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models with universal predictions referred to as pole inflation or α-attractors. While this

kinetic structure is ubiquitous in supergravity effective field theories, realising a consistent

UV complete model in e.g. string theory is a non-trivial task. For one, one expects quantum

corrections arising in the vicinity of the pole which may spoil the typical attractor dynamics.

As a conservative estimate of the range of validity of supergravity models of pole inflation

we employ the weak gravity conjecture (WGC). We find that this constrains the accessible

part of the inflationary plateau by limiting the decay constant of the axion partner. For the

original single complex field models, the WGC does not even allow the inflaton to reach the

inflationary plateau region. We analyze if evoking the assistance of N scalar fields from the

open string moduli helps addressing these problems. Pole N -flation could improve radiative

control by reducing the required range of each individual field. However, the WGC bound

prohibiting pole inflation for a single such field persists even for a collective motion of

N such scalars if we impose the sublattice WGC. Finally, we outline steps towards an

embedding of pole N-flation in type IIB string theory on fibred Calabi-Yau manifolds.
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1 Introduction

The paradigm of cosmological inflation seemingly explains the origin of spatial homogeneity

and isotropy, as well as the seeding process for cosmic structure formation. However, its

physical origin remains unclear. High precision studies of the cosmic microwave background

have revealed the primordial curvature perturbation to have extremely simple statistics:

gaussian to very high precision and describable by just two numbers, the amplitude and

tilt of its power spectrum [1]. It is therefore important to identify what microphysical

mechanism could be at the origin of this observation. One possibility is that there is

a symmetry present in the underlying theory which ultimately forbids contributions to

the inflationary potential capable of giving rise to features in the observed data, i.e. a

fundamental reason why the inflation potential must take a simple form. A more recent

suggestion is that a simple spectrum could be an emergent property of some type of large

N dynamics, be it through a large number of terms contributing to a single scalar field

potential [2–4] or by the interaction of a very large number of scalar fields [5, 6]. A third

possibility is that there is some structure in the underlying theory which makes inflation

insensitive to a broad array of microphysical details. This would essentially give rise to

a universality class, where a diverse range of models result in the same predictions for

observable quantities.

A particularly dramatic example of this third possibility is the universality displayed

by the class of models termed ‘pole inflation’ [7, 8] (or ‘α-attractors’ for a special subclass
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thereof [9, 10]). This class of models is defined by the presence of a pole in the kinetic

term, such as

Lkin = −3α

4

(∂τ)2

τ2
, α = O(1) , (1.1)

which renders the dynamics of inflation insensitive to the details of a generic scalar poten-

tial, provided this can be expanded around the pole as1

V = V0 − a1τ +O(τ2) . (1.2)

These models lead to a universal prediction given by ns = 1−2/Ne and r = 12α/N2
e , where

Ne is the number of e-folds of expansion between the pivot scale leaving the horizon and

the end of inflation. These predictions are in remarkable agreement with observations and

are fully determined by the order of the pole (which sets the deviation of ns from perfect

scale invariance; for general pole of order p, ns = 1 − p/Ne — see e.g. [8, 11]), its residue

(which controls the amplitude of primordial gravity waves), and the value of Ne, which

depends on details of post-inflationary physics.

The kinetic structure of this class of models is of special interest as they can result

from logarithmic Kähler potentials in 4D N = 1 supergravity effective scenarios, which are

abundant in the context of string compactifications (a more detailed discussion is given in

section 2). Schematically, one can have

K = −3α ln(T + T̄ ) or K = −3α ln(1− ΦΦ̄) , (1.3)

where the first hermitian function is defined in the ‘half plane’ T + T̄ > 0, while the domain

of the second one is the ‘unit disk’ ΦΦ̄ < 1.2 The corresponding component of the Kähler

metrics are given by

KT T̄ =
3α

(T + T̄ )2
or KΦΦ̄ =

3α

(1− ΦΦ̄)2
, (1.4)

with subscripts denoting partial derivatives. Just as eq. (1.1), they have a second-order

pole in the real part of T and radial direction of Φ, respectively, such that these fields can

act as the inflaton. Interestingly in this context, the presence of the kinetic pole has the

geometric interpretation of the existence of a boundary in moduli space. Note that, as

both T and Φ are complex, the inflaton always comes together with a partner scalar degree

of freedom which we will argue to be axionic.

While this class of models arises in 4D N = 1 supergravity (see also [14, 15]), it is

important to understand if it corresponds to a low-energy effective description that can

consistently be embedded in a quantum theory of gravity, like string theory. Various

consistency requirements such as the convergence of the higher instanton corrections, the

weak gravity conjecture or the swampland conjectures [16–18] place strong bounds on the

nature of effective theories that can be embedded in quantum gravity.

1The invariance of the kinetic term (1.1) under the inversion symmetry τ → 1/τ makes this model

equivalent to one also with negligible kinetic term and a scalar potential V = V0 − a1/τ +O(1/τ2).
2Note that these two Kähler potentials are related via the holomorphic relation Φ = T−1

T+1
and a Kähler

transformation (see e.g. [12, 13]).
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A classic example of the importance of this type of bound is provided by natural

inflation [19], where a single axion in a shift-symmetric potential is responsible for the

cosmological dynamics. In the effective field theory description, the axionic shift-symmetry

protects the potential from radiative corrections such that large periodicities, i.e. potentials

with a decay constant f �MP, can ensure radiative stability even for field displacements

larger than MP. However, it is not obvious that such symmetries admit completions in

quantum gravity. Specifically, the weak gravity conjecture typically places a bound on the

axion decay constant as f . MP. But compatibility with observations suggests the axion

in natural inflation to have a decay constant f & 5MP.

Proposals to evade this contradiction fall into two types: either they realize an

axionic approximate shift symmetry via monodromy (by coupling to a 4-form field

strength) [20–23], or they use assistance effects driven by several axions participating dur-

ing inflation. The second case can arise through the tuned alignment of two axions [24],

by arranging a hierarchy of the decay constants [25–27], or as a generic assistance effect

driven by a large number of axions termed ‘N-flation’ [28–32]. In the latter, the total

inflaton field range ∆ϕ arises through the collective displacements of individual axions,

each of them satisfying the constraints of the WGC: ∆φi ∼ fi . MP. In the simplest

setup of N-flation with N axions with roughly similar decay constants, it is easy to see

that the field displacements are related by ∆ϕ ∼
√
N∆φi, such that for large enough N ,

super-Planckian inflaton displacements seem to be allowed. It turns out that generalizing

the WGC bounds to theories with multiple axions is more subtle than simply implementing

the bound f . MP for each individual axion. Implementing WGC bounds for this case

implies using the convex hull condition [33–36]. This condition leads to a bound on the

collective axionic motion forbidding the
√
N enhancement with respect to the single field

case. This will be further discussed in section 4.

