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1 Introduction

Dual conformal symmetry is a highly non-trivial feature of scattering amplitudes in N =4

super Yang-Mills (SYM) theory. Historically, it was first noticed that the integrals appear-

ing in the perturbative expansion of the four-point amplitude enjoy conformal invariance

when expressed in terms of dual variables [1, 2]. More precisely, they would be dual con-

formal invariant if they could be computed in four dimensions. The need for an infrared

(IR) regulator breaks dual conformal invariance and generates an anomaly [3, 4], which

is however under complete control [3] and at one loop induces relations among the su-

percoefficients of the box integrals entering the final result [5, 6]. Moreover, a one-loop

unitarity-based derivation of this anomaly for arbitrary helicities and number of external

legs was presented in [7].

It soon became also clear that tree-level scattering amplitudes are invariant under the

full dual superconformal group [8] and the symmetry can be extended to an infinite dimen-

sional Yangian algebra [9]. Since even at tree level the full amplitude is, strictly speaking,

only covariant, not invariant, under dual conformal transformations, it is convenient to

work with ratios of amplitudes. In practice, one usually divides the result by the tree-level
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MHV amplitude — something that we find more natural to do also in our work — and the

resulting ratio is then invariant up to anomalies due to IR divergences. A convenient way

to show this invariance is to introduce momentum twistors [10]. These variables allow dual

superconformal transformations to act linearly, and are helpful to systematically construct

superconformal invariants [11]. More recently, dual conformal symmetry received renewed

attention. On the one hand, the authors of [12] developed an IR regulator making dual

conformal invariance of finite observables manifest at the integrand level, on the other hand

a careful analysis has shown the emergence of hidden symmetries in the non-planar sector

of amplitudes [13–16].

In this paper, we want to extend the notion of dual conformal symmetry to form factors

of the stress tensor multiplet operator in N = 4 SYM theory. Form factors of half-BPS

operator are by now very well studied, both at weak [17–26] and strong coupling [27, 28].

The extension to form factors of the on-shell diagram formalism and their formulation

in terms of twistor variables, exhibiting an underlying Graßmannian geometry, have also

been studied [29–35]. Yet, despite the availability of many perturbative results, the dual

conformal symmetry properties of form factors of protected operators have not yet been

investigated (see [36] for comments regarding the q2 = 0 case). One reason why this

question was not addressed is the presence of triangle integrals in the expressions for one-

loop form factors.

Triangles, unlike boxes, are expected to break dual conformal invariance explicitly, as

one can see easily. Consider first a one-loop box integral in dual variables, which is given by

I4 =

∫
d4x0

1

x2
01x

2
02x

2
03x

2
04

. (1.1)

Performing an inversion xi → xi/x
2
i and a compensating change of variables x0 → x0/x

2
0

(which implies d4x0 → d4x0/x
8
0) one gets

I4 → I4 x
2
1 x

2
2 x

2
3 x

2
4 , (1.2)

which can be compensated by a numerator x2
13x

2
24. This is not possible for the triangle

integral

I3 =

∫
d4x0

1

x2
01x

2
02x

2
03

, (1.3)

whose integrand variation depends explicitly on the loop variable x0, preventing a covariant

transformation. This led to the expectation that any quantity involving triangle integrals

cannot be dual conformal invariant. We will show in the following that this expectation

is naive, and our careful analysis of the form factors at tree (one-loop) level will reveal

the presence of (anomalous) dual conformal symmetry in complete analogy to the case of

amplitudes. We will start from tree level, where dual conformal invariance descends from

the invariance of certain R-functions appearing in tree-level form factors. We then move

to one loop, where we present a derivation of the dual conformal anomaly along the lines

of [7], and importantly also explicitly check the dual conformal anomaly for the MHV and

NMHV cases.
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A key aspect of our investigation is the appropriate assignment of region variables for

form factors introduced in [37]. For the case of scattering amplitudes, the sum of external

on-shell momenta vanishes and dual momenta are the vertices of a light-like polygon.

For form factors, the presence of the operator insertion leads one to consider a periodic

configuration of region variables [18, 27]. In the following, we will describe an unambiguous

prescription to assign region variables for a given ordering of the external legs. Note however

that special conformal transformations do not preserve distances, and consequently do not

preserve periodicity under translations. In general, a periodic configuration of the dual

variables is invariant under a discrete translation by a period q. We denote by P the action

of such a translation. After a dual special conformal transformation K, the configuration

will be invariant under the action of twisted periodicity

P̃ = K · P · K−1 . (1.4)

This subtlety was already noticed in [13], where the authors looked at double-trace scat-

tering amplitudes and argued that the original Wilson line correlator and the twisted one

correspond to the same scattering amplitude. Here we find a very similar picture: a dual

conformal transformation maps a configuration of region variables, which is periodic under

translations, to a configuration that obeys twisted periodicity; nevertheless, we will show

that this does not change the final result of the tree-level form factor (or to be more precise

the appropriate ratio), and at one loop induces an anomaly that is completely analogous

to that of amplitudes.

The rest of the paper is organised as follows. In section 2, we review the tree-level

results of [29], with a particular focus on dual conformal symmetry, made manifest by

the formulation in terms of twistor variables. In section 3, we provide a unitarity-based

derivation of the anomalous dual conformal symmetry at one loop. We then test our

findings in section 4, where we show explicitly that MHV and NMHV one-loop form factors

obey the same anomalous dual-conformal Ward identity as amplitudes. Several technical

details and definitions are included in four appendices.

2 Dual conformal symmetry of tree-level form factors

As for the case of scattering amplitudes, it is convenient to analyse the properties of the

ratio F̃
(0)
n,k defined as

F̃
(0)
n,k =

F
(0)
n,k

F
(0)
n,0

, (2.1)

where, in our notation, F
(l)
n,k is the n-point NkMHV form factor at l loops (see appendix A

for our conventions). We will show that the ratio F̃
(0)
n,k is invariant under dual conformal

transformations. This feature was already mentioned in [29], and here we review some of

the results of that paper, focusing on the properties under dual conformal transformations.
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We start by reviewing some facts about scattering amplitudes. It was noticed in [4, 8]

that the ratio A0
n,1/A

(0)
n,0 can be expressed as a linear combination of dual conformal in-

variant objects, called R-invariants. It was then realised, using supersymmetric recursion

relations [4, 38], that all tree-level amplitudes in N = 4 SYM can be expressed as combi-

nations of R-invariants [8, 39]. The latter can be related to four-particle cuts of one-loop

amplitudes, thus establishing important relations between loops and trees [40–42]. The

R-invariants can be defined for an arbitrary assignment of external region variables as

Rrst =

0 0

0

xc

xc+1

xa

xb

r + 1

s− 1

t− 1

s

t

r − 1
r

=
〈s− 1 s〉〈t− 1 t〉 δ(4)(〈r|xcaxab|θbc〉+ 〈r|xcbxba|θac〉)

x2
ab〈r|xcbxba|s−1〉〈r|xcbxba|s〉〈r|xcaxab|t−1〉〈r|xcaxab|t〉

(2.2)

We begin by showing that this function is invariant under dual conformal transformations

and then we will discuss how to adapt this construction to the case of form factors. We

also introduce the four-bracket

〈i, j − 1, j, k〉 = 〈i|xijxjk|k〉 〈j − 1 j〉 , (2.3)

and notice that, since pi = xi − xi+1, the following identity

xi |i〉 = xi+1 |i〉 (2.4)

holds. Therefore, we can replace xi in (2.3) by xi+1, and xk by xk+1. The crucial require-

ment is that xi and xk label one of the two regions adjacent to pi and pk, respectively.

