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1 Introduction

Calogero-Moser Hamiltonian is a famous example of an integrable system [1–3] which is

related to a number of mathematical areas (see e.g. [4]). Generalised Calogero-Moser sys-

tems associated with an arbitrary root system were introduced by Olshanetsky and Perelo-

mov [5, 6]. N = 2 supersymmetric quantum Calogero-Moser systems were constructed

in [7] and considered further in [8]. They were generalised to classical root systems in [9]

and to an arbitrary root system in [10].

A motivation for construction of N = 4 Calogero-Moser system goes back to the

work [11] on a conjectural description of near-horizon limit of Reissner-Nordström black

hole where appearance of su(1, 1|2) superconformal Calogero-Moser model was suggested.

Though we also note more recent different considerations of near extremal black holes

in [12]. Another motivation to study supersymmetric (trigonometric) Calogero-Moser-

Sutherland systems comes from the relation of these systems with conformal blocks and

possible generalisation of these relations to the supersymmetric case [13].

Wyllard gave an ansatz for N = 4 supercharges in [14]. In general Wyllard’s ansatz

depends on two potentials F and W . He constructed su(1, 1|2) N particle Calogero-Moser

Hamiltonian for a single value of the coupling parameter c = 1/N as bosonic part of his

supersymmetric Hamiltonian with W = 0. Wyllard argued that his ansatz does not produce

superconformal Calogero-Moser Hamiltonians for general values of c. Necessary differential

equations for F and W were derived in [14]. Thus potential F satisfies generalised Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) equations (in the form of [15]) as it was pointed out

in [16]. Wyllard’s potential F has the form

F =
∑
γ∈A

(γ, x)2 log(γ, x), (1.1)
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where A is the root system AN−1. Examples based on root systems A = G2, B3 were also

considered in [14]. Solutions F to WDVV equations of this type appear also in Seiberg-

Witten theory [15] and in theory of Frobenius manifolds [17].

More generally, Veselov introduced the notion of a ∨-system in [18]. ∨-systems form

special collections of vectors in a linear space, which satisfy certain linear algebraic condi-

tions. A logarithmic prepotential (1.1) corresponding to a collection of vectors A satisfies

WDVV equations if A is a ∨-system. The class of ∨-systems contains Coxeter root sys-

tems, deformations of generalized root systems of Lie superalgebras, special subsystems in

and restrictions of such systems [19, 20]. A complete description of the class remains open

(see [21] and references therein).

Several attempts have been made to construct supersymmetric mechanics such that the

corresponding Hamiltonian has bosonic potential of Calogero-Moser type with a reasonably

general coupling parameter(s). Wyllard’s ansatz for N = 4 supercharges was extended to

other root systems in [22, 23] where solutions for a small number of particles were studied

both for W = 0 and W 6= 0. In particular, su(1, 1|2) superconformal Calogero-Moser

systems related to A = A1 ⊕ G2, F4 and subsystems of F4 were derived. Superconformal

su(1, 1|2) Calogero-Moser systems for the rank two root systems were derived in [24] via

suitable action in the superspace. For the WDVV equations arising in the superfield

approach we refer to [25].

A many-body model with D(2, 1;α) supersymmetry algebra with α = −1
2 was consid-

ered in [26]. This model was obtained by a reduction from matrix model and it incorporates

an extra set of bosonic variables (“U(2) spin variables”) which enter the bosonic potential

of the corresponding Hamiltonian. One-dimensional version of such a model was consid-

ered in [27] and, for any α, in [28, 29]. A generalisation of the many-body classical spin

superconformal model for any value of the parameter α was proposed in [30]. Within

D(2, 1;α) supersymmetry ansatz of [30] a class of bosonic potentials was obtained in [31].

The potential F has the form (1.1) for a root system A. Then W is a twisted period of

the Frobenius manifold on the space of orbits corresponding to the root system A. Such

polynomial twisted periods were described in [31], they exist for special values of parameter

α. Although the corresponding bosonic potentials are algebraic this class does not seem to

contain generalised Calogero-Moser potentials associated with A.

Recently a construction of type AN−1 supersymmetric (classical) Calogero-Moser

model with extra spin bosonic generators and NN2 fermionic variables (for any even N )

was presented in [32]. The ansatz for supercharges is more involved and extra fermionic

variables appear due to reduction from a matrix model. A related quantum N = 4 super-

symmetric spin AN−1 Calogero-Moser system was studied recently in [33]. Furthermore,

a simpler ansatz for supercharges for the spin classical AN−1 Calogero-Moser system was

presented in [34]. This model has 1
2NN(N+1) fermionic variables and the supersymmetry

algebra is osp(N|2). Most recently classical supersymmetric osp(N|2) Calogero-Moser sys-

tems were presented in [35]; these models have nonlinear Hermitian conjugation property

of matrix fermions and supercharges are cubic in fermions.

In the current work we present two constructions of supersymmetric N = 4 quantum

mechanical system starting with an arbitrary ∨-system. In the case of a Coxeter root system
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A the bosonic part of the Hamiltonian is the Calogero-Moser Hamiltonian associated with

A introduced by Olshanetsky and Perelomov in [6], which we get in two different gauges:

the potential and potential free ones. In the latter case the Hamiltonian is not formally

self-adjoint; this gauge comes from the radial part of the Laplace-Beltrami operator on

symmetric spaces [6, 36, 37]. The superconformal algebra is D(2, 1;α) where α depends

on the ∨-system and is ultimately related with the coupling parameter in the resulting

Calogero-Moser type Hamiltonian. We use original ansatz for the supercharges [14, 22]

based on the potentials F , W and we take W = 0. In the special case when α = −1

the superalgebra D(2, 1;−1) contains the superalgebra su(1, 1|2) as its subalebra, and our

first ansatz on the su(1, 1|2) generators reduces to the one considered in [22, 23]. It was

emphasised in [23] that such quantum models with W = 0 are non-trivial with bosonic

potentials proportional to squared Planck constant, though they were not considered in

more detail in [23]. Thus we extend considerations in [23] for W = 0 to the case of

superconformal algebra D(2, 1;α), and we get in this framework quantum Calogero-Moser

type systems associated with an arbitrary ∨-system, which includes Olshanetsky-Perelomov

generalisations of the Calogero-Moser system with arbitrary invariant coupling parameters.