The situation for a single field driving pole inflation is morally similar. The universal

predictions of this scenario arise when the non-canonical field approaches the kinetic pole,

or from a supergravity perspective, the boundary of the moduli space. However, on generic

grounds, precisely in this regime we expect numerous quantum corrections to grow large,

thus potentially leading to a loss of control of the setup. We can argue both in 4D effective

field theory [37] and in string theory [38–41] for the appearance of such dangerous terms. In

this paper, we explore the possibility of using the collective behaviour of a large number N

of moduli-like scalar fields that could alleviate some of these problems, in what we call pole

N-flation. Specifically, we propose a scenario where the approach to the pole is achieved by

the assistance effect of many fields, such that each field is individually further away from

the boundary by a factor of
√
N . This may suppress some of the generically expected loop

contributions which grow large when individual fields approach the boundary.

As a conservative estimate for the domain of validity of the effective description of both

pole inflation and pole N-flation, we make use of the WGC constraints. In both cases the

moduli of the simplest supergravity models are associated with axionic partners, allowing

us to implement bounds on their periodicities as conditions for the consistency with ultra

violet physics. We find that imposing WGC bounds on the axionic periodicities directly

translates into the impossibility of getting close the boundary, and therefore to a finite
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inflationary plateau in canonically normalized variables. This has dramatic consequences

for the viability of pole inflation in general. This bound is very stringent for the case of a

single superfield, and one might have hoped for a weakening of the WGC-imposed bound

when many disk-variable provide a collective ‘pole N -flation’ mode. However, it turns out

that in the many axion generalization of the WGC one finds a conspiracy much like in

axion N -flation to erase any N -enhancement.

The outline of the paper is the following: in section 2 we scan the typical kinetic

structures derived from string theory and identify the most natural for a scenario with a

pole due the collective behaviour of many fields. In section 3 we will study a supergravity

toy model of pole N-flation, describing the ellipsoid structure of the pole and the subsequent

universality behaviour. We use these results in section 4 to establish contact with the WGC

and the swampland conjectures, and derive a bound on the field range in pole N-flation.

With the aim of embedding these ideas in string theory, in section 5 we develop an explicit

scenario based on type IIB string theory on fibered Calabi-Yau manifolds. We draw our

conclusions in section 6. Throughout the paper, we will work in reduced Planck mass units

(MP = 1).

2 Kinetic poles in string theory

In order to search for setups with N � 1 fields and second order kinetic poles, it is

illuminating to analyse the structure of kinetic terms in 4D N = 1 supergravity derived

from string theory. String compactifications on Calabi-Yau manifolds generically produce

Kähler potentials containing both closed and open string moduli, with the exact number

of such moduli given by the underlying geometry and the amount of D-branes. We can

classify the possible Kähler potentials as follows:

1. In perturbative string theory, in the large volume and large complex structure limit,

there are at most 3 volume and 3 complex structure moduli which describe the total

Calabi-Yau manifold. Together with the axio-dilaton, these correspond to a maximum

of 7 chiral fields, which lead to the tree-level Kähler potential

K = −3
n∑
i=1

αi ln
(
Ti + T̄i

)
, n ≤ 7 and 1 ≤ 3

n∑
i=1

αi ≤ 7 , (2.1)

with the parameters αi depending on the number of fields (see e.g. [42] in the context

of α-attractors).

2. There are open string moduli describing brane positions (e.g. D3-branes), and/or

open string matter fields as well as gauge fields. Their number is usually subject to

tadpole bounds and can be as large as O(104). They appear as a contribution to the

volume moduli Kähler with the schematic form

K = −3α ln

(
T + T̄ −

N∑
i=1

aiΦiΦ̄i

)
, (2.2)

where the parameter α depends on the specific configuration of the bulk geometry

and the Kähler moduli.
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3. Finally, the moduli space of Calabi-Yau manifolds contains singular regions, most

easily seen as the conifold points of complex structure moduli space. Near such

singularities, the corresponding moduli acquire a Kähler potential of non-polynomial

form inside the primary logarithm. For complex structure moduli near a conifold

point this generically implies a Kähler potential of the form

Kc.s. = − ln (f(ui, ūı̄)− zz̄ ln zz̄) , (2.3)

where z denotes the complex structure moduli parametrizing the vicinity of the coni-

fold singularity, and the ui denote the remaining other complex structure moduli of

the Calabi-Yau. The number of such conifold regions in a given Calabi-Yau can be

quite large, easily of the order of a few tens.

From this short list we see that a realization of pole inflation involving assistance effects

of a large number of fields cannot arise from the large-volume or large-complex-structure

type of closed string moduli described in the first class of the list, as their number is

intrinsically limited. The study of the third class in the list would require an in-depth

analysis of multi-conifold complex structure Kähler potentials and their dependence on

non-conifold complex structure moduli. This analysis is beyond the scope of the present

paper and we leave it for future work. In this paper we therefore explore the second

class, where a large number of open string moduli fields with Kähler potentials of the form

eq. (2.2) lead to the pole N-flation scenario.

3 The pole N-flation picture

3.1 Kinetic structure and universality

We start our analysis by looking at the Kähler potential given by eq. (2.2). Once the

Kähler modulus T is stabilized, the relevant dynamics in the EFT is described by

K = −3α ln

(
1−

N∑
i=1

Ai ΦiΦ̄i

)
, (3.1)

where the new coefficients are rescaled by the VEV of T , such that Ai = ai/〈T + T̄ 〉. The

corresponding kinetic term is given by

−
N∑

i,j=1

KΦiΦ̄j
∂Φi∂Φ̄j = −3α

N∑
i,j=1


AiAj Φ̄iΦj(

1−
N∑
k=1

Ak ΦkΦ̄k

)2 +
Ai δij

1−
N∑
k=1

Ak ΦkΦ̄k

 ∂Φi∂Φ̄j ,

(3.2)

which has a pole for R2 ≡∑k Ak ΦkΦ̄k = 1, which is the equation of an ellipsoid in field

space with N independent radii of length directly related to the brane contributions Ai. As

can be seen by the form of the denominator, the N fields collectively contribute to reach
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the boundary without any Φk reaching the boundary itself.3 Therefore, when all fields

equally contribute to inflation, the displacement of each individual field will be reduced by

a factor of
√
N . This property could protect the model against radiative corrections which

grow as the fields individually approach the pole. Nevertheless, the increase on the number

of fields relevant for the model also implies a larger amount of corrections that may or

may not overcompensate the previous gain. Answering this question requires knowing the

shape of the quantum corrections which is beyond the scope of this paper and so, we leave

for future work.