The easiest way to see that the combination (2.3) is invariant is by introducing mo-

mentum twistors [10]

ZÂi =

(
λαi
µα̇i

)
, µα̇i = xα̇αi λiα . (2.5)

In these variables, conformal transformations act linearly. In particular, they are imple-

mented as an SL(4) transformation on the index Â. The four-bracket (2.3) is defined as

〈i, j − 1, j, k〉 = εÂB̂ĈD̂Z
Â
i Z

B̂
j−1Z

Ĉ
j Z

D̂
k , (2.6)

and it is therefore manifestly invariant under SL(4). It is also convenient to introduce

supertwistor variables

ZMi =

(
ZÂi
χAi

)
, χAi = θAαi λiα , (2.7)
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transforming in the fundamental representation of the supergroup SL(4|4). Its projective

real section PSU(2, 2|4) is precisely the N =4 superconformal group. It is easy to see that,

given five arbitrary superstwistors Za, . . . ,Ze, the quantity

[a, b, c, d, e] =
δ(4)(〈a, b, c, d〉χe + cyclic)

〈a, b, c, d〉 〈b, c, d, e〉 〈c, d, e, a〉 〈d, e, a, b〉 〈e, a, b, c〉
(2.8)

is an SL(4|4) invariant. Furthermore, (2.8) is invariant under an arbitrary rescaling

ZMi → ζiZMi , (2.9)

which is related to the little group scaling. This is a condition that must be satisfied given

the projective nature of twistor variables. After some manipulations one can show that the

R-invariant is just a specific instance of this general invariant [10]:

Rrst = [s− 1, s, t− 1, t, r] . (2.10)

An important difference between the amplitude and the form factor computation is that

there is no momentum conservation for the external legs, i.e.

n∑
i=1

pαα̇i = qαα̇ ,

n∑
i=1

qAαi = γAα , (2.11)

and

pαα̇i = λαi λ̃
α̇
i , qAαi = ηAi λ

α
i . (2.12)

Consequently, region supermomenta are defined on a periodic contour [18, 19, 27]

xαα̇i ∼ xαα̇i +mqαα̇ , θAαi ∼ θAαi +mγAα , (2.13)

for m ∈ Z. This introduces a redundancy in the assignment of dual variables and one has

to establish a consistent convention. This issue was already discussed in [29, 37]. Here, we

follow the convention of [37], which can be summarised as follows. We choose one particular

period, whose points are called (xi, θi). Image points belonging to the other periods are

indicated using the notation

x
[m]
i = xi +mq , θ

[m]
i = θi +mγ . (2.14)

For the specific case m = ±1, we also use x±i = xi ± q and θ±i = θi ± γ. Notice that, for

any m ∈ Z,

pi = x
[m]
i − x[m]

i+1 , qi = θ
[m]
i − θ[m]

i+1 . (2.15)

In extending the computation of R-invariants to form factors the off-shell leg appears

in one of the MHV blobs in (2.2). As done in [37], we use the position of the off-shell leg to

start assigning region momenta and we ask that the first region we encounter always sits

in the particular period we selected (i.e. that with regions xi). In the case of R-invariants,
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0 0

0

x−1

x−2

x−s

xt

2

s− 1 t− 1s

t

n1

0 0

0

x1

x2

xs

xt

2

s− 1

t− 1

s

t

n1

Figure 1. Examples of region variables assignment for two R-invariants. We label region momenta

starting from the region adjacent to the corner containing the off-shell leg in clockwise order.

it is easy to understand how this works looking at figure 1, where we selected two specific

R-invariants with r=1, and we assigned region variables accordingly. In section 3 we will

use the same prescription for the case of one-loop form factors.

It should be clear that this is just one specific choice, we may well choose any other

period but the result for any R-invariant would be unchanged. We stress that, as discussed

in the Introduction, dual special conformal transformations act differently for different

periods, and this causes ambiguities in the action on an MHV prefactor — which is why

we prefer to divide it out and work with quantities written in the form of R-invariants (see

section 3 for a discussion of the loop level case), and translating them in twistor variables

as was done in [29]. Also twistor variables are arranged in periodic configurations

Z [m]M
i =

(
Z

[m]Â
i

χ
[m]A
i

)
, Z

[m]Â
i =

(
λαi

(x
[m]
i )α̇αλiα

)
, χ

[m]A
i = (θ

[m]
i )Aαλiα , (2.16)

but this does not affect the invariance of (2.8), which holds for five arbitrary twistors.

This implies that whenever a result can be written in terms of five-brackets (2.8), it is

automatically invariant. Notice also that under rescaling (2.9), for any m ∈ Z,

Z [m]M
i → ζiZ [m]M

i . (2.17)

This can be understood by thinking of the rescaling (2.9) as a freedom in the definition of

λi. Since λi is not affected by the shifts (2.16), all the image twistors should be rescaled

by the same factor.

As we mentioned, in the generalisation to form factors, one of the MHV amplitudes

in (2.2) is replaced by an MHV form factor. In [29] it was shown that two different

configurations are needed to compute the NMHV form factor. They are represented by

R′rst =

0 0

0

r + 1

s− 1 t− 1s

t

r − 1
r

, R′′rst =

0 0

0

r + 1

s− 1

t− 1

s

t

r − 1r

, (2.18)
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and the expression of the n-point NMHV form factor is

F
(0)
n,1 =

n∑
j=3

j∑
i=3

R′1ij +

n+1∑
j=5

j−2∑
i=3

R′′1ij , (2.19)

where the sum is performed with a periodic identification n + 1∼ 1. This expression was

derived using a [1 2〉 shift, and as a consequence all of the R-invariants involved have r=1,

and one can simply use the region momenta assignment shown in figure 1. Using BCFW

recursion relations it is possible to show that, for arbitrary helicity configuration, the tree-

level form factor can be written in terms of R′ and R′′. Therefore, one simply needs to

show that these two functions are dual conformal invariant.

It turns out that, for s 6= t, R′ and R′′ are given by (2.2), with the region variables

assignment described below (2.15) (see also figure 1). There is however a limiting case that

needs to be discussed separately. For the specific configuration R′rss, (2.2) does not apply

and one has instead

R′rss =

0

0

xc

xc+1

xa

xb

r + 1

s− 1

s

r − 1
r

= −〈s− 1 s〉 δ(4)(〈r|xcaxab|θbc〉+ 〈r|xcbxba|θac〉)
x4
ab〈r|xcbxba|s− 1〉〈r|xcaxab|s〉〈r|xcaxbc|r〉

. (2.20)

Notice that in this case xa = x−b and xab = −q. Taking the ratio with the limiting case

of (2.2), one can rewrite (2.20) as

R′rss = −〈r|xcaxab|s− 1〉〈r|xcaxab|s〉
x2
ab〈s− 1 s〉〈r|xcaxbc|r〉

[(s− 1)−, s−, s− 1, s, r] . (2.21)

As was shown in [29], the prefactor in (2.21) can be written as a ratio of four-brackets (2.3).

Since the four-bracket (2.3) is invariant under dual conformal transformations, once the

prefactor is written in that form, we just need to check that it is also invariant under the

little group scaling (2.17). To this end, we first note that one can recast R′rss as

R′rss =
〈r, (s− 1)−, s−, s− 1〉 〈r, (s− 1)−, s−, s〉
〈r+, s− 1, s, r〉 〈s, s−, s− 1, (s− 1)−〉

[(s− 1)−, s−, s− 1, s, r] . (2.22)

The novel feature of (2.22) is that the prefactor contains brackets involving one region

variable as well as its image after one period. To see how this happens consider the

expression 〈r|xcaxbc|r〉, which can be rewritten as

〈r|xcaxbc|r〉 = 〈r|(x+
c − xb)xbc|r〉 =

〈r+, s− 1, s, r〉
〈s− 1 s〉

. (2.23)

Notice also that, by using a similar argument, it is easy to show that the four-bracket is

invariant under an overall translation by a period:

〈r+, s− 1, s, r〉 = 〈r, (s− 1)−, s−, r−〉 . (2.24)

– 7 –
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k 0

i

i+ 1

xi

xi+2

xi+1x0

Figure 2. The only two-particle cut contributing to the IR divergent part of the form factor as

well as to the dual conformal anomaly.

