waveforms required [6] for event detection as well as parameter extraction from

observed mergers. Such techniques would complement methods based on the ‘tradi-

tional’ Arnowitt-Deser-Misner Hamiltonian formalism [7–11], direct post-Newtonian solu-

tions in harmonic gauge [12], long-established effective-one-body (EOB) methods [13–16],

numerical-relativity approaches [17, 18], and the effective-field theory approach pioneered

by Goldberger and Rothstein [19–68].

Our broader interest is in exploring the application of modern scattering-amplitudes

techniques to this question. Indeed, amplitudes have already been applied successfully

to understand aspects of the general relativistic two-body problem, notably to computing

the potential between two masses [69–76]. The relevance of a scattering amplitude —

in particular, a loop amplitude — to the classical potential was understood in earlier

work on gravity as an effective field theory [77–82], and was emphasised by Donoghue and

Holstein [83]. This connection will be important for us below. More recently, Damour

has emphasised that methods based on scattering amplitudes are relevant to the EOB

formalism [84, 85].

An important insight arising from the study of scattering amplitudes is that gravita-

tional amplitudes are simpler than one would expect, and in particular are closely con-

nected to the amplitudes of Yang-Mills theory. This connection is called the double copy,

because gravitational amplitudes are obtained as a product of two Yang-Mills quantities.

One can implement this double copy in a variety of ways: the original statement, by

Kawai, Lewellen and Tye [86] presents a tree-level gravitational amplitude as a sum over

terms, each of which is a product of two tree-level color-ordered Yang-Mills amplitudes

(multiplied by appropriate Mandelstam invariants). More recently, Bern, Carrasco and

Johansson [87, 88] demonstrated that the double copy can be understood very simply in

terms of a diagrammatic expansion of a scattering amplitude: the gravitational numerators

are simply the square of the kinematic numerators in Yang-Mills theory, once a property

known as colour-kinematics duality is imposed on the numerators. These advances were

particularly exciting as they lead to a clear generalisation to loop level. The work of BCJ
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suggests that gravity may be simpler than it seems, and also more closely connected to

Yang-Mills theory than one would guess after inspecting their Lagrangians. We may hope

that these insights will be relevant to the real-world physics of gravitational waves.

The double copy indeed connects classical solutions of Yang-Mills theory and gravity.

In particular, point charges in Yang-Mills theory map to point sources in gravity [89–92].

This holds true to all orders, even for accelerating particles [90, 93], and we know that

the classical radiation emitted by accelerating particles does indeed double copy from

Yang-Mills theory to gravity [90, 91, 94, 95], even for a particle moving in an arbitrary

manner [91, 95], at least to the first two orders of perturbation theory. There are also in-

dications that the double copy can encompass bound states [96, 97] and perhaps spinning

particles [98, 99]. These observations suggest that scattering-amplitudes methods, which

naturally incorporate spin, should apply to the classical gravitational physics of spinning

matter [100].

In addition to offering us the double copy, the techniques of scattering amplitudes [101]

or an analysis of soft limits [102–104] may help to simplify the computation of physical

waveforms relevant for gravitational wave observatories. First, though, we must understand

systematically how to extract the classical result using on-shell quantum-mechanical scat-

tering amplitudes in order to take full advantage of amplitude methods in the gravitational-

wave problem.

The present article is a step in this direction. We focus directly on physical observables,

extracting the classical values from a fully relativistic quantum-mechanical computation.

We examine two particular observables. The first is the change in momentum during

a scattering event, both with and without accompanying radiation. The second is the

radiated momentum during the event. We shall use them as a laboratory to explore certain

conceptual and practical issues in approaching the classical limit. Our formalism applies

to both electrodynamics and gravity. We will work out in detail explicit examples in

electrodynamics, but many of the issues we explore also arise in the gravitational case. For

simplicity, we restrict to spinless scattering in this article.

Our two observables are not completely independent. Indeed the relation between

them goes to the heart of one of the difficulties in traditional approaches to classical field

theory with point sources. In two-particle scattering in classical electrodynamics, for ex-

ample, momentum is transferred from one particle to the other via the electromagnetic

field, as described by the Lorentz force. But the energy-momentum lost by point parti-

cles to radiation is not accounted for by the Lorentz force. Conservation of momentum

is restored by taking into account an additional force, the Abraham-Lorentz-Dirac (ALD)

force [105–110], see e.g. refs. [111–116] for more recent treatments. Inclusion of this radia-

tion reaction force is not without cost: rather, it leads to the celebrated issues of runaway

solutions or causality violations in the classical electrodynamics of point sources.

The quantum-mechanical description of charged-particle scattering should cure these

ills. Indeed we will see explicitly that a quantum-mechanical description will conserve

energy and momentum in particle scattering automatically.

In the next section, we begin by describing where the factors of ~ appear in scatter-

ing amplitudes. As we will see it is straightforward to make these factors explicit, but
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nevertheless there are aspects of extracting the classical result that remain obscure. This

motivates the following section, where we give a formal definition of the momentum trans-

fer to a particle in quantum field theory and of the expectation value of the momentum

emitted in radiation during a scattering event. We also give expressions for these observ-

ables in terms of on-shell scattering amplitudes. In section 4, we discuss the quantum

wavefunctions suitable for studying classical point particles, and derive simplified formulæ

for our observables. In section 5 we apply our formalism in electrodynamics to compute

the two classical observables, the momentum transfer and the radiated momentum, from

scattering amplitudes. In section 6, we perform the corresponding classical calculations,

and compare the results with those obtained from quantum field theory. Section 7 contains

a discussion of our results and our conclusions. In the appendices, we provide some details

on our conventions and some of the integrals we used, as well as dwelling in more detail on

radiation in the classical theory.

2 Restoring ~

A straightforward and pragmatic approach to restoring all factors of ~ in an expression is

dimensional analysis.1 We will continue to use relativistically natural units, with c = 1.

We denote the dimensions of mass and length by [M ] and [L], respectively.

We may choose the dimensions of an n-point scattering amplitude in four dimensions

to be [M ]4−n even when ~ 6= 1. This is consistent with choosing the dimensions of creation

and annihilation operators so that,

[ap, a
†
p′ ] = (2π)3δ(3)(p− p′) , (2.1)

where bold symbols (here p and p′) denote spatial three-vectors. We define single-particle

states by,

|p〉 =
√

2Ep a
†
p|0〉 . (2.2)

The dimension of |p〉 is thus [M ]−1. (The vacuum state is taken to be dimensionless.) We

further define n-particle asymptotic states as tensor products of these normalised single

particle states. In order to avoid an unsightly splatter of factors of 2π, it is convenient

to define,

δ̂(n)(p) ≡ (2π)nδ(n)(p) , (2.3)

for the n-fold Dirac δ distribution. The scattering matrix S and the transition matrix T

are both, of course, dimensionless. We define the amplitudes in four dimensions as usual by

〈p′1 · · · p′m|T |p1 · · · pn〉 = A(p1 · · · pn → p′1 · · · p′m)δ̂(4)(p1 + · · · pn − p′1 − · · · − p′m), (2.4)

leading to the advertised dimensions for amplitudes.

When restoring powers of ~, we must distinguish between the momentum pµ of a

particle and its wavenumber, which has dimensions of [L]−1. This distinction will be

1Paraphrasing the late Sidney Coleman, natural units are natural to use because one can always put the

units, expressed through ~s and cs, back through dimensional analysis.
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important for us later, so we introduce a notation for the wavenumber p̄ associated with a

momentum p:

p̄ ≡ p/~. (2.5)

In the course of restoring powers of ~ by dimensional analysis, we first treat the momenta

of all particles as genuine momenta. We also treat any mass as a mass rather than the

associated Compton wavelength.

When is a point-particle description appropriate? We will consider the scattering

of two point-like objects, with momenta p1,2, initially separated by a transverse impact

parameter bµ. (The impact parameter is transverse in the sense that pi · b = 0 for i = 1, 2.)

At the quantum level, the particles are described by wavefunctions. We will discuss these

wavefunctions in more detail in section 4. We expect the point-particle description to be

valid when the separation of the two scattering particles is always very large compared to

their (reduced) Compton wavelengths `
(i)
c ≡ ~/mi, so the point-particle description will be

accurate provided that √
−b2 � `(1,2)

c . (2.6)

The impact parameter and the Compton wavelengths are not the only scales we must

consider, however. The wavefunctions have another intrinsic scale, given by the spread of

the wavepackets, `w. The quantum-mechanical expectation values of observables, as we

will discuss, are well-approximated by the corresponding classical ones, when the packet

spreads are in the ‘Goldilocks’ zone, `c � `w �
√
−b2.

Let us now imagine restoring the ~s in a given amplitude. When ~ = 1, the amplitude

has dimensions of [M ]4−n. When ~ 6= 1, the dimensions of the momenta and masses in the

amplitude are unchanged. Similarly there is no change to the dimensions of polarisation

vectors or tensors or of any Lie-algebraic factors in Yang-Mills theories. However, we

must remember that the dimensionless coupling in electrodynamics is e/
√
~. Similarly, in

gravity a factor of 1/
√
~ appears as the appropriate coupling with dimensions of inverse

mass is κ =
√

32πG/~. The algorithm to restore the dimensions of any amplitude in scalar

electrodynamics or scalar gravity is thus simple: each factor of a coupling is multiplied by

an additional factor of 1/
√
~. For example, an n-point, L-loop amplitude in scalar QED is

proportional to ~1−n/2−L.

This conclusion, though well-known, may be surprising in the present context because

it seems naively that as ~ → 0, higher multiplicities and higher loop orders are more

important. As we will see, however, the approach to the classical limits — for observables

that make sense classically — effectively forces certain momenta to scale with ~. These

momenta have the classical interpretation of wavenumbers. Examples include the momenta

of massless particles, such as photons or gravitons. In putting the factors of ~ back into

the couplings, we have therefore not yet made manifest all of the physically relevant factors

of ~. This provides one motivation for the remainder of our paper: we wish to construct

on-shell observables which are both classically and quantum-mechanically sensible. We

will then carefully analyse the small-~ region to understand how scattering amplitudes

encode classical physics. We will see that the appropriate treatment is one where point
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particles have momenta which are fixed as we take ~ to zero, whereas for massless particles

and momentum transfers between massive particles, it is the wavenumber which we should

treat as fixed in the limit.

3 Impulse and radiated momentum in quantum field theory

We examine scattering events in which two widely separated particles are prepared at

t → −∞, and then shot at each other with impact parameter bµ. We begin with a

discussion of the appropriate incoming state, setting up convenient notation. We then

describe the observables of interest.

Our formalism is quite general; for simplicity, we will nonetheless focus on scattering

of two stable quanta of different scalar fields with different masses. We will also restrict

our attention to scattering processes in which quanta of fields 1 and 2 are both present in

the final state. This will happen, for example, if the particles have separately conserved

quantum numbers. We also assume that no new quanta of fields 1 and 2 can be produced

during the collision, for example because the centre-of-mass energy is too small.

3.1 The incoming state

As we prepare the particles in the far past, the appropriate states are incoming states

|ψ〉in. We describe the incoming particles by wavefunctions φi(pi). The main application

we have in mind is to the scattering of point-like classical particles, and so we take our

wave functions to have reasonably well-defined positions and momenta. We will discuss the

requirements on the wavepackets in considerably more detail in section 4. In this section

we focus on a general discussion of on-shell observables associated with the scattering

of localised particles, without specialising to the kinds of wavefunctions which are most

appropriate for approaching a classical limit.

The initial state is then,

|ψ〉in =

∫
d̂4p1d̂

4p2 δ̂
(+)(p2

1 −m2
1)δ̂(+)(p2

2 −m2
2)φ1(p1)φ2(p2) eib·p1/~|p1p2〉in , (3.1)

where d̂p absorbs a factor of 2π; more generally d̂np is defined by

d̂np ≡ dnp

(2π)n
. (3.2)

We restrict the integration to positive-energy solutions of the delta functions of p2
i −m2

i , as

indicated by the (+) superscript in δ̂(+), as well as absorbing a factor of 2π just as for δ̂(p),

δ̂(+)(p2 −m2) ≡ 2πΘ(p0)δ(p2 −m2) . (3.3)

In eq. (3.1) we have translated the wavepacket of particle 1 relative to particle 2 by the

impact parameter b. In the following, we will often omit the subscript “in”, any unlabeled

state being understood to be an “in” state.
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We will find it convenient to further abbreviate the notation for on-shell integrals (over

Lorentz-invariant phase space),

dΦ(pi) ≡ d̂4pi δ̂
(+)(p2

i −m2
i ) . (3.4)

We will generally leave the mass implicit, along with the designation of the integration

variable as the first summand when the argument is a sum.

As noted in section 2, we follow the standard convention for normalizing states, so that

〈p′|p〉 = 2Epδ̂
(3)(p− p′). (3.5)

As the expression on the right-hand side is the appropriately normalized delta function for

the on-shell measure, ∫
dΦ(p′1) 2Ep′1 δ̂

(3)(p1 − p′1)f(p′1) = f(p1) , (3.6)

for any function f(p′1), we define,

δ̂Φ(p1 − p′1) ≡ 2Ep′1 δ̂
(3)(p1 − p′1) . (3.7)

The argument on the left-hand side is understood as a function of four-vectors. This leads

to a notationally clearer version of eq. (3.6):∫
dΦ(p′1) δ̂Φ(p1 − p′1)f(p′1) = f(p1) , (3.8)

and of eq. (3.5):

〈p′|p〉 = δ̂Φ(p− p′) . (3.9)

We can also rewrite eq. (3.1),

|ψ〉in =

∫
dΦ(p1)dΦ(p2) φ1(p1)φ2(p2) eib·p1/~|p1p2〉in . (3.10)

Using this simplified notation, the normalisation condition is

1 = 〈ψ|ψ〉

=

∫
dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)eib·(p1−p

′
1)/~

× φ1(p1)φ∗1(p′1)φ2(p2)φ∗2(p′2) δ̂Φ(p1 − p′1) δ̂Φ(p2 − p′2)

=

∫
dΦ(p1)dΦ(p2) |φ1(p1)|2|φ2(p2)|2 .

(3.11)

We can obtain this normalization by requiring both wavefunctions φi to be normalized

to unity: ∫
dΦ(p1) |φ1(p1)|2 = 1 . (3.12)

– 6 –
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3.2 The impulse on a particle

At a gravitational wave observatory, we are of course interested in the gravitational radi-

ation emitted by the source of interest. We will discuss the radiated momentum in sec-

tion 3.4. Gravitational waves also carry information about the potential experienced by, for

example, a black hole binary system. This observation motivates our interest in an on-shell

observable related to the potential. We choose to explore the impulse on a particle during

a scattering event: at the classical level, this is simply the total change in the momentum

of one of the particles — say particle 1 — during the collision.

To define the observable, we place detectors at asymptotically large distances pointing

at the collision region. The detectors measure only the momentum of particle 1. We assume

that these detectors cover all possible scattering angles. Let Pµi be the momentum operator

for particle i; the expectation of the first particle’s outgoing momentum pµout,1 is then

〈pµout,1〉 = out〈ψ|Pµ1 |ψ〉out

= out〈ψ|Pµ1U(∞,−∞) |ψ〉in
= in〈ψ|U(∞,−∞)†Pµ1U(∞,−∞) |ψ〉in,

(3.13)

where U(∞,−∞) is the time evolution operator from the far past to the far future. This

evolution operator is just the S matrix, so the expectation value is simply,

〈pµout,1〉 = in〈ψ|S†Pµ1S |ψ〉in . (3.14)

We can insert a complete set of states and rewrite the expectation value as,

〈pµout,1〉 =
∑
X

∫
dΦ(r1) dΦ(r2) rµ1

∣∣〈r1r2X|S|ψ〉
∣∣2 , (3.15)

where we can think of the inserted states as the final state of a scattering process. In this

equation, X refers to any other particles which may be created. The intermediate state

containing X also necessarily contains exactly one particle each corresponding to fields 1

and 2. Their momenta are denoted by r1,2 respectively. The sum over X is a sum over all

states, including X empty, and includes phase-space integrals for X non-empty. The phase-

space integral over the momenta of particles 1 and 2 along with the sum over states X is

what gives a complete sum over all states in the Hilbert space. The expression (3.15) hints

at the possibility of evaluating the momentum in terms of on-shell scattering amplitudes.

The physically interesting quantity is rather the change of momentum of the particle

during the scattering, so we define,

〈∆pµ1 〉 = 〈ψ|S† Pµ1 S|ψ〉 − 〈ψ|P
µ
1 |ψ〉. (3.16)

This impulse is the difference between the expected outgoing and the incoming momenta

of particle 1. It is an on-shell observable, defined in both the quantum and the classical

theories. Similarly, we can measure the impulse imparted to particle 2. In terms of the

momentum operator, Pµ2 , of quantum field 2, this impulse is evidently,

〈∆pµ2 〉 = 〈ψ|S† Pµ2 S|ψ〉 − 〈ψ|P
µ
2 |ψ〉. (3.17)

– 7 –
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Returning to the impulse on particle 1, we proceed by writing the scattering matrix

in terms of the transition matrix T via S = 1 + iT , in order to make contact with the

usual scattering amplitudes. The no-scattering (unity) part of the S matrix cancels in the

impulse, leaving behind only delta functions that identify the final-state momenta with the

initial-state ones in the wavefunction or its conjugate. Using unitarity we obtain the result,

〈∆pµ1 〉 = 〈ψ| i[Pµ1 , T ] |ψ〉+ 〈ψ|T †[Pµ1 , T ] |ψ〉 . (3.18)

3.3 Impulse in terms of amplitudes

Having established a general expression for the impulse, we turn to expressing it in terms

of scattering amplitudes. It is convenient to work on the two terms in equation (3.18)

separately. For ease of discussion, we define

Iµ(1) ≡ 〈ψ| i[P
µ
1 , T ] |ψ〉 ,

Iµ(2) ≡ 〈ψ|T
†[Pµ1 , T ] |ψ〉 ,

(3.19)

so that the impulse is 〈∆pµ1 〉 = Iµ(1) + Iµ(2). Expanding the wavefunction in the first term,

Iµ(1), we find

Iµ(1) =

∫
dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2) eib·(p1−p

′
1)/~ φ1(p1)φ∗1(p′1)φ2(p2)φ∗2(p′2)

× i(p′1µ − p
µ
1 ) 〈p′1p′2|T |p1p2〉

=

∫
dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2) eib·(p1−p

′
1)/~ φ1(p1)φ∗1(p′1)φ2(p2)φ∗2(p′2)

× i
∫
dΦ(r1)dΦ(r2) (rµ1 − p

µ
1 ) 〈p′1p′2|r1r2〉〈r1r2|T |p1p2〉 ,

(3.20)

where in the second form line we have re-inserted the final-state momenta ri in order to

make manifest the phase independence of the result. We label the states in the incoming

wavefunction by p1,2, those in the conjugate ones by p′1,2. Let us now introduce the mo-

mentum shifts qi = p′i− pi, and then change variables in the integration from the p′i to the

qi. In these variables, the matrix element is,

〈p′1p′2|T |p1p2〉 = A(p1p2 → p′1 , p
′
2)δ̂(4)(p′1 + p′2 − p1 − p2)

= A(p1p2 → p1 + q1 , p2 + q2)δ̂(4)(q1 + q2) ,
(3.21)

yielding

Iµ(1) =

∫
dΦ(p1)dΦ(p2)dΦ(q1 + p1)dΦ(q2 + p2)

× φ1(p1)φ∗1(p1 + q1)φ2(p2)φ∗2(p2 + q2) δ̂(4)(q1 + q2)

× e−ib·q1/~ iqµ1 A(p1p2 → p1 + q1, p2 + q2) .

(3.22)

We remind the reader of the shorthand notation introduced earlier for the phase-space

measure,

dΦ(q1 + p1) = d̂4q1 δ̂
(
(p1 + q1)2 −m2

1

)
Θ(p0

1 + q0
1) . (3.23)
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We can perform the integral over q2 in eq. (3.22) using the four-fold delta function. Further

relabeling q1 → q, we obtain

Iµ(1) =

∫
dΦ(p1)dΦ(p2)d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0

1 + q0)Θ(p0
2 − q0)

× e−ib·q/~φ1(p1)φ∗1(p1 + q)φ2(p2)φ∗2(p2 − q)
× iqµA(p1p2 → p1 + q, p2 − q) .

