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1 Introduction

Events at the Large Hadron Collider (LHC) contain large numbers of jets. The jets can

be classified into four types, according to their origin: (i) light-quark jets, initiated by

u, d, s or c quarks; (ii) gluon jets; (iii) b-quark initiated jets; and (iv) jets created by

a hadronic decay of a highly boosted massive object, such as a W/Z boson, Higgs, or

top quark. In the latter case, hadronic showers created by each of the partons overlap,

and standard jet reconstruction algorithms recognize them as a single merged jet. A jet

classification algorithm, or “tagger”, attempts to reconstruct the origin of each individual

jet, based on the information accessible to the experiment, i.e. detector-level data. Recently,

there has been strong interest in applying modern machine-learning techniques, such as

Neural Networks (NNs), to the jet classification problem. This is motivated as follows.

The pattern of energy deposits in individual hadron calorimeter (HCAL) cells can be

thought of as a two-dimensional image of the jet. Jets of each type have a characteristic

shower history, resulting in differences in spatial distribution of energy inside the jet, often

called “jet substructure”. The jet classification problem is thus mapped onto a 2D image

recognition problem [1]. Application of NNs to image recognition is a well-developed field of

computer science. Advanced NN-based image recognition techniques have been applied to

jet classification problems in Monte Carlo (MC) studies, with highly promising results [2–

7]. (For related applications of machine-learning techniques, see refs. [8–19]; for a recent

review, see [20]). For example, NN-based top taggers have been shown to significantly

outperform traditional top-tagging algorithms currently in use by the LHC experiments.

Can NN-based taggers trained on MC samples be used in real data analysis? The

answer hinges on whether the features of jet substructure that are identified by the NN as

important for classification are in fact accurately modeled by the MC generator. This is a

non-trivial issue. Parton showering cannot be described by fixed-order perturbation theory,

since soft and collinear parton splittings suffer from infrared/collinear (IRC) singularities.

As a result, MC predictions of energy distribution within jets, in particular on small angular

scales, suffer from significant (and poorly quantified) theoretical uncertainties. At the same

time, unlike traditional taggers, the highly non-linear, multi-variable nature of the NN
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Figure 1. Parton-level top decays, with and without a final-state gluon respectively.

tagger output makes it very difficult to identify the specific features in the jet substructure

that the NN focuses on, let alone assess their robustness in the simulation. To date, this

issue has been addressed by cross-comparisons of NN taggers trained on samples produced

by different MC generators, which employ different algorithms to model parton showers

(see e.g. refs. [2, 5]). While the results seem to indicate that the NN output is robust, a

deeper understanding of this issue is clearly desirable to put this approach to jet tagging

on a firm foundation.1

Traditionally, observables in jet physics are thought to be robust with respect to un-

certainties in parton shower modeling if they satisfy the requirement of Infrared/Collinear

(IRC) Safety. The notion of IRC safety applies to parton-level events. An observable O is

IRC safe if a soft or collinear splitting of one of the partons leaves O unchanged:

On(p1, . . . , pi, pi+1, . . . , pn)→ On−1(p1, . . . , pi + pi+1, . . . , pn) (1.1)

whenever pi+1 becomes soft or collinear with pi. For example, consider the two events

shown in figure 1. In the limit when gluon in figure 1(b) becomes either soft (pT,g → 0) or

collinear with one of the quarks (pg · pi → 0), the value of O evaluated on the final state

(b) should approach its value evaluated on the final state (a).

It’s worth noting that IRC safety is not the necessary condition for calculability of

physical observables. Sudakov safe observable [22, 23] is a notable example which is IRC

unsafe, but calculable if all-orders effects are resummed. The numerical analysis of this

paper cannot distinguish between IRC-safe and “unsafe but calculable”, Sudakov-safe ob-

servables, because Sudakov-suppressed regions of phase space are not probed. While we

will use the term “IRC safety” throughout the paper for brevity, this caveat should be kept

in mind.

NN tagger is an observable that maps the matrix of energy deposits in individual

HCAL cells onto a number between 0 and 1, the “topness” of the jet. The goal of this

paper is to check whether this observable is IRC safe. We perform this test in the particular

context of a Convolutional Neural Network (CNN) top tagger. The CNN is first trained

on particle-level (showered and hadronized) MC samples of boosted top jets and “QCD”

1An alternative would be to avoid the use of MC generators altogether by training directly on real data.