This is actually a trivial statement since we know that the four-bracket is invariant under

the full dual conformal group and dual translations are just a subgroup. Furthermore,

since the little group transformation (2.17) does not depend on the specific period, we

conclude that R′rss is invariant under little group scaling, and consequently is a good dual

conformal invariant.

3 Anomaly of one-loop form factors: a general proof

In [7] a deep connection between IR divergences of one-loop scattering amplitudes and the

dual conformal anomaly was established. The argument of [7] is based on the fact that only

unitarity cuts in two-particle channels contribute to the discontinuity of the IR-divergent

part of an amplitude. Therefore, in the multiparticle case, the phase space integration can

be performed strictly in four dimensions, and dual conformal symmetry of the discontinuity

essentially descends from the covariance of the tree-level ingredients. A careful analysis

shows that the invariance of the discontinuity is sufficient to prove that no multiparticle

invariant can be present in the dual conformal anomaly, confirming the structure previously

conjectured in [8] (see [7] for additional details of this derivation).

The argument can be extended to the case of form factors without any modification.

Indeed, we know that the IR structure of the one-loop form factor is analogous to that of

scattering amplitudes — it depends only on two-particle invariants (see (3.6)). Therefore,

the IR behaviour of one-loop form factors should be fully reproduced by the two-particle

cut in figure 2, which reads

F
(1)
n,k

∣∣∣
x2i,i+1cut

=

∫
dLIPS(`1, `2)

∫
d4η`1 d4η`2 A

(0)
4,0(i, i+1, `2, `1)F

(0)
n,k(−`1,−`2, i+2, . . . , i−1).

(3.1)

The integration over fermionic variables can be immediately performed using the fermionic

delta function of A4,0, yielding

F
(1)
n,k

∣∣∣
x2i,i+1cut

=

∫
dLIPS(`1, `2)

〈`1`2〉3 F (0)
n,k(−`1,−`2, i+ 2, . . . , i− 1)

〈i, i+ 1〉 〈i+ 1, `2〉 〈`1, i〉
. (3.2)

Furthermore, using some spinor variable manipulations, we can rewrite (3.2) as

F
(1)
n,k

∣∣∣
x2i,i+1cut

=

∫
dLIPS(`1, `2)

〈`1`2〉2 F (0)
n,k(−`1,−`2, i+ 2, . . . , i− 1)

〈i, i+ 1〉2
x2
i,i+2

x2
0,i+1

. (3.3)

– 8 –
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The crucial observation is that the IR-singular region of this integral is related to the

collinear kinematic configuration

`1 = −pi , `2 = −pi+1 , x0 = xi+1 . (3.4)

The divergence in the integral (3.3) is clearly related to the propagator x2
0,i+1. The rest of

the integrand can be evaluated in the configuration (3.4), and the cut can be uplifted to

the corresponding integral, leading to

F
(1)
n,k

∣∣∣
IR

= F
(0)
n,k

∫
ddx0

x2
i,i+2

x2
0ix

2
0,i+1x

2
0,i+2

, (3.5)

which evaluates to

F
(1)
n,k

∣∣∣
IR

= −F (0)
n,k

n∑
i=1

(−x2
ii+2)−ε

ε2
. (3.6)

This reproduces the correct IR behaviour of the form factor.

The argument used in [7] to relate the IR behaviour of scattering amplitudes to the

expression of the dual conformal anomaly is based on the idea of applying a dual conformal

transformation in the very first step of the above derivation, i.e. on the two-particle cut.

The covariance of the tree-level ingredients allows to show that the anomaly is related to

the variation of the integration measure, which needs to be d-dimensional since the integral

diverges (all the other two-particle cuts are finite and do not contribute to the anomaly). In

particular, using the definition of the generator of dual special conformal transformations

Kµ =

n∑
i=1

[
−2xµi x

ν
i

∂

∂xνi
+ x2

i

∂

∂xµi

]
, (3.7)

the fact, proven in the previous section, that tree-level form factors transform covariantly,

and following steps similar to those of [7], we arrive at

KµF
(1)
n,k

∣∣∣
x2i,i+1cut

= 4ε

∫
dLIPS(`1, `2)

∫
d4η`1 d4η`2 x

µ
0 A

(0)
4,0(i, i+1, `2, `1) F

(0)
n,k(−`1,−`2, . . . ) ,

(3.8)

with ε = 2−d/2. After this observation we can simply follow all the steps leading to (3.6),

and hence we conclude that the one-loop anomaly has the form

KµF
(1)
n,k = 4 ε xµi+1 F

(1)
n,k

∣∣∣
IR

= −4F
(0)
n,k

n∑
i=1

xµi+1(−x2
ii+2)−ε

ε
. (3.9)

Note that the right-hand side of (3.9) depends on the region momenta of the particles (and

not just the momenta).

Although the form of the anomaly resembles that of the amplitude case, the conse-

quences for the one-loop expansion of the form factor in terms of scalar integrals are rather

different. Indeed, one-loop form factors may contain three-mass triangles, which are fi-

nite in four dimensions and, in view of the previous arguments, cannot contribute to the

– 9 –
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anomaly. On the other hand, we showed at the beginning of this section that triangle

integrals cannot be dual conformal invariant on their own. Therefore, two things can hap-

pen: either the variation of the finite triangles cancel some other variation arising from the

finite part of other integrals (in this case boxes); or the variation vanishes after summing

over permutations. Notice also that, in the NMHV example, the three-mass triangle comes

with a complicated coefficient, and its variation needs to be taken into account as well (see

section 4.2.2).

To understand how the anomaly emerges, in the following we will explicitly check its

form for MHV and NMHV form factors at one loop. Before doing that, we first elaborate

on the consequences of (3.9) for the finite part of one-loop form factors. The universal

IR-divergent part of a generic one-loop form factor has the form (3.6). Using

Kµx2
ab = −2(xa + xb)

µ x2
ab , (3.10)

we can separate out the anomaly of the finite part. Doing so, one quickly arrives at

Kµ F
(1)
n,k

∣∣∣
fin

=− F (0)
n,k

[
2

ε

n∑
i=1

(
2xµi+1 − (xµi + xµi+2)

)
− 2

n∑
i=1

(
2xµi+1 − (xµi + xµi+2)

)
log
(
−x2

ii+2

) ]
. (3.11)

The first sum evaluates to zero, thus we obtain

Kµ F
(1)
n,k

∣∣∣
fin

= −2F
(0)
n,k

n∑
i=1

pµi log

(
x2
ii+2

x2
i−1 i+1

)
, (3.12)

which, importantly, only depends on differences of region momenta (i.e. momenta) and

Mandelstam invariants of the particles. We now show the validity of this formula for the

MHV and NMHV form factor at one loop.

4 Examples

Having presented a general derivation of the dual conformal anomaly, we now analyse a

number of specific examples, namely the one-loop MHV and NMHV form factors. The

latter are particularly interesting due to the presence of a three-mass triangle, whose varia-

tion requires a novel cancellation mechanism to be consistent with our general result (3.9)

and (3.12).

There is an important preliminary observation to be made — in order to find the correct

anomaly, it is crucial to assign region variables according to the prescription described in

section 2 and illustrated in figure 1. In particular, this has to be done diagram by diagram

in the expansion of the result in terms of scalar integrals; crucially, the definition of the

period q in terms of region variables, and consequently its variation under special conformal

transformations, is different for each of the diagrams involved in the computation. Let us

now see how this works in practice.
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x1

x2

xi

xi+1

i

1
x−1

x−2

xi

xi+1

i

1

Figure 3. The two possible types of two-mass easy box functions. The double line represents the

incoming momentum q of the operator. Note the two different assignments of region momenta in

the two cases.

4.1 n-point MHV form factor at one loop

The generic one-loop MHV super form factor can be written compactly as [18]:

F
(1)
n,0 = F

(0)
n,0

−
n∑
i=1

(−x2
i i+2)−ε

ε2
+
∑
r,a

xr

xr+1

xa

xa+1F

 . (4.1)

where the label F inside the box indicates the finite part of the reduced box integral (B.4).