(3.24)

Unusually for a physical observable, this contribution is linear in the amplitude. We em-

phasize that the incoming and outgoing momenta of this amplitude do not correspond to

the initial- and final-state momenta of the scattering process, but rather both correspond

to the initial-state momenta, as they appear in the wavefunction and in its conjugate. The

momentum q looks like a momentum transfer if we examine the amplitude alone, but for

the physical scattering process it represents a difference between the momentum within

the wavefunction and that in the conjugate. We will call it a ‘momentum mismatch’. As

indicated on the first line of eq. (3.20), we should think of this term as an interference of a

standard amplitude with an interactionless forward scattering. Diagrammatically, we have

learned that

Iµ(1) =

∫
dΦ(p1)dΦ(p2)d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0

1 + q0)Θ(p0
2 − q0)

× e−ib·q/~ iqµ ×

φ1(p1) φ∗1(p1 + q)

φ2(p2) φ∗2(p2 − q)

.

(3.25)

Turning to the second term, Iµ(2), in the impulse, we again introduce a complete set of

states labelled by r1, r2 and X so that,

Iµ(2) = 〈ψ|T †[Pµ1 , T ] |ψ〉

=
∑
X

∫
dΦ(r1)dΦ(r2) 〈ψ|T †|r1 r2X〉〈r1 r2X|[Pµ1 , T ] |ψ〉.

(3.26)

As above, we can now expand the wavefunctions. We again label the states in the incoming

wavefunction by p1,2, those in the conjugate ones by p′1,2,

Iµ(2) =
∑
X

∫ ∏
i=1,2

dΦ(ri)dΦ(pi)dΦ(p′i) φi(pi)φ
∗
i (p
′
i)e

ib·(p1−p′1)/~(rµ1 − p
µ
1 )

× δ̂(4)(p1 + p2 − r1 − r2 − rX)δ̂(4)(p′1 + p′2 − r1 − r2 − rX)

×A(p1 , p2 → r1 , r2 , rX)A∗(p′1 , p′2 → r1 , r2 , rX) .

(3.27)

In this expression, rX denotes the total momentum carried by particles in X. The second

term in the impulse can thus be interpreted as a weighted cut of an amplitude; the lowest

order contribution is a weighted two-particle cut of a one-loop amplitude.
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In order to simplify Iµ(2), let us again define the momentum shifts qi = p′i − pi, and

change variables in the integration from the p′i to the qi, so that,

Iµ(2) =
∑
X

∫ ∏
i=1,2

dΦ(ri)dΦ(pi)dΦ(qi + pi) φi(pi)φ
∗
i (pi + qi)e

−ib·q1/~(rµ1 − p
µ
1 )

× δ̂(4)(p1 + p2 − r1 − r2 − rX)δ̂(4)(q1 + q2)

×A(p1 , p2 → r1 , r2 , rX)A∗(p1 + q1 , p2 + q2 → r1 , r2 , rX) .

(3.28)

We can again perform the integral over q2 using the four-fold delta function, and relabel

q1 → q to obtain,

Iµ(2) =
∑
X

∫ ∏
i=1,2

dΦ(ri)dΦ(pi)d̂
4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0

1 + q0)Θ(p0
2 − q0)

× φ1(p1)φ2(p2) φ∗1(p1 + q)φ∗2(p2 − q)e−ib·q/~(rµ1 − p
µ
1 )

× δ̂(4)(p1 + p2 − r1 − r2 − rX)

×A(p1 , p2 → r1 , r2 , rX)A∗(p1 + q , p2 − q → r1 , r2 , rX) .

(3.29)

The momentum q is again a momentum mismatch. The momentum transfers wi ≡ ri−pi
will play an important role in analyzing the classical limit, so its convenient to change

variables to them from the final-state momenta ri,

Iµ(2) =
∑
X

∫ ∏
i=1,2

dΦ(pi)d̂
4wid̂

4q δ̂(2pi · wi + w2
i )Θ(p0

i + w0
i )

× δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0
1 + q0)Θ(p0

2 − q0)

× φ1(p1)φ2(p2) φ∗1(p1 + q)φ∗2(p2 − q)

× e−ib·q/~wµ1 δ̂
(4)(w1 + w2 + rX)

×A(p1 , p2 → p1 + w1 , p2 + w2 , rX)

×A∗(p1 + q, p2 − q → p1 + w1 , p2 + w2 , rX) .

(3.30)

Diagrammatically, this second contribution to the impulse is

Iµ(2) =
∑
X

∫ ∏
i=1,2

dΦ(pi)d̂
4wid̂

4q δ̂(2pi · wi + w2
i )Θ(p0

i + w0
i )

× δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0
1 + q0)Θ(p0

2 − q0)

× e−ib·q/~wµ1 δ̂
(4)(w1 + w2 + rX)

×

φ1(p1) φ∗1(p1 + q)

φ2(p2) φ∗2(p2 − q)

p1 + w1

p2 + w2

rX
.

(3.31)
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3.4 The momentum radiated during a collision

A familiar classical observable is the energy radiated by an accelerating particle, for example

during a scattering process. More generally we can compute the four-momentum radiated.

In quantum mechanics there is no precise prediction for the energy or the momentum

radiated by localised particles; we obtain a continuous spectrum if we measure a large

number of events. However we can compute the expectation value of the four-momentum

radiated during a scattering process. This is a well-defined observable, and as we will see

it is on-shell in the sense that it can be expressed in terms of on-shell amplitudes.

To define the observable, let us again surround the collision with detectors which mea-

sure outgoing radiation of some type. We may imagine two different contexts: scattering

in electrodynamics with radiation of photons, and gravitational scattering with radiation

of gravitons. In both cases, we will call the radiated particles ‘messengers’. Let Kµ be the

momentum operator for whatever field is radiated; then the expectation of the radiated

momentum is
〈kµ〉 = out〈ψ|KµU(∞,−∞) |ψ〉in

= in〈ψ|U(∞,−∞)†KµU(∞,−∞) |ψ〉in,
(3.32)

where U(∞,−∞) is again the time evolution operator from the far past to the far future

— that is, the S matrix. Once again we can anticipate that the radiation will be expressed

in terms of amplitudes. Again rewriting S = 1 + iT , the expectation becomes,

Rµ ≡ 〈kµ〉 = in〈ψ|S†KµS |ψ〉in = in〈ψ|T †KµT |ψ〉in, (3.33)

because Kµ|ψ〉in = 0 (there are no quanta of radiation in the incoming state).

We can insert a complete set of states |Xkr1r2〉 containing at least one radiated mes-

senger of momentum k, and write the expectation value of the radiated momentum as

follows,

Rµ =
∑
X

∫
dΦ(k)dΦ(r1)dΦ(r2) 〈ψ|T † |k r1 r2X〉kµX〈k r1 r2X |T |ψ〉

=
∑
X

∫
dΦ(k)dΦ(r1)dΦ(r2) kµX

∣∣〈k r1 r2X |T |ψ〉
∣∣2 , (3.34)

In this expression, X can again be empty, and kµX is the sum of the explicit messenger

momentum kµ and the momenta of any messengers in the state X. Notice that we are

including explicit phase-space integrals for particles 1 and 2, consistent with our assumption

that the number of these particles is conserved during the process. The state |k〉 describes

a radiated messenger; the phase space integral over k implicitly includes a sum over its

helicity.
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Expanding the initial state, we find that the expectation value of the radiated momen-

tum is given by,

Rµ =
∑
X

∫
dΦ(k)dΦ(r1)dΦ(r2) kµX

∣∣∣∣ ∫ dΦ(p1)dΦ(p2) eib·p1/~φ1(p1)φ2(p2)

×A(p1 , p2 → r1 , r2 , k , rX)δ̂(4)(p1 + p2 − r1 − r2 − k − rX)

∣∣∣∣2
=
∑
X

∫
dΦ(k)

∏
i=1,2

dΦ(ri)dΦ(pi)dΦ(p′i) φi(pi)φ
∗
i (p
′
i) k

µ
X e

ib·(p1−p′1)/~

×A(p1 , p2 → r1 , r2 , k , rX)δ̂(4)(p1 + p2 − r1 − r2 − k − rX)

×A∗(p′1 , p′2 → r1 , r2 , k , rX)δ̂(4)(p′1 + p′2 − r1 − r2 − k − rX) .

(3.35)

We can again introduce momentum transfers, qi = p′i−pi, and trade the integrals over p′i for

integrals over the qi. One of the four-fold δ functions will again become δ̂(4)(q1+q2), and we

can use it to perform the q2 integrations. We again relabel q1 → q. The integration leaves

behind a pair of on-shell δ functions and positive-energy Θ functions just as in eqs. (3.24)

and (3.30),

Rµ =
∑
X

∫
dΦ(k)

∏
i=1,2

dΦ(ri)dΦ(pi)d̂
4q φ1(p1)φ2(p2)φ∗1(p1 + q)φ∗2(p2 − q)

× δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p1
0 + q0)Θ(p2

0 − q0)

× kµX e
−ib·q/~ δ̂(4)(p1 + p2 − r1 − r2 − k − rX)

×A(p1 , p2 → r1 , r2 , k , rX)A∗(p1 + q , p2 − q → r1 , r2 , k , rX) .

(3.36)

We emphasise that this is an all-orders expression: the amplitude A(p1,p2→ r1,r2,k,rX)

includes all loop corrections, though of course it can be expanded in perturbation theory.

The corresponding real-emission contributions are present in the sum over states X. If we

truncate the amplitude at a fixed order in perturbation theory, we should similarly truncate

the sum over states. Given that the expectation value is expressed in terms of an on-shell

amplitude, it is also appropriate to regard this observable as a fully on-shell quantity. As

in eqs. (3.24) and (3.30), q represents a momentum mismatch rather than a momentum

transfer. Here too, the scattering momentum transfers wi = ri − pi will play an important

role in our later discussion of the classical limit, and it is convenient to change variables

from the ri to make use of them,

Rµ =
∑
X

∫
dΦ(k)

∏
i=1,2

dΦ(pi)d̂
4wid̂

4q δ̂(2pi · wi + w2
i )Θ(p0

i + w0
i )

× δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p1
0 + q0)Θ(p2

0 − q0)

× φ1(p1)φ2(p2)φ∗1(p1 + q)φ∗2(p2 − q)

× kµX e
−ib·q/~δ̂(4)(w1 + w2 + k + rX)

×A(p1 , p2 → p1 + w1 , p2 + w2 , k , rX)

×A∗(p1 + q , p2 − q → p1 + w1 , p2 + w2 , k , rX) .

(3.37)
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It can be useful to represent the observables diagrammatically. Two equivalent expres-

sions for the radiated momentum are helpful:

Rµ=
∑
X

∫
dΦ(k)dΦ(r1)dΦ(r2) kµX

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
dΦ(p1)dΦ(p2) eib·p1/~ δ̂(4)(p1 + p2 − r1 − r2 − k − rX)

φ1(p1) r1

k

rX

φ2(p2) r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

,

(3.38)

which is a direct pictorial interpretation of equation (3.35), and

Rµ =
∑
X

∫
dΦ(k)

∏
i=1,2

dΦ(ri)dΦ(pi)dΦ(p′i) k
µ
X e

ib·(p1−p′1)/~

× δ̂(4)(p1 + p2 − r1 − r2 − k − rX)

× δ̂(4)(p′1 + p′2 − r1 − r2 − k − rX)

×

φ1(p1) φ∗1(p′1)

φ2(p2) φ∗2(p′2)

r1

r2

k

rX

,

(3.39)

which demonstrates that we can think of the expectation value as the weighted cut of a

loop amplitude. As X can be empty, the lowest-order contribution arises from the weighted

cut of a two-loop amplitude.

3.5 Conservation of momentum

The expectation of the radiated momentum is not completely independent of the impulse.

In fact the relation between these quantities is physically rich. In the classical electrody-

namics of point particles, for example, the impulse is due to a combination of the usual

Lorentz force and the ALD radiation reaction (more precisely, the total time integrals of

these forces). The Lorentz force exchanges momentum between particles 1 and 2, while

the radiation reaction accounts for the irreversible loss of momentum due to radiation. Of

course, the ALD force is a notably subtle issue in the classical theory.

In the quantum theory, there can be no question of violating conservation of momen-

tum, so the quantum observables we have defined must already include all the effects which

would classically be attributed to both the Lorentz and ALD forces. In particular it must

be the case that our definitions respect conservation of momentum. It is easy to demon-

strate this formally to all orders using our definitions. Later, in section 5.4, we will indicate

how the radiation reaction is included in the impulse more explicitly.
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Our scattering processes involve two incoming particles. Consider, then,

〈∆pµ1 〉+ 〈∆pµ2 〉 = 〈ψ|i[Pµ1 + Pµ2 , T ]|ψ〉+ 〈ψ|T †[Pµ1 + Pµ2 , T ]|ψ〉
=
〈
ψ
∣∣i[∑iP

µ
i , T

]∣∣ψ〉+ 〈ψ|T †[Pµ1 + Pµ2 , T ]|ψ〉,
(3.40)

where the sum
∑

Pµi is over all momentum operators in the theory. The second equality

above holds because Pµi |ψ〉 = 0 for i 6= 1, 2; only quanta of fields 1 and 2 are present in the

incoming state. Next, we use the fact that the total momentum is time independent, in

other words [∑
Pµi , T

]
= 0, (3.41)

where the sum extends over all fields. Consequently,

〈ψ|i[Pµ1 + Pµ2 , T ]|ψ〉 =
〈
ψ
∣∣i[∑iP

µ
i , T

]∣∣ψ〉 = 0. (3.42)

Thus the first term 〈ψ|i[Pµ1 , T ]|ψ〉 in the impulse (3.18) describes only the exchange of

momentum between particles 1 and 2; in this sense it is associated with the classical

Lorentz force (which shares this property) rather than with the classical ALD force (which

does not). The second term in the impulse, on the other hand, includes radiation. To

make the situation as clear as possible, let us restrict attention to the case where the only

other momentum operator is Kµ, the momentum operator for the messenger field. Then we

know that [Pµ1 +Pµ2 +Kµ, T ] = 0, and conservation of momentum at the level of expectation

values is easy to demonstrate:

〈∆pµ1 〉+ 〈∆pµ2 〉 = −〈ψ|T †[Kµ, T ]|ψ〉 = −〈ψ|T †KµT |ψ〉 = −〈kµ〉 = −Rµ , (3.43)

once again using the fact that there are no messengers in the incoming state.

In the classical theory, radiation reaction is a subleading effect, entering for two-body

scattering at order e6 in perturbation theory in electrodynamics. This is also the case in

the quantum theory. To see why, we again expand the operator product in the second term

of eq. (3.18) using a complete set of states:

〈ψ|T †[Pµ1 , T ] |ψ〉 =
∑
X

∫
dΦ(r1)dΦ(r2) 〈ψ|T †|r1 r2X〉〈r1 r2X|[Pµ1 , T ] |ψ〉 . (3.44)

The sum over X is over all states, including an implicit integral over their momenta and

a sum over any other quantum numbers. The inserted-state momenta of particles 1 and 2

(necessarily present) are labeled by ri, and the corresponding integrations over these mo-

menta by dΦ(ri). These will ultimately become integrations over the final-state momenta

in the scattering. To make the loss of momentum due to radiation explicit at this level, we

note that

〈ψ|T †[Pµ1 + Pµ2 , T ] |ψ〉 = −
∑
X

∫
dΦ(r1)dΦ(r2) 〈ψ|T †|r1 r2X〉〈r1 r2X|PµXT |ψ〉 , (3.45)

where PX is the sum over momentum operators of all quantum fields other than the scalars 1

and 2. The sum over all states X will contain, for example, terms where the state X includes
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messengers of momentum kµ along with other massless particles. We can further restrict

attention to the contributions of the messenger’s momentum to PµX . This contribution

produces a net change of momentum of particle 1 given by

−
∑
X

∫
dΦ(k)dΦ(r1)dΦ(r2) kµ 〈ψ|T †|k r1 r2X〉〈k r1 r2X|T |ψ〉 = −〈kµ〉 , (3.46)

with the help of equation (3.34). Thus we explicitly see the net loss of momentum due to

radiating messengers. This quantity is suppressed by factors of g because of the additional

state. The lowest order case corresponds to X = ∅; as there are two quanta in |ψ〉, we must

compute the modulus squared of a five-point tree amplitude. The term is proportional to

g6, where g is the coupling in the elementary three-point amplitude; as far as the impulse

is concerned, it is a next-to-next-to-leading order (NNLO) effect. Other particles in the

state X, and other contributions to its momentum, describe higher-order effects.

4 Classical point particles

The two observables we have discussed — the impulse and the expectation value of the

radiated momentum — are designed to be well-defined in both the quantum and the

classical theories. As we approach the classical limit, these expectation values should

reduce to the classical impulse and the classical radiated momentum. This should ensure

that we are able to explore the ~→ 0 limit.

We have already discussed in section 2 how to make explicit the factors of ~ in the

observables. We must still discuss the issue of suitable wavefunctions. We must first ensure

that the chosen wavefunctions have the desired classical limit. At that point, we could in

principle perform the full quantum calculation, using the specific wavefunction we choose,

and expand in the ~→ 0 limit at the end. However, we also want to choose wavefunctions

that allow us to approach the limit as early as possible in the calculation, without relying

on their detailed properties. This will lead us to impose stronger constraints on the choice

than the mere existence of a suitable classical limit.

4.1 Wavefunctions

Heuristically, the wavefunctions for the scattered particles must satisfy two separate con-

ditions. We will take these to be wavepackets, characterized by a smearing or spread in

momenta.2 That spread should not be too large, so that the interaction with the other

particle cannot peer into the details of the wavepacket. At the same time, the details of

the wavepacket should not be sensitive to quantum effects.

Let us ground our intuition about scales by first examining nonrelativistic wavefunc-

tions. An example of a minimum-uncertainty wavefunction in momentum space (ignoring

normalization) for a particle of mass m growing sharper in the ~→ 0 limit has the form,

exp

(
− p2

2~m`c/`2w

)
= exp

(
− p2

2m2`2c/`
2
w

)
, (4.1)

2Evaluating positions and uncertainties therein in relativistic field theory is a bit delicate, and we will

not consider the question in this article.
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where `c is the particle’s Compton wavelength, and where `w is an additional parameter

with dimensions of length. We can obtain the conjugate in position space by Fourier-

transforming,

exp

(
−(x− x0)2

2`2w

)
. (4.2)

The precision with which we know the particle’s location is given by `w, which we could

take as an intrinsic measure of the wavefunction’s spread.

This suggests that in considering relativistic wavefunctions, we should also take the

dimensionless parameter controlling the approach to the classical limit in momentum space

to be the square of the ratio of the Compton wavelength `c to the intrinsic spread `w,

ξ ≡
(
`c
`w

)2

. (4.3)

We obtain the classical result by studying the behavior of observables as ξ → 0. Towards

the limit the wavefunctions must be sharply peaked around the classical value for the

momenta, p̆i = miui with the classical four-velocities ui normalized to u2
i = 1. We can

express this requirement through the conditions,

〈pµi 〉 =

∫
dΦ(pi) p

µ
i |φ(pi)|2 = miŭ

µ
i fp,i(ξ) ,

fp,i(ξ) = 1 +O(ξβ
′
) ,

ŭi · ui = 1 +O(ξβ
′′
) ,

σ2(pi)/m
2
i = 〈

(
pi − 〈pi〉

)
2〉/m2

i

=
(
〈p2
i 〉 − 〈pi〉2

)
/m2

i = c∆ξ
β ,

(4.4)

where c∆ is a constant of order unity, and the βs are simple rational exponents. (The

integration measure for pi enforces 〈p2
i 〉 = m2

i .) For the simplest wavefunctions, β = 1.

This spread around the classical value is not necessarily positive, as the difference pi−〈pµi 〉
may be spacelike, and the expectation of its Lorentz square possibly negative. For that

reason, we should resist the usual temptation of taking its square root to obtain a variance.