To further understand how the presence of these fields affects the model and its dy-

namics, we make the following change of variables

Φi =
R√
Ai

Ωi(ψβ)eiθi

Φ̄i =
R√
Ai

Ωi(ψβ)e−iθi ,

(3.3)

where Ωi(ψβ) is the spherical angular element such that
∑

i Ω2
i (ψβ) = 1. Here the index

β = 1, · · · , N − 1. As will be discussed in section 4, the angles θi can be associated with

axions and will play a crucial role in our understanding of the UV consistency of the setup.

In these variables the line element becomes

− 3α

 1

(1−R2)2
∂R∂R +

R2

1−R2

∑
i

(∂βΩi)
2 ∂ψβ∂ψ

β +
∑
ij

Gij ∂θi∂θj

 , (3.4)

where ∂β ≡ ∂/∂ψβ and

Gij =
R4

(1−R2)2
Ω2
iΩ

2
j +

R2

1−R2
δijΩ

2
i . (3.5)

In this form, the field-space metric has useful features. First, it is independent of the axionic

variables θi. It is also diagonal in the variables R and ψβ . The mixed terms associated

to ∂R∂ψβ vanish due to
∑

i Ωi∂βΩi = 1/2 ∂β
∑

i Ω2
i = 0, and so do the terms ∂ψβ∂ψγ for

β 6= γ due to trigonometric relation
∑

i ∂βΩi∂γΩi = 0, proved in appendix A.

One can easily identify R as the variable with a kinetic pole of second order. Upon

canonically normalizing the kinetic term, one has

R = tanh
ϕ√
6α

, (3.6)

such that the boundary at R → 1 is equivalent to ϕ → ∞. Writing the system in this

canonical variable, just like in the single-field pole inflation case, makes evident how the

model is stable with respect to considerable deformations of the inflaton scalar potential.

The potential can be generated by means of several mechanisms: via an inflaton-dependent

3This is unlike systems where each field has its own distinct pole as in the case studied in ref. [43]. The

corresponding Kähler potential would be sum-separable of the form of eq. (2.1). Note that, in this case,

the inflationary predictions are strictly related to the specific direction in field space.
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superpotential (with stabilizer superfield [9, 44] or without it [10]), by Kähler [45, 46],

loop [37–40] or higher-derivative [47] corrections. A generic expansion looks like

V =
∑
ij,p≥1

bij,p(ΦiΦ̄j + c.c.)p =
∑
ij,p≥1

bij,p

[
2

ΩiΩj√
AiAj

cos(θi − θj) R2

]p
, (3.7)

with constant coefficients bij,p. We therefore see that in the vicinity of the pole the scalar

potential decomposes into an exponential fall-off from a de Sitter plateau as

V = V0 (θi, ψβ)− e−
√

2
3α
ϕ
V1(θi, ψβ) +O

(
e
−2

√
2
3α
ϕ
)
, (3.8)

with V0 and V1 functions of the angular variables as dictated by eq. (3.7). It is interesting to

note that the residue of the pole does not depend on either Ai or Ωi, leading the exponential

plateau to have a universal nature. The slope of the exponential fall-off is therefore not

affected by the particular radial direction in field space. The amplitude of the plateau is

exclusively determined by the angular and axionic directions (ψβ , θi). This effect can be

observed in figure 1.

If inflation occurs purely in the R direction, the observable predictions of this model,

regardless of the inclusion of multiple fields, retain the universality properties extensively

discussed in the literature (see e.g. [7–9, 44]) for the single field case,

ns = 1− 2

Ne
, r =

12α

N2
e

, (3.9)

where Ne is the number of e-folds of expansion between the pivot scale leaving the horizon

and the end of inflation. However, the angular and axionic fields might play a role in

the inflationary dynamics leading to multifield effects that can modify the predictions. To

assess this, we need to study the hierarchies in the mass spectrum.

3.2 Scaling of mass spectrum

The hierarchies in the mass spectrum are intimately related to the eigenvalues of the field

space metric given by eq. (3.4) and eq. (3.5). Using the canonically normalised field ϕ we

define the parameter ε as a measure of proximity to the moduli boundary:

R = tanh(ϕ/
√

6α) ' 1− e−
√

2
3α
ϕ ≡ 1− ε . (3.10)

We can then see that the line element scales with the proximity to the boundary as

− 1

2
(∂ϕ)2 − 3α

2ε

∑
i

(∂βΩi)
2 ∂ψβ∂ψ

β − 3α
∑
ij

[
1

4ε2
Ω2
iΩ

2
j +

1

2ε
δijΩ

2
i

]
∂θi∂θj , (3.11)

where we have neglected higher order contributions in ε.

In general, it is not straightforward to compute the eigenvalues of this kinetic metric

but we can consider specific field configurations which simplify the situation. We are partic-

ularly interested in the regime where all the fields Φi contribute equally when approaching

– 7 –
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Figure 1. Potential for the N = 2 case plotted in the polar coordinates {ϕ,ψ}, with angles θ1 and

θ2 minimized. The top-left plot shows the potential eq. (3.7) up to terms with p = 1, in the case of

equal Ai. The top-right plot shows the same potential but for A1 = 1 and A2 = 0.2. The bottom-

left plot shows the potential with terms up to p = 4, in the case of equal Ai. The bottom-right plot

shows the same potential but for A1 = 1 and A2 = 0.2. We can see that the elliptical structure of

the model makes valleys in the potential bundle-up. While different radial directions have plateaus

with different amplitudes, the exponential fall-off has the same signature for all initial conditions,

or in other words, values of the angular coordinate ψβ . The oscillating plateau of the circular case

were already noted for a real 2-disk α-attractor (without supergravity) in [48].

the boundary, i.e. when all the branes are equally displaced from the origin and the in-

flationary dynamics is determined by their collective motion. In this maximally multifield

case, this corresponds to the choice Ω2
i = 1/N for any i. In this case, following appendix A,

the metric element for the angular coordinate ψβ is

− 3α

2ε

∑
i

(∂βΩi)
2 = −3α(N − β + 1)

2Nε
, (3.12)

which ranges from 3α/2ε to 3α/Nε.