The sum is over all possible boxes; the off-shell leg can appear in both massive corners of

the box function. The recipe to write the previous expression in terms of region variables

depends as usual on the position of the off-shell legs, and an example is shown in figure 3.

In that case the leg with momentum p1 is associated to one of the massless legs and the

region variables are assigned according to the two possible locations of the off-shell leg. A

similar recipe can be applied to the other cyclic permutations.

In the following we will act with dual conformal generators on the finite part of a

generic one-loop MHV super form factor. We will use the following two general formulae,

obtained as repeated applications of (3.10):

Kµ Li2

(
1−

x2
ab

x2
ac

)
= 2x2

ab

log(x2
ab/x

2
ac)

x2
ab − x2

ac

xµbc , (4.2)

Kµ
1

2
log2

(
x2
ab

x2
a+1 b+1

)
= −2 log

(
x2
ab

x2
a+1 b+1

)
(xµa a+1 + xµb b+1) . (4.3)

Without loss of generality, we will now compute the term in the anomaly of the finite

part of the n-point MHV form factor that is proportional to the momentum p1. It is easy

to realise that such terms can only arise from box functions where p1 is one of the two

massless legs. To perform the calculation we need to distinguish terms where the form

factor momentum is inserted in the two possible massive corners of a two-mass easy box.

These two situations are depicted in figure 3. The term proportional to p1 in the variation
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of the first type of box gives

Kµ

x1

x2

xi

xi+1F

i

1

∼ −2pµ1

[
x2
i+1 1

x2
i+1 1 − x2

i+1 2

log
x2
i+1 1

x2
i+1 2

− x2
2 i

x2
2 i − x2

1 i

log
x2

2 i

x2
1 i

− log
x2

1 i

x2
2 i+1

]
,

(4.4)

while for the second type of box we have

Kµ

x−1

x−2

xi

xi+1F

i

1

∼− 2pµ1

[
(x+
i+1,1)2

(x+
i+1,1)2 − (x+

i+1,2)2
log

(x+
i+1,1)2

(x+
i+1,2)2

−
(x−2i)

2

(x−2i)
2 − (x−1i)

2
log

(x−2i)
2

(x−1i)
2

− log
(x−1i)

2

(x−2i+1)2

]
. (4.5)

Combining the variations and performing the sums

−
n−2∑
i=2

log
(x+
i+1,1)2

(x+
i+1,2)2

+
n−1∑
i=3

log
x2
i+1,1

x2
i+1,2

+
n−1∑
i=2

log
(x−1i)

2

(x−2,i+1)2
+

n∑
i=3

log
x2

1i

x2
2,i+1

, (4.6)

we obtain

∑
i

Kµ

(
x1

x2

xi

xi+1F

i

1

+

x−1

x−2

xi

xi+1F

i

1

)
∼ −2 pµ1 log

(
x2

1 3

(x−2n)2

)
, (4.7)

in agreement with the term proportional to p1 on the right-hand side of (3.12). Summaris-

ing, we have shown that the finite part of the dual conformal anomaly of an n-point MHV

form factor is exactly reproduced by our general formula (3.12). Next, we move on to

consider NMHV form factors.

4.2 One-loop NMHV form factor

The one-loop NMHV form factor can be computed using generalised unitarity as a com-

bination of boxes and triangles [23]. The presence of the latter constitutes an important

difference compared to amplitudes. In particular, for amplitudes the box integrals are

invariant on their own,1 and in addition their coefficients are invariant as well.

For form factors one may expect dual conformal symmetry to be broken. However,

in the following we will discover a new cancellation mechanism that ensures that the final

result is invariant up to the expected anomaly. The three-point NMHV form factor coin-

cides with the MHV result, and therefore can be extracted from the MHV case considered

1To be precise they are anomalous as we will discuss in section 4.2.1.
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earlier by conjugation (this is analogous to the case of the five-point amplitude). The first

interesting case is that of a four-point NMHV form factor, as this is the first example which

has a three-mass triangle. Since two-mass and one-mass triangles are IR divergent with

vanishing finite part, their coefficient can be fixed by requiring a consistent divergent part

for the final form factor, i.e. (3.6). On the other hand, the three-mass triangle is finite,

and its coefficient has to be determined independently.

We start by writing F̃
(1)
4,1 as a linear combination of reduced scalar integrals:

F̃
(1)
4,1 = b1m

2 3

4

1

+ b2mh
1

4

1

23

+ b2mh
2

1 2

3

4

+ c2m

4

1
23

+ c3m

1

2

3

4

+ cyclic , (4.8)

where the sum is performed over cyclic permutations of the external legs. Notice that

the dependence of the coefficients on the external momenta is understood and must be

permuted accordingly. This is an expansion in terms of reduced scalar integrals, i.e. where a

dimensionful constant in the integral has been reabsorbed in the coefficient (see appendix B

for details). The coefficients of this linear combination have been determined in [23].

Here we review that derivation and consider the transformation of the result under dual

conformal symmetry. We start by the contribution of boxes and divergent triangles.

4.2.1 Boxes and divergent triangles

The contribution of boxes is easily computed using the maximal cuts. Each of the diagrams

receives a contribution from two different cuts. In particular

b1m =
1

2
1

2 3

4

1

+
1

2
0

2 3

4

1

(4.9)

b2mh
1 =

1

2
0

4

1

23

+
1

2
0

4

1

23

(4.10)
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b2mh
2 =

1

2

0

1

3

2

4

+
1

2

0

1

3

2

4

(4.11)

However, using the non-trivial identities [23, 37]

1

2 3

4

1

=

0

4

1

23

=

0

1

3

2

4

= R′144 = R′311 , (4.12)

and

0

2 3

4

1

=

0

4

1

23

=

0

1

3

2

4

= R′241 = R′′424 , (4.13)

and noticing that, by IR consistency, c2m is fixed to

c2m = R′144 +R′241 , (4.14)

we arrive at the following compact expression for the NMHV four-point form factor:

F̃
(1)
4,1 =

c2m

2


2 3

4

1

+

4

1

23

+

1

3

2

4

+ 2

4

1
23



+ c3m

1

2

3

4

+ cyclic . (4.15)

We focus here on the first line of (4.15), and compute its variation under dual conformal

transformations, while the three-mass triangle is discussed in section 4.2.2. The overall

coefficient c2m is expressed in terms of R-invariants (see (4.14)) and therefore is explicitly

dual conformal invariant as shown in section 2. Furthermore, in light of (3.12), we are
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interested in the finite part of the result and we can neglect the two-mass triangles, which

are purely divergent. We then look at the particular combination

V = F

2 3

4

1

+ F

4

1

23

+ F

1

3

2

4

, (4.16)

where again the letter F indicates the finite part of the integral.

The variation of the scalar box integrals can be computed in two different ways: either

one takes the variation of the integrands and then uses some reduction techniques to recast

the result in terms of scalar triangles as was done in [5], or one just takes the variation of

the finite part of the integrated result (explicit expressions can be found in appendix B).

Either way, the result is

Kµ

x1

x2

x3

x4F

2 3

4

1

= 2pµ1

(
x2

14

x2
14 − x2

24

log
x2

14

x2
13

+
x2

24

x2
14 − x2

24

log
x2

13

x2
24

)

+ 2pµ3

(
x2

13

x2
13 − x2

14

log
x2

24

x2
13

+
x2

14

x2
13 − x2

14

log
x2

14

x2
24

)
, (4.17)

Kµ

x3

x4

x−1

x1F

4

1

23

=− (pµ1 + pµ2 ) log
(x−13)2

x2
13

− qµ log
(x−13)2

q2
+ 2(pµ1 + pµ2 + pµ4 ) log

(x−13)2

x2
14

+ 2pµ3
x2

13

x2
13 − x2

14

log
x2

13

x2
14

− 2pµ4
q2

q2 − x2
14

log
q2

x2
14

, (4.18)

Kµ

x4

x−1

x−2

x−4F

1

3

2

4

= (pµ2 + pµ3 ) log
(x−24)2

x2
24

+ qµ log
(x−24)2

q2
− 2(pµ2 + pµ3 + pµ4 ) log

(x−24)2

x2
14

− 2pµ1
x2

24

x2
24 − x2

14

log
x2

24

x2
14

+ 2pµ4
q2

q2 − x2
14

log
q2

x2
14

. (4.19)

Notice that, in computing these variations, the correct assignment of region variables is

essential. As in our previous examples, we start assigning region variables from the po-

sition of the off-shell leg and then follow the ordering along the periodic configuration.