We also consider generalised trigonometric Calogero-Moser-Sutherland systems related

to a collection of vectors A with multiplicities. We include these Hamiltonians in the

supersymmetry algebra provided that extra assumptions on A are satisfied which are similar

to WDVV equations for the trigonometric version of the potential F . We show that these

assumptions can be satisfied when A is an irreducible root system with more than one orbit

of the Weyl group, that is BCN , F4 and G2 cases. A related solution of WDVV equations

for the root system BN was obtained in [38].

The structure of the paper is as follows. We recall the definition of the Lie superal-

gebra D(2, 1;α) in section 2. We give two types of representations of this superalgebra in

sections 3, 4. Starting with any ∨-system we get two corresponding supersymmetric Hamil-

tonians. In section 5 we present them explicitly. We consider supersymmetric trigonometric

Calogero-Moser-Sutherland systems in section 6.

Acknowledgments
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to considerations in section 6. The work of Georgios Antoniou was funded by EPSRC

doctoral training partnership grants EP/M506539/1, EP/M508056/1, EP/N509668/1.

2 The D(2, 1;α) Lie superalgebra

Let us recall the definition of the family of Lie superalgebras D(2, 1;α), which depends on

a parameter α ∈ C (see e.g. [39, section 20]). The algebra has 8 odd generators Qabc and 9

even generators T ab = T ba, Iab = Iba, Jab = Jba (a, b, c = 1, 2). Elements T ab, Iab and Jab

generate three pairwise commuting sl(2) algebras.
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Let εab, ε
ab be the fully anti-symmetric tensors in two dimensions such that ε12=ε21=1.

Then all the relations of the superalgebra D(2, 1;α) take the following form:

{Qace,Qbdf}=−2
(
εef εcdT ab+αεabεcdJef−(α+1)εabεefIcd

)
, (2.1)

[T ab,T cd] =−i
(
εacT bd+εbdT ac

)
, (2.2)

a) [Jab,Jcd] =−i
(
εacJbd+εbdJac

)
, b) [Iab, Icd] =−i

(
εacIbd+εbdIac

)
, (2.3)

a) [T ab,Qcdf ] = iεc(aQb)df , b) [Jab,Qcdf ] = iεf(aQ|cd|b), c) [Iab,Qcdf ] = iεd(aQ|c|b)f , (2.4)

where we symmetrise over two indices inside (. . . ) with indices inside | . . . | being unchanged.

For example, εf(aQ|cd|b) = 1
2

(
εfaQcdb + εfbQcda

)
.

We also have relations

[T ab, Icd] = [Icd, Jef ] = [T ab, Jef ] = 0, (2.5)

for all a, b, c, d, e, f = 1, 2. Let us rename generators as follows:

Qa = −Q21a, Q̄a = −Q22a, Sa = Q11a, S̄a = Q12a, a = 1, 2,

K = T 11, H = T 22, D = −T 12 = −T 21.

We will use εab and εab to lower and raise indices, e.g. Qa = εabQb, Q̄
a = εabQ̄b.

We consider N (quantum) particles on a line with coordinates and momenta (xj , pj),

j = 1, . . . , N to each of which we associate four fermionic variables {ψaj , ψ̄ja|a = 1, 2}. We

will also write x = (x1, . . . , xN ), p = (p1, . . . , pN ).

We assume the following (anti)-commutation relations (a, b = 1, 2; j, k = 1, . . . , N):

[xj , pk] = iδjk, {ψaj , ψ̄kb } = −1

2
δjkδab , {ψaj , ψbk} = {ψ̄ja, ψ̄kb } = 0. (2.6)

Thus one can think of pk as pk = −i ∂
∂xk

.

We introduce further fermionic variables by

ψja = εabψ
bj , ψ̄aj = εabψ̄jb . (2.7)

They satisfy the following useful relations:

{ψja, ψ̄bk} =
1

2
δjkδba, {ψaj , ψ̄bk} =

1

2
εjkεab, {ψja, ψ̄kb } =

1

2
δjkεba. (2.8)

We will be assuming throughout that summation over repeated indices takes place

(even when both indices are either low or upper indices) unless it is indicated that no

summation is applied.

Let F = F (x1, . . . , xN ) be a function such that

xrFrjk = −(2α+ 1)δjk, (2.9)

where Frjk = ∂3F
∂xr∂xj∂xk

for any r, j, k = 1, . . . , N . We assume that all the derivatives Frjk
are homogeneous in x of degree -1. Furthermore, we assume that F satisfies the following

Witten-Dijkgraaf-Verlinde-Verlinde equations (WDVV) equations

FrjkFkmn = FrmkFkjn, (2.10)

for any r, j, k,m, n = 1, . . . , N .

– 4 –



J
H
E
P
0
2
(
2
0
1
9
)
1
1
5

The following relations for arbitrary operators A, B, C will be useful:

[AB,C] = A[B,C] + [A,C]B, (2.11)

[AB,C] = A{B,C} − {A,C}B, (2.12)

{AB,C} = A[B,C] + {A,C}B. (2.13)

We are going to present two representations of D(2, 1;α) algebra using F .