Because of the phase-space integrals over the initial-state momenta, which enforce the

on-shell conditions p2
i = m2

i , the only Lorentz invariant built out of each pi is constant,

and so the wavefunction cannot usefully depend on it. This means the wavefunction must

depend on at least one four-vector parameter. The simplest wavefunctions will depend

on exactly one four-vector, which we can think of as the (classical) four-velocity u of the

corresponding particle. It can depend only on the dimensionless combination p · u/m in

addition to the parameter ξ. The simplest form will be a function of these two in the

combination p · u/(mξ), so that large deviations from mu will be suppressed in a classical

quantity. The wavefunction will have additional dependence on ξ in its normalization.

To see the meaning of the constraints more quantitatively, let us examine Iµ(1) (3.24)

more closely. It has the form of an amplitude integrated over the on-shell phase space

for both of the incoming momenta, subject to additional δ function constraints — and

then weighted by a phase e−ib·q/~ dependent on the momentum mismatch q, and finally
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integrated over all q. As one nears the classical limit, the wavefunction and its conjugate

should both represent the particle, that is they should be sharply peaked, and in addition

their overlap should be O(1), up to corrections of O(ξ). The amplitude will vary slowly

on the scale of the wavefunction when one is close to the limit. We will integrate the

momentum mismatch q over all possible values, so it is somewhat a matter of taste how

we normalize it. Nonetheless, if we take q0 to be a ‘characteristic’ value of q, requiring

the overlap to be O(1) is equivalent to requiring that φ∗(p+ q) does not differ much from

φ∗(p), which in turn requires that the derivative at p is small or that,

q0 · ui
mξ

� 1 . (4.5)

If we scale q by 1/~, replacing the momentum by a wavenumber, this constraint takes the

following form,

q̄0 · ui `w �
√
ξ. (4.6)

We next examine another rapidly varying factor that appears in all our integrands, the

delta functions in q arising from the on-shell constraints on the conjugate momenta p′i.

These delta functions, appearing in eqs. (3.24), (3.30), (3.37), take the form,

δ̂(2pi · q + q2) =
1

~mi
δ̂(2q̄ · ui + `cq̄

2) . (4.7)

The integration over the initial momenta pi and the initial wavefunctions will smear out

these delta functions to sharply peaked functions whose scale is the same order as the

original wavefunctions. As ξ gets smaller, this function will turn back into a delta function

imposed on the q̄ integration. In addition to its dependence on ξ, it will depend on two

additional dimensionless ratios,

`c
√
−q̄2 and

q̄ · ui√
−q̄2

. (4.8)

(The characteristic momentum mismatch q is necessarily spacelike.) Let us call 1/
√
−q̄2 a

‘scattering length’ `s. In terms of this length, our two dimensionless ratios are,

`c
`s

and q̄ · ui `s . (4.9)

The argument of the delta function is polynomial in the two ratios, so we expect them to be

constrained to be of order an appropriate power of the spread ξ. The direction-averaging

implicit in the integration over the pi will lead to a constraint on two positive quantities

built out of the ratios, so in general we expect both to be constrained independently. As

suggested again by the nonrelativistic limit, the smallest reasonable power of ξ we can

imagine emerging as a constraint from the later q̄ integration is one-half,

`c
`s

.
√
ξ ,

q̄ · ui `s .
√
ξ .

(4.10)
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If we take a higher power of ξ, the constraints would grow stronger. If we had not already

scaled out a factor of ~ from q, these constraints would make it natural to do so. Combining

the second constraint with eq. (4.6), we obtain the constraint `w � `s. The first constraint

is weaker, `w . `s, but on physical grounds as well we should expect the stronger one: only

if the wavefunction spread is much smaller than the scattering length can we expect the

interaction’s probing of the internals of the particle to be negligible.

Combining the stronger constraint with ξ � 1, we obtain our first version of the

‘Goldilocks’ inequalities,

`c � `w � `s . (4.11)

As we shall see later in the explicit evaluation of Iµ(1), `s ∼
√
−b2; this follows on dimensional

grounds along with the observation that the integrals in Iµ(1) lead to no large parameter-free

dimensionless numbers. This gives us the second version of the ‘Goldilocks’ requirement,

`c � `w �
√
−b2 . (4.12)

The combination of eq. (4.6) and the second constraint in eq. (4.10) yields a stronger

restriction than the first one in eq. (4.10). We should not expect a similar strengthening of

the second restriction; the sharp peaking alone will not force the left-hand side to be much

smaller than the right-hand side. This means that we should expect q̄ · ui to be smaller

than, but still of order,
√
ξ/`s. If we compare the two terms in the argument to the delta

function (4.7), we see that the second term,

`cq̄
2 ∼ `c

`s

1

`s
�
√
ξ

`s
, (4.13)

so that `cq̄
2 � q̄ · ui, and the second term should be negligible. There is one caveat to the

implied simplification, which we will mention below.

In computing the classical observable, we cannot simply set ξ = 0. Indeed, we don’t

even want to fully take the ξ → 0 limit. Rather, we want to take the leading term in that

limit. This term may in fact be proportional to a power of ξ. To understand this, we

should take note of one additional length scale in the problem, namely the classical radius

of the point particle. In electrodynamics, this is ρcl = e2/(4πm). However,

ρcl =
~e2

4π~m
= α`c , (4.14)

where α is the usual, dimensionless, electromagnetic coupling. Dimensionless ratios of ρcl
to other length scales will be the expansion parameters in classical observables; but as this

relation shows, they too will vanish in the ξ → 0 limit. There are really three dimensionless

parameters we must consider: ξ; `w/`s; and ρcl/`s. We want to retain the full dependence

on the latter, while considering only effects independent of the first two.

Under the influence of a perturbatively weak interaction (such as electrodynamics or

gravity) below the particle-creation threshold, we expect a wavepacket’s shape to be dis-

torted slightly, but not radically changed by the scattering. We would expect the outgoing

particles to be characterized by wavepackets similar to those of the incoming particles.
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However, using a wavepacket basis of states for the state sums in section 3 would be cum-

bersome, inconvenient, and computationally less efficient than the plane-wave states we

used. We expect the narrow peaking of the wavefunction to impose constraints on the

momentum transfers as they appear in higher-order corrections to the impulse Iµ(2), and

in the leading contribution to the radiation reaction Rµ (3.37); but we will need to see

this narrowness indirectly, via assessments of the spread as in eq. (4.4) rather than di-

rectly through the presence of a wavefunction (or wavefunction mismatch) factors in our

observables. We can estimate the spread σ2(ri) in a final-state momentum ri as follows,

σ2(ri)/m
2
i = 〈

(
ri − 〈ri〉

)2〉/m2
i

=
(
〈r2
i 〉 − 〈ri〉2

)
/m2

i

= 1−
(
〈pi〉+ 〈∆pi〉

)
2/m2

i

= σ2(pi)/m
2
i − 〈∆pi〉 ·

(
2〈pi〉+ 〈∆pi〉

)
/m2

i .

(4.15)

So long as 〈∆pi〉/mi . σ2(pi)/m
2
i , the second term will not greatly increase the result, and

the spread in the final-state momentum will be of the same order as that in the initial-state

momentum. Whether this condition holds depends on the details of the wavefunction. Even

if it is violated, so long as 〈∆pi〉/mi . c′∆ξ
β′′′

with c′∆ a constant of O(1), then the final-

state momentum will have a narrow spread towards the limit. (It would be broader than

the initial-state momentum spread, but that does not affect the applicability of our results.)

The magnitude of 〈∆pi〉 can be determined perturbatively. The leading-order value

comes from Iµ(1), with Iµ(2) and radiative corrections contributing yet-smaller corrections. As

we shall see, these computations reveal 〈∆pi〉/mi to scale like
√
ξ and be numerically much

smaller. This in turn implies that for perturbative consistency, the ‘characteristic’ values

of momentum transfers wi inside the definition of R must also be very small compared to

mi
√
ξ. (This constraint is in fact much weaker than implied by the leading-order value

of 〈∆pi〉.) Just as for q0 in eq. (4.5), we should scale these momentum transfers by 1/~,

replacing them by wavenumbers wi. The corresponding scattering lengths `′s =
√
−w2

1,2

must again satisfy `′s � `w. If we now examine the energy-momentum-conserving delta

function in eq. (3.37), rewritten in terms of momentum transfers,

δ̂(4)(w1 + w2 + k + rX) , (4.16)

we see that all radiated momenta k and rX must likewise be small compared to mi
√
ξ: all

their energy components must be positive and hence no cancellations are possible inside

the delta function. The typical values of these momenta should again by scaled by 1/~ and

replaced by wavenumbers.

What about loop integrations? As we integrate the loop momentum ` over all values,

it is again a matter of taste how we scale it. If it is the momentum of a (virtual) massless

line, however, unitarity considerations suggest that as the natural scaling is to remove a

factor of ~ in real-emission contributions, we should likewise do so for virtual lines. More

generally, we should scale those differences of the loop momentum with external legs that

correspond to massless particles, and replace them by wavenumbers. Moreover, unitarity
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considerations also suggest that we should choose the loop momentum to be that of a

massless line in the loop, if there is one.

In general, we may not be able to approach the ~ → 0 limit of each contribution to

an observable separately, because they may contain terms which are singular, having too

many inverse powers of ~. We find that such singular terms meet one of two fates: they

are multiplied by functions which vanish in the regime of validity of the limit; or they

cancel in the sum over all contributions. We cannot yet offer a general argument that

such troublesome terms necessarily disappear in one of these two manners. We can treat

independently contributions whose singular terms ultimately cancel in the sum, so long as

we expand each contribution in a Laurent series in ~.

Integrand factors that appear uniformly in all contributions — that is, factors which

appear directly in a final expression after cancellation of terms singular in the ~→ 0 limit

— can benefit from applying two simplifications to the integrand: setting pi to miui, and

truncating at the lowest order in ~ or ξ. For other factors, we must be careful to expand in

a Laurent series. As mentioned above, inside the on-shell delta functions δ̂(2pi · q̄±~q̄2) we

can neglect the ~q̄2 term; this is true so long as the factors multiplying these delta functions

are not singular in ~. If they are indeed nonsingular (after summing over terms), we can

safely neglect the second term inside such delta functions, and replace them by δ̂(2p1 · q̄).
A similar argument allows us to neglect the ~q̄0 term inside the positive-energy theta

functions; the q̄ integration then becomes independent of them. Similar arguments, and

caveats, apply to the squared momentum-transfer terms ~w2
i appearing inside on-shell delta

functions in higher-order contributions, along with the energy components w0
i appearing

inside positive-energy theta functions. They can be neglected so long as the accompanying

factors are not singular in ~. If accompanying factors are singular as ~ → 0, then we

may need to retain such formally suppressed ~q̄2 or ~w2
i terms inside delta functions. We

will see an example of this in the calculation of the NLO contributions to the impulse in

section 5.

It will be convenient to introduce a notation to allow us to manipulate integrands

under the eventual approach to the ~ → 0 limit; we will use large angle brackets for the

purpose,〈〈
f(p1, p2, . . .)

〉〉
≡
∫
dΦ(p1)dΦ(p2) |φ1(p1)|2 |φ2(p2)|2 f(p1, p2, . . .) , (4.17)

where the integration over both p1 and p2 is implicit. Within the angle brackets, we have

approximated φ(p+q) ' φ(p), and when evaluating the integrals (implicit in the large angle

brackets), we will also set pi ' miui, along with the other simplifications discussed above.

4.2 An example wavefunction

It will be helpful to look at the scales that arise in calculations in the context of a specific

example for a wavefunction. For this purpose we take a linear exponential,

φ(p1) = Nm−1
1 exp

[
− p1 · u
~`c/`2w

]
= Nm−1

1 exp

[
−p1 · u
m1ξ

]
. (4.18)
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In this function, u is a dimensionless four-vector; we will ultimately identify it as the

four-velocity of particle 1, and normalize it to u2 = 1. (For the moment, we keep its

normalization general.) As discussed in the previous section, `w characterizes the ‘intrinsic’

spread of the wavepacket. In spite of the linearity of the exponent in p1, this function gives

rise to the Gaussian of eq. (4.1) in the nonrelativistic limit in the rest frame of u. (The

wavefunction shares some features with relativistic wavefunctions discussed in ref. [117].)

The normalization condition (3.12) requires,

N =
2
√

2π

ξ1/2K
1/2
1 (2/ξ)

, (4.19)

where K1 is a modified Bessel function of the second kind. For details of this computa-

tion and following ones, see appendix B. We can compute the spread of the wavepacket

straightforwardly, obtaining

〈(∆p1)2〉
〈p2

1〉
= 1− K2

2 (2/ξ)

K2
1 (2/ξ)

. (4.20)

As we approach the classical region, where ξ → 0, the wavefunction indeed becomes sharply

peaked, as
〈(∆p1)2〉
〈p2

1〉
→ −3

2
ξ +O(ξ2) . (4.21)

Next, let us consider the implications of the on-shell delta function. Examine a wave-

function integral similar to Iµ(1), but with a simpler integrand,

T1 =

∫
dΦ(p1) φ(p1)φ∗(p1 + q) δ̂(2p1 · q + q2) . (4.22)

With φ chosen to be the linear exponential (4.18), this integral simplifies,

T1 =
1

~m1
η1(q̄; p1)

∫
dΦ(p1) δ̂(2p1 · q̄/m1 + ~q̄2/m1) |φ(p1)|2 , (4.23)

where we have also replaced q → ~q̄, and where

η1(q̄; p1) = exp

[
−~q̄ · u
m1ξ

]
. (4.24)

The remaining integrations in T1 are evaluated in appendix B, yielding

T1 =
1

4~m1

√
(q̄ · u)2 − q̄2K1(2/ξ)

exp

[
−2

ξ

√
(q̄ · u)2 − q̄2√
−q̄2

√
1− ~2q̄2/(4m2

1)

]
. (4.25)

(The wavenumber transfer is necessarily spacelike, so that −q̄2 > 0.)

As we approach the ~, ξ → 0 limit, we may expect this function to be concentrated in

a small region in q̄. Towards the limit, the dependence on the magnitude is just given by

the prefactor. To understand the behavior in the boost and angular degrees of freedom,

we may note that
1

K1(2/ξ)
∼ 2√

π
√
ξ

exp

[
2

ξ

]
, (4.26)
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and that ~
√
ξ is of order ξ, so that overall T1 has the form,

1

ξ
exp

[
−f(q̄)

ξ

]
, (4.27)

which becomes a delta function as ξ → 0 limit. The more detailed discussion in the

appendix shows that it has the form,

δ(q̄ · u) , (4.28)

as anticipated in the previous section.

4.3 Classical impulse

We have written the impulse in terms of two terms, 〈∆pµ1 〉 = Iµ(1) + Iµ(2), and expanded

these in terms of wavefunctions in equations (3.24) and (3.30). We will now discuss the

classical limit of these terms in detail, applying the rules discussed in section 4.1.

We begin with the first and simplest term in the impulse, Iµ(1), given in eq. (3.24), here

recast in the notation of eq. (4.17) in preparation,

Iµ(1),cl = i

〈〈∫
d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0

1 + q0)Θ(p0
2 − q0)

× e−ib·q/~ qµA(p1p2 → p1 + q, p2 − q)
〉〉
.

(4.29)

Rescale q → ~q̄; drop the q2 inside the on-shell delta functions; and also remove the overall

factor of g2 and accompanying ~s from the amplitude, to obtain the leading-order (LO)

contribution to the classical impulse,

∆p
µ,(0)
1 ≡ Iµ,(0)

(1),cl = i
g2

4

〈〈
~2

∫
d̂4q̄ δ̂(q̄ · p1)δ̂(q̄ · p2)

× e−ib·q̄ q̄µ Ā(0)(p1, p2 → p1 + ~q̄, p2 − ~q̄)
〉〉
.

(4.30)

We denote by Ā(L) the reduced L-loop amplitude, that is the L-loop amplitude with a

factor of g/
√
~ removed for every interaction: in the electromagnetic case, this removes

a factor of e/
√
~, while in the gravitational case, we would remove a factor of κ/

√
~. In

general, this rescaled fixed-order amplitude depends only on ~-free ratios of couplings;

in pure electrodynamics or gravitational theory, it is independent of couplings. In pure

electrodynamics, it depends on the charges of the scattering particles. While it is free of

the powers of ~ discussed in section 2, it will in general still scale with an overall power

of ~ thanks to dependence on momentum mismatches or transfers. As we shall see in the

next section, additional inverse powers of ~ emerging from Ā will cancel the ~2 prefactor

and yield a nonvanishing result.

As a reminder, while this contribution to a physical observable is linear in an amplitude,

it arises from an expression involving wavefunctions multiplied by their conjugates. This

is reflected in the fact that both the ‘incoming’ and ‘outgoing’ momenta in the amplitude
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here are in fact initial-state momenta. Any phase which could be introduced by hand in

the initial state would thus cancel out of the observable.

The LO classical impulse is special in that only the first term (3.24) contributes. In

general, it is only the sum of the two terms in eq. (3.18) that has a well-defined classical

limit. We may write this sum as

Iµcl = i

〈〈
~−2

∫
d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p0

1 + q0)Θ(p0
2 − q0) e−ib·q/~ Iµ

〉〉
, (4.31)

where the impulse kernel Iµ is defined as,

Iµ ≡ ~2qµA(p1p2 → p1 + q, p2 − q)

− i~2
∑
X

∫ ∏
i=1,2

d̂4wiδ̂(2pi · wi + w2
i )Θ(p0

i + w0
i )

× wµ1 δ̂
(4)(w1 + w2 + rX)

×A(p1p2 → p1 + w1 , p2 + w2 , rX)

×A∗(p1 + q, p2 − q → p1 + w1 , p2 + w2 , rX) .

(4.32)

The prefactor in eq. (4.31) and the normalization of Iµ are chosen so that the latter is

O(~0) in the classical limit. At leading order, the only contribution comes from the tree-

level four-point amplitude in the first term, and after passing to the classical limit, we

recover eq. (4.30) as expected. At next-to-leading order (NLO), both terms contribute.

The contribution from the first term is from the one-loop amplitude, while that from the

second term has X = ∅, so that both the amplitude and conjugate inside the integral are

tree-level four-point amplitudes.

Focus on the NLO contributions, and pass to the classical limit. As discussed in

section 4.1 we may neglect the q2 terms in the delta functions present in eq. (4.31) so long

as any singular terms in the impulse kernel cancel. We then rescale q → ~q̄; and remove an

overall factor of g4 and accompanying ~s from the amplitudes. In addition, we may rescale

w → ~w. However, since singular terms may be present in the individual summands of

the impulse kernel — in general, they will cancel against singular terms emerging from the

loop integration in the first term in eq. (4.32) — we are not entitled to drop the w2 inside

the on-shell delta functions. We obtain,

∆p
µ,(1)
1 = i

g4

4

〈〈∫
d̂4q̄ δ̂(p1 · q̄)δ̂(p2 · q̄) e−ib·q̄ Iµ,(1)

cl

〉〉
, (4.33)

where,

Iµ,(1)
cl = ~q̄µ Ā(1)(p1p2 → p1 + ~q̄, p2 − ~q̄)

− i~3

∫
d̂4w δ̂(2p1 · w + ~w2)δ̂(2p2 · w − ~w2) wµ

× Ā(0)(p1 , p2 → p1 + ~w , p2 − ~w)

× Ā(0)∗(p1 + ~q̄ , p2 − ~q̄ → p1 + ~w , p2 − ~w).

(4.34)

Once again, we will see in the next section that additional inverse powers of ~ will arise

from the amplitudes, and will yield a finite and nonvanishing answer in the classical limit.
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4.4 Classical radiation

Our starting point for obtaining a prediction for the classical limit of the momentum

emitted in radiation is eq. (3.37), which we recast in the notation of eq. (4.17),

Rµcl =
∑
X

〈〈∫
dΦ(k)

∏
i=1,2

d̂4wid̂
4q δ̂(2pi · wi + w2

i )Θ(p0
i + w0

i )

× δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)Θ(p1
0 + q0)Θ(p2

0 − q0)

× kµX e
−ib·q/~δ̂(4)(w1 + w2 + k + rX)

×A(p1p2 → p1 + w1 , p2 + w2 , k , rX)

×A∗(p1 + q, p2 − q → p1 + w1 , p2 + w2 , k , rX)

〉〉
.