Also in this regime, close to the boundary, the metric for the axionic fields θi eq. (3.5)

can be written as

Gij = v2Jij + δijv , v =
R2

N(1−R2)
' 1

2Nε
, (3.13)
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where Jij is the all-ones matrix (a square matrix with all entries equal to 1). The eigenvalues

of this metric are easy to compute: the matrix Jij has rank one, with one single non-zero

eigenvalue equal to Tr(Jij) = N . The identity matrix is invariant under any transformation

and therefore Gij has all but one eigenvalue equal to v. We denote the corresponding

eigenvectors of the N−1 equal eigenvalues, Θa, with a = 1, . . . , N−1. The last eigenvalue,

corresponding to what we define as the ϑ direction, is

Nv2 + v =
1

N

R2

(1−R2)2
' 1

4Nε2
. (3.14)

At the point in field space where the metric has these eigenvalues, we can locally canonically

normalize the angular fields by defining

ψ̂β ≡
√

3α(N − β + 1)

Nε
ψβ

Θ̂a ≡
√

3α

Nε
Θa

ϑ̂ ≡
√

3α

2Nε2
ϑ

(3.15)

and write the potential near the pole as

V = V0

(
Θ̂a, ϑ̂, ψ̂β

)
− ε V1

(
Θ̂a, ϑ̂, ψ̂β

)
+O

(
ε2
)
. (3.16)

Owing to the local canonical normalization of the kinetic terms, the mass spectrum there-

fore scales as

|Vϕϕ| ∼ εV1 ∼ εV0∣∣∣Vψ̂βψ̂β ∣∣∣ ∼ Nε

N − β + 1
V0∣∣∣VΘ̂aΘ̂a

∣∣∣ ∼ NεV0∣∣Vϑ̂ϑ̂∣∣ ∼ Nε2V0

(3.17)

for a generic scalar potential where usually O(V0) ≈ O(V1). The mass scaling of the N − 1

elliptical angular fields ψ̂β ranges from εV0 to NεV0, i.e. from the same scaling as the light

radial field ϕ to the scaling of the heavier axionic fields Θ̂a. We should therefore allow

for the possibility that some of these fields might contribute to the inflationary dynamics.

These effects might lead to multifield deviations from the simplest predictions given by

eq. (3.9). The N − 1 axions Θ̂a, in the large N limit, correspond to a heavier sector which

we do not expect to contribute significantly to the dynamics. The single ϑ̂ direction, in the

limit of ϕ� 1, is exponentially lighter than all other sectors and becomes a true spectator;

in this deep plateau limit the dynamics of ϑ̂ is frozen in deep slow-roll and will resemble

the case of the single angular field of ref. [49]. The kinetic scaling of the mass spectrum of

the theory for a configuration where all fields contribute equally to inflation is illustrated

in figure 2.
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N✏2V0

V0

V0p
N

✏V0

p
NV0

m2
' m2

'

H2 ⇠ V0

N✏V0 m2
⇥̂

m2
⇥̂

m2
 ̂ m2

 ̂

m2
#̂

Figure 2. Mass hierarchies of eq. (3.17) in the deep plateau limit, ϕ� 1, and large N limit.

4 The fate of inflationary plateaus — weak gravity strikes back

Effective field theories arising from a theory of quantum gravity are constrained by con-

sistency conditions such as the Weak Gravity Conjecture (WGC) [17] or the Swampland

Distance Conjecture (SDC) [18, 50–52]. The SDC states that whenever one moves an in-

finite distance in moduli space, an infinite tower of states becomes massless causing the

break of the effective description. We will comment on the connection between the SDC

and α-attractor models later in this section, but for now we focus on enforcing consistency

arguments coming from the weak gravity conjecture.

The WGC arose as a proposal to argue that black holes should always be able to

evaporate via Hawking radiation, such that the final state of any charged black hole would

be able to decay and leave no remnant. For this to happen it is necessary that any theory

of quantum gravity has at least a fundamental object fulfilling the condition

1 .
MP

m
q (4.1)

such that the decay process is possible for any black hole. A number of attempts were made

to further constrain the particular object fulfilling the WGC condition. These have given

rise to several versions of the WGC. In particular, the strong form of the WGC requires

the lightest particle on the spectrum to be the one fulfilling the above condition, whereas

more loose forms do not impose further conditions on the particular particle fulfilling the

condition. It is still unknown which version of the conjecture (if any) is the right one and

it is not our intention to provide any new insight in this direction, so we just refer the

interested reader to [34–36, 53–79] for extensive discussion. Our purpose, instead, will be

to apply the WGC constraints to the α-attractor models as a consistency requirement to

allow for a string theory embedding of these effective field theories. For doing so we will

consider the sublattice WGC [64] (see also the related tower WGC [79]) which is supported

by evidence from string theory. According to this version of the WGC, a sublattice of the

entire charge lattice allows for the decay of an extremal black hole to happen.
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Since string theory contains fundamental charged objects of different dimension, first

note that the above argument can be extended to other black objects of different dimen-

sionality. This implies one is not completely free concerning the assignment of charges and

tensions of the fundamental objects of any theory. For our purposes we will be interested

in how the WGC applies to instantons. In this case, the WGC sets the bound

SE .
MP

f
n , (4.2)

where SE is the euclidean action of the instanton, f the decay constant of the axion coupled

to it and n the instanton number/charge. This bound will be our starting point to set the

limitations of α-attractors. To do so while working in a controlled effective field theory, we

want to guarantee a controlled instanton expansion. This typically requires SE ' n for the

charge-n instanton. Recalling that we are taking MP = 1, the above WGC bound, when

applied to the single complex field case (single axion) reads

f . 1 . (4.3)

This is in agreement with evidence from certain classes of string theory compactifica-

tions [16].

The above inequality follows from demanding that every instanton with charge n sat-

isfies SE ' n. However, while control of the instanton expansion clearly forbids violating

SE ' n for a large number of instantons, conceivably control might remain feasible if e.g.

a single charge-n instanton satisfies a weaker bound SE ' ñ, where ñ < n. This leads

to a milder constraint than (4.3) since combined with the WGC it leads to the bound

f . n
ñ (≡ neff > 1, note that neff is rational and not neccessarily natural) for the instanton

dominating the axionic potential. Note that this is possible only if the instanton relevant

for the WGC has n > 1, a possibility allowed by the sublattice WGC [64]. This loosening

essentially resembles the ‘loophole’ in [35, 36].

For effective field theories including multiple axions, the above argument needs to

be extended. In the black hole picture this corresponds to a theory with multiple U(1)

gauge factors, first studied in ref. [33]. The key factor in this case is that black holes can

be charged under more than a single U(1) factor at the same time, and thus the WGC

constraints cannot be implemented by considering each of these U(1) factors separately.

One needs to consider the lattice of charge-to-mass ratios of the theory such that the single

U(1) bound extends to the so-called convex hull condition on this lattice. This condition

was first translated to the axion language in ref. [34]. Before discussing this condition in

more detail, we note that in what follows we will consider all instantons to be relevant in

the sense discussed above.