3 The first representation

Let the supercharges be of the form

Qa = prψ
ar + iFrjk〈ψbrψjb ψ̄

ak〉, (3.1)

Q̄c = plψ̄
l
c + iFlmn〈ψ̄ldψ̄dmψnc 〉, (3.2)

where the symbol 〈. . . 〉 stands for the anti-symmetrisation. That is given N operators Ai,

(i = 1, . . . , N) we define

〈A1 . . . AN 〉 =
1

N !

∑
σ∈SN

sgn(σ)Aσ(1) . . . Aσ(N). (3.3)

Note that we have by (2.6), (2.8) and (3.3)

〈ψbrψjb ψ̄
ak〉 =

1

6
(2ψbrψjb ψ̄

ak + 2ψ̄akψbrψjb − ψ
brψ̄akψjb + ψjb ψ̄

akψbr)

=
1

3
(ψbrψjb ψ̄

ak + ψ̄akψbrψjb − ψ
brψ̄akψjb) +

1

12
(δjkψar − δrkψaj)

= ψbrψjb ψ̄
ak − 1

6
δrkψaj − 1

3
δjkψar +

1

12
(δjkψar − δrkψaj).

Note that Frjk(δ
jkψar − δrkψaj) = 0 since δjkψar − δrkψaj is anti-symmetric under the

interchange of k and r. Note also that Frjkψ
ajδrk = Frjkψ

arδjk. Therefore

Frjk〈ψbrψjb ψ̄
ak〉 = Frjk

(
ψbrψjb ψ̄

ak − 1

2
ψarδjk

)
. (3.4)

Similarly,

Flmn〈ψ̄ldψ̄dmψnc 〉 = Flmn

(
ψ̄ldψ̄

dmψnc −
1

2
ψ̄lcδ

nm

)
. (3.5)

Let also

K = x2 =

N∑
j=1

x2j , (3.6)

D = −1

4
{xj , pj} = −1

2
xjpj +

iN

2
, (3.7)

I11 = −iψjaψaj , I22 = iψ̄ajψ̄ja, I12 = − i
2

[ψja, ψ̄
aj ], (3.8)

Jab = Jba = 2iψ(ajψ̄bj), (3.9)

Sa = −2xjψ
aj , S̄a = −2xjψ̄

j
a. (3.10)
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Remark 3.1. Ansatz (3.1), (3.2), (3.6), (3.7), (3.9), (3.10) with F satisfying (2.9) at α = −1

matches considerations in [22] (see also [14, 23]), where su(1, 1|2) superconformal mechanics

was considered. Note that superalgebra su(1, 1|2) generated by Qabc, T ab, Jab is a subal-

gebra in the superalgebra D(2, 1;−1). Thus lemmas 3.2, 3.4 below can be deduced from

considerations in [22]. We include these lemmas so that to have complete derivations for

reader’s convenience.

Let us firstly check relations (2.3), (2.4) involving generators Jab and Iab.

Lemma 3.2 (cf. [22]). Let Jab be given by (3.9). Then relations (2.3a) hold.

Proof. We consider the commutator

[ψajψ̄bj , ψckψ̄dk] = ψaj [ψ̄bj , ψckψ̄dk] + [ψaj , ψckψ̄dk]ψ̄bj

=
1

2
εcbψajψ̄dj +

1

2
εdaψcjψ̄bj ,

which implies the statement.

We will use the following relations:

[ψ̄bk, ψjaψ
aj ] = ψbk, [ψ̄ajψ̄ja, ψ

k
b ] = −ψ̄kb . (3.11)

Lemma 3.3. Let Iab be given by (3.8). Then relations (2.3b) hold.

Proof. The relations (2.3b) read

[I11, I22] = 2iI12, [I11, I12] = iI11, [I22, I12] = −iI22.

We have

[I11, I22] = [ψjaψ
aj , ψ̄bkψ̄kb ]. (3.12)

By applying (2.11), (2.12) we rearrange expression (3.12) as

[I11, I22] = ψja[ψ
aj , ψ̄bkψ̄kb ] + [ψja, ψ̄

bkψ̄kb ]ψaj

= ψjaψ̄
aj + ψ̄jaψ

aj = ψjaψ̄
aj − ψ̄ajψja

= 2iI12,

as required. Moreover, using the Jacobi identity we have

[I11, I12] = −1

2
[ψjaψ

aj , [ψkb , ψ̄
bk]] =

1

2
[ψkb , [ψ̄

bk, ψjaψ
aj ]].

Thus by using the first relation in (3.11)

[I11, I12] = ψkbψ
bk = iI11.

Similarly,

[I22, I12] =
1

2
[ψ̄ajψ̄ja, [ψ

k
b , ψ̄

bk]] = −1

2
[ψ̄bk, [ψ̄ajψ̄ja, ψ

k
b ]].

Hence, by using the latter relation in (3.11)

[I22, I12] = ψ̄bkψ̄kb = −iI22,

and hence the statement follows.

– 6 –
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In what follows, we will use the following relation:

[ψajψ̄bj , ψcl] = −1

2
εbcψal. (3.13)

By formulae (2.11), (2.12) we also have

[ψajψ̄bj , ψdlψmd ψ̄
cn] = ψdlψmd [ψajψ̄bj , ψ̄cn] + [ψajψ̄bj , ψdlψmd ]ψ̄cn

= −ψdlψmd ψ̄bj{ψ̄cn, ψaj}+ ψdl[ψajψ̄bj , ψmd ]ψ̄cn + [ψajψ̄bj , ψdl]ψmd ψ̄
cn

=
1

2
εcaψdlψmd ψ̄

bn +
1

2
ψblψamψ̄cn +

1

2
ψbmψalψ̄cn. (3.14)

Lemma 3.4 (cf. [22]). Let Qabc, Jab be as above. Then the relations (2.4b) hold.