(4.35)

Recall that kµX is the sum of the messenger momentum kµ and the momenta of other

messengers in X. We will determine the classical limit using precisely the same logic as

in the previous subsection. Let us again focus on the leading contribution, with X = ∅.

Once again, rescale q → ~q̄, and drop the q2 inside the on-shell delta functions. Here,

remove an overall factor of g6 and accompanying ~s from the amplitude and its conjugate.

In addition, rescale the momentum transfers w → ~w and the radiation momenta, k → ~k.

At leading order there is no sum, so there will be no hidden cancellations, and we may

drop the w2
i inside the on-shell delta functions to obtain,

R
µ,(0)
cl = g6

〈〈
~4

∫
dΦ(k̄)

∏
i=1,2

d̂4wid̂
4q̄ δ̂(2wi · pi)δ̂(2q̄ · p1)δ̂(2q̄ · p2)

× k̄µ e−ib·q̄ δ̂(4)(w1 + w2 + k̄)

× Ā(0)(p1p2 → p1 + ~w1 , p2 + ~w2 , ~k̄)

× Ā(0)∗(p1 + ~q̄, p2 − ~q̄ → p1 + ~w1 , p2 + ~w2 , ~k̄)

〉〉
.

(4.36)

We will make use of this expression below to verify that momentum is conserved as ex-

pected.

One disadvantage of this expression for the leading order radiated momentum is that

it is no longer in a form of an integral over a perfect square, such as shown in eq. (3.38).

Nevertheless we can recast eq. (4.35) in such a form. To do so, perform a change of variable,

including in the wavefunctions. To begin, it is helpful to write eq. (4.35) as

Rµcl =
∑
X

∏
i=1,2

∫
dΦ(pi)|φi(pi)|2

∫
dΦ(k)dΦ(wi + pi)dΦ(qi + pi)

× δ̂(4)(w1 + w2 + k + rX)δ̂(4)(q1 + q2) e−ib·q1/~ kµX

×A(p1 , p2 → p1 + w1 , p2 + w2 , k , rX)

×A∗(p1 + q1 , p2 + q2 → p1 + w1 , p2 + w2 , k , rX) .

(4.37)

We will now re-order the integration and perform a change of variables. Let us define

p̃i = pi − w̃i, q̃i = qi + w̃i, and w̃i = −wi, changing variables from pi to p̃i, from qi to q̃i,
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and from wi to w̃i,

Rµcl =
∑
X

∏
i=1,2

∫
dΦ(p̃i)dΦ(k)dΦ(w̃i + p̃i)dΦ(q̃i + p̃i)|φi(p̃i + w̃i)|2

× δ̂(4)(w̃1 + w̃2 − k − rX)δ̂(4)(q̃1 + q̃2 − k − rX)

× e−ib·(q̃1−w̃1)/~ kµX

×A(p̃1 + w̃1 , p̃2 + w̃2 → p̃1 , p̃2 , k , rX)

×A∗(p̃1 + q̃1 , p̃2 + q̃2 → p̃1 , p̃2 , k , rX) .

(4.38)

As the w̃i implicitly carry a factor of ~, just as argued in section 4.1 for the momentum

mismatch q, we may neglect the shift in the wave functions. Dropping the tildes, and

associating the wi integrals with A and the qi integrals with A∗, our expression is revealed

as an integral over a perfect square,

Rµcl =
∑
X

∏
i=1,2

∫
dΦ(pi)|φi(pi)|2

∫
dΦ(k) kµX

×
∣∣∣∣∫ dΦ(wi + pi) δ̂

(4)(w1 + w2 − k − rX)

× eib·w1/~A(p1 + w1, p2 + w2 → p1 , p2 , k , rX)

∣∣∣∣2
=
∑
X

∏
i=1,2

〈〈∫
dΦ(k) kµX

∣∣∣∣∫ dΦ(wi + pi) δ̂
(4)(w1 + w2 − k − rX)

× eib·w1/~A(p1 + w1, p2 + w2 → p1 , p2 , k , rX)

∣∣∣∣2〉〉 .

(4.39)

The perfect-square structure allows us to define a radiation kernel,

R(k, rX) ≡ ~3/2
∏
i=1,2

∫
dΦ(pi + wi) δ̂

(4)(w1 + w2 − k − rX)

× eib·w1/~A(p1 + w1, p2 + w2 → p1 , p2 , k , rX),

= ~3/2
∏
i=1,2

∫
d̂4wi δ̂(2pi · wi + w2

i )Θ(p0
i + w0

i )δ̂
(4)(w1 + w2 − k − rX)

× eib·w1/~A(p1 + w1, p2 + w2 → p1 , p2 , k , rX)

(4.40)

so that

Rµcl =
∑
X

~−3

〈〈∫
dΦ(k) kµX |R(k, rX)|2

〉〉
. (4.41)

The prefactor along with the normalization of R are again chosen so that the classical limit

of the radiation kernel will be of O(~0). As we will see in section 6.2.1, this expression is

related to a classical all-order formula for the radiated momentum.

Let us now focus once more on the leading contribution, with X = ∅. As usual,

rescale w → ~w, and as above we may drop the w2 inside all of the on-shell delta functions.

Again, remove an overall factor of g6 and accompanying ~s from the amplitude and its
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conjugate. We choose to express the leading-order classical radiated momentum in terms

of a leading-order radiation kernel,

R(0)(k̄) ≡ ~2
∏
i=1,2

∫
d̂4wi δ̂(2pi · wi)δ̂(4)(w1 + w2 − k̄)eib·w1

× Ā(0)(p1 + ~w1, p2 + ~w2 → p1 , p2 , ~k̄) ,

(4.42)

so that the leading-order momentum radiated is simply,

R
µ,(0)
cl = g6

〈〈∫
dΦ(k̄) k̄µ

∣∣∣R(0)(k̄)
∣∣∣2〉〉 . (4.43)

4.5 Conservation of momentum

Conservation of momentum certainly holds to all orders, as we saw in section 3.5. In the

classical theory, momentum conservation was however historically a controversial issue.

It is thus worth making sure that we have not spoiled this critical physical property in

our classical impulse discussion in section 4.3, or in our classical radiation discussion,

section 4.4. One might worry, for example, that there is a subtlety with the order of limits.

There is no issue at LO and NLO for the impulse, because

∆p
µ,(0)
1 + ∆p

µ,(0)
2 = 0, ∆p

µ,(1)
1 + ∆p

µ,(1)
2 = 0. (4.44)

These follow straightforwardly from the definitions, eq. (4.30) and eq. (4.33). The essential

point is that the amplitudes entering into these orders in the impulse conserve momentum

for four particles. At LO, for example, using eq. (4.30) the impulse on particle 2 can be

written as

∆p
µ,(0)
2 = i

g2

4

〈〈
~2

∫
d̂4q̄1d̂

4q̄2 δ̂(q̄1 · p1)δ̂(q̄1 · p2)δ̂(4)(q̄1 + q̄2)

× e−ib·q̄1 q̄µ2 Ā
(0)(p1, p2 → p1 + ~q̄1, p2 + ~q̄2)

〉〉
.

(4.45)

In this equation, conservation of momentum at the level of the four point amplitude

Ā(0)(p1, p2 → p1 +~q̄1, p2 +~q̄2) is expressed by the presence of the four-fold delta function

δ̂(4)(q̄1 + q̄2). Using this delta function, we may replace q̄µ2 with −q̄µ1 and then integrate

over q̄2, once again using the delta function. The result is manifestly −∆p
µ,(0)
1 , eq. (4.30).

A similar calculation goes through at NLO.

In this sense, the scattering is conservative at LO and at NLO. At NNLO, however,

we must take radiative effects into account. This backreaction is entirely described by

Iµ(2). As indicated in eq. (3.42), Iµ(1) is always conservative. From our perspective here,

this is because it involves only four-point amplitudes. Thus to understand conservation

of momentum we need to investigate Iµ(2). The lowest order case in which a five point

amplitude can enter Iµ(2) is at NNLO. Let us restrict attention to this lowest order case,

taking the additional state X to be a messenger.
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Using precisely the methods of previous subsections, the lowest order term in Iµ(2)

involving one messenger is, in the classical regime,

I
µ,(rad)
(2),cl = g6

〈〈
~4

∫
dΦ(k̄)

∏
i=1,2

d̂4wi d̂
4q̄1d̂

4q̄2 δ̂(2wi · pi)δ̂(2q̄1 · p1)δ̂(2q̄2 · p2)

× e−ib·q̄1 wµ1 δ̂
(4)(w1 + w2 + k̄)δ̂(4)(q̄1 + q̄2)

× Ā(0)(p1 , p2 → p1 + ~w1 , p2 + ~w2, ~k̄)

× Ā(0)∗(p1 + ~q̄1 , p2 + ~q̄2 → p1 + ~w1 , p2 + ~w2, ~k̄)

〉〉
.

(4.46)

To see that this balances the radiated momentum, we use eq. (4.36). The structure of the

expressions are almost identical; conservation of momentum holds because the factor k̄µ in

eq. (4.36) is balanced by wµ1 in eq. (4.46) and wµ2 in the equivalent expression for particle 2.

Thus conservation of momentum continues to hold in our expressions once we have

passed to the classical limit, at least through NNLO. At this order there is non-zero mo-

mentum radiated, so momentum conservation is non-trivial from the classical point of view.

We will see by explicit calculation in later sections that our classical impulse correctly in-

corporates the impulse from the ALD force in addition to the Lorentz force.

5 Examples

To build confidence in the formalism developed in prior sections, let us use it to calculate

some classical point-particle observables explicitly. We will work in the context of scalar

electrodynamics, with Lagrangian

L = −1

4
FµνFµν +

∑
i=1,2

[
(DµΦi)

†DµΦi −m2
iΦ
†
iΦi

]
. (5.1)

We take the charges of the fields Φi to be Qi, with the electromagnetic coupling the usual e.

We will begin by studying the impulse at leading and next-to-leading order. Later, in

section 6.1, we will study the same quantity by iterating the classical equations of motion.

The fact that this iterative classical approach to the impulse is reminiscent of Feynman

diagrams was recently highlighted by Damour [85]. Following our discussion of the impulse,

we will discuss the momentum radiated before turning to momentum conservation.

5.1 Leading-order electromagnetic impulse

We begin by computing the impulse, ∆p
µ,(0)
1 , on particle 1 at leading order. At this order,

only Iµ(1) contributes, as expressed in eq. (4.30). To evaluate the impulse, we must first

compute the 2→ 2 tree-level scattering amplitude. The reduced amplitude Ā(0) is,

iĀ(0)(p1p2 → p1 + ~q̄ , p2 − ~q̄) =

p1 p1 + ~q̄

p2 p2 − ~q̄

= iQ1Q2
4p1 · p2 + ~2q̄2

~2q̄2
. (5.2)
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We can neglect the second term in the numerator, which is subleading in the classical limit.

Substituting this expression into eq. (4.30), we obtain,

∆p
µ,(0)
1 = ie2Q1Q2

〈〈∫
d̂4q̄ δ̂(q̄ · p1)δ̂(q̄ · p2)e−ib·q̄

p1 · p2

q̄2
q̄µ
〉〉
. (5.3)

As promised, the leading-order expression is independent of ~. Evaluating the p1,2 integrals,

in the process applying the simplifications explained in section 4.1, namely replacing pi →
miui, we find that,

∆p
µ,(0)
1 = ie2Q1Q2

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)e−ib·q̄

u1 · u2

q̄2
q̄µ . (5.4)

This expression has intriguing similarities to quantities that arise in the high-energy limit

of two-body scattering [118–135]. The eikonal approximation used there is known to ex-

ponentiate, and it would be interesting to explore this connection further.

It is straightforward to perform the integral over q̄ in eq. (5.4) to obtain an explicit

expression for the leading order impulse. To do so, we work in the rest frame of particle 1,

so that u1 = (1, 0, 0, 0). Without loss of generality we can orientate the spatial coordinates

in this frame so that particle 2 is moving along the z axis, with proper velocity u2 =

(γ, 0, 0, γβ). We have introduced the standard Lorentz gamma factor γ = u1 · u2 and the

velocity parameter β satisfying γ2(1− β2) = 1. In terms of these variables, the impulse is

∆p
µ,(0)
1 = ie2Q1Q2

∫
d̂4q̄ δ̂(q̄0)δ̂(γq̄0 − γβq̄3) e−ib·q̄

γ

q̄2
q̄µ

= −ie
2Q1Q2

4π2|β|

∫
d2q̄ eib·q̄⊥

1

q̄2
⊥
q̄µ ,

(5.5)

where q̄0 = q̄3 = 0 and the non-vanishing components of q̄µ in the xy plane of our corrdinate

system are q̄⊥. It remains to perform the two dimensional integral over q̄⊥, which is

easily done using polar coordinates. Let the magnitude of q̄⊥ be χ and orient the x

and y axes so that b · q̄⊥ = |b|χ cos θ. Then the non-vanishing components of q̄µ are

q̄µ = (0, χ cos θ, χ sin θ, 0) and the impulse is

∆p
µ,(0)
1 = −ie

2Q1Q2

4π2|β|

∫ ∞
0

dχ χ

∫ π

−π
dθ ei|b|χ cos θ 1

χ2
(0, χ cos θ, χ sin θ, 0)

= −ie
2Q1Q2

4π2|β|

∫ ∞
0

dχ

∫ π

−π
dθ ei|b|χ cos θ (0, cos θ, sin θ, 0)

=
e2Q1Q2

2π|β|

∫ ∞
0

dχ J1(|b|χ) b̂

=
e2Q1Q2

2π|β|
b̂

|b|
,

(5.6)

where b̂ is the spatial unit vector in the direction of the impact parameter. To restore

manifest Lorentz invariance, note that

1

|β|
=

γ√
γ2 − 1

,
b̂

|b|
= −b

µ

b2
. (5.7)
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(Recall that bµ is spacelike, so −b2 > 0.) With this input, we may write the impulse as,

∆p
µ,(0)
1 = −e

2Q1Q2

2π

γ√
γ2 − 1

bµ

b2
. (5.8)

In the non-relativistic limit this should match a familiar formula: the expansion of the

Rutherford scattering angle θ(b) as a function of the impact parameter. To keep things

simple, we consider Rutherford scattering of a light particle (for example, an electron) off

a heavy particle (a nucleus). Taking particle 1 to be the moving light particle, particle 2

is very heavy and we work in its rest frame. Expanding the textbook Rutherford result to

order e2, we find

θ(b) = 2 tan−1 e
2Q1Q2

4πmv2b
' e2Q1Q2

2πmv2b
, (5.9)

where v is the non-relativistic velocity of the particle. To recover this simple result from

equation (5.4), recall that in the non-relativistic limit γ ' 1 + v2/2. The scattering angle,

at this order, is simply ∆v/v. We will make use of this frame in later sections as well.

We note in passing that the second term in the numerator of eq. (5.2) is a quantum

correction. It will ultimately be suppressed by `2c/b
2, and in addition would contribute only

a contact interaction, as it leads to a δ(2)(b) term in the impulse.

5.2 Next-to-leading order impulse

At the next order in perturbation theory, order e4, a well-defined classical impulse is only

obtained by combining all terms in the impulse 〈∆pµ1 〉 of order e4. As we discussed in

section 4.3, both Iµ(1) and Iµ(2) contribute. We found in eq. (4.33) that the impulse is a

simple integral over an impulse kernel Iµ,(1)
cl , defined in eq. (4.34), which has a well-defined

classical limit.

The determination of the impulse kernel at this order requires us to compute the

four-point one-loop amplitude along with a cut amplitude, that is an integral over a term

quadratic in the tree amplitude. As the one-loop amplitude in electrodynamics is simple,

we compute it explicitly using on-shell renormalised perturbation theory in Feynman gauge.

The contributions to the impulse in the quantum theory can be divided into three

classes, according to the prefactor in the charges they carry: C1, those proportional to

Q3
1Q2; C2, those to Q2

1Q
2
2; and C3, those to Q1Q

3
2. The first class can be further subdivided

into C1a, terms which would be proportional to Q1(Q2
1+nsQ

2
3)Q2 were we to add ns species

of a third scalar with charge Q3, and into C1b, terms which would retain the simple Q3
1Q2

prefactor. Likewise, the last class can be further subdivided into C3a, terms which would

be proportional to Q1(Q2
2 + nsQ

2
3)Q2, and into C3b, those whose prefactor would remain

simply Q1Q
3
2.

Classes C1a and C3a consist of photon self-energy corrections along with renormaliza-

tion counterterms. They appear only in the one-loop corrections to the four-point am-

plitude, in the first term in the impulse kernel Iµ,(1)
cl . We will discuss them in detail in

section 5.2.1 below. As one may suspect ab ipso initio, they give no contribution in the

classical limit. Likewise, classes C1b and C3b consist of vertex corrections, wavefunction
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renormalization, and their counterterms. We will not discuss them in detail, but they too

give no contribution in the classical limit.

This leaves us with contributions of class C2; these appear in both terms in the impulse

kernel. These contributions to the one-loop amplitude in the first term take the form,

iĀ(1)(p1p2 → p′1p
′
2) =

p1 p1 + q

p2 p2 − q

=

+ + + + .

(5.10)

In each contribution, we count powers of ~ following the rules in section 4.1, replacing

` → ~¯̀ and q → ~q̄. In the double-seagull contribution, we will get four powers from the

loop measure, and four inverse powers from the two photon propagators. Overall, we will

not get enough inverse powers to compensate the power in front of the integral in eq. (4.34),

and so the seagull will die in the classical limit. The remaining diagrams will contribute in

the limit, and we discuss them in sects. 5.2.2 and 5.2.3. We discuss the contributions from

the second term in the impulse kernel in section 5.2.4, and combine terms in section 5.2.5.

5.2.1 Purely quantum contributions

Let us begin with the first and last classes of contributions described in the beginning of this

section. These correspond to vertex and photon self-energy terms, including counterterms.

Consider, for example, the photon self-energy terms, focussing on internal scalars of mass

m and charge Qi. Define the self-energy via,

Q2
iΠ(q2)

(
q2ηµν − qµqν

)
≡ , (5.11)

where we have made the projector required by gauge invariance manifest, but have not

included factors of the electromagnetic coupling e. We have extracted the charges Qi for

later convenience. The contribution of the photon self-energy to the reduced four-point

amplitude is

ĀΠ = Q1Q2Q
2
i

(2p1 + ~q̄) · (2p2 − ~q̄)
~2q̄2

Π(~2q̄2) . (5.12)

The counterterm is adjusted to impose the renormalisation condition that Π(0) = 0, re-

quired in order to match the identification of the electromagnetic coupling e with its clas-

sical counterpart. As a power series in the dimensionless ratio q2/m2 = ~2q̄2/m2, which is
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of order `2c/b
2,

Π(q2) = ~2Π′(0)
q̄2

m2
+O

(
`4c
b4

)
. (5.13)

The renormalization condition is essential in eliminating possible contributions of O(~0).

One way to see that ĀΠ is a purely quantum correction is to follow the powers of ~. As

Π(q2) is of order ~2, ĀΠ is of order ~0. This gives a contribution of O(~) to the impulse

kernel (4.34), which in turn gives a contribution of O(~) to the impulse, as can be seen in

eq. (4.33).

Alternatively, one can consider the contribution of these graphs to ∆p/p. Counting

each factor of q̄ as of order b, and using Π(q2) ∼ `2c/b2, it is easy to see that these self-energy

graphs yield a contribution to ∆p/p of order α2~3/(mb)3 ∼ (ρ2
cl/b

2) (`c/b).

The renormalisation of the vertex is similarly a purely quantum effect.

5.2.2 Triangles

We turn next to contributions which do survive in the classical limit. Let us first examine

the two triangle diagrams in eq. (5.10). They are related by swapping particles 1 and 2.