The convex-hull condition is nothing but a basis independent (in axion space) general-

ization of eq. (4.2). Let us consider first the typical criterion for control over the instanton

expansion that lead us to (4.3). In order to achieve basis independence, we proceed by

considering a N -dimensional polygon whose edges are located at positions

± (0, . . . , 0, 1/fi, 0, . . . , 0) , i = 1, . . . , N , (4.4)
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fi being the decay constants of the N axions in the model under consideration. The

condition eq. (4.3) applied to each of these vectors requires all edges to sit at least at

distance 1 from the origin. This is a basis dependent statement, so demanding instead that

the whole polygon contains the unit ball gives rise to basis independence. This geometric

requirement is quite simple but not very practical. Luckily, it can be translated into a

more practical and intuitive inequality [34]:∑
i

f2
i . 1 . (4.5)

Again, we find a constraint on the possible decay constants of axions, but this time the

constraint involves all axions relevant for the WGC at the same time. We can now easily

soften this constraint as done for the single axion case by allowing for some instanton(s)

with smaller instanton action such that the mild version of the above inequality reads∑
i

f2
i . n2

eff . (4.6)

Since we are setting bounds on axion decay constants, we next argue that the fields θi in

section 3 are indeed axions. It is nowadays standard in supergravity to denominate axions

those fields that do not appear in the Kähler potential and whose potential is periodic.

In order to apply WGC arguments, these conditions are necessary but not sufficient: one

needs to argue that the axion potential can only be generated by instantons. In order to do

so, recall that the string theory picture corresponding to our inflationary setup corresponds

to the motion of D3-branes, whose position we parametrized by the fields Φi. It is known

that in standard type IIB compactifications à la GKP [80, 81], the radial part |Φi| of

the position moduli is massless at the perturbative level unless supersymmetry is broken,

while their axion phases θi remain flat directions always in perturbation theory. So, it

is necessary to also include non-perturbative objects on the compactification in order to

stabilize the θi. The inclusion of Euclidean D3-branes will indeed generate a potential

and stabilize these moduli. In the 4D supergravity language these instantons generate a

non-perturbative superpotential [82, 83]

Wnp = F (Φi, zI)e
−TJ , (4.7)

TJ being the superfield describing the size of ΣJ where the ED3-brane is wrapped and

F a holomorphic function of the D3-brane moduli as well as other geometric moduli zI ,

such as the complex structure ones. Note here that holomorphy of the superpotential will

ensure the potential is compatible with the axion periodicity arising from our choice of

polar coordinates θi ∼ θi + 2π. Using this fact, we conclude that the potential of the θi is

indeed generated by instantons and compatible with the usual identification coming from

each axion living on a S1.4

4We note that the 4D low-energy effective description of instantons from string theory reduces in many

cases to the Giddings-Strominger type gravitational instantons [84, 85]. Expanding the axion on a n-

instanton background provides the usual axion-instanton term enforcing θi ∼ θi + 2π for the path integral

to be well defined.
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As a final step before applying WGC constraints, note that it is always possible to

rescale the axions θ̂i = fiθi, such that if the periodicity of θi is given by θi ∼ θi + 2π, then

for θ̂i it is θ̂i ∼ θ̂i+ 2πfi. Therefore the decay constant changes with rescaling, and so does

the axion kinetic term. In the single field case, the relevant scale for WGC arguments is

the one giving rise to a canonical kinetic term for the axion, or equivalently, the square

root of the prefactor in the kinetic term for an axion with periodicity θi ∼ θi + 2π. In the

multiple axion case, we need to apply the same criterion to each axion in a basis where

there is no kinetic mixing. Due to our initial coordinate choice where θi ∼ θi + 2π for all

axions, this task can easily be carried out: we just need to compute the eigenvalues of the

field space metric. In fact, after a change of coordinates the kinetic Lagrangian will be

−∑i
f2i
2 ∂µθi∂

µθi which is canonically normalized by the change θ̂i = fiθi, such that fi are

the decay constants of interest for WGC arguments.

We are now ready to start studying the consequences for the single (complex) field

case. In this case, the Kähler metric is

KΦΦ̄ =
3α

(1− ΦΦ̄)2
, (4.8)

where ΦΦ̄ = φ2, and leads to an axionic partner of φ with a decay constant

f2(φ) = 6α
φ2

(1− φ2)2
. (4.9)

As the field φ approaches the moduli boundary, the decay constant of the axionic partner

diverges; this behaviour has been noticed in ref. [86]. The WGC therefore constraints

the maximum displacement in the radial direction. To understand how stringent this

constraint is, it is interesting to compare the WGC bound f2 . n2
eff with the slow-roll

condition εSR < 1. Assuming inflation occurs primarily in the radial direction and following

eq. (3.4), we have that in the slow-roll limit

εSR '
1

h2

(
Vφ
V

)2

, h2 = 3α
1

(1− φ2)2
. (4.10)

Taking the potential to be expanded as in eq. (3.7) and dominated by O(φ2) terms, inflation

occurs when

3α
φ2

(1− φ2)2
> 1 , (4.11)

which comparing with eq. (4.9) is equivalent to f2 & O(1). This implies that obtaining

sufficient inflation in this scenario, while remaining compatible with the WGC, requires

neff to be quite large, which is rather unnatural. If instead one considers the strong bound

from the WGC where neff = 1, then α-attractors turn out to be unable to provide enough

inflation. This observation is independent of the value of α. From here we conclude that

the simplest supergravity α-attractor model, when embedded and coupled to quantum

gravity, is in direct conflict with consistency requirements coming from the weak gravity

conjecture, which in turn is supported by evidence from string theory [16].
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We now apply a similar argument to the N field case studied above. We saw in section 3

that, taking polar coordinates for the complex field, the field-space metric on the axionic

sector is not diagonal. In order to apply the WGC bound we choose a configuration where

the inflationary dynamics is carried out by the collective motion of all D3-branes, i.e. when

all fields contribute equally and all angular functions Ωi have the same value Ω2
i = 1/N .

Diagonalizing the field space metric in this configuration gives rise to the axionic fields

Θa , a = 1 . . . N − 1, and ϑ with diagonal kinetic terms

−
∑
a

f2
a

2
∂µΘa∂

µΘa −
f2
ϑ

2
∂µϑ∂

µϑ . (4.12)

The decay constants are given by eqs. (3.13) and (3.14)5

f2
a =

6αR2

N(1−R2)
, f2

ϑ =
6αR2

N(1−R2)2
. (4.13)

To study the bound the WGC sets on this model, we plug these expressions in eq. (4.6)

to find:

f2
ϑ + (N − 1)f2

a =
1

N

(
6αR2

(1−R2)2
− 6αR2

(1−R2)

)
+

6αR2

(1−R2)
. n2

eff . (4.14)

When N = 1 this expression reduces to the result derived above, whereas for large N

only the last term is relevant. Näıvely we might have expected that the inclusion of the

assistance of N fields could relax the WGC bound allowing the system to be sufficiently

displaced in R while keeping away from the moduli boundary. However, we can see by the

N -independence of the last term that this does not happen. In fact, it turns out that the

large N limit leads to a slightly weaker bound on the maximum allowed value for R, but

the gain turns out to be negligibly small. This puts pole N-flation in a situation similar to

the single field case: strong bounds from the WGC are incompatible with the production of

sufficient inflation. Only weaker bounds where the relevant instantons lead to unnaturally

large neff would be able to provide enough e-folds to render these models viable.