Proof. Firstly let us note that the sum of the last two terms in (3.14) is anti-symmetric in

a and b and Jab = Jba. Therefore we have by applying (3.14)

[Jab, Flmnψ
dlψmd ψ̄

cn] =
i

2
εcaFlmnψ

dlψmd ψ̄
bn +

i

2
εcbFlmnψ

dlψmd ψ̄
an. (3.15)

Then

[Jab, Q21c] = −[Jab, Qc] = −[Jab, plψ
cl]− iFlmn[Jab, 〈ψdlψmd ψ̄cn〉].

Therefore we get from (3.13) and (3.15) that

[Jab, Q21c] =
i

2

(
εbcplψ

al + εacplψ
bl − iεcaFlmn〈ψdlψmd ψ̄bn〉 − iεcbFlmn〈ψdlψmd ψ̄an〉

)
(3.16)

= − i
2

(εcbQa + εcaQb) = iεc(aQ|21|b),

as required in (2.4b). Further, we consider

[Jab, Sc] = −2xl[J
ab, ψcl] = ixl(ε

bcψal + εacψbl) =
i

2
(εcbSa + εcaSb) = iεc(aQ|11|b),

which coincides with the corresponding relation in (2.4b). The remaining relations can be

proven similarly.

Lemma 3.5. Let Qabc, Iab be as above. Then relations (2.4c) hold.

Proof. Let us first consider [I11, Q21a]. Using formulae (2.11), (2.12) we have

[ψrdψ
dr, ψblψmb ψ̄

an] = ψblψmb [ψrdψ
dr, ψ̄an] = −ψblψmb ψan. (3.17)

It follows that Flmn[ψrdψ
dr, ψblψmb ψ̄

an] = 0 and hence

[I11, Q21a] = i[ψrdψ
dr, Qa] = i[ψrdψ

dr, plψ
al] = 0, (3.18)

as required for (2.4c).

Let us now consider [I22, Q21a]. We have

[I22, ψal] = i[ψ̄drψ̄rd, ψ
al] = −iψ̄al, (3.19)

– 7 –
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and hence

[ψ̄drψ̄rd, ψ
blψmb ψ̄

an] = −[ψblψmb , ψ̄
drψ̄rd]ψ̄

an

= (ψbl[ψ̄drψ̄rd, ψ
m
b ] + [ψ̄drψ̄rd, ψ

bl]ψmb )ψ̄an

= −ψblψ̄mb ψ̄an − ψ̄blψmb ψ̄an. (3.20)

By reordering terms in (3.20) we obtain

[ψ̄drψ̄rd, ψ
blψmb ψ̄

an] = (ψ̄mb ψ
bl + δlm)ψ̄an + ψ̄bl

(
ψ̄anψmb −

1

2
δab δ

nm

)
= −ψ̄mb ψ̄anψbl −

1

2
ψ̄amδln + δlmψ̄an − ψ̄lbψ̄anψbm −

1

2
ψ̄alδnm.

Therefore

Flmn[ψ̄drψ̄rd, ψ
blψmb ψ̄

an] = −2Flmnψ̄
l
bψ̄

anψbm. (3.21)

Note that Flmnψ̄
l
cψ̄

anψcm = 0 if c is fixed such that c 6= a. Hence (3.21) can be rearranged

as −2Flmnψ̄
l
aψ̄

amψan which is also equal to −Flmnψ̄lbψ̄bmψan. Therefore

[I22, Q21a] = −i[ψ̄drψ̄rd, Qa] = −i
(
−plψ̄al + iFlmn

(
−ψ̄lbψ̄bmψan +

1

2
ψ̄alδnm

))
= iQ̄a,

(3.22)

as required for (2.4c).

Further, let us consider [I12, Q21a] = i[ψrdψ̄
dr, Qa]. Then by (3.14) we have

[ψrdψ̄
dr, ψblψmb ψ̄

an] =
1

2
ψblψmb ψ̄

an.

Therefore, with the help of (3.13) we get

[I12, Q21a] =
i

2

(
plψ

al + iFlmn

(
ψblψmb ψ̄

an − 1

2
ψalδmn

))
=
i

2
Qa, (3.23)

which matches with (2.4c).

Let us now consider the generator Q11a. Firstly, it is immediate that [I11, Q11a] = 0,

as required. In addition, we have by (3.19) that

[I22, Q11a] = i[ψ̄drψ̄rd, S
a] = −2ixj [ψ̄

drψ̄rd, ψ
aj ] = −iS̄a,

and

[I12, Sa] = −i[ψrdψ̄dr, Sa] = ixjψ
aj = − i

2
Sa,

as required for (2.4c). The remaining relations in (2.4c) can be checked similarly.
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Let Ai, Bi (i = 1, 2, 3) be operators. In the following theorem we will use the identity

{A1A2A3,B1B2B3}=A1A2{A3,B1}B2B3+A1A2B1B2{B3,A3}−A1A2B1{B2,A3}B3−
−A1{A2,B1}B2B3A3−A1B1B2{B3,A2}A3+A1B1{B2,A2}B2A3

+{A1,B1}B2B3A2A3+B1B2{B3,A1}A2A3−B1{B2,A1}B3A2A3.

(3.24)

We will use the following relations. We have by (2.11) and (2.13)

{ψar, ψ̄ldψ̄dmψnc } = ψ̄ld[ψ̄
dmψnc , ψ

ar] + ψ̄dmψnc {ψ̄ld, ψar} = −1

2
ψ̄alψnc δ

rm − 1

2
ψ̄amψnc δ

rl,

(3.25)

and similarly,

{ψ̄lc, ψbrψ
j
b ψ̄

ak} = −1

2
ψrc ψ̄

akδjl − 1

2
ψjc ψ̄

akδrl. (3.26)

Theorem 3.6. For all a, b = 1, 2 we have {Qa, Q̄b} = −2Hδab , where the Hamiltonian H

is given by

H =
p2

4
−
∂iFjlk

2

(
ψbiψjb ψ̄

l
dψ̄

dk − ψibψ̄bjδlk +
1

4
δijδlk

)
+

1

16
FijkFlmnδ

nmδjlδik (3.27)

with p2 =
∑N

i=1 p
2
i .