The variations above are then obtained by writing each integral using their particular re-

gion variable assignment, and acting with the generator Kµ in (3.7). For the particular

combination in (4.16), this gives

KµV = pµ1 log
(x−24)2

x2
13

+ pµ2 log
x2

13

x2
24

+ pµ3 log
x2

24

(x−13)2
+ pµ4 log

(x−13)2

(x−24)2
. (4.20)
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This surprisingly simple combination is invariant under cyclic permutations. Therefore,

using (4.15) we can write

KµF̃
(1)
4,1

∣∣∣
fin

=
1

2
KµV

∑
cyclic

c2m + KµT 3m , (4.21)

where T 3m is the contribution of the three-mass triangles

T 3m = c3m

1

2

3

4

+ cyclic . (4.22)

The sum over cyclic permutations of c2m reads∑
cyclic

c2m = R′144 +R′241 +R′211 +R′312 +R′322 +R′423 +R′433 +R′134 = 4F̃
(0)
4,1 , (4.23)

where for the last equality we used (2.19) combined with the identities (4.12), (4.13) and

permutations thereof. Expressing (4.20) in terms of region variables we have

KµF̃
(1)
4,1

∣∣∣
fin

= −2 F̃
(0)
4,1

4∑
i=1

pµi log

(
x2
ii+2

x2
i−1 i+1

)
+ KµT 3m . (4.24)

This result implies that the boxes already account for the full anomaly (3.12). As a

consequence, the necessary and sufficient condition for dual conformal invariance is

KµT 3m = 0 . (4.25)

We will check this surprising relation in the next section.

4.2.2 Three-mass triangles

In this section we show that the contribution of the three-mass triangles is dual conformal

invariant. We start by reviewing the computation of c3m. This coefficient is harder than

the boxes’ since it requires looking at non-maximal cuts. Nevertheless, a prescription for

the direct extraction of this coefficient was given in [43] and applied to the case of form

factors in [23]. Let us consider the general configuration

xa

xb

xc

r

s− 1

s

r − 1

(4.26)

which contains an arbitrary number of legs, but no external momentum in the massive

corner containing the off-shell leg. In [23] it was shown that only this type of diagrams
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arise in the computation of the one-loop NMHV form factor. Here, we will show that this

structure is crucial for the dual conformal invariance of the coefficient c3m, which would

be spoiled by the presence of an external leg in the same corner of the off-shell leg. The

four-point case can be immediately recovered by setting r = 1 and s = 3. Notice also that,

for this particular configuration, xc = x−a .

The starting point for the computation of c3m is the triple cut

0

0

xa

xb

xc

x0

r

s− 1

s

r − 1

=

∫ 3∏
i=1

d4η`i F
(0)
2,0 (−`3, `1) A

(0)
n1,0

(−`1, . . . , `2) A
(0)
n2,0

(−`2, . . . , `3)

(4.27)

with

`1 = xa0 , `2 = xb0 , `3 = xc0 . (4.28)

The integration over the fermionic variables yields∫ 3∏
i=1

d4η`i δ
8(η`1λ`1 − η`3λ`3 + θca) δ

8(η`2λ`2 − η`1λ`1 + θab) δ
8(η`3λ`3 − η`2λ`2 + θbc)

= δ8(qtot)

∫ 3∏
i=1

d4η`i δ
(4)(〈`1 `2〉 η`2 + 〈`1 θab〉) δ(4)(〈`1 `2〉 η`1 + 〈`2 θab〉)

1

〈`1 `2〉4

× δ(4)(〈`2 `3〉 η`3 + 〈`2 θbc〉) δ(4)(〈`2 `3〉 η`2 + 〈`3 θbc〉)
1

〈`2 `3〉4

= δ8(qtot) δ
(4)(〈`1 `2〉 〈`3 θbc〉 − 〈`2 `3〉 〈`1 θab〉) . (4.29)

After these manipulations the three-particle cut reads

0

0

xa

xb

xc

x0

r

s− 1

s

r − 1

= F
(0)
n,0

〈s− 1 s〉〈r − 1 r〉 δ(4)(〈`1 `2〉 〈`3 θbc〉 − 〈`2 `3〉 〈`1 θab〉)
〈r `1〉〈s− 1 `2〉〈s `2〉〈r − 1 `3〉〈`1 `2〉〈`2 `3〉〈`1 `3〉2

,

(4.30)

and the associated coefficient is

c3m =
〈s− 1 s〉〈r − 1 r〉 δ(4)(〈`1 `2〉 〈`3 θbc〉 − 〈`2 `3〉 〈`1 θab〉)
∆abc〈r `1〉〈s− 1 `2〉〈s `2〉〈r − 1 `3〉〈`1 `2〉〈`2 `3〉〈`1 `3〉2

, (4.31)
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where ∆abc is defined in (B.7) and originates from expanding the form factor in a basis

of reduced triangles, see (B.6). A similar factor would appear for the case of boxes, but

it always cancels after evaluating the quadruple cut on the corresponding solution. Here

a similar cancellation does not seem to happen and we will have to deal with this ad-

ditional factor. Furthermore, the MHV factor in (4.30) has been removed because the

expansion (4.22) refers to the ratio F̃
(0)
4,1 .

As usual, in (4.31) as well as in (4.27), the loop legs are evaluated on the solution

of the on-shell conditions for the cut legs. Since the three-particle cut is not maximal in

four dimensions, the on-shell constraints fix a one-parameter family of solutions and do

not allow to fix immediately the coefficient of the three-mass triangle. Geometrically, this

corresponds to a curve of allowed values for the internal region variable x0. This is the

curve of points that are light-like separated from the three points xa, xb and xc.

The construction of [43] showed that there is a particular value on this curve that

isolates the triangle coefficient. Furthermore, since the constraint is quadratic, there are

two solutions and, as dictated by generalised unitarity, one has to take an average. Details

on this procedure are provided in appendix C. To simplify the final result, it is convenient

to introduce the variables

x2
ab

x2
ac

= u = zz̄ ,
x2
bc

x2
ac

= v = (1− z)(1− z̄) . (4.32)

In terms of these variables, the coefficient of the triangle can be cast in the form

c3m =
1

∆abc

[
〈r − 1 r〉〈s− 1 s〉δ(4)((z − 1)〈K[ θab〉+ z〈K[ θbc〉)

z(1− z)〈rK[〉〈s− 1K[〉〈sK[〉〈tK[〉
+ (z ↔ z̄)

]
, (4.33)

with2

K[µ = xµab(z − 1) + xµbcz. (4.34)

Notice that (K[)2 = 0, which allows us to use it inside the spinor brackets. The sum

over the exchange of z and z̄ in (4.33) corresponds to the average over the two solutions

discussed earlier and it involves also the definition of K[.

The exchange of z and z̄ is not the only symmetry of c3m. It is easy to see that (4.33)

is symmetric under the exchange {
xab ↔ xbc ,

u↔ v .
(4.35)

This particular feature will be important in the following.