We would like to contrast this with the case of axion N-flation. As previously discussed

in the literature (see e.g. [35]), diagonal enhancements in axion N-flation are incompatible

with the WGC: the basis independence described by the convex hull condition results in

the cancellation of the proposed
√
N enhancement in this direction in axion space, such

that the maximum allowed displacement is independent of direction. As we argued above,

we also found little gain in this regard when applying the WGC to pole N-flation.

But if some higher instanton(s) are the relevant ones for the WGC as described above,

there exists the possibility of (slightly) larger axion decay constants. This results in a little

gain for the available inflaton displacement in the case of axion N-flation, but for pole

5We note here that, in α-attractor models, inflation does not involve an active axion or linear combination

of axions. Therefore, the only input needed from the axionic sector of the theory are the periodicities of

the canonically normalized axions. This is unlike models where inflation occurs in the axionic sector, such

as N -flation [29], where it is necessary to have information about the instanton numbers on each cycle in

order to compute the potential and the fundamental field-space domain of the axions; see e.g. [56, 87] for

a discussion of models of this type.
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N-flation it relaxes the bound on the radial field displacement such that the inflaton can

(again slightly) reach the plateau area.

A difference between pole N-flation and axion N-flation arises from the fact that in

pole N-flation the WGC constraints are related to f ’s but the particular shape of the axion

potential coming from the instantons involved is not relevant while for axion N-flation these

instantons play a crucial role in shaping the inflaton potential.

As a final remark, we would like to make a connection between these results and the

swampland distance conjecture (SDC). Consider a very loose version of the bound imposed

by the WGC, with neff � 1, thus allowing the inflaton to get deep into the plateau. In

this case when the inflaton approaches the boundary (when R→ 1) not only do the decay

constants grow exponentially according to eq. (4.13), but also the masses of the axions

become exponentially small as can be seen in eq. (3.17). As the plateau itself arises from

a kinetic term with a 2nd order pole, this behaviour shows certain similarity to recent

arguments in favor of the SDC provided in refs. [88, 89] as reaching the 2nd order pole of

the metric on moduli space makes the axions in our setup exponentially light.

As a consequence of these observations, we conclude that the WGC rules out the infinite

inflationary plateaus of pure supergravity α-attractor models based on disk variable-type

kinetic terms with 2nd order poles. This suggests that Pole N-flation with infinite plateaus

does not admit a UV completion in string theory.

5 Towards pole N-flation in type IIB string theory

As we have seen in the previous sections, the Kähler potential (2.2) becomes singular ex-

actly at the same point where the kinetic Lagrangian develops a pole. This fact poses strict

limitations on the possibility of realizing the pole inflation scenario within a supergravity

framework. Indeed, the F-term scalar potential V = eK(. . .) will in general not be regular

at this point in field space and the inflationary plateau will be easily spoiled. To avoid this

situation, one can tune the superpotential such as to cancel the pole induced by the expo-

nential pre-factor in V , but this appears to be a quite non-generic and model-dependent

situation. But even granted this possibility, we will interpret the field approaching the

pole as a shrinking volume of extra dimensions in string theory. If this volume is the total

volume of the extra dimensions, sending this to zero will send perturbative corrections

soaring in magnitude and thus compromising control.

A rather more appealing alternative is to find a class of models where the form of K

has a regular behaviour while still inducing a pole in the corresponding kinetic structure.

Interestingly, stabilizing the overall volume of fibred Calabi-Yau (CY) geometries [90–92]

using the Large Volume Scenario (LVS) mechanism [93] provides a large class of string

models with a Kähler potential with the desired properties.

In the following, we will review the main characteristics of this framework and show

how to embed the pole N-flation picture therein. We will also discuss moduli stabilization

of this setup, pointing out its limitations given the current status of knowledge on quantum

corrections. Finally, we will provide an analysis of the model’s dynamics and cosmological

predictions.
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5.1 Pole N-flation from fibred Calabi-Yau manifolds

A large fraction of CY manifolds are K3-fibred. This means that the positive part of the

CY volume takes the form

V = κ122v
1(v2)2 , (5.1)

in terms of the 2-cycle volumes vi, and κ122 is the intersection number between the 2-cycles

on the given Calabi-Yau manifold. The 4-cycle volumes τi are related to the 2-cycles by

τi =
∂V
∂vi

, (5.2)

allowing us to write the volume of a K3-fibred CY in terms of the 4-cycle volumes as

V ∼ √τ1τ2 . (5.3)

The corresponding Kähler potential then takes the form

K = −2 ln V = − ln(T1 + T̄1)− 2 ln(T2 + T̄2) , (5.4)

where we have introduced the volume moduli Ti, which are related to the 4-cycle volumes

by means of 2τj = Tj + T̄j while their axionic partners are 2cj = (Tj − T̄j)/i.
Now assume the CY to possess a warped near-conifold region. Assume further that

the 4-cycle Σ4
2 with volume τ2 reaches somewhat into the warped region. This is not

particularly restrictive, as we can stabilize part of the complex structure moduli using flux

near conifold points for a large fraction of all K3-fibred CYs. Finally, place a number N

of D3-branes at the IR end of the warped region.

The Kähler potential for models in this class will look like

K = − ln
(
T1 + T̄1

)
− 2 ln

(
T2 + T̄2 −R2

)
, (5.5)

where we define as before

R2 ≡
N∑
i=1

AiΦiΦ̄i , (5.6)

with Φi parametrizing the positions of the D3-branes. The O7-orientifolding enforces

the relation between 2-cycle volumes, 4-cycle volumes and D3-brane coordinates such

that [81, 94]

τ1 = (v2)2 , τ2 = v1v2 +
R2

2
⇒ v2 =

√
τ1 , v1 =

1√
τ1

(
τ2 −

R2

2

)
. (5.7)

The corresponding expression for the CY volume now reads

V ∼ √τ1

(
τ2 −

1

2
R2

)
. (5.8)

An alternative construction might instead shift τ1 by the D3-brane Kähler potential R2/2.

In this case, the CY volume would become V ∼ τ2

√
τ1 −R2/2.
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The LVS scheme of volume stabilization can now proceed if we assume the total CY

to have a third pure blow-up Kähler modulus τ3, such that the CY volume becomes

V ∼ √τ1

(
τ2 −

1

2
R2

)
− λ3τ

3/2
3 . (5.9)

We therefore include the leading order type IIB α′-correction into the Kähler potential

K = −2 ln(V + ξ/2) , (5.10)

and τ3 acquires an ED3 instanton contribution in the superpotential, in addition to the

constant piece from 3-form fluxes, such that

W = W0 +Ae−2πT3 . (5.11)

This setup will stabilize the modulus τ3 and the whole leading-order volume combination

V0 ≡
√
τ1(τ2 − 1

2R
2) at VEVs with a relation

〈V0〉 ∼ e2π〈τ3〉 . (5.12)

In order to reproduce the pole N-flation dynamics, schematically encoded by eq. (3.1),

we would like to stabilize the modulus τ2 separately. For this purpose, we first observe

that the scales of LVS stabilization operate at O(V−3). This rules out the possibility of

stabilizing τ2 supersymmetrically à la KKLT, by adding a non-perturbative effect to W .