The first diagram is,

iT12 = = −2Q2
1Q

2
2

∫
d̂D`

(2p1 + `) · (2p1 + q + `)

`2(`− q)2(2p1 · `+ `2 + iε)
. (5.14)

In this integral, we use a dimensional regulator in a standard way (D = 4 − 2ε) in order

to regulate potential divergences. We have retained an explicit iε in the massive scalar

propagator, because it will play an important role below.

To extract the classical contribution of this integral to the amplitude, we recall from

section 4.1 that we should set q = ~q̄ and ` = ~¯̀, and therefore that the components of q

and ` are all small compared to m. Consequently, the triangle simplifies to,

T12 =
4iQ2

1Q
2
2m

2
1

~

∫
d̂4 ¯̀ 1

¯̀2(¯̀− q̄)2(p1 · ¯̀+ iε)
. (5.15)

Here, we have taken the limit D → 4, as the integral is now free of divergences. Notice that

we have exposed one additional inverse power of ~. Comparing to the definition of Iµ,(1)
cl

in eq. (4.34), we see that this inverse power of ~ will cancel against the explicit factor of ~
in I

µ,(1)
(1),cl, signaling a classical contribution to the impulse.

At this point we employ a simple trick which simplifies the loop integral appearing

in eq. (5.15), and which will be of great help in simplifying the more complicated box

topologies below. The on-shell condition for the outgoing particle 1 requires that p1 · q̄ =

−~q̄2/2, so replace ¯̀→ ¯̀′ = q̄ − ¯̀ in T12:

T12 = −4iQ2
1Q

2
2m

2
1

~

∫
d̂4 ¯̀′ 1

¯̀′2(¯̀′ − q̄)2(p1 · ¯̀′ + ~q̄2 − iε)

= −4iQ2
1Q

2
2m

2
1

~

∫
d̂4 ¯̀′ 1

¯̀′2(¯̀′ − q̄)2(p1 · ¯̀′ − iε)
+O(~0),

(5.16)
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Because of the linear power of ~ appearing in eq. (4.34), the second term is in fact a

quantum correction. We therefore neglect it, and write,

T12 = −4iQ2
1Q

2
2m

2
1

~

∫
d̂4 ¯̀ 1

¯̀2(¯̀− q̄)2(p1 · ¯̀− iε)
, (5.17)

where we have dropped the prime on the loop momentum: `′ → `. Comparing with our

previous expression, eq. (5.15), for the triangle, the net result of these replacements has

simply been to introduce an overall sign while, crucially, also switching the sign of the iε

term. Symmetrising over the two expressions for T12, we learn that

T12 =
2Q2

1Q
2
2m

2
1

~

∫
d̂4 ¯̀ δ̂(p1 · ¯̀)

¯̀2(¯̀− q̄)2
, (5.18)

using the identity
1

x− iε
− 1

x+ iε
= iδ̂(x). (5.19)

The second triangle contributing to the amplitude, T21, can be obtained from T12

simply by interchanging the labels 1 and 2:

T21 =
2Q2

1Q
2
2m

2
2

~

∫
d̂4 ¯̀ δ̂(p2 · ¯̀)

¯̀2(¯̀− q̄)2
. (5.20)

These triangles contribute to the impulse kernel via

Iµ,(1)
cl

∣∣
triangle

= ~q̄µ(T12 + T21)

= 2Q2
1Q

2
2 q̄

µ

∫
d̂4 ¯̀

¯̀2(¯̀− q̄)2

(
m2

1δ̂(p1 · ¯̀) +m2
2δ̂(p2 · ¯̀)

)
.

(5.21)

Recall that we must integrate over the wavefunctions in order to obtain the classical impulse

from the impulse kernel. As we have discussed in section 4.1, because the inverse power of

~ here is canceled by the linear power present explicitly in eq. (4.33), we may evaluate the

wavefunction integrals by replacing the pi by their classical values miui. The result for the

contribution to the kernel is,

Iµ1 ≡ 2Q2
1Q

2
2q̄
µ

∫
d̂4 ¯̀ 1

¯̀2(¯̀− q̄)2

(
m1δ̂(u1 · ¯̀) +m2δ̂(u2 · ¯̀)

)
. (5.22)

One must still integrate this expression over q̄ as in eq. (4.33) to obtain the contribution

to the impulse.

5.2.3 Boxes

The one-loop amplitude also includes boxes, crossed boxes, and the NLO contribution to

the impulse includes as well a term quadratic in the tree amplitude which we can think of as

the cut of a one-loop box. Because of the power of ~ in front of the first term in eq. (4.34), we

need to extract the contributions of all of these quantities at order 1/~. However, as we will

see, each individual diagram also contains singular terms of order 1/~2. We might fear that
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these terms pose an obstruction to the very existence of a classical limit of the observable

in which we are interested. As we will see, this fear is misplaced, as these singular terms

cancel completely, leaving a well-defined classical result. It is straightforward to evaluate

the individual contributions, but making the cancellation explicit requires some care. We

begin with the box:

iB = = Q2
1Q

2
2

∫
d̂D`

(2p1+`)·(2p2−`) (2p1+q+`)·(2p2−q−`)
`2(`−q)2(2p1 · `+`2+iε)(−2p2 · `+`2+iε)

=

Q2
1Q

2
2

~2+2ε

∫
d̂D ¯̀

[
4p1 ·p2−2~(p1−p2)· ¯̀−~2 ¯̀2

][
4p1 ·p2−2~(p1−p2)·(¯̀+q̄)−~2(¯̀+q̄)2

]
¯̀2(¯̀− q̄)2(2p1 · ¯̀+ ~¯̀2 + iε)(−2p2 · ¯̀+ ~¯̀2 + iε)

,

(5.23)

where as usual, we have set q = ~q̄, ` = ~¯̀. We get four powers of ~ from changing variables

in the measure, but six inverse powers from the propagators.3 We thus encounter an appar-

ently singular 1/~2 leading behaviour. We must extract both this singular, O(1/~2), term as

well as the terms contributing in the classical limit, which here are O(1/~). Consequently,

we must take care to remember that the on-shell delta functions enforce q̄ · p1 = −~q̄2/2

and q̄ · p2 = ~q̄2/2.

Performing a Laurent expansion in ~, truncating after order 1/~, and separating dif-

ferent orders in ~, we find that the box is given by,

B = B−1 +B0 ,

B−1 =
4iQ2

1Q
2
2

~2+2ε
(p1 · p2)2

∫
d̂D ¯̀

¯̀2(¯̀− q̄)2(p1 · ¯̀+ iε)(p2 · ¯̀− iε)
,

B0 =− 2iQ2
1Q

2
2

~1+2ε
p1 · p2

∫
d̂D ¯̀

¯̀2(¯̀− q̄)2(p1 · ¯̀+ iε)(p2 · ¯̀− iε)

×
[
2(p1 − p2) · ¯̀+

(p1 · p2)¯̀2

(p1 · ¯̀+ iε)
− (p1 · p2)¯̀2

(p2 · ¯̀− iε)

]
.

(5.24)

Note that pulling out a sign from one of the denominators has given the appearance of

flipping the sign of one of the denominator iε terms. We must also bear in mind that the

integral in B−1 is itself not ~-independent, so that we will later need to expand it as well.

3We omit fractional powers of ~ in this counting as they will disappear when we take D → 4.
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Similarly, the crossed box is

iC =

p1 p1 + q

p2 p2 − q

p1+`

= Q2
1Q

2
2

∫
d̂D`

(2p1 + `) · (2p2 − 2q + `)(2p1 + q + `) · (2p2 − q + `)

`2(`− q)2(2p1 · `+ `2 + iε)(2p2 · (`− q) + (`− q)2 + iε)

=
Q2

1Q
2
2

~2+2ε

∫
d̂D ¯̀ (2p1 + ~¯̀) · (2p2 − 2~q̄ + ~¯̀) (2p1 + ~q̄ + ~¯̀) · (2p2 − ~q̄ + ~¯̀)

¯̀2(¯̀− q̄)2(2p1 · ¯̀+ ~¯̀2 + iε)(2p2 · (¯̀− q̄) + ~(¯̀− q̄)2 + iε)
.

(5.25)

Using the on-shell conditions to simplify pi · q̄ terms in the denominator and numerator, and

once again expanding in powers of ~, truncating after order 1/~, and separating different

orders in ~, we find,

C = C−1 + C0 ,

C−1 = −4iQ2
1Q

2
2

~2+2ε
(p1 · p2)2

∫
d̂D ¯̀

¯̀2(¯̀− q̄)2

1

(p1 · ¯̀+ iε)(p2 · ¯̀+ iε)

C0 = −2iQ2
1Q

2
2

~1+2ε
p1 · p2

∫
d̂D ¯̀

¯̀2(¯̀− q̄)2(p1 · ¯̀+ iε)(p2 · ¯̀+ iε)

×
[
2(p1 + p2) · ¯̀− (p1 · p2)¯̀2

(p1 · ¯̀+ iε)
− (p1 · p2)[(¯̀− q̄)2 − q̄2]

(p2 · ¯̀+ iε)

]
.

(5.26)

Comparing the expressions for the O(1/~2) terms in the box and the crossed box, B−1 and

C−1 respectively, we see that there is only a partial cancellation of the singular, O(1/~2),

term in the reduced amplitude Ā(1). The impulse kernel, eq. (4.34), does contain another

term, which is quadratic in the tree-level reduced amplitude Ā(0). We will see below that

taking this additional contribution into account leads to a complete cancellation of the

singular term; but the classical limit does not exist for each of these terms separately.

5.2.4 Cut box

In order to see the cancellation of the singular term we must incorporate the term in the

impulse kernel which is quadratic in tree amplitudes. This contribution can be viewed as

proportional to the cut of the one-loop box, weighted by the loop momentum ~wµ:

|Bµ
= −i~2

∫
d̂4wwµ δ̂(2p1 · w + ~w2)δ̂(2p2 · w − ~w2)× , (5.27)

where an additional factor of ~ in the second term of eq. (4.34) will be multiplied into

eq. (5.32) below, as it parallels the factor in the first term of eq. (4.34). Evaluating the
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Feynman diagrams, we obtain,

|Bµ
= −iQ

2
1Q

2
2

~2

∫
d̂4w δ̂(2p1 · w + ~w2)δ̂(2p2 · w − ~w2)

wµ

w2(w − q̄)2

×(2p1 + ~w) · (2p2 − w~) (2p1 + ~q̄ + ~w) · (2p2 − ~q̄ − ~w) .

(5.28)

As in the previous subsection, expand in ~, and truncate after order 1/~, so that,

|Bµ
= |Bµ

−1 + |Bµ
0 ,

|Bµ
−1 = −4iQ2

1Q
2
2

~2
(p1 · p2)2

∫
d̂4 ¯̀ ¯̀µ

¯̀2(¯̀− q̄)2
δ̂(p1 · ¯̀)δ̂(p2 · ¯̀) ,

|Bµ
0 = −2iQ2

1Q
2
2

~
(p1 · p2)2

∫
d̂4 ¯̀ ¯̀µ

¯̀2(¯̀− q̄)2
¯̀2
(
δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)− δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)

)
.

(5.29)

We have relabeled w → ¯̀ in order to line up terms more transparently with corresponding

ones in the box and crossed box contributions.

5.2.5 Combining contributions

We are now in a position to assemble the elements computed in the three previous subsec-

tions in order to obtain the NLO contributions to the impulse kernel Iµ,(1)
cl , and thence the

NLO contributions to the impulse using eq. (4.33). Let us begin by examining the singular

terms. We must combine the terms from the box, crossed box, and cut box.

We can simplify the cut-box contribution |Bµ
−1 by exploiting the linear change of vari-

able ¯̀′ = q̄ − ¯̀,

|Bµ
−1 = −4iQ2

1Q
2
2

~2
(p1 · p2)2

∫
d̂4 ¯̀′ (q̄µ − ¯̀′µ)

¯̀′2(¯̀′ − q̄)2
δ̂(p1 · ¯̀′ − p1 · q̄)δ̂(p2 · ¯̀′ − p2 · q̄)

= −4iQ2
1Q

2
2

~2
(p1 · p2)2

∫
d̂4 ¯̀′ (q̄µ − ¯̀′µ)

¯̀′2(¯̀′ − q̄)2
δ̂(p1 · ¯̀′ + ~q̄2/2)δ̂(p2 · ¯̀′ − ~q̄2/2)

= −2iQ2
1Q

2
2

~2
(p1 · p2)2q̄µ

∫
d̂4 ¯̀ δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(¯̀− q̄)2
+O(1/~) ,

(5.30)

where we have used the on-shell conditions to replace p1 · q̄ → −~q̄2/2 and p2 · q̄ → ~q̄2/2,

and where the last line arises from averaging over the two equivalent expressions for |Bµ
−1.

We may similarly simplify the singular terms from the box and cross box. Indeed,

using the identity (5.19) followed by the linear change of variable we have,

B−1 + C−1 = −4Q2
1Q

2
2

~2+2ε
(p1 · p2)2

∫
d̂D ¯̀

¯̀2(¯̀− q̄)2

1

(p1 · ¯̀+ iε)
δ̂(p2 · ¯̀)

=
4Q2

1Q
2
2

~2+2ε
(p1 · p2)2

∫
d̂D ¯̀′

¯̀′2(¯̀′ − q̄)2

1

(p1 · ¯̀′ + ~q̄2/2− iε)
δ̂(p2 · ¯̀′ − ~q̄2/2)

=
2iQ2

1Q
2
2

~2
(p1 · p2)2

∫
d̂4 ¯̀ δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(¯̀− q̄)2
+O(1/~)

(5.31)

where we have averaged over equivalent forms, and then used eq. (5.19) a second time in

obtaining the last line. At the very end, we took D → 4.
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Combining eqs. (5.30) and (5.31), we find that the potentially singular contributions

to the impulse kernel in the classical limit are,

Iµ,(1)
cl

∣∣
singular

= ~q̄µ(B−1 + C−1) + ~ |Bµ
−1

=
2iQ2

1Q
2
2

~
(p1 · p2)2q̄µ

[∫
d̂4 ¯̀ δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(¯̀− q̄)2
−
∫
d̂4 ¯̀ δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(¯̀− q̄)2

]
+O(~0)

= O(~0) .

(5.32)

The dangerous terms cancel, leaving only well-defined contributions.

It remains to extract the O(1/~) terms from the box, crossed box, and cut box contri-

butions, and to combine them with the triangles (5.22), which are of this order. In addition

to B0 from eq. (5.24), C0 from eq. (5.26), and |Bµ
0 from eq. (5.29), we must also include

the O(1/~) terms left implicit in eqs. (5.30) and (5.31). In the former contributions, we

can now set p1,2 · q̄ = 0, as the ~ terms in the on-shell delta functions would give rise to

contributions of O(~0) to the impulse kernel, which in turn will give contributions of O(~)

to the impulse. In combining all these terms, we make use of summing over an expression

and the expression after the linear change of variables; the identity (5.19); and the identity,

δ̂′(x) =
i

(x− iε)2
− i

(x+ iε)2
. (5.33)

We find that,

~q̄µ(B0 + C0) +
[
~q̄µ(B−1 + C−1)

]∣∣
O(~0)

=

2Q2
1Q

2
2 (p1 · p2)2q̄µ

×
∫

d̂4 ¯̀

¯̀2(¯̀−q̄)2

(
δ̂(p2 · ¯̀)

¯̀·(¯̀−q̄)
(p1 · ¯̀+iε)2

+ δ̂(p1 · ¯̀)
¯̀·(¯̀−q̄)

(p2 · ¯̀−iε)2

)
+ Zµ ,

~ |Bµ
0 +

[
~ |Bµ
−1

]∣∣
O(~0)

=

−2iQ2
1Q

2
2 (p1 · p2)2

×
∫

d̂4 ¯̀

¯̀2(¯̀−q̄)2
¯̀µ ¯̀·(¯̀−q̄)

(
δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)− δ̂′(p2 · ¯̀)δ̂(p1 · ¯̀)

)
− Zµ ,

(5.34)

where we have now taken D → 4, and where the quantity Zµ is,

Zµ = iQ2
1Q

2
2(p1 · p2)2q̄µ

×
∫

d̂4 ¯̀

¯̀2(¯̀−q̄)2
(2¯̀· q̄ − ¯̀2)

(
δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)− δ̂′(p2 · ¯̀)δ̂(p1 · ¯̀)

)
.

(5.35)

Finally, we integrate over the external wavefunctions. The possible singularity in ~ has

canceled, so as discussed in section 4.1, we perform the integrals by replacing the momenta

pi with their classical values miui, so that the box-derived contribution is,

Iµ2 ≡ 2Q2
1Q

2
2 γ

2q̄µ

×
∫

d̂4 ¯̀

¯̀2(¯̀−q̄)2

(
m2δ̂(u2 · ¯̀)

¯̀·(¯̀−q̄)
(u1 · ¯̀+iε)2

+m1δ̂(u1 · ¯̀)
¯̀·(¯̀−q̄)

(u2 · ¯̀−iε)2

)
,

(5.36)
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while that from the cut box is,

Iµ3 ≡ −2iQ2
1Q

2
2 γ

2

∫
d̂4 ¯̀

¯̀2(¯̀−q̄)2
¯̀µ ¯̀·(¯̀−q̄)

(
m2δ̂

′(u1 · ¯̀)δ̂(u2 · ¯̀)−m1δ̂
′(u2 · ¯̀)δ̂(u1 · ¯̀)

)
. (5.37)

In both contributions, we have dropped the Zµ term which cancels between the two. The

full impulse kernel is given by the sum Iµ1 + Iµ2 + Iµ3 , and the impulse by,

∆p
µ,(1)
1 =

ie4

4
~
∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)e−iq̄·bIµ,(1)

cl

=
ie4

4
~
∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)e−iq̄·b (Iµ1 + Iµ2 + Iµ3 )

=
iQ2

1Q
2
2e

4

2

∫
d̂4 ¯̀

¯̀2(¯̀− q̄)2
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)e−iq̄·b

×
[
q̄µ
(
δ̂(u1 · ¯̀)
m2

+
δ̂(u2 · ¯̀)
m1

)
+ γ2q̄µ

(
δ̂(u2 · ¯̀)
m1

¯̀·(¯̀− q̄)
(u1 · ¯̀+ iε)2

+
δ̂(u1 · ¯̀)
m2

¯̀·(¯̀− q̄)
(u2 · ¯̀− iε)2

)
− iγ2 ¯̀µ ¯̀·(¯̀− q̄)

(
δ̂′(u1 · ¯̀)δ̂(u2 · ¯̀)

m1
− δ̂′(u2 · ¯̀)δ̂(u1 · ¯̀)

m2

)]
.

(5.38)

5.2.6 On-shell cross check

As we have seen, careful inclusion of boxes, crossed boxes as well as cut boxes are necessary

to determine the impulse in the classical regime. This may seem to be at odds with

other work on the classical limit of amplitudes, which often emphasises the particular

importance of triangle diagrams to the classical potential at next to leading order. However,

in the context of the potential, the partial cancellation between boxes and crossed boxes is

well-understood [79], and it is because of this fact that triangle diagrams are particularly

important. The residual phase is known to exponentiate so that it does not effect classical

physics. Meanwhile, the relevance of the subtraction of iterated (cut) diagrams has been

discussed in [69, 81, 136].

Nevertheless in the case of the impulse it may seem that the various boxes play a

more significant role, as they certainly contribute to the classical result for the impulse.

In fact, it is easy to see that these terms must be included to recover a physically sensible

result. The key observation is that the final momentum, rµ1 , of the outgoing particle after

a classical scattering process must be on shell, r2
1 = m2

1.

We may express the final momentum in terms of the initial momentum and the impulse,

so that

rµ1 = pµ1 + ∆pµ1 . (5.39)

The on-shell condition is then

(∆p1)2 + 2p1 ·∆p1 = 0 . (5.40)
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At order e2, this requirement is satisfied trivially. At this order (∆p1)2 is negligible, while

p1 ·∆p1 = im1e
2Q1Q2

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2) e−iq̄·b q̄ · u1

u1 · u2

q̄2
= 0 , (5.41)

using our result for the LO impulse in eq. (5.4).