This would require one to identify training sets, tagged by an object external to the jet, in the data. For

recent interesting work in that direction, see refs. [11, 21].
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Figure 2. Convolutional Neural Network (CNN) architecture used for boosted top-jet tagging.

(light quark/gluon) jets. We then apply this CNN to parton-level hadronic top events. This

defines a parton-level observable, to which the above canonical definition of IRC safety can

be applied. We study the behavior of this observable as a function of the gluon momentum

and collinearity in the (t → 3q) + g sample shown figure 1(b). Our numerical results

strongly support the hypothesis that the CNN output is IRC-safe. The training process

appears to result in a network that largely disregards small-scale angular features in the

energy distribution inside the jet, making the CNN tagger robust with respect to modeling

such small-scale features in MC generators. Such robustness is a necessary pre-condition

for practical applicability of MC-trained NN taggers, and it is highly reassuring that it is

satisfied.

The rest of the paper is organized as follows. In section 2, we discuss the architecture

of the CNN tagger, its training and performance on particle-level MC samples. We also

describe the parton-level “merged” and “unmerged” samples used for numerical tests of

IRC safety of the tagger. The main results of the analysis are presented in section 3,

which contains the evidence to support our claim that the CNN observable is IRC-safe

according to the canonical definition, eq. (1.1). Discussion of the results and conclusions

are contained in section 4.

2 Neural net tagger and event samples

The top tagger used in this study consists of a Convolutional Neural Network (CNN), which

has proven to be one of the best performers in problems of pixelated image recognition.

CNN architecture is known to produce robust identification of translationally invariant

features of a priori unknown size. In our case, the feature of interest is subjets, which clearly

play an important role in top tagging. The network architechture is schematically shown

in figure 2. We used the mxnet software package for implementation of the CNN [24] on a

NVIDIA Geforce GTX 1080 GPU. The input layer of the CNN is the Hadronic Calorimeter

(HCAL), modeled as a set of 30×30 square pixels of size (∆φ,∆η) = (0.1, 0.1). The pixels

are populated by normalized energy deposited in each bin by a jet, preprocessed according

to the procedure used in ref. [2]. Preprocessing places the center of the jet at the center of

the image, and rotates the jet so that the principal axis always has the same orientation. In
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Figure 3. Left panel: performance of CNN, compared with other variables for boosted top-jet

tagging: Template Tagger [25–27] and N -subjettiness [28, 29]. Right panel: neural network output

distributions for the signal and background.

this way, overall translational and rotational symmetries of the jet are factored out and do

not need to be learned in the training process.2 The next layer consists of thirty “filters”,

which are convoluted with the input image according to

o`(i, j) =

7∑
x=1

7∑
y=1

I(i+ x, j + y)w`(x, y) (i, j = 1, . . . , 24, ` = 1, . . . , 30), (2.1)

where I is the input image, w` are the filters, and o` is the output of the convolution

operation. We use RelU activation function. The individual weights of the filters, w`(x, y)

are determined during training of the CNN, using back-propagation methods. Each filter is

to learn some distinguishing features that separate signal from backgrounds. The outputs of

these layers are subsampled and convoluted further with different set of filters, as shown in

figure 2. Ultimately, the final fully connected layer produces a single output, the “topness”

of the jet Y ∈ [0, 1], with Y = 1 corresponding to a boosted top jet and Y = 0 corresponding

to a QCD jet.

To train the network, we use the MC samples of particle-level top and QCD jets that

were previously used in ref. [2]. The samples were generated using MadGraph 5 [30] at

parton level (tt̄ and qq̄ final states), following by showering and hadronization with Pythia

8 [31]. We use a sample of jets reconstructed using anti-kT algorithm with a large jet cone

of R = 1.0, with pT in 800–900 GeV range. We further require that the jet mass (mJ)

be in the range of 130–210 GeV. A majority of top-jets would fall in this mass range,

while most QCD jets would be rejected by the mJ requirement. The top and QCD jets

passing these basic cuts are preprocessed as described in [2], and provided as inputs to

the CNN. For training, weights were initialized using Xavier initialization [32], and Adam

hyperparameter optimization [33] with learning rate of 0.05 and dropout regularization rate

2As an alternative, one can use pT , instead of energy, as the input observable, motivated by Lorentz

invariance [3]. We explored this alternative and did not find a significant difference in training time or

performance.
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of 0.0001 was used. 100 epochs through the training samples were made using minibatches

of 1000 events. After training, the CNN performance was evaluated using the test samples,

generated and preprocessed in the same way as the training samples. The results are

shown in figure 3. The results are not very sensitive on the choices of hyperparameters

during training. The CNN output provides a clear separation between the two types of jets.