Proof. Let us consider {Qa, Q̄c}, where

Qa =

A︷ ︸︸ ︷
prψ

ar +

B︷ ︸︸ ︷
iFrjk〈ψbrψjb ψ̄

ak〉, Q̄c =

A′︷︸︸︷
plψ̄

l
c +

B′︷ ︸︸ ︷
iFlmn〈ψ̄ldψ̄dmψnc 〉 .

We have

{A,A′} = −1

2
δac p

2.

Further on, by (3.5) we have

{A,B′} = i{ψarpr, Flmn〈ψ̄ldψ̄dmψnc 〉}

= i{ψarpr, Flmnψ̄ldψ̄dmψnc } −
i

2
δnm{prψar, Flmnψ̄lc}

= iψarψ̄ldψ̄
dmψnc [pr, Flmn] + i{ψar, ψ̄ldψ̄dmψnc }Flmnpr−

− i

2
δnmψarψ̄lc[pr, Flmn] +

i

4
δnmδacFrmnpr.

By (3.25) we have

Flmn{ψar, ψ̄ldψ̄dmψnc } = −Flmnψ̄alψnc δrm.

Therefore,

{A,B′}= iψarψ̄ldψ̄
dmψnc [pr,Flmn]−iψ̄alψnc Flnrpr−

i

2
δnmψarψ̄lc[pr,Flmn]+

i

4
δnmδacFrmnpr.

(3.28)
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Similarly, using (3.26) we obtain

{B,A′} = iψ̄lcψ
brψjb ψ̄

ak[pl, Frjk]− iψrc ψ̄akFrkjpj −
i

2
δjkψ̄lcψ

ar[pl, Frjk] +
i

4
δjkδacFrjkpr.

(3.29)

Note that ψ̄alψnc Flnrpr + ψrc ψ̄
akFrkjpj = 1

2δ
lnδacFlnrpr. Then, after canceling out terms

and simplifying we have

{A,B′}+ {B,A′} = ∂rFljk(ψ
arψ̄ldψ̄

dkψjc + ψ̄lcψ
brψjb ψ̄

ak) +
1

4
∂rFlmnδ

nmδrlδac . (3.30)

In particular, we note that using the symmetry of Fljk we have that

∂rFljkψ
arψ̄ldψ̄

dkψjc = ∂rFljk(ψ
arψjc ψ̄

l
dψ̄

dk + ψarψ̄kc δ
lj), (3.31)

and

∂rFljkψ̄
l
cψ

brψjb ψ̄
ak = ∂rFljk(ψ

brψjb ψ̄
l
cψ̄

ak − ψrc ψ̄akδlj). (3.32)

Note that if a 6= c, we have

ψarψ̄kc = ψrc ψ̄
ak, and ψarψjc = −ψajψrc , ψ̄lcψ̄

ak = −ψ̄kaψ̄cl. (3.33)

Using the symmetry ∂rFljk = ∂lFrjk and Fljk = Fkjl it follows from (3.31), (3.32) and (3.33)

that the sum of expressions in (3.31) and (3.32) vanishes if a 6= c. Therefore we get

from (3.31), (3.32), (3.33) that

∂rFljk(ψ
arψ̄ldψ̄

dkψjc + ψ̄lcψ
brψjb ψ̄

ak) = ∂rFljk(ψ
arψjaψ̄

l
dψ̄

dk + ψbrψjb ψ̄
l
aψ̄

ak − ψrdψ̄dkδlj)δac .
(3.34)

Note that

ψarψja = ψâjψrâ, and ψ̄arψ̄ja = ψ̄âjψ̄râ, (3.35)

here â 6= a. Therefore the right-hand side of (3.34) equals

∂rFljk(ψ
brψjb ψ̄

l
dψ̄

dk − ψrdψ̄dkδlj)δac . (3.36)

Therefore in total expression (3.30) becomes

{A,B′}+ {B,A′} = ∂rFljk

(
ψbrψjb ψ̄

l
dψ̄

dk − ψrdψ̄dkδlj +
1

4
δrlδjk

)
δac .

Finally, let us consider the term {B,B′}. We first show that

C := FrjkFlmn{ψbrψjb ψ̄
ak, ψ̄ldψ̄

dmψnc } = 0. (3.37)
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By using (3.24) we obtain

C = FrjkFlmn

(
ψbrψjb ψ̄

l
dψ̄

dm{ψnc , ψ̄ak} − ψbrψ̄dmψnc ψ̄ak{ψ
j
b , ψ̄

l
d}

+ ψbrψ̄ldψ
n
c ψ̄

ak{ψ̄dm, ψjb}+ ψ̄dmψnc ψ
j
b ψ̄

ak{ψbr, ψ̄ld} − ψ̄ldψnc ψ
j
b ψ̄

ak{ψbr, ψ̄dm}
)

= FrjkFlmn

(
1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm +
1

2
δljψbrψ̄mb ψ

n
c ψ̄

ak +
1

2
δmjψbrψ̄lbψ

n
c ψ̄

ak

+
1

2
δrlψ̄dmψjbψ

n
c ψ̄

ak +
1

2
δrmψ̄blψjbψ

n
c ψ̄

ak

)
.

Then using the symmetry of Flmn under the swap of l and m we obtain

C = FrjkFlmn

(
1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm + δjlψbrψ̄mb ψ
n
c ψ̄

ak + δrlψ̄bmψjbψ
n
c ψ̄

ak

)
.