The resulting potential terms from the KKLT mechanism would indeed appear at O(V−2)

and eventually spoil the LVS mechanism.

Hence, we need to stabilize τ2 perturbatively, presumably using an interplay of string

loop corrections and higher-order F -term contributions to the scalar potential, which op-

erate starting at O(V−10/3). However, in the known simple cases, where we can compute

some of the string loop corrections to K and the F 4-terms in the scalar potential [47], these

depend on the 2-cycle volumes vi [37–40]. Therefore, looking at expressions (5.7), these

corrections do not affect τ2 individually but rather τ1 and the whole combination τ2−R2/2.

At this point, we content ourselves with merely pointing out as a challenge the need

to explicate a perturbative stabilization mechanism which will stabilize τ2 just by itself.

From now on, we will simply assume that such stabilization for τ2 exists.

As a final remark, we wish to point out that we could have instead looked at the case

where the whole combination τ̃2 ≡ τ2−R2/2 is given a potential and is stabilized by string

loop corrections such as those discussed above. For those models, one can show that the

structure of the kinetic terms, in terms of τ1, τ̃2, R and the angular variables ψα, θi, reduces

to Lkin. = − 1
4τ21

(∂τ1)2 − 1
2τ22

(∂τ̃2)2 − 1
τ̃2

(∂R)2 + Lkin.(∂ψα, ∂θi). If the potential only has

contributions of the type discussed above, this setup resembles precisely the original fibre

inflation setup [90] (see also [91, 95]) in terms of the effective half-plane variables τ1, τ̃2 [96]

— except for the extra 2N massless spectator fields: 2N − 1 angular fields ψα and θi and

one field direction given by a linear combination of R and τ2 orthogonal to τ̃2. If in general

these 2N fields are also given a potential, we expect a rich mass spectrum and possible

multifield phenomenology in analogy with section 3. In this work we do not study this

type of model, focusing instead on the stabilized τ2 case.
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5.2 Dynamics of fibred pole N-flation and universal predictions

The effective Kähler potential of fibred pole N-flation reads

K = − ln
(
T1 + T̄1

)
− 2 ln (2〈τ2〉)− 2 ln

(
1− R2(Φi, Φ̄j)

2〈τ2〉

)
, (5.13)

once we assume stabilization of τ2. Note that the last contribution is identical to eq. (3.1),

with 3α = 2 and up to a multiplicative factor in R. Therefore in the following analysis we

can employ the results derived in section 3.

The kinetic Lagrangian of the dynamical degrees of freedom is given by

− KT2T̄2

∣∣
τ2=〈τ2〉

(∂c2)2 −KT1T̄1∂T1∂T̄1 −KΦiΦ̄i
∂Φi∂Φ̄j . (5.14)

Applying the LVS procedure for volume stabilization forces 2τ1 = T1 + T̄1 to be a function

of R, such as

τ1(R) =
V2

0

〈τ2〉2
1(

1− R2

2〈τ2〉

)2 , (5.15)

with V0 being the stabilized volume. This implies an additional contribution to the total

kinetic term of R of the form

− 1

(2τ1)2

(
∂τ1

∂R

)2

(∂R)2 = − R2

〈τ2〉2
1(

1− R2

2〈τ2〉

)2 (∂R)2 . (5.16)

Therefore, after volume stabilization, the field-space metric for the radial direction is de-

termined by eq. (3.4) together with the contribution of the D3-branes from eq. (5.16) (with

the R properly rescaled):

−

 R2

〈τ2〉2
1(

1− R2

2〈τ2〉

)2 +
1

〈τ2〉
(

1− R2

2〈τ2〉

)2

 (∂R)2 = − R2 + 〈τ2〉
〈τ2〉2

(
1− R2

2〈τ2〉

)2 (∂R)2 . (5.17)

In order to absorb the 〈τ2〉 dependence, we define R̃ ≡ R/
√

2〈τ2〉 such that the kinetic

term becomes

− 2(1 + 2R̃2)

(1− R̃2)2
(∂R̃)2 . (5.18)

This allows us to define the canonically normalized field ϕ corresponding to the radial field

R as

dϕ ≡ 2

√
1 + 2R̃2

1− R̃2
dR̃ . (5.19)

We see that R̃ → 1 corresponds to ϕ → ∞, which as done in section 3.2 we can use to

express ϕ in terms of ε = 1− R̃

dϕ = −
√

3

1− R̃
+O(1) (5.20)
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such that

1− R̃ = ε = e
− ϕ√

3 . (5.21)

This expression is precisely eq. (3.10) for α = 2. Using analogous arguments to those in

section 3, we make an expansion of the scalar potential as eq. (3.7). This generic structure

of the scalar potential of Φi as a power law series around its minimum often arises for open

string moduli in setups with controlled moduli stabilization and supersymmetry breaking.

For example, refs. [97, 98] argue explicitly that mobile D3-branes at the IR end of the

warped throat of a KKLT or LVS compactification acquire a scalar potential of the general

form of eq. (3.7). This results into a computable spectrum of discrete values of p ≥ 1 while

the coefficients ai,p , bij,p are tunable Wilson coefficients except the one arising from the

conformal curvature coupling of the D3-brane moduli.

Finally, in analogy with section 3, if the motion is purely radial, we see that for an

arbitrary number N of open string moduli Φi driving exponential plateau inflation, we

arrive at

α = 2 ⇒ ns = 1− 2

Ne
' 0.97 , r =

12α

N2
e

' 0.007 (5.22)

as universal observable predictions. Similar to the simplest fibred inflation models, if the

shift by the D3-brane Kähler potential was made on τ1 rather than τ2, the effective α = 1/2.

The predictions for inflation happening along the radial direction would therefore be

α = 1/2 ⇒ ns = 1− 2

Ne
' 0.97 , r =

12α

N2
e

' 0.002 . (5.23)

These predictions can be altered if the angular directions are active during in-

flation and truly multifield dynamics takes place (see e.g. [99]). In addition, effects

of the WGC precluding semi-infinite plateaus often include steepening from growing

corrections [95, 100–102]. We expect these to change the above predictions as well.