The form (4.33) is not ideal to test dual conformal invariance. We will find an alter-

native expression which makes this symmetry more manifest. In order to achieve this, we

start from (4.31). Importantly, we will not need the particular form of the solution to prove

2Compared to [23], our definition of K[ is rescaled for convenience, taking advantage of cancellations

between numerator and denominator (see also (C.9)).
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dual conformal symmetry. In other words, our derivation applies for any x0 sitting on the

curve of solutions to the on-shell conditions for the three cut legs. As a bonus, we will

see that this derivation allows an easier evaluation on the kinematic solution with respect

to (4.31). First we rewrite (4.31) using the identities

〈`2 `1〉 [`1 `3] 〈`3 r − 1〉 = 〈`2|x0axac|r − 1〉 , 〈`2 `3〉 [`3 `1] 〈`1 r〉 = 〈`2|x0cxca|r〉 , (4.36)

〈`2 `1〉 [`1 `2] 〈`2 s− 1〉 = 〈`2|x0axab|s− 1〉 , 〈`2 `3〉 [`3 `2] 〈`2 s〉 = 〈`2|x0cxcb|s〉 , (4.37)

〈`2 `1〉 [`1 `3] 〈`3 θbc〉 = −〈`2|x0axac|θcb〉 , 〈`2 `3〉 [`3 `1] 〈`1 θab〉 = 〈`2|x0cxca|θab〉 ,
(4.38)

where we used momentum conservation at the three vertices and the on-shell condition for

the loop legs. Furthermore, the loop leg `2 is adjacent both to x0 and xb, therefore

〈`2|x0 = 〈`2|xb . (4.39)

This gives

c3m =
〈s− 1 s〉〈r − 1 r〉 δ(4)(〈`2|xbaxac|θcb〉+ 〈`2|xbcxca|θab〉)

x2
ac 〈`2|xbaxab|s− 1〉 〈`2|xbcxcb|s〉 〈`2|xbaxac|r − 1〉 〈`2|xbcxca|r〉

uv

∆
, (4.40)

where we introduced the quantity

∆ =
√

(1− u− v)2 − 4uv = |z − z̄| . (4.41)

Using momentum supertwistors and the identities

〈s− 1 s〉x2
ab 〈r − 1 r〉 = −〈s− 1, s, r − 1, r〉 , (4.42)

〈s− 1 s〉x2
bc 〈r − 1 r〉 = −〈s− 1, s, (r − 1)−, r−〉 , (4.43)

〈r − 1 r〉2 x2
ac = −〈r − 1, r, (r − 1)−, r−〉 , (4.44)

we can rewrite (4.40) as

c3m = Rr,s(`2)

√
uv

∆
, (4.45)

with

Rr,s(`2) = [`2, r, r − 1, r−, (r − 1)−]
〈`2, r, r − 1, r−〉 〈`2, r−, (r − 1)−, r − 1〉
〈`2, r, r − 1, s− 1〉 〈`2, r−, (r − 1)−, s〉

× 〈s− 1, s, r − 1, r〉
1
2 〈s− 1, s, (r − 1)−, r−〉

1
2

〈r − 1, r, (r − 1)−1, r−〉
. (4.46)

To arrive at this expression in terms of dual conformal invariant five- and four-brackets,

we introduced the new supertwistor

ZM`2 =

(
ZÂ`2

θAαb λ`2α

)
, ZÂ`2 =

(
λα`2

xα̇αb λ`2α

)
. (4.47)

One can easily check that (4.46) is invariant under the little group scaling (2.9) as well.
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The emergence of dual conformal invariant structures in a three-particle cut is a pleas-

ant surprise and a strong hint of dual conformal invariance. As we already stressed, (4.45)

is to be evaluated at a specific value of the loop momenta. Notice, however, that in this

version of c3m the whole dependence on the loop momenta is through λ`2 . Therefore it

is extremely simple to evaluate it on the explicit solution. Indeed, as we review in ap-

pendix C, in the limit corresponding to the direct extraction of the triangle coefficient one

can effectively replace

λ`2 → λK[ , (4.48)

with K[ given in (4.34). With this insight, we can finally write

c3m =
1

2

(
Rr,s(K[) +Rr,s(K̄[)

) √uv
∆

, (4.49)

where K̄[ is obtained from K[ after the replacement z → z̄. K[ and K̄[ correspond to the

two solutions of the on-shell constraints. Although it is not immediately obvious, (4.49)

and (4.33) are identical.

After fixing this coefficient, we are left with

c3m

xa

xb

x−a

r

s− 1

s

r − 1

=
1

2

(
Rr,s(K[) +Rr,s(K̄[)

)
g(u, v) , (4.50)

where

g(u, v) =

√
uv

∆
F 3m(z, z̄) , (4.51)

and F 3m(z, z̄) is the explicit result of the reduced three-mass triangle (see appendix B)

F 3m(z, z̄) = Li2(z)− Li2(z̄) +
1

2
log(zz̄) log

(
1− z
1− z̄

)
. (4.52)

What remains to be proven is the invariance of the function g(u, v). However it is

not hard to see, by acting with the generator Kµ in (3.7), that the variation of g(u, v) is

non-vanishing. On the other hand, we will now show that this variation cancels in the sum

over all possible triangles. To begin with, one can show that F 3m(z, z̄) = F 3m(1− z, 1− z̄)

as a consequence of the identity

Li2(z) = −Li2(1− z)− log(1− z) log(z) +
π2

6
, (4.53)

thus implying

g(u, v) = g(v, u) . (4.54)
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Therefore g(u, v) is a symmetric function under the exchange (4.35). Notice that, in the

sum over all possible three-mass triangles one always has a contribution where u and v are

swapped. These are

c3m

xa
xb

x−a

r

s− 1

s

r − 1

=
1

2

(
Rr,s(K[) +Rr,s(K̄[)

)
g(u, v) (4.55)

c3m

xb
x−a

x−b

s

r − 1

r

s− 1

=
1

2

(
Rr,s(K[) +Rr,s(K̄[)

)
g(v, u) (4.56)

where we used the propertyRr,s = Rs,r, which we mentioned around (4.35). Crucially these

two configurations are identical when written in terms of Mandelstam invariants, but it

is immediate to see that their region variables assignments are different and consequently

also their variation under dual special conformal transformation. In particular, we will

show that

Kµg(u, v) = −Kµg(v, u) , (4.57)

thus providing the cancellation

Kµ

c3m
xa

xb
x−a

r

s− 1

s

r − 1

+ c3m
xb

x−a
x−b

s

r − 1

r

s− 1

 = 0 . (4.58)

In order to prove our crucial result (4.57), we start from the variation of the basic ingredients

Kµu = −2uxµbc , Kµv = −2v xµba , (4.59)

from which we derive

Kµg(u, v) = −2u∂ug(u, v)xµbc + 2v∂vg(u, v)xµab . (4.60)

Now we apply to this equation the exchange (4.35), leading to

Kµg(v, u) = −2v∂vg(v, u)xµab + 2u∂ug(v, u)xµbc . (4.61)

Then, we can simply use the identities

∂ug(v, u) = ∂ug(u, v) , ∂vg(v, u) = ∂vg(u, v) , (4.62)
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which are trivial consequences of (4.54), to see that (4.57) holds for any symmetric function

of u and v.

In summary, we have proven that, given a symmetric function of u and v, its varia-

tion under dual conformal transformation is antisymmetric in u and v. In particular this

applies to g(u, v) defined in (4.51) (for completeness we have written its explicit variation

in appendix D). Therefore, we conclude that the variation of the three-mass triangle con-

tributions cancels out in the sum over all the possible triangles. We stress how non-trivial

this result is — quantities involving triangle functions can therefore be dual conformal

invariant.

As an example, let us discuss in detail the four-point case. In that case one simply has

four possible permutations, and the cancellation is

Kµ

c3m
x1

x3

x−1

1

2

3

4

+ c3m
x3

x−1
x−3

3

4

1

2

 = 0 (4.63)

Kµ

c3m
x2

x4

x−2

2

3

4

1

+ c3m
x4

x−2
x−4

4

1

2

3

 = 0 (4.64)

which can be checked explicitly.