The situation is less trivial at order e4, as neither p1 ·∆p1 nor (∆p1)2 vanish. In fact,

at this order we may use eq. (5.4) once again to find that

(∆p1)2 =− e4Q2
1Q

2
2 (u1 · u2)2

×
∫
d̂4q̄d̂4q̄′ δ̂(q̄ · u1)δ̂(q̄ · u2)δ̂(q̄′ · u1)δ̂(q̄′ · u2) e−i(q̄+q̄

′)·b q̄ · q̄′

q̄2 q̄′2
.

(5.42)

Meanwhile, to evaluate p1 ·∆p1 we must turn to our NLO result for the impulse, eq. (5.38).

Thanks to the delta functions present in the impulse, we find a simple expression:

2p1 ·∆p1 = e4Q2
1Q

2
2 (u1 · u2)2

×
∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2) e−iq̄·b

∫
d̂4 ¯̀ ¯̀· u1 δ̂

′(¯̀· u1)δ̂(¯̀· u2)
¯̀· (¯̀− q̄)
¯̀2(¯̀− q̄)2

.
(5.43)

To simplify this expression, it may be helpful to imagine working in the restframe of the

timelike vector u1. Then, the ¯̀ integral involves the distribution ¯̀
0 δ̂
′(¯̀

0), while q̄0 = 0.

Thus the ¯̀
0 integral has the form∫

d̂¯̀
0

¯̀
0 δ̂
′(¯̀

0) f(¯̀
0

2) = −
∫
d̂¯̀

0 δ̂(¯̀
0) f(¯̀

0
2) . (5.44)

Using this observation, we may simplify equation (5.43) to find

2p1 ·∆p1 =− e4Q2
1Q

2
2 (u1 · u2)2

×
∫
d̂4q̄d̂4 ¯̀δ̂(q̄ · u1)δ̂(q̄ · u2)δ̂(¯̀· u1)δ̂(¯̀· u2)e−iq̄·b

¯̀· (¯̀− q̄)
¯̀2(¯̀− q̄)2

= e4Q2
1Q

2
2 (u1 · u2)2

×
∫
d̂4 ¯̀d̂4q̄′ δ̂(¯̀· u1)δ̂(¯̀· u2)δ̂(q̄′ · u1)δ̂(q̄′ · u2) e−i(

¯̀+q̄′)·b
¯̀· q̄′
¯̀2q̄′2

,

(5.45)

where in the last line we set q̄′ = q̄− ¯̀. This expression is equal but opposite to eq. (5.42),

and so the final momentum is on shell as it must be.

It is worth remarking that the part of the NLO impulse that is relevant in this can-

cellation arises solely from the cut boxes. One can therefore view this phenomenon as an

analogue of the removal of iterations of the tree in the potential.

5.3 Radiation

The LO and NLO impulse are conservative in the sense that momentum is simply exchanged

from particle 1 to particle 2 at these orders; it is only at NNLO that momentum radiated

away back-reacts on the impulse. We will study this back-reaction in the next section, but

first we turn to a direct computation of the radiated momentum.
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p1 + w1 p1

k

p2 + w2 p2

Figure 1. The amplitude A(0)(p1 + w1 , p2 + w2 → p1 , p2 , k) appearing in the radiation kernel at

leading order.

The relevance of a classical limit of a scattering amplitude to what we are calling the

radiation kernel was previously discussed by one of the authors and his collaborators [137].

The main advantage of the present discussion of radiation is that we have constructed

a first-principles definition of the radiated momentum eq. (4.41) in terms of an on-shell

scattering amplitude, eq. (4.40). Our goal in this section is to compute the LO radiation

kernel explicitly in electrodynamics. Later, in section 6.2.2, we will see that the radiation

kernel has the classical interpretation of a current.

The amplitude appearing in the radiation kernel is a five-point, tree amplitude (fig-

ure 1) which is easily computed. We find that the radiation kernel is,

R(0)(k̄) = 4

∫
d̂4w1d̂

4w2 δ̂(2p1 · w1)δ̂(2p2 · w2)δ̂(4)(k̄ − w1 − w2) eiw1·b

×
{
Q2

1Q2

w2
2

[
−p2 · ε+

(p1 · p2)(w2 · ε)
p1 · k̄

+
(p2 · k̄)(p1 · ε)

p1 · k̄

− (k̄ · w2)(p1 · p2)(p1 · ε)
(p1 · k̄)2

]
+ (1↔ 2)

}
,

(5.46)

where ε is the polarization vector for the emitted photon. As the quantities pi · k̄ do not

vanish on the support of the integrals in the radiation kernel, we have ignored the iε factors

in the massive propagators.

This lowest order radiation kernel is of O(~0), so we may now perform the integrals

over the particle wavefunctions, which effectively replaces the momenta pi in the radiation

kernel by their classical values miui.

R(0)(k̄)→ 1

m1

∫
d̂4w1d̂

4w2 δ̂(u1 · w1)δ̂(u2 · w2)δ̂(4)(k̄ − w1 − w2) eiw1·b

×
{
Q2

1Q2

w2
2

[
−u2 · ε+

(u1 · u2)(w2 · ε)
u1 · k̄

+
(u2 · k̄)(u1 · ε)

u1 · k̄

− (k̄ · w2)(u1 · u2)(u1 · ε)
(u1 · k̄)2

]
+ (1↔ 2)

}
.

(5.47)

We will see this expression once again in section 6.2.2, appearing as a classical current.

– 39 –



J
H
E
P
0
2
(
2
0
1
9
)
1
3
7

5.4 Momentum conservation and radiation reaction

We have already seen that conservation of momentum holds exactly (in section 3.5) and in

our classical expressions (in section 4.5). Let us now make sure that there is no subtlety

in these discussions by explicit calculation.

To do so, we calculate the part of the NNLO impulse I
µ,(rad)
(2),cl which encodes radiation

reaction, defined in eq. (4.46). The two amplitudes appearing in equation (4.46) are in

common with the amplitudes relevant for the radiated momentum, equation (4.42), though

they are evaluated at slightly different kinematics. It will be convenient to change the sign

of wi here; with that change, the amplitudes are:

Ā(0)(p1p2 → p1 − ~w1 , p2 − ~w2 , k̄) =

4Q2
1Q2

~2w2
2

[
− p2 ·ε+

(p1 ·p2)(w2 ·ε)
p1 · k̄

+
(p2 · k̄)(p1 ·ε)

p1 ·k̄
− (k̄ ·w2)(p1 ·p2)(p1 ·ε)

(p1 · k̄)2

]
+ (1↔ 2),

(5.48)

and

Ā(0)∗(p1 + ~q̄1 , p2 + ~q̄2 → p1 − ~w1 , p2 − ~w2 , k̄) =

4Q2
1Q2

~2w′22

[
−p2 ·ε∗+

(p1 ·p2)(w′2 ·ε∗)
p1 · k̄

+
(p2 ·k̄)(p1 ·ε∗)

p1 · k̄
− (k̄ ·w′2)(p1 ·p2)(p1 ·ε∗)

(p1 · k̄)2

]
+ (1↔ 2),

(5.49)

where we find it convenient to define w′i = q̄i + wi (after the change of sign).

We can now write the impulse contribution as,

I
µ,(rad)
(2),cl = −e6

〈〈∫
dΦ(k̄)

∏
i=1,2

∫
d̂4wi d̂

4w′i w
µ
1 X (w1, w2, k̄)X ∗(w′1, w′2, k̄)

〉〉
, (5.50)

where
X (w1, w2, k̄) = 4 δ̂(2w1 · p1)δ̂(2w2 · p2)δ̂(4)(k̄ − w1 − w2) eib·w1

×
{
Q2

1Q2

εµ
w2

2

[
− pµ2 +

p1 · p2w
µ
2

p1 · k̄
+
p2 · k̄ pµ1
p1 · k̄

− (k̄ · w2)(p1 · p2) pµ1
(p1 · k̄)2

]
+ (1↔ 2)

}
.

(5.51)

This expression is directly comparable to those for radiated momentum: eq. (5.50), and the

equivalent impulse contribution to particle 2, balance the radiated momentum eq. (4.43)

using wµ1 + wµ2 = k̄µ, provided that the radiation kernel, eq. (5.46), is related to integrals

over X . Indeed this relationship holds: the integrations present in the radiation kernel are

supplied by the wi and w′i integrals in eq. (5.50); these integrations disentangle in the sum

of impulses on particles 1 and 2 when we impose wµ1 +wµ2 = k̄µ, and then form the square

of the radiation kernel.

It is interesting to compare this radiated momentum with the situation in traditional

formulations of classical physics, where one must include the ALD radiation reaction force

by hand in order to enforce momentum conservation. Because the situation is simplest
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when only one particle is dynamical, let us take the mass m2 to be very large compared

to m1 in the remainder of this section, and work in particle 2’s rest frame. In this frame,

it does not radiate, and the only radiation reaction is on particle 1 — the radiated mo-

mentum is precisely balanced by the impulse on particle 1 due to the ALD force. We can

therefore continue our discussion with reference to our expression for radiated momentum,

eq. (4.43) and the radiation kernel, eq. (5.46). In this situation we may also simplify the

kernels by dropping the (1 ↔ 2) instruction: notice that the explicit terms in the kernel

of equation (5.46) are linear in m2. Terms obtained by symmetrising in particle labels are

therefore linear in m1, and so are subdominant when m2 � m1.

We will compute the impulse due to the ALD force directly from its classical expression

in section 6.3. But in preparation for that comparison there is one step which we must

take. Classical expressions for the force — which involve only the particle’s momentum

and its derivatives — do not involve any photon phase space. So we must perform the

integration over dΦ(k̄) which is present in eq. (4.43).

To organise the calculation, we integrate over the q̄1 variables in the radiation kernel,

eq. (5.46) using the four-fold delta function, so that we may write the radiated momen-

tum as,

R
µ,(0)
cl = −e

6Q4
1Q

2
2

m2
1

∫
d̂4q̄d̂4q̄′ e−ib·(q̄−q̄

′)δ̂(u1 · (q̄ − q̄′))
δ̂(u2 · q̄)
q̄2

δ̂(u2 · q̄′)
q̄′2

Y µ
r , (5.52)

where we renamed the remaining variables, w2 → q̄ and w′2 → q̄′, in order to match the

notation used later in section 6. After some algebra we find,

Y µ
r =

∫
dΦ(k̄)δ̂(u1 · k̄ − Ē) k̄µ

[
1 +

(u1 · u2)2(q̄ · q̄′)
Ē2

+
(u2 · k̄)2

Ē2

−(u1 · u2)(u2 · k̄)k̄ · (q̄ + q̄′)

Ē3
+

(u1 · u2)2(k̄ · q̄)(k̄ · q̄′)
Ē4

]
.

(5.53)

The quantity Ē is defined to be Ē = u1 · k̄; in view of the delta function, the integral is

constrained so that Ē = u1 · q̄. This quantity is the wavenumber of the photon in the rest

frame of particle 1, and is fixed from the point of view of the phase space integration. As a

result, the integrals are simple: there are two delta functions (one explicit, one in the phase

space measure) which can be used to perform the k̄0 integration and to fix the magnitude

of the spatial wavevector. The remaining integrals are over angles and are performed in

appendix C. The radiated momentum takes a remarkably simple form after the phase space

integration:

R
µ,(0)
cl =− e6Q4

1Q
2
2

3πm2
1

∫
d̂4q̄d̂4q̄′ e−ib·(q̄−q̄

′)δ̂(u1 · (q̄ − q̄′))
δ̂(u2 · q̄)
q̄2

δ̂(u2 · q̄′)
q̄′2

Θ(u1 · q̄)

×
[
(u1 · q̄)2 + q̄ · q̄′(u1 · u2)2

]
uµ1 .

(5.54)

The Θ function is a remnant of the photon phase space volume, so it will be convenient

to remove it. The delta functions in the integrand in eq. (5.54) constrain the components

of the vectors q̄ and q̄′ which lie in the two dimensional space spanned by u1 and u2. Let
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us call the components of q and q′ in this plane to be q‖ and q′‖. Then the delta functions

set q‖ = q′‖. As a result, the integrand (ignoring the Θ function) is symmetric in q‖ → −q‖.
Consequently we may symmetrise to find

R
µ,(0)
cl =− e6Q4

1Q
2
2

6πm2
1

∫
d̂4q̄d̂4q̄′ e−ib·(q̄−q̄

′)δ̂(u1 · (q̄ − q̄′))
δ̂(u2 · q̄)
q̄2

δ̂(u2 · q̄′)
q̄′2

×
[
(u1 · q̄)2 + q̄ · q̄′(u1 · u2)2

]
uµ1 .

(5.55)

We will see in section 6.3 that this expression is equal but opposite to the impulse obtained

from the classical ALD force.

6 Classical calculations

In previous sections, we have shown how to understand the electromagnetic scattering

of point-like particles Qi using the methods of quantum field theory. We now turn to a

purely classical approach to the same observables, restricting (once again) to electromag-

netic scattering for simplicity. Our goal in this section is to reassure any skeptical reader

that the expressions which we have claimed to be classical, are indeed classical. This is

straightforward in electrodynamics; it would be harder in gravity. We expect, however,

that an application of our methods in a gravitational context will be advantageous.

As usual we have in mind a two-body collision, and we discuss, firstly, the impulse on

a particle, secondly the momentum radiated away, and lastly the topic of conservation of

momentum and the ALD radiation reaction force. Our classical approach will be to solve

the coupled equations of motion perturbatively. As we will see, these calculations have an

iterative structure. This iteration is straightforward in principle, though it quickly becomes

tedious in practice. For this reason we will frequently restrict to the case where the mass

m2 of particle 2 is much larger than the mass m1 of particle 1, so that particle 2 can be

treated as being static. This assumption was unnecessary using quantum methods,4 where

the symmetry of Feynman diagrams simplifies matters.

6.1 The classical electromagnetic impulse

Classically, we may take our particles to move along world-lines xi(τi) with proper velocities

vi(τi) = dxi/dτi and momenta pi(τi) = mivi(τi). We must solve the Maxwell equation,

∂µF
µν(x) = Jν(x) = e

∑
i

Qi

∫
dτi δ

4(x− xi(τi))vνi (τi), (6.1)

and the Lorentz force laws,5

dpµi
dτi

= eQi F
µν(xi(τi)) viν(τi) . (6.2)

4With the exception of radiation reaction — in that case, we took m2 large to prepare for a comparison

with classical results.
5We will need to include the ALD force law later to account for radiation reaction.
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To set up the perturbative method, we assume that the trajectories can be expanded as a

power series in the coupling. At zeroth order in the expansion, the trajectories are simply

straight lines:

x1(τ1) = b+ u1τ1, x2(τ2) = u2τ2, (6.3)

where u1 and u2 are constant vectors. Note that, as with our quantum mechanical setup

in eq. (3.1), we have aligned the initial trajectory of particle 2 with the spatial origin, and

have translated particle 1 through an impact parameter b relative to particle 2. The vectors

ui are the zeroth order terms in the proper velocities: vi(τi) = ui +O(e2); they will play a

prominent role below.

The perturbative expansion proceeds by determining the first order electromagnetic

field sourced by the two particles, taken to be moving on straight-line trajectories. Knowl-

edge of the field allows us to compute the first order forces on the particles, and hence

the associated (small) first order deviations of the trajectories from straight line motion.

Armed with this knowledge of the first order trajectory, we may compute the second order

fields, forces and deviations. Iterating this procedure allows us to compute to any desired

perturbative order. More formally, we expand the trajectories as,

x1(τ) = b+ u1τ + ∆(1)x1(τ) + ∆(2)x1(τ) + · · · ,

x2(τ) = u2τ + ∆(1)x2(τ) + ∆(2)x2(τ) + · · · ,
(6.4)

where ∆(n)x(τ) is of order e2n. We will similarly expand the velocities and forces pertur-

batively:

vi(τi) = ui + ∆(1)vi(τi) + ∆(2)vi(τi), (6.5)

fi(τi) = ∆(1)fi(τi) + ∆(2)fi(τi), (6.6)

where again ∆(n)vi(τi) and ∆(n)fi(τi) are of order e2n.

6.1.1 Leading order

Our first order of business is to determine the leading order electromagnetic fields. Clas-

sically, the force on particle 1 is due to the field of particle 2; as the result is symmetric

under interchange of the two particles, we will only compute the field due to particle 2.

Working in Lorenz gauge, the relevant gauge field is,

∂2Aµ2 (x) = Q2e

∫
dτ δ4(x− u2τ)uµ2 . (6.7)

We find it convenient to work in Fourier space, choosing the conventions

f(x) =

∫
d̂4q̄ f̃(q̄) e−iq̄·x, (6.8)

f̃(q̄) =

∫
d4x f(x) eiq̄·x. (6.9)
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The momentum-space gauge field is easily found to be

Ãµ2 (q̄) = −eQ2

q̄2
uµ2 δ̂(q̄ · u2) , (6.10)

with field strength (in position space)

Fµν2 (x) = ieQ2

∫
d̂4q̄ δ̂(q̄ · u2) e−iq̄·x

q̄µ uν2 − u
µ
2 q̄

ν

q̄2
. (6.11)

The Lorentz force, equation (6.2), on particle 1 requires this field strength evaluated at the

position of particle 1. At leading order, we may use the straight line approximation to the

trajectory of particle 1, so that the leading order force is

dpµ1
dτ1

= ie2Q1Q2

∫
d̂4q̄ δ̂(q̄ · u2) e−iq̄·(b+u1τ1) q̄

µ u1 · u2 − uµ2 q̄ · u1

q̄2
. (6.12)

The leading order impulse is the total time integral of the force,

∆p
µ,(0)
1 ≡

∫ ∞
−∞

dτ1
dpµ1
dτ1

(6.13)

= ie2Q1Q2

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2) e−iq̄·b q̄µ u1 · u2

1

q̄2
, (6.14)

in complete agreement with eq. (5.4), which was obtained from a tree-level scattering

amplitude.

6.1.2 Next-to-leading order

The LO calculation is very simple, and so it is more interesting to look at the next order

of perturbation theory. In our quantum-mechanical treatment, this following order was

computed in section 5.2 using loop diagrams. In this section, we derive the same expression

by iterating the perturbative solution of the classical equations to the next order. The fact

that both methods yield the same result is a vivid demonstration that loops involving

massive particles are not simply quantum corrections [83].

In this section we take particle 2 to be static, leaving the more general case as an

exercise for the reader. When particle 2 is static, its field strength is given by equation (6.11)

to all orders.

The NLO impulse is the time integral of the NLO Lorentz force. With our assumption

of a static particle 2, we know the gauge field acting on particle 1 exactly, and so the origin

of this NLO force is simply that particle 1 is not quite moving on a straight line. Thus, to

find the correction to the force, we must first determine the motion of particle 1 with NLO

accuracy.