For interesting top tagging efficiencies, the mistag rate is reduced by a factor of almost 2

compared to traditional observables, providing further improvement upon the two hidden

layer multi-layer perceptron type deep neural network used in [2].

As explained in the Introduction, the notion of IRC safety applies to observables defined

on parton-level events. The observable we want to study is the output of the CNN, the

“topness” Y ∈ [0, 1]. The CNN maps a set of energy deposits in individual pixels into this

observable: I(i, j) → Y . A parton-level event of the type shown in figure 1 is trivially

mapped into I(i, j) by identifying each parton’s location in the (η, φ) space, and assigning

the value of that parton’s energy to the corresponding HCAL cell. This defines the action

of the CNN on parton-level events, which can be thought of as a map

O : {pi, i = 1 . . . Np} → Y, (2.2)

where pi is the parton 4-momenta, and Np is the number of partons in the event. We

would like to study whether the IRC safety criterion, eq. (1.1), applies to this map. While

O is a completely well-defined function, it is horrendously complicated and highly non-

linear, making an analytic study of its limits impractical. Instead, we will check the IRC

safety criterion numerically. To this end, we used MadGraph [30] to generate a parton-level

sample of hadronically decaying top quarks, with an additional gluon in the final state,

as in figure 1(b). (To avoid unnecessary complexity, we simulate a process with no other

colored particles in the final state.) In this simulation, cuts on the gluon momentum and

its separation from each quark must be imposed to avoid infinities associated with soft and

collinear singularities. Since we are primarily interested in precisely the gluons in the soft

and collinear regions, the cuts we impose are very low: pT ≥ 5 GeV, ∆Rqg ≥ 0.05. One

may question whether a fixed-order simulation correctly approximates the cross section for

such low values of pT and ∆Rqg. For our purposes, however, this question is irrelevant.

We want to study how the CNN response is affected by the presence of a soft or collinear

gluon, and the purpose of the simulation is simply to provide a sample of such events; we

do not use any information about their overall cross section or phase-space distribution.

To ensure that the CNN is applied in the same regime where it was trained, we compute

the “jet pT ” (the sum of the four parton pT ’s) and the “jet invariant mass” (the total

invariant mass of the four partons) for each event, and apply the same cuts as in the

training sample, pT ∈ [800–900] GeV, mJ ∈ [130–210] GeV. The sample constructed in this

way is referred to as the unmerged sample. We construct the merged sample by taking

each event in the unmerged sample, identifying the quark closest to the gluon (in terms

of ∆Rij separation), and replacing that quark and the gluon with a single parton with

4-momentum equal to the sum of the two. Applying the CNN map to the unmerged and

merged samples corresponds to evaluating the left-hand side and the right-hand side of
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Figure 4. Neural network output distribution on parton-level top sample.

eq. (1.1), respectively. Checking the IRC safety criterion then amounts to comparing the

CNN outputs on these two samples.

3 Results

Training the CNN on particle-level top and QCD samples and applying it to the parton-

level top sample produces the output distribution shown in figure 4. Clearly, the network

predominantly still perceives such events as top-like. The fact that the NN did not need

to be retrained when a switch from particle-level to parton-level input was made already

provides some evidence that the observable defined by the CNN is likely IRC-safe. In the

rest of this section, we will attempt to establish the IRC safety more directly, by comparing

CNN outputs on merged and unmerged samples as explained above.

To gauge the impact of soft/collinear gluon radiation, we compute the difference ∆NN

between the CNN output from an event in the unmerged sample and the corresponding

event in the merged sample. A convenient measure of soft/collinear kinematics of the gluon

is provided by its “relative pT ”, defined by

pgT =

∣∣∣∣pg −
pg · pq

|pq|2
pq

∣∣∣∣ , (3.1)

where pq is the 3-momentum of the quark nearest (in terms of ∆Rqg separation) to the

gluon. Physically, pgT is the component of the gluon 3-momentum transverse to the nearest

quark, and it vanishes in both soft and collinear limits. If the CNN observable is IRC safe,

we expect ∆NN to go to zero in the limit of vanishing relative pT . The distribution of |∆NN|
and pgT values in our event sample is shown in the left panel of figure 5. For most events,