Note that by (2.6), (2.8) we have

ψbrψ̄mb ψ
n
c ψ̄

ak = −ψbrψnc ψ̄mb ψ̄ak −
1

2
ψrc ψ̄

akδnm, (3.38)

and

ψ̄bmψjbψ
n
c ψ̄

ak = −ψjb ψ̄
bmψnc ψ̄

ak + ψnc ψ̄
akδmj

= −ψbjψnc ψ̄mb ψ̄ak −
1

2
ψjc ψ̄

akδnm + ψnc ψ̄
akδmj . (3.39)

Further on by (2.10) we have FrjkFrmn = FrnkFrmj and therefore some terms in the right-

hand side of (3.38), (3.39) enter the relation

FrjkFrmnψ
n
c ψ̄

akδmj =
1

2
FrjkFjmnψ

r
c ψ̄

akδmn +
1

2
FrjkFrmnψ

j
c ψ̄

akδmn. (3.40)

Then by using (3.38)–(3.40) and the symmetry of Frjk under the swap of r and j we obtain

C = FrjkFlmn

(
1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm − δjlψbrψnc ψ̄mb ψ̄ak − δrlψbjψnc ψ̄mb ψ̄ak
)

= FrjkFlmn

(
1

2
δac δ

nkψbrψjb ψ̄
l
dψ̄

dm − 2δjlψbrψnc ψ̄
m
b ψ̄

ak

)
.

Note that for c 6= a we have C = 0, since FrjkFlmnδ
jlψbrψnc ψ̄

m
b ψ̄

ak = 0 by using (2.10).

Further on, if c = a then by using (2.10) we have

C = FrjkFklm

(
1

2
ψbrψjb ψ̄

l
dψ̄

dm − 2ψbrψjaψ̄
l
bψ̄

am

)
. (3.41)

Note that for b 6= a, Frjkψ
brψja = 0. Hence

FrjkFklmψ
brψjaψ̄

l
bψ̄

am = FrjkFklmψ
arψjaψ̄

l
aψ̄

am, (3.42)
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which is equal to 1
4FrjkFklmψ

brψjb ψ̄
l
dψ̄

dm because of relations (3.35). This proves that

C = 0. Then the term {B,B′} takes the following form:

{B,B′} = FrjkFlmn

(
1

2
δnm{ψbrψjb ψ̄

ak, ψ̄lc}+
1

2
δjk{ψ̄ldψ̄dmψnc , ψar} −

1

4
δjkδnm{ψar, ψ̄lc}

)
.

By using formulae (3.25), (3.26) and (2.10) we obtain

{B,B′} = −1

2
FrjkFlmn

(
ψrc ψ̄

akδnmδjl + ψ̄alψnc δ
mrδjk − 1

4
δjkδnmδrlδac

)
= −1

2
FrjkFlmnδ

nmδjl{ψrc , ψ̄ak}+
1

8
FrjkFlmnδ

jkδnmδrlδac

= −1

8
FrjkFlmnδ

nmδjlδrkδac .

Therefore, the statement follows.

Lemma 3.7. Let T 22 = H be given by theorem 3.6. Let T 11 = K and T 12 = −D be given

by (3.6), (3.7). Then relations (2.2) hold.

Proof. Firstly, we have that [K,H] = 1
4 [x2, p2] = i

2{xr, pr} = −2iD, as required. Moreover,

since H is homogeneous in x of degree −2 it follows that [H,D] = iH as required. Further

on, [K,D] = −1
2 [x2k, xjpj ] = iK, which is the corresponding relation (2.2).

Lemma 3.8. Let Qabc, Iab, T ab, Jab be as above. Then relations (2.1) hold.

Proof. Firstly let us consider

{Q21a, Q11f} = −{Qa, Sf}.

Note that

{prψar, xlψfl} = −iψarψfr = −iεaâψrâψ
fr,

where â is complimentary to a. Note that we can assume now that â = f . Therefore

{prψar, xlψfl} = −iεafψrfψfr = − i
2
εafψrdψ

dr.

Further,

Frjk{ψbrψjb ψ̄
ak, xlψ

fl} =
1

2
εafxkFkrjψ

r
dψ

dj .

Therefore by formula (2.9)

{Q21a, Q11f} = −iεafψrdψdr + iεafxkFkrjψ
r
dψ

dj = 2(α+ 1)εafI11, (3.43)

as required for the corresponding relation (2.1).
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Further on, consider {Q21a, Q12b}=−εbd{Qa, S̄d}. Now, by using formula (3.26) we have

{Qa, S̄d} = −2{prψar, xlψ̄ld} − 2ixlFrjk

(
{ψbrψjb ψ̄

ak, ψ̄ld} −
1

2
δjk{ψar, ψ̄ld}

)
= 2iψarψ̄rd + xrprδ

a
d + 2ixjFjrkψ

r
dψ̄

ak − i

2
δjkδadxrFrjk

= 2iψarψ̄rd + xrprδ
a
d − 2i(2α+ 1)ψrdψ̄

ar +
iδad
2
N(2α+ 1).

Therefore

{Q21a, Q12b} = −2iψarψ̄br + xrprε
ab + 2i(2α+ 1)ψbrψ̄ar +

iεab

2
N(2α+ 1). (3.44)

Let us now note that

I12 = − i
2

[ψja, ψ̄
aj ] = −i

(
ψ2jψ̄1j − ψ1jψ̄2j − N

2

)
.

Hence the right-hand side of (2.1) for {Q21a, Q12b} is

xrprε
ab − iN

2
εab + 4iαψ(arψ̄br) − 2i(1 + α)εab

(
ψ2jψ̄1j − ψ1jψ̄2j − N

2

)
. (3.45)

By considering various values of a, b ∈ {1, 2}, expression (3.45) takes the form

xrprε
ab +

iεab

2
N(2α+ 1)− 2iψarψ̄br + 2i(2α+ 1)ψbrψ̄ar, (3.46)

which is equal to (3.44) as required, so the corresponding relation (2.1) follows.