5 Conclusions and outlook

In this paper we provided strong evidence for the invariance of quantum form factors

under dual conformal symmetry. At tree level, this was partly understood in [29] using

a formulation in terms of twistor variables. The extension of these results to loop level

seemed to be obstructed by the appearance of scalar triangles in the loop expansion. Here,

we presented a general argument for one-loop dual conformal invariance and explicitly

analysed the cancellation mechanism leading to a vanishing variation for finite triangles.

Importantly, our results rely on the prescription introduced in [37] to express the integrated

result in terms of dual region momenta.

Our observation opens the way to many future developments. One obvious question

is whether dual conformal invariance survives for higher loops and, if so, which constraints

can be put on the allowed scalar integrals and their coefficients. At one loop we already

noticed interesting features. In (4.15) the box integrals organise themselves in a simple

combination, whose variation under dual conformal symmetry yields exactly the correct

anomaly (4.20). Conversely, one could say that dual conformal invariance constrains the

box coefficients such that the combination of box functions leads to the correct dual con-

formal anomaly. A similar argument allows to exclude the presence of three-mass triangles

different from (4.26). Indeed, while cancellations like (4.58) do not rely on having only the
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off-shell leg in one corner, the possibility of recasting the three-mass coefficient in a dual

conformal invariant form (such as (4.46)), is linked to the specific configuration (4.26) where

the the off-shell leg sits alone at one corner, and would be spoiled in a more general case.

Another interesting question is whether dual conformal invariance survives for form

factors of different operators. One could start looking at protected longer operators, for

which some loop results are already available [44, 45]. Afterwards, one would naturally

move to unprotected operators [46–51]. In that case the presence of ultraviolet divergences

makes things more subtle and the argument of section 3 would have to be revisited.

Since our method for showing dual conformal invariance applies to the expansion of

the result in terms of scalar integrals, it would be important to develop a general method

to test dual conformal symmetry on the final result in terms of Mandelstam invariants. In

particular, while there is an unambiguous map between Mandelstam invariants and region

variables, the definition of q2 (and in particular its variation under dual conformal invari-

ance) changes according to the specific scalar integral. Rewriting Mandelstam variables

in terms of twistors may potentially help in finding new dual conformal invariants on the

periodic configuration.

It would also be exciting to understand the precise Wilson loop dual of form factors.

In the dual picture, dual conformal invariance is simply the ordinary conformal invariance

of the Wilson loop expectation value and this would provide new important insights. In

particular, given the latest developments in the computation of exact scattering amplitudes,

a Wilson loop dual would allow to access the non-perturbative regime, thus gaining a deeper

understanding of the symmetries.

We conclude by mentioning one last future direction that we would like to investigate.

As we mentioned in the Introduction, the authors of [12] developed a dual conformal invari-

ant regularisation for the case of scattering amplitudes. This led to the formulation of new

unitarity-based techniques which allow to compute the integrand of scattering amplitudes

for arbitrary helicity configurations and number of external legs up to three loops [52]. A

similar technique for the case of form factors would allow to notably increase the amount

of perturbative data at our disposal.
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A Notation and conventions

Throughout this paper we use the following notation to indicate the NkMHV tree-level

amplitude and form factor

F
(0)
n,k = k

1 2

n− 1n

A
(0)
n,k = k

1 2

n− 1n

(A.1)

Our conventions for the MHV cases are

F
(0)
n,0 =

δ(8)(γ −
∑n

i=1 λiηi)

〈1 2〉 · · · 〈n 1〉
, A

(0)
n,0 = i

δ(8)(
∑n

i=1 λiηi)

〈1 2〉 · · · 〈n 1〉
(A.2)

The usual delta function for momentum conservation is not indicated. For the simplest

cases of three-point amplitude and two-point form factor we use the notation

A
(0)
3,0 =

1

2

3

= i
δ(8)(λ1η1 + λ2η2 + λ3η3)

〈1 2〉〈2 3〉〈3 1〉
,

A
(0)
3,−1 =

1

2

3

= −i
δ(4)([2 3]η1 + [3 1]η2 + [1 2]η3)

[1 2][2 3][3 1]
,

F
(0)
2,0 =

1

2

=
δ(8)(γ − λ1η1 − λ2η2)

〈1 2〉〈2 1〉
. (A.3)

All the external legs are outgoing, except for the off-shell leg. The latter has incoming

momentum q and supermomentum γ, with

q =
n∑
i=1

pi , γ =
n∑
i=1

qi . (A.4)

We use supersymmetric region variables according to the convention

xαα̇i − xαα̇i+1 = pαα̇i = λαi λ̃
α̇
i , θAαi − θAαi+1 = qAαi = ηAi λ

α
i . (A.5)

If q 6= 0 the dual coordinates do not describe a closed polygon. However they are still

arranged in periodic configurations, where the image variables are defined as

x
[m]
i = xi +mq , θ

[m]
i = θi +mγ , (A.6)

with m ∈ Z. For m = ±1 we use the notation

x±i = xi ± q , θ±i = θi ± γ . (A.7)

– 24 –



J
H
E
P
0
2
(
2
0
1
9
)
1
3
4

The same kinematic configuration can be encoded in terms of momentum-twistor variables

since edges of the periodic line are light rays in dual space. The incidence relation

µα̇i = xαα̇i λi α = xαα̇i+1λi α , (A.8)

fixes the components of the twistor

ZÂi =

(
λαi
µα̇i

)
, (A.9)

and the ambiguity in the choice of the spinor-helicity variables (λi, λ̃i) now translates to

the fact that Zi are interpreted as projective coordinates in twistor space T ' CP3. The

supersymmetric version is simply

ZMi =

(
ZÂi
χAi

)
, χAi = θAαi λiα . (A.10)

Periodicity, as in (A.6), is implemented by the condition

Z [m]M
i =

(
Z

[m]Â
i

χ
[m]A
i

)
, Z

[m]Â
i =

(
λαi

(x
[m]
i )α̇αλiα

)
, χ

[m]A
i = (θ

[m]
i )Aαλiα . (A.11)

In section 2 we introduced the following notation for R-invariants:

Rrst =

0 0

0

xc

xc+1

xa

xb

r + 1

s− 1

t− 1

s

t

r − 1
r

(A.12)

hinting at their connection to a quadruple cut. The precise relation is the following

0 0

0

xc

xc+1

xa

xb

r + 1

s− 1

t− 1

s

t

r − 1
r

= i∆abc c+1A
(0)
n,0

0 0

0

xc

xc+1

xa

xb

r + 1

s− 1

t− 1

s

t

r − 1
r

(A.13)

with

∆abcd =
√

(x2
acx

2
bd − x2

bcx
2
ad + x2

abx
2
cd)

2 − 4x2
acx

2
bdx

2
abx

2
cd . (A.14)

If x2
cd = 0, as it happens in (A.13), this factor reduces to

∆abc c+1 = x2
acx

2
bc+1 − x2

ac+1x
2
bc . (A.15)

– 25 –



J
H
E
P
0
2
(
2
0
1
9
)
1
3
4

Notice in particular that this is the form of ∆abcd for all the IR divergent boxes. The

four-mass box is the only one for which one needs to use (A.14) and it is IR finite and dual

conformal invariant by itself.

For the case of form factors we have a similar relation between cuts and R-invariants

0 0

0

xc

xc+1

xa

xb

r + 1

s− 1 t− 1s

t

r − 1
r

= i∆abc c+1F
(0)
n,0

0 0

0

xc

xc+1

xa

xb

r + 1

s− 1 t− 1s

t

r − 1
r

(A.16)

and similarly for R′′rst.

It is well-known that the quadruple cut in four dimensions computes the coefficient of

the boxes. The reason why these coefficients in the expansion (4.15) are given in terms

of R-invariants is that the factor i∆abc c+1 is reabsorbed by expanding in a basis of re-

duced integrals (see appendix B), while the tree-level MHV factor cancels when taking the

ratio (2.1).