|∆NN| is small, which is reassuring: adding a soft gluon does not lead to a dramatic change

in the CNN output. There is, however, a tail of events where the change is significant. To

better characterize this tail, we bin the data in relative pT and calculate the width of the

|∆NN| distribution in each bin. The width |∆NN|90 for each bin is defined by requiring that
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Figure 5. Left panel: difference in CNN output between merged and unmerged events, |∆NN|, as

a function of the gluon transverse momentum relative to its nearest quark, pgT . Red dots show the

width of the |∆NN| distribution. Background colors indicate the relative density of events for given

pgT . Right panel: |∆NN| width as a function of pgT , shown separately for 10 NN output bins. The

lines indicate an interpolating curve (third-order polynomial) fit to the data in each NN output bin.

90% of the events in that bin have |∆NN| ≤ |∆NN|90. The values of |∆NN|90 are plotted

as red dots in figure 5. The data exhibits a clear correlation between decreasing relative

pT and decreasing width, indicative of IRC safety. In fact, the data is consistent with the

hypothesis that |∆NN|90 → 0 in the limit of pgT → 0.

In the right panel of figure 5, the data is further subdivided into 10 bins according to

the NN output evaluated on the merged sample, and dependence of the width on relative

pT is shown separately for each bin.3 For events in the last bin, 0.9 ≤ Y ≤ 1, emission

of an extra gluon has almost no effect even if it has a relatively large relative pT . This is

presumably due to the fact that Y is already close to the upper boundary. The events in

this bin are therefore consistent with the IRC safety hypothesis, but do not show much

variation as relative pT is varied. On the other hand, events in all other Y bins show a

very clear convergence between the output values with and without the extra gluon in the

pgT → 0 limit.

The relative pT observable goes to zero in both soft and collinear limits. It is interesting

to probe the convergence of the CNN output in each of these limits separately. To this

end, we study two observables. The first one is the angular separation between the gluon

and the nearest quark, ∆Rqg, which goes to zero in the collinear limit, but not the soft

limit. The second one is the “longitudinal momentum ratio”, defined by

pL,rat =
pg · pq

pq · pq
, (3.2)

where pq is the 3-momentum of the quark nearest (in terms of ∆Rqg separation) to the

3In some bins, the distribution of ∆NN is sharply asymmetric around zero, mainly because Y is restricted

to lie between 0 and 1 by construction. To account for this, in the right panel of figure 5 we do not take the

absolute value of ∆NN, but instead define the “NN difference width” as the width of the mimimal interval

containing 90% of events, not necessarily centered at 0.
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Figure 6. Left panel: difference in CNN output between merged and unmerged events, |∆NN|,
as a function of the gluon’s angular separation from its nearest quark, ∆Rqg. Red dots show the

width of the |∆NN| distribution. Background colors indicate the relative density of events for given

∆Rqg. Right panel: |∆NN| width as a function of ∆Rqg, binned in 10 NN output intervals. The

lines indicate an interpolating curve (third-order polynomial) fit to the data in each NN output bin.
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Figure 7. Left panel: difference in CNN output between merged and unmerged events, |∆NN|, as

a function of the longitudinal momentum ratio defined in eq. (3.2). Red dots show the width of the

|∆NN| distribution. Background colors indicate the relative density of events for given longitudinal

momentum ratio. Right panel: |∆NN| width as a function of longitudinal momentum ratio, binned

in 10 NN output intervals. The lines indicate an interpolating curve (third-order polynomial) fit to

the data in each NN output bin.

gluon. This observable vanishes when the gluon is soft, but not when it is collinear with

one of the quarks. The difference in CNN outputs for merged and unmerged samples as

a function of these two observables is shown in figures 6 and 7. We conclude that the

convergence of the outputs holds separately in both soft and collinear limits.

The right panels of figures 5, 6, and 7 include interpolating functions obtained by fitting

the data in each NN output bin with a third-order polynomial. Expected values of |∆NN|
in the exact IR(C) limit can be obtained by extrapolating these functions. Let us define
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Figure 8. Extrapolated values of ∆(0), including 68% and 95% confidence intervals. Training and

extrapolation uncertainties are combined in quadruture.