Further on, let us consider relation {Q21a, Q21b} = {Qa, Qb}. By using (2.6) and (2.8)

we have

{Qa, Qc} = i{prψar, Flmnψdlψmd ψ̄cn}+ i{plψcl, Frjkψbrψjb ψ̄
ak}−

− FlmnFrjk{〈ψdlψmd ψ̄cn〉, 〈ψbrψ
j
b ψ̄

ak〉}.

Note that by (2.12), (2.13) we have

{prψar, Flmnψdlψmd ψ̄cn} = ψarψdlψmd ψ̄
cn[pr, Flmn] + {ψar, ψdlψmd ψ̄cn}Flmnpr

= −iψarψdlψmd ψ̄cn∂rFlmn + {ψar, ψ̄cn}ψdlψmd Flmnpr

= −iψarψdlψmd ψ̄cn∂rFlmn −
1

2
εcaψdlψmd Flmrpr.

Note also that ψarψal∂rFlmn = 0 using the symmetry of ∂rFlmn under the swap of r and

l. Then ψarψdlψmd ψ̄
cn∂rFlmn = 0 and hence

{prψar, Flmnψdlψmd ψ̄cn} = −1

2
εcaFlmrprψ

dlψmd . (3.47)

Similarly,

{plψcl, Frjkψbrψjb ψ̄
ak} = −iψclψbrψjb ψ̄

ak∂lFrjk −
1

2
εacFrjkpkψ

brψjb

= −1

2
εacFrjkpkψ

brψjb . (3.48)
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Note that terms in (3.47) and (3.48) cancel. Further, we have

FlmnFrjk{〈ψdlψmd ψ̄cn〉,〈ψbrψ
j
b ψ̄

ak〉}=FlmnFrjk{ψdlψmd ψ̄cn,ψbrψ
j
b ψ̄

ak}

+
1

4
εcaFlmrFrjjψ

dlψmd +
1

4
εacFrjkFkmmψ

brψjb (3.49)

=FlmnFrjk{ψdlψmd ψ̄cn,ψbrψ
j
b ψ̄

ak},

since the last two terms in (3.49) cancel. Note that by (3.24) we have

{ψdlψmd ψ̄cn, ψbrψ
j
b ψ̄

ak} = ψdlψmd
(
ψjb ψ̄

ak{ψ̄cn, ψbr} − ψbrψ̄ak{ψjb , ψ̄
cn}
)

+ ψbrψjb
(
ψmd ψ̄

cn{ψ̄ak, ψdl} − ψdlψ̄cn{ψ̄ak, ψmd }
)

= −1

2
ψdlψmd

(
ψcjδnr + ψcrδjn

)
ψ̄ak − 1

2
ψbrψjb

(
ψalδkm + ψamδkl

)
ψ̄cn.

Therefore using the symmetry of Frjk under the swap of j and r, and that of Flmn under

the swap of l and m we obtain

FlmnFrjk{ψdlψmd ψ̄cn, ψbrψ
j
b ψ̄

ak} = −FlmnFrjk
(
ψdlψmd ψ

cjδnr + ψbrψjbψ
alδkm

)
. (3.50)

Further, note that for any b ∈ {1, 2} we have by using (2.10) that FlmrFrjkψ
dlψmd ψ

bj = 0.

Hence the right-hand side of (3.50) vanishes. Therefore it follows that

FlmnFrjk{〈ψdlψmd ψ̄cn〉, 〈ψbrψ
j
b ψ̄

ak〉} = 0

and hence that {Qa, Qb} = 0 as required.

Further on it is easy to see that {Q11a, Q11b}={Q12a, Q12b}=0. By theorem 3.6 we have

{Q21a, Q22b}=−2Hεba. The remaining relations (2.1) can be shown in a similar way.

Lemma 3.9. Let T ab, Qabc be as above. Then relations (2.4a) hold.

Proof. Firstly, it is easy to see that [T 11, Q21a] = −[K,Qa] = −2ixrψ
ar = iSa, and

[T 11, Q11a] = [K,Sa] = 0, and [T 12, Q11a] = −[D,Sa] = − i
2Q

11a. Moreover, we have

[T 12, Q21a] = [D,Qa] = i
2Q

21a as Qa is homogeneous in x of degree −1. This gives rela-

tions (2.4a) for commutators between K,D and Qa, Sa.

Further, we have

[ψbrψjb ψ̄
l
dψ̄

dk, ψam] =
1

2
ψbrψjb(ψ̄

alδkm + ψ̄akδlm),

therefore

∂rFjlk[ψ
brψjb ψ̄

l
dψ̄

dk, ψam] = ∂rFjlmψ
brψjb ψ̄

al. (3.51)

Note also that

∂rFjlk[ψ
r
b ψ̄

bjδlk, ψam] =
1

2
∂rFlmkψ

arδlk. (3.52)
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Hence we get from (3.51) and (3.52) that

∂rFjlk[ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk, ψam] = ∂rFjlmψ
brψjb ψ̄

al − 1

2
∂rFlmkψ

arδlk (3.53)

= ∂mFrjl〈ψbrψjb ψ̄
al〉,

in view of (3.4). Therefore

[H,Sa] = iprψ
ar + xm∂mFrjl〈ψbrψjb ψ̄

al〉 (3.54)

= iprψ
ar − Frjl〈ψbrψjb ψ̄

al〉
= iQa,

as required for (2.4a). Further on, by theorem 3.6 we have T 22 = H = −1
2{Q

a, Q̄a}. Since

(Qa)2 = 0 we get that [H,Qa] = 0 as required. The remaining relations (2.4a) can be

shown in a similar way.