In closing the discussion, we wish to note the following: embedding pole N-flation into

string theory so far seems to require realizing it in the context of a K3 or T 4-fibred CY

compactification. These models are known to contain another sector capable of driving

α-attractor inflation [96] using the two Kähler moduli of the fibration, leading to what is

known as ‘fibre inflation’ [90]. The Kähler moduli of fibre inflation constitute examples of

half-plane fields and contain their own axion partners as the imaginary parts. Applying a

WGC based bound in terms of the these half-plane field axions to the field range of fibre in-

flation itself is a natural question arising from our analysis of pole N-flation, which however

falls outside the scope of pole N-flation. Consequently, we leave this issue for future work.

6 Conclusions

Pole inflation/α-attractors is an intriguing class of models that suggests that the observed

primordial power spectrum may be a universal consequence of a pole in the field space met-

ric. That is to say, regardless of a broad range of microphysical considerations, ultimately

observables are determined by just a few key parameters characterising the pole. This prop-

erty is two-sided. On one hand, such a mechanism seriously limits the potential for learning
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about fundamental physics from cosmology, given there are many fundamental parameters

one simply cannot hope to infer from cosmological data. On the other hand, such robust

predictions provide an especially appealing target for future observational surveys and in

principle would enable a small number of exceptionally sharp statements about the under-

lying theory. For example, the model predicts that primordial gravitational waves may be

detectable. In the context of this model, such a detection would imply the existence of a hy-

perbolic moduli space [12, 103], which in turn may be viewed as indirect evidence for extra

dimensions.6 To make such statements, however, it is crucial to understand the robustness

of the mechanism both from a phenomenological viewpoint and from the perspective of

its possible embedding in string theory or another theory of quantum gravity. Consider-

able progress in this direction has been done by showing that the so-called ‘fibre inflation’

model [90–92] is a string realization of α-attractors with α = 1/2 , 2 [96]. Furthermore,

investigations on the effects of string moduli backreaction [104] and Kähler corrections [45]

have given strong evidences of the special resilience of this attractor mechanism.

In this paper, we have taken a step forward towards a consistent realization of the

pole inflation dynamics in string theory, by exploring the possibility of assistance of many

fields in the inflaton sector. The proposed pole N-flation model consists of several open

string moduli, such as D3-branes, whose collective motion reduces the distance each brane

should traverse in order to yield the inflationary attractor phase. Allowing each individual

brane to be sufficiently far from the moduli boundary could improve the radiative stability

of this model.

In section 4, we focus on the limitations that UV physics imposes on the effective

description of pole inflation when this is embedded into supergravity as a low-energy limit

of string theory. We find the existence of axionic partners with decay constants which

explicitly depend on the distance to the boundary. This fact has direct consequences for

inflation. The bounds which the weak gravity conjecture (WGC) imposes on the periodicity

of the axions (f . MP) automatically result in a net constraint on the available length of

the exponentially flat plateau typical of pole inflation. We show that in the original single

superfield pole-inflation, with a single brane, the inflaton is not even allowed to reach the

plateau region of the scalar potential. Moreover, we find that when inflation is driven by

the assistance of N branes, these constraints do not weaken — we find that the upper

bound on the canonical radial field range set by the WGC scales like in the single field

case. Rendering the plateau region of the potential available for slow-roll inflation requires

relaxing the WGC bound to milder forms. We interpret these findings as an important

bound on the range of validity of the effective field theory of this cosmological scenario.

The universality of the pole inflation/α-attractor mechanism also emerges in our analy-

sis. Despite the presence of N fields, the form of the exponential plateau remains unaltered

from the single field case. This implies that when inflation occurs along the collective ra-

dial direction, we recover the single field predictions. This may be contrasted with other

many-field inflationary constructions, where the predictions at large N are typically distinct

from the single field limit [5, 28, 105–110] (however, see ref. [31] for a counter example).

6Hyperbolic moduli spaces arise generically in Kaluza-Klein compactification of higher-dimensional Ein-

stein gravity, and hence also in string theory.
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That said, a full analysis of the large-N dynamics of this model remains to be explored,

as a subset of the angular field directions may also be sufficiently light to play a role in

the inflationary dynamics. This may give rise to richer phenomenology through multifield

effects which have the capacity to modify the original predictions of the model. While

studying the complete dynamics will be a computationally heavy task, the necessary tools

have recently been made publicly available [6, 111–113]; we leave this for future work.

Regarding the implementation of pole N-flation in type IIB string theory, while we

have made first steps in section 5 by embedding the model in fibred geometries, developing

a consistent program for moduli stabilization within this scenario remains an important

step to be addressed. We see this as an exciting avenue to be explored.
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A Properties of angular element

The angular element Ωi(ψβ) as defined by eq. (3.3) can be expressed as

Ωi =


cos(ψ1), if i = 1∏i−1
µ=1 sin(ψµ) cos(ψi), if 1 < i < N∏N−1
µ=1 sin(ψµ), if i = N

(A.1)

and therefore

∂βΩi =


0, if i < β

−Ωi
sin(ψβ)
cos(ψβ) , if i = β

Ωi
cos(ψβ)
sin(ψβ) , if i > β

. (A.2)
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Using these expressions it is easy to see that, after take without loss of generality β ≥ γ,

N∑
i=1

∂βΩi∂γΩi =
N∑
i=β

∂βΩi∂γΩi. (A.3)

In the case β 6= γ it further simplifies

N∑
i=1

∂βΩi∂γΩi =
cos(ψγ)

sin(ψγ)

N∑
i=β

Ωi∂βΩi = 0. (A.4)

For the case of β = γ, note that

N∑
i=1

(∂βΩi)
2 =

N∑
i=β

(∂βΩi)
2 = Ω2

β

sin2(ψβ)

cos2(ψβ)
+

N∑
i=β+1

Ω2
i

cos2(ψβ)

sin2(ψβ)
(A.5)

which is in general not zero. For example, when β = 1 this reduces to 1:

N∑
i=1

(∂βΩi)
2 =

1

2
∂2
ββ

N∑
i=1

Ω2
i −

N∑
i=1

Ωi∂
2
ββΩi = −

N∑
i=1

Ωi∂ββΩi = 1. (A.6)

Throughout the paper it is of special interest the configuration where all Ωi are the

same and therefore Ω2
i = 1/N . In order to derive eq. (3.12), note that

Ω2
1 = cos2(ψ1) =

1

N
→ cos2(ψ1)

sin2(ψ1)
=

1

N − 1

Ω2
2 = sin2(ψ1) cos2(ψ2) =

1

N
→ cos2(ψ2) =

1

N − 1
→ cos2(ψ2)

sin2(ψ2)
=

1

N − 2

...

cos2(ψβ)

sin2(ψβ)
=

1

N − β . (A.7)

This relation, together with eq. (A.5), implies that in the configuration of interest

N∑
i=1

(∂βΩi)
2 =

N − β + 1

N
. (A.8)
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