We obtain the first perturbative correction to the velocity and to the trajectory of

particle 1 by integrating the leading order force, equation (6.12) from time τ1 = −∞ to a

finite time τ1. This integral must converge as τ1 → −∞, so we follow standard practice

(see, for example, Jackson [138] p. 676) and replace q̄ ·u1 in the argument of the exponential
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with q̄ · u1 + iε. The correction to the velocity is then

m1∆(1)vµ1 = ie2Q1Q2

∫
d̂4q̄ δ̂(q̄ · u2) e−iq̄·b

q̄µ u1 · u2 − uµ2 q̄ · u1

q̄2

∫ τ1

−∞
dτ1 e

−i(q̄·u1+iε)τ1

= −e2Q1Q2

∫
d̂4q̄ δ̂(q̄ · u2) e−iq̄·(b+u1τ1) q̄

µ u1 · u2 − uµ2 q̄ · u1

q̄2(q̄ · u1 + iε)
,

(6.15)

where on the second line, we have displayed the iε convergence factor in the denomina-

tor explicitly while leaving it implicit in the argument of the exponential. The leading

correction to the position of the particle is given by integrating once more, with the result:

∆(1)xµ1 (τ1) = −ie
2Q1Q2

m1

∫
d̂4q̄ δ̂(q̄ · u2) e−iq̄·(b+u1τ1) q̄

µ u1 · u2 − uµ2 q̄ · u1

q̄2(q̄ · u1 + iε)2
. (6.16)

We have now collected the information we need to compute the NLO Lorentz force ∆(1)fµ,

and therefore the NLO impulse. Recalling that the field strength involved in the force is

given by equation (6.11), it is easy to see that the NLO force is

∆(1)fµ = ie2Q1Q2

∫
d̂4 ¯̀δ̂(¯̀· u2) e−i

¯̀·(b+u1τ1)
¯̀µuν2 − ¯̀νuµ2

¯̀2

×
(
d

dτ1
∆(1)x1ν(τ1)− i¯̀·∆(1)x1(τ1)u1ν

)
, (6.17)

where we relabelled the variable of integration q̄ → ¯̀ for later convenience. Using our

knowledge of the corrected trajectory, we evaluate

d

dτ
∆(1)x1ν(τ1)− i¯̀·∆(1)x1(τ1)u1ν =− e2Q1Q2

m1

∫
d̂4q̄′ δ̂(q̄′ · u2) e−iq̄

′·(b+u1τ1) (6.18)

×
(
q̄′ν u1 · u2 − u2ν q̄

′ · u1

q̄′2(q̄′ · u1 + iε)
+

¯̀· q̄′ u1 · u2 u1ν

q̄′2(q̄′ · u1 + iε)2

)
,

omitting terms which vanish on the support of the delta functions in equation (6.17). The

integral
∫∞
−∞ dτ1 ∆(1)fµ is the next-to-leading order impulse, given explicitly by

∆p
µ,(1)
1

∣∣
m2→∞ =

ie4Q2
1Q

2
2

m1

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)e−iq̄·b

∫
d̂4`

δ̂(¯̀· u2)
¯̀2(¯̀− q̄)2

×
[
1 +

¯̀· (¯̀− q̄)(u1 · u2)2

(¯̀· u1 − iε)2

]
¯̀µ.

(6.19)

To obtain this result, we shifted one of the variables of integration by setting q̄ = q̄′ + ¯̀.

This expression for the NLO impulse is not quite in the form we obtained using quan-

tum methods in section 5.2. The necessary rearrangement is as follows. We exploit the

change of variable ¯̀′ = q̄ − ¯̀ and define a vector integral

Iµ =

∫
d̂4 ¯̀ δ̂(

¯̀· u2)
¯̀2(¯̀− q̄)2

[
1 +

¯̀· (¯̀− q̄)(u1 · u2)2

(¯̀· u1 − iε)2

]
¯̀µ; (6.20)
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then we find

Iµ =

∫
d̂4 ¯̀′ δ̂(

¯̀′ · u2)

¯̀′2(¯̀′ − q̄)2

[
1 +

¯̀′ · (¯̀′ − q̄)(u1 · u2)2

(¯̀′ · u1 + iε)2

] (
q̄µ − ¯̀′µ

)
=

1

2

∫
d̂4 ¯̀ δ̂(

¯̀· u2)
¯̀2(¯̀− q)2

{[
1 +

¯̀· (¯̀− q̄)(u1 · u2)2

(¯̀· u1 + iε)2

]
q̄µ

− i
[
¯̀· (¯̀− q̄)(u1 · u2)2δ̂′(¯̀· u1)

]
¯̀µ
}
. (6.21)

Putting the pieces together, we arrive at our final result for the NLO impulse when

m2 →∞:

∆p
µ,(1)
1

∣∣
m2→∞ =

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)e−iq̄·b

e4Q2
1Q

2
2

2m1

∫
d̂4 ¯̀ δ̂(¯̀· u2)

¯̀2(¯̀− q̄)2

×
[
iq̄µ
(

1 +
¯̀· (¯̀− q̄)(u1 · u2)2

(¯̀· u1 + iε)2

)
+ ¯̀µ ¯̀· (¯̀− q̄)(u1 · u2)2 δ̂′(¯̀· u1)

]
.

(6.22)

We have thereby reproduced all terms in eq. (5.38) which survive in the limit m2 → ∞,

consistent with our present assumption that m2 is very large. The full result for the NLO

impulse requires accounting for corrections to the field strength of particle 2 due to its

motion. The mechanics of the calculation are very much the same as in the discussion

above. Taking these additional effects into account, one finds that the NLO impulse is

precisely eq. (5.38).

6.2 Classical radiated momentum

Our next topic is the momentum radiated during a classical collision, using the standard

methods of classical field theory. We first discuss a general expression for the momentum

radiation which is analogous to the all-order radiation formula, equation (4.39), we found

using quantum methods. We then apply the formula at leading order, making explicit

contact with the LO radiation kernel we computed in section 5.3.

6.2.1 General expressions

The electromagnetic stress-energy tensor,

Tµν(x) = Fµα(x)Fα
ν(x) +

1

4
ηµνFαβ(x)Fαβ(x) , (6.23)

is the key quantity which describes the distribution and flux of energy and momentum. In

particular, the (four-)momentum flux through a three dimensional surface ∂Ω with surface

element dΣν is,

Kµ =

∫
∂Ω
dΣνT

µν(x) . (6.24)

We are interested in the total momentum radiated as two particles scatter. At each time t,

we therefore surround the two particles with a large sphere. The instantaneous flux of mo-

mentum is measured by integrating over the surface area of the sphere; the total momentum

– 46 –



J
H
E
P
0
2
(
2
0
1
9
)
1
3
7

radiated is then the integral of this instantaneous flux over all times. It is straightforward to

determine the momentum radiated by direct integration over these spheres using textbook

methods, as discussed in appendix D.

A simpler but more indirect method is the following. We wish to use the Gauss theorem

to write,

Kµ =

∫
∂Ω
dΣνT

µν(x) =

∫
d4x ∂νT

µν(x) . (6.25)

However, the spheres surrounding our particle are not the boundary of all spacetime: they

do not include the timelike future and past boundaries. To remedy this, we use a trick due

to Dirac [109].

The radiation we have in mind is causal, so we solve the Maxwell equation with re-

tarded boundary conditions. We denote these fields by Fµνret (x). We could equivalently

solve the Maxwell equation using the advanced Green’s function. If we wish to determine

precisely the same fields Fµνret (x) but using the advanced Green’s function, we must add a

homogeneous solution of the Maxwell equation. Fitting the boundary conditions in this

way requires subtracting the incoming radiation field Fµνin (x) which is present in the ad-

vanced solution (but not in the retarded solution) and adding the outgoing radiation field

(which is present in the retarded solution, but not the advanced solution.) In other words,

Fµνret (x)− Fµνadv(x) = −Fµνin (x) + Fµνout(x) . (6.26)

Now, the radiated momentum Kµ in which we are interested is described by Fµνout(x). The

field Fµνin (x) transports the same total amount of momentum in from infinity, ie it transports

momentum −Kµ out. Therefore the difference between the momenta transported out to

infinity by the retarded and by the advanced fields is simply 2Kµ. This is useful, because

the contributions of the point-particle sources cancel in this difference.

The relationship between the momentum transported by the retarded and advanced

field is reflected at the level of the Green’s functions themselves. The difference in the

Green’s function takes an instructive form:

G̃ret(k̄)− G̃adv(k̄) =
(−1)

(k̄0 + iε)2 − k̄
2 −

(−1)

(k̄0 − iε)2 − k̄
2

= i
(
Θ(k̄0)−Θ(−k̄0)

)
δ̂(k̄2) .

(6.27)

In this equation, k̄ denotes the spatial components of wavenumber four-vector k̄. This

difference is a homogeneous solution of the wave equation since it is supported on k̄2 = 0.

The two terms correspond to positive and negative angular frequencies. As we will see, the

relative sign ensures that the momenta transported to infinity add.

With this in mind, we return to the problem of computing the momentum radiated

and write,

2Kµ =

∫
∂Ω
dΣν

(
Tµνret (x)− Tµνadv(x)

)
. (6.28)

In this difference, the contribution of the sources at timelike infinity cancel, so we may

regard the surface ∂Ω as the boundary of spacetime. Therefore,

2Kµ =

∫
d4x ∂ν

(
Tµνret (x)− Tµνadv(x)

)
= −

∫
d4x

(
Fµνret (x)− Fµνadv(x)

)
Jν(x) , (6.29)
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where the last equality follows from the equations of motion. We now pass to momentum

space, noting that,

Fµν(x) = −i
∫
d̂4k̄

(
k̄µÃν(k̄)− k̄νÃµ(k̄)

)
e−ik̄·x . (6.30)

Using conservation of momentum, the radiated momentum becomes,

2Kµ = i

∫
d̂4k̄ k̄µ

(
Ãνret(k̄)− Ãνadv(k̄)

)
J̃∗ν (k̄),

= −
∫
d̂4k̄ k̄µ

(
Θ(k̄0)−Θ(−k̄0)

)
δ̂(k̄2)J̃ν(k̄)J̃∗ν (k̄) .

(6.31)

The two different Θ functions arise from the outgoing and incoming radiation fields. Setting

k′µ = −kµ in the second term, and then dropping the prime, it is easy to see that the two

terms add as anticipated. We arrive at a simple general result for the momentum radiated:

Kµ = −
∫
d̂4k̄Θ(k̄0)δ̂(k̄2) k̄µ J̃ν(k̄)J̃∗ν (k̄)

= −
∫
dΦ(k̄) k̄µ J̃ν(k̄)J̃∗ν (k̄) .

(6.32)

It is worth pausing to compare this general classical formula for the radiated momentum

to the expression, eq. (4.41) which we derived in section 4.4. Evidently the radiation kernel

we defined in eq. (4.40) is related to the classical current J̃µ(k̄). This fact was anticipated

in ref. [137]. Indeed, if we introduce a basis of polarisation vectors εµ (h)(k̄) associated with

the wavevector k̄ with helicity h, we may write the classical momentum radiated as,

Kµ =
∑
h

∫
dΦ(k̄) k̄µ

∣∣∣ε(h) · J̃(k̄)
∣∣∣2 , (6.33)

where here we have written the sum over helicities explicitly. In the next subsection, we

will take this observation a step further by demonstrating that the leading order radiation

kernel is proportional to ε(h) · J̃(k̄) on the support of the phase space integral in eq. (6.33).

6.2.2 Application at leading order

We have established a convenient, general formula for the momentum radiated in the

classical theory. It is now rather straightforward to use this expression, as well as our

perturbative knowledge of the trajectories, in order to determine the momentum radiated

order by order in perturbation theory. We will again simplify our classical discussion by

assuming that m2 is so large that we can treat particle 2 as static. Our goal in this

section will be to compare the classical momentum radiated with our previous quantum

calculation for the expectation of this quantity, in the limit where this expectation is very

sharply peaked. As we have seen, the general expressions for the radiation have the same

structure so it will be enough for us to compare the radiation kernel to the classical current.

Static particles do not radiate, so we can ignore the contribution of particle 2 while

evaluating the momentum radiated. To see that this is indeed the case, note that the part

of the current involving particle 2 is

Jµ2 = eQ2

∫
dτ2 u

µ
2 δ

(4)(x− u2τ2)⇒ J̃2(k̄) = eQ2 u
µ
2 δ̂(k̄ · u2) . (6.34)
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Working in the rest frame of particle 2, the delta function in J̃2(k̄) forces k̄0 = 0. But

on the other hand the integral over k̄ in the radiated momentum, eq. (6.32), requires that

k̄0 = |k̄|. The only solution is k̄µ = 0, so the integral vanishes.

Therefore we may replace the current J̃µ(k̄) in the radiated momentum with the con-

tribution J̃µ1 (k̄) from particle 1. This current is,

J̃µ1 (k̄) = eQ1

∫
dτ1 v

µ
1 (τ1)eik̄·x1(τ1)

= eQ1u
µ
1 δ̂(k̄ · u1)eik̄·b

+ eQ1

∫
dτ1e

ik̄·(b+u1τ1)
(

∆(1)vµ1 (τ1) + iuµ1 k̄ ·∆
(1)x1(τ1)

)
+O(e5) .

(6.35)

We can ignore the leading-order static part of this current just as we ignored the static

current of particle 2. The dynamical part involves the perturbative correction to the

trajectory of particle 1, which we computed in section 6.1.2 in order to determine the

NLO impulse on particle 1. With the help of these results, we can write down the NLO

current of particle 1. Comparison to the quantum calculation is facilitated by resolving

this current onto a basis of polarisation vectors and using eq. (6.32) for the momentum

radiated. We find,

ε(h) · J̃1(k̄)→ e3Q2
1Q2

m1

∫
d̂4q̄1d̂

4q̄2 δ̂(q̄1 · u1)δ̂(q̄2 · u2)δ̂(4)(k̄ − q̄1 − q̄2) eiq̄1·b
1

q̄2
2

×
[
u2 · ε(h) − u1 · u2 q̄2 · ε(h)

k̄ · u1
− k̄ · u2 u1 · ε(h)

k̄ · u1

+
k̄ · q̄2 u1 · u2 u1 · ε(h)

(k̄ · u1)2

]
+O(e5) .

(6.36)

We are now ready to compare this classical result to equation (5.47) for the radiation

kernel we encountered in the quantum case. The expressions are proportional, with pro-

portionality constant e3~2 (and an irrelevant sign). This factor is precisely provided by the

definition of the radiated momentum in terms of the radiation kernel, eq. (4.43). Thus, we

see once again that the quantum and classical calculations match — as they must in the

classical limit.

The calculation we have described in this subsection is an Abelian version of the non-

Abelian calculation of Goldberger and Ridgway [91], which was motivated by the double-

copy relation between gauge theory and gravity. The fact that the classical current can

be reproduced by taking a limit of a scattering amplitude was pointed out in ref. [137].

Recently, the classical computation was pushed to one higher order in perturbation theory

by Shen [95]. It would be interesting to reproduce Shen’s result using the methods of

scattering amplitudes.

6.3 Momentum conservation and the radiation reaction force

Finally we turn to conservation of momentum in the classical theory. This is a celebrated

problem in classical field theory, where the point particle approximation leads to well-

known issues. Problems arise because of the singular nature of the point particle source.
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In particular, the electromagnetic field at the position of a point charge is infinite, so to

make sense of the Lorentz force acting on the particle the traditional route is to subtract

the particle’s own field from the full electromagnetic field in the force law. The result is a

well-defined force, but conservation of momentum is lost.

Conservation of momentum is restored by including another force, the Abraham-

Lorentz-Dirac (ALD) force [105–109], acting on the particles. This gives rise to an im-

pulse on particle 1 in addition to the impulse due to the Lorentz force; the change in the

momentum due to the ALD force balances the momentum lost to radiation. The ALD

impulse is,

∆pµ1 =
e2Q2

1

6πm1

∫ ∞
−∞

dτ

(
d2pµ1
dτ2

+
pµ1
m2

1

dp1

dτ
· dp1

dτ

)
. (6.37)

To keep our discussion as simple as possible, we again take particle 2 to be static in this

section.

Working in perturbation theory, the lowest order contribution to dp1/dτ is of order e2,

due to the LO Lorentz force. Therefore ∆pµ1 is at least of order e4. However, this potential

contribution to the ALD impulse vanishes. To see this, recall that the LO force on particle

1 is given by eq. (6.12). The acceleration due to this leading order Lorentz force in turn

gives rise to an ALD impulse of,

∆pµ1 =
e4Q3

1Q2

6πm1

∫
d̂4q̄ δ̂(q̄ · u1)δ̂(q̄ · u2) e−iq̄·b q̄ · u1

q̄µ u1 · u2 − uµ2 q̄ · u1

q̄2
= 0 . (6.38)

An alternative point of view on the same result is to perform the time integral in equa-

tion (6.37), noting that the second term in the ALD force is higher order. The impulse is

then proportional to fµ(+∞) − fµ(−∞), the difference in the asymptotic Lorentz forces

on particle 1. But at asymptotically large times the two particles are infinitely far away, so

the Lorentz forces must vanish. Since this second argument does not rely on perturbation

theory we may ignore the first term in the ALD force law in the remainder of the section.

Thus, the first non-vanishing impulse due to radiation reaction is of order e6. Since

we only need the leading order Lorentz force, eq. (6.12), to evaluate the ALD impulse, we

can anticipate that the result will be very simple. Indeed, integrating the ALD force, we

find that the impulse on particle 1 due to radiation reaction is

∆pµ1 =
e6Q4

1Q
2
2

6πm2
1

uµ1

∫
d̂4q̄ d̂4q̄′ δ̂(q̄ · u2)δ̂(q̄′ · u2)δ̂(u1 · (q̄ − q̄′)) e−ib·(q̄−q̄

′) 1

q̄2q̄′2

×
[
(q̄ · u1)2 + q̄ · q̄′(u1 · u2)2

]
. (6.39)

This is precisely the expression (5.55) we found using our quantum mechanical approach

in section 5.4. In that case, the simple final result arose after integrating the square of a

more complicated five-point tree amplitude over the phase space of the photon.
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7 Discussion and conclusions

In order to apply on-shell scattering amplitudes to the calculation of classically observable

quantities, one needs a definition of the observables in the quantum theory. One also needs

a set of rules and a path for taking the classical limit of the quantum observables. Ideally

the rules will be straightforward, simpler to apply than the full quantum calculation, and

the path will lead gently downhill.

In this article, we have shown how to construct suitable expressions for two example

observables, the momentum transfer or impulse (3.18) on a particle and the momentum

emitted as radiation (3.34) during the scattering of two spinless point particles. We have

shown how to restore ~s and classify momenta in section 2; in section 4, how to choose

suitable wavefunctions for the incoming particles and under what conditions the classi-

cal limit is simple. In section 4, we further gave simplified leading- and next-to-leading-

order expressions in terms of on-shell scattering amplitudes for the impulse in eqs. (4.30)

and (4.33), and for the radiated momentum in eq. (4.41). These expressions apply directly

to both electrodynamics and gravity. In section 5, we used explicit expressions for the

amplitudes in quantum electrodynamics to obtain results in the classical theory. We have

been careful throughout to ensure that our methods correctly incorporate conservation of

momentum, without the need to introduce an analogue of the Abrahams-Lorentz-Dirac

radiation reaction.

Other observables should be readily accessible by similar derivations: the same two ob-

servables, but for the scattering of spinning particles; the change in spin during scattering;

the polarization of emitted radiation; the radiation flux as a function of spherical angle;

and more. Higher-order corrections, to the extent they are unambiguously defined in the

classical theory, require the harder work of computing two- and higher-loop amplitudes,

but the formalism of this article will continue to apply.

Our setup has features in common with two related, but somewhat separate, ar-

eas of current interest. One area is the study of the potential between two massive

bodies [69–78, 80–82]. The second is the study of particle scattering in the eikonal

regime [118–135]. Diagrammatically, the study of the potential is evidently closely re-

lated to the impulse of the present article. To some extent this is by design: we wished

to construct an on-shell observable related to the potential. But we have also been able

to construct an additional observable, the radiated momentum, which is related to the

gravitational flux.

It is interesting that classical physics emerges in the study of the high-energy limit

of quantum scattering [118–121], see also refs. [84, 85]. Indeed the classical center-of-

momentum scattering angle can be obtained from the eikonal function (see, for example

ref. [127]). This latter function must therefore be related as well to the impulse, even though

we have not taken any high-energy limit. Indeed, the impulse and the scattering angle are

equivalent at LO and NLO, because no momentum is radiated at these orders. Therefore

the scattering angle completely determines the change in momentum of the particles (and

vice versa). The connection to the eikonal function should be interesting to explore.

– 51 –



J
H
E
P
0
2
(
2
0
1
9
)
1
3
7

At NNLO, on the other hand, the equivalence between the angle and the impulse

fails. This is because of radiation: knowledge of the angle tells you where the particles

went, but not how fast. In this respect the impulse is more informative than the angle.

Eikonal methods are still applicable in the radiative case [122], so they should reproduce

the high-energy limit of the expectation value of the radiated momentum. Meanwhile at

low energies, methods based on soft theorems could provide a bridge between the impulse

and the radiated momentum [102–104].

The NLO scattering angle is, in fact, somewhat simpler than the impulse: see ref. [134]

for example. Thanks to the exponentiation at play in the eikonal limit, it is the triangle

diagram which is responsible for the NLO correction. But the impulse contains additional

contributions, as we discussed in section 5.2. Perhaps this is because the impulse must

satisfy an on-shell constraint, unlike the angle.