B Reduced scalar integrals

In this paper we expand one-loop results in terms of reduced scalar integrals, i.e. con-

veniently defined dimensionless quantities that are simply related to the original scalar

integral. For the boxes we have

1

2π2−εrΓ

∫
d4−2εx0

1

x2
0ax

2
0bx

2
0cx

2
0d

=
1

i∆abcd

xc

xd

xa

xb (B.1)

where the picture represents the reduced box integral, and ∆abcd is given in (A.14). The

fact that this factor cancels in the product of the box coefficient given by the quadruple

cut (A.13) and the scalar integral is the main reason why we find convenient to use this

basis. The factors on the left-hand side appear in front of any one-loop diagram and can be

reabsorbed in the definition of the coupling. For completeness we remind the reader that

rΓ =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
. (B.2)

We also list the expression of the reduced box integrals that are needed for our computa-

tions:

xc

xd

xa

xb = − 1

ε2
(
(−x2

ac)
−ε + (−x2

bd)
−ε − (−x2

bc)
−ε) (B.3)

+ Li2

(
1−

x2
bc

x2
ac

)
+ Li2

(
1−

x2
bc

x2
bd

)
+

1

2
log2

(
x2
ac

x2
bd

)
+
π2

6
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xc

xd

xa

xb = − 1

ε2
(
(−x2

ac)
−ε + (−x2

bd)
−ε − (−x2

bc)
−ε − (−x2

ad)
−ε) (B.4)

+ Li2

(
1−

x2
ad

x2
ac

)
+ Li2

(
1−

x2
ad

x2
db

)
+ Li2

(
1−

x2
bc

x2
ac

)
+ Li2

(
1−

x2
bc

x2
db

)
− Li2

(
1−

x2
adx

2
bc

x2
acx

2
db

)
+

1

2
log2

(
x2
ac

x2
db

)
,

xc

xd

xa

xb = − 1

ε2

(
1

2
(−x2

ac)
−ε + (−x2

bd)
−ε − 1

2
(−x2

bc)
−ε − 1

2
(−x2

ab)
−ε
)

(B.5)

+ Li2

(
1−

x2
bc

x2
bd

)
+ Li2

(
1−

x2
ab

x2
db

)
+

1

2
log2

(
x2
ac

x2
bd

)
− 1

2
log

(
x2
ac

x2
bc

)
log

(
x2
ac

x2
ab

)

In the main text we also use a F inside the diagram to indicate that we consider only the

finite part of the one-loop integrals. By finite part we mean the previous expressions where

the first line has been removed.

For triangles, we use a notation that is analogous to the box case

1

2π2−εrΓ

∫
d4−2εx0

1

x2
0ax

2
0bx

2
0c

=
1

i∆abc

xa
xb

xc

(B.6)

with

∆abc =
√

(x2
ac − x2

bc + x2
ab)

2 − 4x2
abx

2
ac . (B.7)

Notice that, for x2
ab = 0, this factor reads

∆a a+1 c = x2
ac − x2

a+1,c . (B.8)

The three possible cases are given by

xa
xb

xc

=
(−x2

ac)
−ε

2ε2
(B.9)
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xa
xb

xc

=
(−x2

bc)
−ε − (−x2

ac)
−ε

2ε2
(B.10)

xa
xb

xc

= Li2(z)− Li2(z̄) +
1

2
log(zz̄) log

(
1− z
1− z̄

)
(B.11)

where, for the last integral, we used the variables (4.32). One may be worried that the

two-mass triangle is odd under the exchange of the two massive corners. In fact, this sign is

compensated by the ∆ factor (B.8). Since we are expanding in terms of reduced integrals,

we need to choose a convention and fix the sign of the coefficient accordingly. Using the

convention (B.10), one can check that the coefficient (4.14), which we determined by IR

consistency, has the right sign to cancel the unwanted three-particle invariants in the IR

divergent part of the form factor.

C Solution of the triple cut constraints

In this appendix we review some results of [43], adapting them to our notation. In the

conventions of section 4.2.2 we set xbc = K1 and xac = K2 = q. We define also the two

massless projections

K[,µ
1 =

Kµ
1 −

K2
1

γ±
Kµ

2

1− K2
1K

2
2

γ2±

, K[,µ
2 =

Kµ
2 −

K2
2

γ±
Kµ

1

1− K2
1K

2
2

γ2±

, (C.1)

where, using the variables (4.32),

γ+ = q2(1− z̄) , γ− = q2(1− z) . (C.2)

The two different values are associated to the two solutions of the kinematics constraints.

In general the mapping between the two solutions is achieved by z ↔ z̄. Consequently,

K2
1

γ+
= (1− z) ,

K2
1

γ−
= (1− z̄) ,

K2
2

γ+
=

1

1− z̄
,

K2
2

γ−
=

1

1− z
. (C.3)

We can now express the loop momenta in terms of these massless projections and their

associated spinor variables λα
K[

i

and λ̃α̇
K[

i

. Explicitly

λα`i = tλα
K[

1
+ αi1λ

α
K[

2
, (C.4)

λ̃α̇`i =
αi2
t
λ̃α̇
K[

1
+ λ̃α̇

K[
2
, (C.5)
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with coefficients

α+
11 =

z(z̄ − 1)

z − z̄
, α+

12 =
z̄(z − 1)

(z − z̄)(z̄ − 1)
, (C.6)

α+
21 =

z(z − 1)

z − z̄
, α+

22 =
z̄

z − z̄
, (C.7)

α+
31 =

z̄(z − 1)

z − z̄
, α+

32 =
z

z − z̄
. (C.8)

The coefficients associated to the other solution can be found by exchanging z ↔ z̄.

Notice that in the limit t → ∞ all the λ`i go to λK[
1
. Since the limit t → ∞ is the

one leading to the direct extraction of the three-mass triangle coefficient, the final result

depends only on K[
1. In particular, in (4.34) we used a rescaled version of it

K[ = K[
1

(
1− 1− z

1− z̄

)
. (C.9)

The two are not equal, but all our results depend only on λK[
1

and we can use the rescaling

freedom to replace λK[
1
→ λK[ .

Nevertheless, one should be careful because (4.31) depends also on the contractions

〈`i`j〉 and the subleading order as t→∞ becomes relevant in that case,

〈`1 `2〉+ = tz 〈K[
1K

[
2〉 , (C.10)

〈`1 `3〉+ = t 〈K[
1K

[
2〉 , (C.11)

〈`2 `3〉+ = t(1− z) 〈K[
1K

[
2〉 . (C.12)

Once more, the other solution is obtained with the replacement z → z̄. Using these

expressions it is easy to go from (4.31) to (4.33). In our alternative expression for the

coefficient, (4.40), as well as (4.46), depends on the loop momenta only through λ`2 and

this allows to use straightforwardly the replacement (4.48).

D Some dual conformal variations

Here we consider explicit variations under dual conformal transformations of the function

g(u, v) defined in (4.51). We start from (4.59) and we derive

Kµz =
2(z − 1)z

z − z̄
(
(1− z̄)xµab − z̄x

µ
bc

)
,

Kµz̄ =
2(1− z̄)z̄

z − z̄
(
(1− z)xµab − zx

µ
bc

)
. (D.1)

The variation of ∆ = |z − z̄| follows immediately

Kµ∆ =
2[v(1 + u− v)xµab − u(1− u+ v)xµbc]

∆
, (D.2)
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and it is clearly antisymmetric under the exchange (4.35). Also the variation of F 3m

in (4.52) is easily computed

KµF 3m(z, z̄) = − log u

∆

(
(u+ v − 1)xµab + 2uxµbc

)
+

log v

∆

(
(u+ v − 1)xµbc + 2v xµab

)
,

(D.3)

and is antisymmetric as expected. The last ingredient in g(u, v) is
√
uv, whose variation

is simply

Kµ
√
uv = (xµab − x

µ
bc)
√
uv . (D.4)

Therefore we have shown with an explicit computation that the variation of g(u, v) under

dual special conformal transformations is antisymmetric under the exchange (4.35).
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