∆(x) to denote the width of the |∆NN| distribution in the bin centered at x, where x = pgT ,

∆Rqg, or pL,rat. In all three cases, x = 0 corresponds to the exact IR(C) limit, so that

∆(0) = 0 would indicate exact IR(C) safety. It is clear from figures 5–7 that ∆(0) ≤ 0.02

in most cases, and < 0.05 in all cases. Further, since these values are obtained numerically,

they are inherently uncertain. An important uncertainty is introduced by the NN tagger

training process, which converges to slightly different weight configurations depending on

the random weight initialization at the start of training. To estimate this uncertainty, we

trained an ensemble of 20 identical NN taggers, with the only difference being the random

initial weights. We then repeated the above analysis for each NN in the ensemble, and

used the spread in the values of ∆(0) measured within this ensemble as an estimate of the

training uncertainty. Further, we estimated the uncertainty due to extrapolation from the

measured values of ∆ at finite x to x = 0, and combined it with the training uncertainty

in quadrutures to estimate the total uncertainty. The measured values of ∆(0) including

this uncertainty are shown in figure 8. Our data is consistent with the hypothesis that

∆(0) = 0. (The systematic preference for positive offset is due to the definition of ∆,

which is defined to be non-negative at all points where it is measured; ∆(0) < 0 occurs

only as an artifact of extrapolation.)
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Figure 9. Same distributions as in figure 6. Events where the gluon and its nearest quark are in

the same pixel have been removed from the sample.

Our analysis shows a clear trend towards convergence of the NN output with and with-

out an extra gluon, in the limit when the extra gluon is soft or colinear, and extrapolation

to the exact soft/collinear limit is consistent with exact IR(C) safety. The analysis leaves

the room open for O(few %) deviations from exact IR(C) safety, due to limitations inher-

ent in the numerical approach to this issue. However, we note that in practice, such small

deviations will not change the outcome of the tagging procedure for a vast majority of jets.

For example, if the tagging threshold is chosen to be Y = 0.55, we find that only 0.7% of

events in the top sample lie within ∆Y = ±0.02 of the threshold, while 1.8% lie within

∆Y = ±0.05, meaning that the classification of 98 − 99% of top jets would be unaffected.

By construction, events in which the extra gluon lands in the same pixel as its nearest

quark will have ∆NN = 0. This feature makes the CNN observable automatically IRC-safe

in the limit of small ∆R. Is the observed IRC safety in this limit due entirely to this

feature? To address this question, we repeated the analysis on a sample in which events

where the gluon and a quark are in the same pixel have been removed. The result is shown

in figure 9. The trend towards the CNN outputs converging in the ∆R → 0 limit persists

in this sample. This indicates that the CNN output for a sample with an extra gluon

converges smoothly as the gluon approaches its nearest quark, even if they do not land

in the same cell. Such convergence is a non-trivial feature of CNN’s treatment of energy

patterns, and not just a trivial consequence of finite cell size.

4 Discussion

Starting with ref. [2], many studies have demonstrated the efficacy of Neural Networks

for boosted top jet tagging, at the level of Monte Carlo (MC) simulations. All studies

to date have trained and evaluated NN top taggers using particle-level MC samples of

top and QCD jets. In this paper, a Convolutional Neural Network (CNN) top jet tagger

was constructed. While particle-level MC samples were used in training as usual, we then

applied the resulting tagger to a sample of parton-level top events with and without an

– 10 –
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additional gluon in the final state, as shown in figure 1. We showed that this observable

obeys the Infrared Safety criterion: the output of the CNN applied to an event with an

extra gluon approaches its output on the same event without an extra gluon, in the limit

when the extra gluon becomes soft or collinear with one of the quarks.

Our analysis does not constitute a complete proof of IRC safety of the CNN output.

The reason is that we studied only one class of final states, those containing a high-pT top

quark. In the language of eq. (1.1), our analysis demonstrates IRC safety for some config-

urations of final-state parton momenta pi, but not for general pi. We did not study the

behavior of the CNN output on non-top events, mainly because there is a very broad range

of possible momentum configurations, making a comprehensive numerical study impracti-

cal. Moreover, it is not immediately clear which of these confugurations are most important

for the top tagging problem. We hope to be able to address this issue in future work.

In spite of this limitation, the results of the analysis presented in this paper are highly

reassuring. Certainly, the value of NN-based approach to top jet tagging would be in very

serious doubt if an addition of a soft or collinear parton to the final state led to an order-one

change in the NN output. We showed that this is not the case for the events with a genuine

high-pT top quark in the final state. This result places the NN-based taggers on firmer

foundation, and should provide encouragement for further development of this approach.
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