We restricted attention to spinless scattering in this article. In this context, the impulse

(or equivalently, the angle) is the only physical observable at LO and NLO, and completely

determines the interaction Hamiltonian between the two particles [84, 85]. The situation is

richer in the case of arbitrarily aligned spins: then the change in spins of the particles is an

observable which is not determined by the scattering angle. We expect that this observable

can also be extracted from scattering amplitudes using our methods.

As in any application of traditional scattering amplitudes, however, time-dependent

phenomena are not readily accessible. This reflects the fact that amplitudes are the matrix

elements of a time evolution operator from the far past to the far future. For a direct

application of our methods to the time-dependent gravitational waveform, we must over-

come this limitation. One possible path for future investigation would start from the fact

that the two observables we have discussed are essentially expectation values. They are

therefore most naturally discussed using the time-dependent in-in formalism, which has a

well-known Schwinger-Keldysh diagrammatic formulation. Whether the double copy ap-

plies in this context, offering an avenue to simpler calculations in gravity, remains to be

explored.

An advantage of our methods is that they naturally incorporate the actual radiated

flux, which is obviously a key physical quantity for gravitational wave observatories. The

formalism presented in this paper opens the door to applying the many tools and recent

advances in the study of scattering amplitudes to computing a variety of observables at

higher orders in massless classical field theories. The application of one of these insights,

the double copy, to observables in gravity should prove particularly fruitful.
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A Conventions

We have chosen a mostly-minus signature metric. To deal with a proliferation of factors

of 2π appearing in measures, we use a short-hand notation first defined in equations (2.3)

and (3.2)

δ̂(n)(u) ≡ (2π)nδ(n)(u) =

∫
dnx eiu·x , (A.1)

d̂nq ≡ dnq

(2π)n
. (A.2)

The measure for integrals over Lorentz-invariant phase space, eq. (3.4), is

dΦ(ki) ≡ d̂4kiδ̂
(+)(k2

i −m2
i ) . (A.3)

We occasionally find it convenient to separate a Lorentz vector xµ into its time com-

ponent x0 and its three spatial components x so that xµ = (x0, xi) = (x0,x) (where

i = 1, 2, 3.)

Our convention for Fourier transforms, eq. (6.9), is

f(x) =

∫
d̂4q̄ f̃(q̄) e−iq̄·x, (A.4)

f̃(q̄) =

∫
d4x f(x) eiq̄·x. (A.5)

B Linear wavefunction integrals

In order to compute the wavefunction normalization in eq. (4.18), we must compute the

following integral,

m−2

∫
dΦ(p) exp

[
−2p · u

mξ

]
. (B.1)

Let us introduce the following parametrization for the on-shell phase space,

pµ = E
(
cosh ζ, sinh ζ sin θ cosφ, sinh ζ sin θ sinφ, sinh ζ cos θ

)
, (B.2)

so that,
dΦ(p) = (2π)−3d̂EdζdΩ2 δ̂(E

2 −m2)Θ(E)E3 sinh2 ζ

= (2π)−3d̂Edζdθdφ δ̂(E2 −m2)Θ(E)E3 sinh2 ζ sin θ ,
(B.3)

with ζ running over [0,∞], θ over [0, π], and φ over [0, 2π]. Performing the E integration,

we obtain,

dΦ(p)→ m2

2(2π)3
dζdθdφ sinh2ζ sin θ , (B.4)
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along with E = m in the integrand. The integral must be a Lorentz-invariant function of

u; as the only available Lorentz invariant is u2 = 1, we conclude that the result must be a

function of ξ alone. We can compute it in the rest frame of u, where our desired integral is,

1

2(2π)3

∫ ∞
0

dζ sinh2ζ

∫ π

0
dθ sin θ

∫ 2π

0
dφ exp

[
−2

cosh ζ

ξ

]
=

1

2(2π)2
ξK1(2/ξ) , (B.5)

where K1 is a modified Bessel function of the second kind. The normalization condi-

tion (3.12) then yields,

2
√

2π

ξ1/2K
1/2
1 (2/ξ)

, (B.6)

for the wavefunction’s normalization.

Next, we compute 〈pµ〉. Lorentz invariance implies that the expectation value must be

proportional to uµ; again computing in the rest frame, we find that,

〈pµ〉 = muµ
K2(2/ξ)

K1(2/ξ)
. (B.7)

The phase-space measure fixes 〈p2〉 = m2, so we conclude that,

〈(∆p)2〉
〈p2〉

= 1− 〈p〉
2

〈p2〉

= 1− K2
2 (2/ξ)

K2
1 (2/ξ)

= −3

2
ξ +O(ξ2) .

(B.8)

We must further evaluate an integral with an on-shell delta function,

T (q̄) =
N 2

~m3
exp

[
−~q̄ · u

mξ

] ∫
dΦ(p) δ̂(2p · q̄/m+ ~q̄2/m) exp

[
−2p · u

mξ

]
. (B.9)

This integral is dimensionless, and can depend only on two Lorentz invariants, q̄ ·u and q̄2,

along with ξ. It is convenient to write it as a function of two dimensionless variables built

out of these invariants,

ω ≡ q̄ · u√
−q̄2

,

τ ≡ ~
√
−q̄2

2m
.

(B.10)

We again work in the rest frame of uµ, and without loss of generality, choose the z-axis of

the p integration to lie along the direction of q̄. The only components that appear in the

integral are then q̄0 and q̄z; after integration, we can obtain the dependence on τ and ω

via the replacements,

q̄0 → 2mωτ

~
,

q̄z → 2m
√

1 + ω2τ

~
;

(B.11)
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and hence,

−q̄2 → 4m2τ2

~2
. (B.12)

Using the measure (B.4), we find,

1

2π ~mξK1(2/ξ)
exp

[
−~q̄0

mξ

]
×
∫ ∞

0
dζ sinh2ζ

∫ π

0
dθ sin θ

∫ 2π

0
dφ exp

[
−2

cosh ζ

ξ

]
× δ̂(2q̄0 cosh ζ − 2q̄z sinh ζ cos θ + ~q̄2/m) .

(B.13)

The φ integral is trivial, and we can use the delta function to do the θ integral,

1

2~m q̄z ξK1(2/ξ)
exp

[
−~q̄0

mξ

] ∫ ∞
0

dζ sinh ζ exp

[
−2

cosh ζ

ξ

]
×Θ

(
1 + q̄0 coth ζ/q̄z + ~q̄2 csch ζ/(2mq̄z)

)
×Θ

(
1− q̄0 coth ζ/q̄z − ~q̄2 csch ζ/(2mq̄z)

)
.

(B.14)

In the ~→ 0 limit, the first theta function will have no effect, even with q̄2 < 0. Changing

variables to w = cosh ζ, the second theta function will impose the constraint,

w ≥
q̄z
√

1− ~2q̄2/(4m2)√
−q̄2

− ~q̄0

2m
. (B.15)

In terms of ω and τ , this constraint is,

w ≥
√

1 + ω2
√

1 + τ2 − ωτ . (B.16)

Up to corrections of O(~), the right-hand side is greater than 1, and so becomes the lower

limit of integration. The result for the integral is then,

T (q̄) =
1

8m2
√

1 + ω2τ K1(2/ξ)
exp

[
−2

ωτ

ξ

]
exp

[
−2

ξ

(√
1 + ω2

√
1 + τ2 − ωτ

)]
=

1

4~m
√

(q̄ · u)2 − q̄2K1(2/ξ)
exp

[
−2

ξ

√
(q̄ · u)2 − q̄2√
−q̄2

√
1− ~2q̄2/(4m2)

]
.

(B.17)

How does this function behave in the ~, ξ → 0 limit (with q̄ fixed)? The Bessel function

simplifies,
1

K1(2/ξ)
∼ 2√

π
√
ξ

exp

[
2

ξ

]
, (B.18)

so we must take into account a modification of the exponent. In the limit,
√
ξ ∼ ~, so that

~
√
ξ ∼ ξ, and T has the form shown in eq. (4.27),

1

ξ
exp

[
−f(q̄)

ξ

]
, (B.19)
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which will yield a delta function so long as f(q̄) is positive. To figure out its argument,

recall that q̄2 < 0, and use a parametrization analogous that in eq. (B.2),

q̄µ = Eq̄
(
sinh ζ, cosh ζ sin θ cosφ, cosh ζ sin θ sinφ, cosh ζ cos θ

)
, (B.20)

so that again working in the rest frame of uµ, the exponent in eq. (B.17) (including the

term from eq. (B.18)) is,

− 2

ξ

(
cosh ζ

√
1 + ~2E2

q̄/(4m
2)− 1

)
, (B.21)

so that the delta function will ultimately localize

cosh ζ → 1√
1 + ~2E2

q̄/(4m
2)

= 1−
~2E2

q̄

8m2
+O(~4) , (B.22)

or translating back to Lorentz-invariant expressions, localize

q̄ · u+
~2

8m2
q̄ · u q̄2 (B.23)

to zero.

C Angular integrals

In section 5.4 we encountered an integral over the on-shell phase space of a photon, namely

eq. (5.53) which we reproduce here for ease of discussion:

Y µ
r =

∫
dΦ(k̄) δ̂(u1 · k̄ − Ē) k̄µ

[
1 +

(u1 · u2)2(q̄ · q̄′)
Ē2

+
(u2 · k̄)2

Ē2

−(u1 · u2)(u2 · k̄)k̄ · (q̄ + q̄′)

Ē3
+

(u1 · u2)2(k̄ · q̄)(k̄ · q̄′)
Ē4

]
.

(C.1)

In this appendix we will perform the integral over k̄. We begin by defining

y0 ≡
∫
dΦ(k̄) δ̂(u1 · k̄ − Ē), (C.2)

yµ1 ≡
∫
dΦ(k̄) δ̂(u1 · k̄ − Ē) k̄µ, (C.3)

yµν2 ≡
∫
dΦ(k̄) δ̂(u1 · k̄ − Ē) k̄µk̄ν , (C.4)

yµνρ3 ≡
∫
dΦ(k̄) δ̂(u1 · k̄ − Ē) k̄µk̄ν k̄ρ. (C.5)

We may then write

Y µ
r =

(
1 +

(u1 · u2)2(q̄ · q̄′)
Ē2

)
yµ1

+

(
u2νu2ρ

Ē2
−

(u1 · u2)u2ν (q̄ρ + q̄′ρ)

Ē3
+

(u1 · u2)2 q̄ν q̄
′
ρ)

Ē4

)
yµνρ3 .

(C.6)
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Thus we need to know the integrals yµ1 and yµνρ3 . It is also convenient to compute y0, but

we will omit the calculation of y2.

We begin by computing y0: as we will see, this integral appears in the evaluation of

the rest. It is convenient to work in the frame where particle 1 is stationary, so uµ1 = (1,0).

Then we can write

y0 =
1

(2π)2

∫ ∞
−∞

dk̄0

∫ ∞
0

dλ̄ λ̄2

∫
dΩ2 Θ(k̄0) δ(k̄0 − Ē)δ((k̄0)2 − λ̄2), (C.7)

where λ = |k|. Each integral is straightforward. The integral over solid angle dΩ2 evaluates

to 4π; we perform the k̄0 integral using the first delta function to discover a factor Θ(Ē),

and finally we use the second delta function to perform the k̄ integral. The result is

y0 =
Ē

2π
Θ(Ē). (C.8)

To evaluate yµ1 , we exploit Lorentz covariance which dictates that

yµ1 =

∫
dΦ(k̄) δ̂(u1 · k̄ − Ē) k̄µ = a1u

µ
1 , (C.9)

where a1 is a scalar factor to be determined. In fact it is trivial to compute a1 by dotting

this expression into u1; then the delta function enforces a1 = y1 · u1 = Ē y0, so that

yµ1 =
Ē2

2π
uµ1 Θ(Ē). (C.10)

In the same manner, Lorentz covariance and the symmetries of the integral require that,

yµνρ3 = a3u
µ
1u

ν
1u

ρ
1 + b3 (uµ1η

νρ + uν1η
µρ + uρ1η

µν) , (C.11)

in terms of scalar factors a3 and b3 which we must determine. To do so, we contract yµνρ3

with u1µu1νu1ρ and with ηµνu
ρ
1 to develop simultaneous equations for a3 and b3:

u1µu1νu1ρy
µνρ
3 = a3 + 3b3 = Ē3 y0 , (C.12)

ηµνu1ρy
µνρ
3 = a3 + 6b3 = 0 . (C.13)

As this system has the solution a = Ē4

π Θ(Ē) and b = − Ē4

6π Θ(Ē), we learn that

yµνρ3 =
Ē4

π

(
uµ1u

ν
1u

ρ
1 −

1

6
(uµ1η

νρ + uν1η
µρ + uρ1η

µν)

)
Θ(Ē). (C.14)

D An alternative classical point of view on momentum radiation

In the main text, we provided a classical derivation of a formula for the momentum radiated

in electrodynamics. The result, eq. (6.32), was

Kµ = −
∫
dΦ(k̄) k̄µJ̃ν(k̄)J̃∗ν (k̄) . (D.1)
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The derivation maintained covariance, but involved a rather indirect extraction of the

radiation field. In this appendix, we will derive the same formula from a somewhat simpler

point of view, using textbook methods (see, for example, [140]).

We begin as in section 6.2.1 with the observation that the momentum radiated can be

obtained by integrating the stress-energy tensor over the surfaces of large two-dimensional

spheres, and over all time:

Kµ = lim
|x|→∞

∫ ∞
−∞

dt

∫
dΩ2 |x|2 nνTµν(x) , (D.2)

where n · er = 1 and er is the unit radial outgoing vector on the spheres. To evaluate this

integral, we need an expression for the gauge field Aµ(x). Working in Lorenz gauge, this

can be obtained by solving the Maxwell equation using a Green’s function G(x):

Aµ(x) =

∫
d4x′G(x− x′)Jµ(x′) . (D.3)

In our situation, we assume that there is no incoming radiation, so the appropriate choice

is the retarded Green’s function Gret(x) which is explicitly

Gret(x) =
1

2π
Θ(x0)δ(x2) =

1

4π|x|
δ(x0 − |x|) , (D.4)

where xµ = (t,x). As we will see, it is useful to Fourier transform Aµ(x) in the time

dimension alone. We write,

Aµ(ω,x) ≡
∫

dt eiωtAµ(t,x)

=

∫
dt′d3x′

eiωt
′
eiω|x−x

′|

4π|x− x′|
Jµ(t′,x′)

=
1

4π

∫
d3x′

eiω|x−x
′|

|x− x′|
Jµ(ω,x′) .

(D.5)

This is an exact expression for the gauge field. However, we only need to know the gauge

field on the surface of spheres surrounding our interacting particles, with radii very large

compared to the separation of the particles. So we can expand the fields at large |x|.
In particular, the x′ integral in (D.5) extends only over the spatial support of the source

Jµ(t′,x′). We assume that radii of the spheres are always very large compared to this

spatial size (which in our application will be of order b). We can therefore assume that

|x′|/|x| � 1.

Some care needs to be taken in the expansion of equation (D.5), however, since another

length scale appears in the problem. This is the wavelength λ of the radiation, of order

1/ω. This wavelength need not be of order b, and in particular the quantity ω|x′| ∼ |x′|/λ
need not be small. We therefore expand the field as

Aµ(ω,x) ' eiω|x|

4π|x|

∫
d3x′ e−iω x̂·x′

Jµ(ω,x′) , (D.6)
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where x̂ = x/|x| is a unit three-dimensional vector. Defining the wavevector k̄ = ωx̂, can

recognise the spatial Fourier transform present in eq. (D.6), and learn that

Aµ(ω,x) ' eiω|x|

4π|x|
Jµ(ω, k̄) =

eiω|x|

4π|x|
J̃µ(k̄) , (D.7)

where k̄µ = (ω,k). Note that k̄ · k̄ = 0. For later use, we remark that

Aµ(−ω,x) =
e−iω|x|

4π|x|
J̃µ(−k̄) . (D.8)

It is straightforward to obtain the field strength Fµν from our gauge field. Neglecting terms

which are subdominant at large distances, we find that

Fµν(x) ≡
∫
dω

2π
e−iωtFµν(ω,x)

= −i
∫
dω

2π
e−iωt

(
k̄µAν(ω,x)− k̄νAµ(ω,x)

)
.

(D.9)

It is also worth noting that k̄µA
µ(ω,x) = 0 as a consequence of current conservation.

We now return to the momentum radiated. We first trade the time integral of the

stress-energy tensor for a frequency integral:∫ ∞
−∞

dt

(
Fµα(x)Fα

ν(x) +
1

4
ηµνFαβ(x)Fαβ(x)

)
=

∫
dω

2π

∫ ∞
−∞

dt e−iωt
(
Fµα(ω,x)Fα

ν(t,x) +
1

4
ηµνFαβ(ω,x)Fαβ(t,x)

)
=

∫
dω

2π

(
Fµα(ω,x)Fα

ν(−ω,x) +
1

4
ηµνFαβ(ω,x)Fαβ(−ω,x)

)
=

∫
dω

2π
k̄µk̄νAα(ω,x)Aα(−ω,x) .

(D.10)

Armed with these results, it is an easy matter to complete the derivation. The momentum

radiated is

Kµ = lim
|x|→∞

∫
dω

2π

∫
dΩ2 |x|2 nν k̄µk̄νAα(ω,x)Aα(−ω,x)

= − 1

(2π)3

∫ ∞
0

dω ω2

∫
dΩ2

1

2ω
k̄µ J̃α(k̄)J̃α(−k̄)

= − 1

(2π)3

∫
d3k̄dk̄0 δ(k̄

0 − |k̄|)
2|k̄|

k̄µ J̃α(k̄)J̃α(−k̄)

= −
∫
dΦ(k̄) k̄µJ̃α(k̄)J̃∗α(k̄) ,

(D.11)

as expected. In this derivation, we lost manifest Lorentz invariance during the calculation,

but we were able to restore it at the end because the observable of interest is Lorentz

invariant.
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Scattering, Phys. Rev. D 91 (2015) 064008 [arXiv:1410.4148] [INSPIRE].

– 63 –

https://doi.org/10.1088/1475-7516/2014/12/003
https://doi.org/10.1088/1475-7516/2014/12/003
https://arxiv.org/abs/1408.5762
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5762
https://doi.org/10.1007/JHEP06(2015)059
https://arxiv.org/abs/1410.2601
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2601
https://doi.org/10.1007/JHEP09(2015)219
https://arxiv.org/abs/1501.04956
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04956
https://doi.org/10.1088/1475-7516/2016/01/011
https://doi.org/10.1088/1475-7516/2016/01/011
https://arxiv.org/abs/1506.05056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.05056
https://doi.org/10.1088/1475-7516/2016/01/008
https://doi.org/10.1088/1475-7516/2016/01/008
https://arxiv.org/abs/1506.05794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.05794
https://doi.org/10.1103/PhysRevD.93.124010
https://doi.org/10.1103/PhysRevD.93.124010
https://arxiv.org/abs/1511.07379
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.07379
https://arxiv.org/abs/1607.04252
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04252
https://doi.org/10.1103/PhysRevD.95.104009
https://arxiv.org/abs/1612.00482
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00482
https://doi.org/10.1103/PhysRevD.96.024062
https://arxiv.org/abs/1703.06433
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.06433
https://doi.org/10.1103/PhysRevD.96.024063
https://doi.org/10.1103/PhysRevD.96.024063
https://arxiv.org/abs/1703.06434
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.06434
https://doi.org/10.1088/1361-6382/aa941e
https://arxiv.org/abs/1705.06309
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06309
https://doi.org/10.1103/PhysRevD.96.084064
https://arxiv.org/abs/1705.07934
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.07934
https://doi.org/10.1103/PhysRevD.96.084065
https://arxiv.org/abs/1705.07938
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.07938
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://arxiv.org/abs/1304.7263
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7263
https://doi.org/10.1007/JHEP02(2014)111
https://arxiv.org/abs/1309.0804
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0804
https://doi.org/10.1103/PhysRevD.91.064008
https://arxiv.org/abs/1410.4148
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4148


J
H
E
P
0
2
(
2
0
1
9
)
1
3
7

[72] N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Planté and P. Vanhove, Bending of
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