Lemma 3.10. Let T ab, Iab, Jab be as above. Then relations (2.5) hold.

Proof. Let us firstly consider [Iab, Jcd]. We have by (2.11) and (3.11) that

[ψjaψ
aj , ψckψ̄dk] = ψdkψck.

Therefore

[I11, Jcd] = 2[ψjaψ
aj , ψ(ckψ̄dk)] = 0,

as required. Further, we have by (2.11), (2.12) that

[[ψja, ψ̄
aj ], ψckψ̄dk] = 2[ψjaψ̄

aj , ψckψ̄dk]

= 2(ψja[ψ̄
aj , ψckψ̄dk] + [ψja, ψ

ckψ̄dk]ψ̄aj)

= 2(ψjaψ̄
dk{ψck, ψ̄aj} − ψckψ̄aj{ψ̄dk, ψja}) = 0.

Therefore,

[I12, Jcd] = [[ψja, ψ̄
aj ], ψ(ckψ̄dk)] = 0,

which is the corresponding relation (2.5). In addition we have by (2.11) and (3.11) that

[ψ̄ajψ̄ja, ψ
ckψ̄dk] = −ψ̄ckψ̄dk.

Therefore,

[I22, Jcd] = −2[ψ̄ajψ̄ja, ψ
(ckψ̄dk)] = 0,

as required.
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Let us now consider relations [Iab, T cd], (a, b, c, d = 1, 2). It is easy to see that for

T 12 = −D and T 11 = K relations (2.5) hold. Further, we have T 22 = H = −1
2{Q

c, Q̄c}.
Then by (2.11) we obtain

[Iab, H] = −1

2
([Iab, QcQ̄c] + [Iab, Q̄cQ

c])

= −1

2
(Qc[Iab, Q̄c] + [Iab, Qc]Q̄c + Q̄c[I

ab, Qc] + [Iab, Q̄c]Q
c)

= −1

2
(−Qĉ[Iab, Q̄ĉ] + [Iab, Qc]Q̄c + Q̄c[I

ab, Qc]− [Iab, Q̄ĉ]Qĉ),

where ĉ is complimentary to c. Then by lemma 3.5 we have

[Iab, Qc] = −[Iab, Q21c] = − i
2

(ε1aQ2bc + ε1bQ2ac) and [Iab, Q̄c] = − i
2

(ε2aQ2bc + ε2bQ2ac).

Therefore by considering various values of a, b ∈ {1, 2} and by using lemma 3.8 and theo-

rem 3.6 we obtain the following:

[I11, H] =
i

2
(QĉQ

ĉ +QĉQĉ) = 0,

[I22, H] =
i

2
(Q̄cQ̄c + Q̄cQ̄

c) = 0,

[I12, H] =
i

2
(QĉQ̄

ĉ +QcQ̄c + Q̄cQ
c + Q̄ĉQĉ) = 0,

which are the corresponding relations (2.5).

Similarly we have

[Jab, H] = −1

2
(−Qĉ[Jab, Q̄ĉ] + [Jab, Qc]Q̄c + Q̄c[J

ab, Qc]− [Jab, Q̄ĉ]Qĉ).

By lemma 3.4 we have

[Jab, Qc] =
i

2
(εcaQb + εcbQa) and [Jab, Q̄c] =

i

2
(εcaQ̄b + εcbQ̄a).

Therefore by considering various values of a, b ∈ {1, 2} we obtain:

[J11, H] = − i
2

(−εĉ1QĉQ̄1 + εc1Q1Q̄c + εc1Q̄cQ
1 − εĉ1Q̄1Qĉ), (3.55)

[J12, H] = − i
4

(−εĉ1QĉQ̄2 − εĉ2QĉQ̄1 + εc1Q2Q̄c + εc2Q1Q̄c

+ εc1Q̄cQ
2 + εc2Q̄cQ

1 − εĉ1Q̄2Qĉ − εĉ2Q̄1Qĉ),

[J22, H] = − i
2

(−εĉ2QĉQ̄2 + εc2Q2Q̄c + εc2Q̄cQ
2 − εĉ2Q̄2Qĉ). (3.56)

Then by considering various values of c ∈ {1, 2} in (3.55)–(3.56) and by using lemma 3.8

and theorem 3.6 we obtain that

[J11, H] = [J12, H] = [J22, H] = 0,

as required for (2.5).
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4 The second representation

Let now the supercharges be of the form

Qa = prψ
ar + iFrjkψ

brψjb ψ̄
ak, (4.1)

Q̄c = plψ̄
l
c + iFlmnψ̄

l
dψ̄

dmψnc , (4.2)

so we do not have anti-symmetrisation in the cubic fermionic terms. Let generators K,

Iab, Jab, and Sa, S̄a be given by formulas (3.6), (3.8), (3.9), (3.10) same as in the first

representation, while the generator D is now given by

D = −1

2
xjpj +

i

2
(α+ 1)N. (4.3)

Theorem 4.1. For all a, b = 1, 2 we have {Qa, Q̄b} = −2Hδab , where the Hamiltonian H is

H =
p2

4
−
∂rFjlk

2
(ψbrψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk) +
i

4
δnmFrmnpr. (4.4)

Proof. Let us denote terms in (4.1), (4.2) as follows:

Qa =

A︷ ︸︸ ︷
prψ

ar +

B︷ ︸︸ ︷
iFrjkψ

brψjb ψ̄
ak, Q̄c =

A′︷︸︸︷
plψ̄

l
c +

B′︷ ︸︸ ︷
iFlmnψ̄

l
dψ̄

dmψnc .

Then, analogues of relations (3.28), (3.29) are

{A,B′} = iψarψ̄ldψ̄
dmψnc [pr, Flmn]− iψ̄alψnc Flnrpr, (4.5)

and

{B,A′} = iψ̄lcψ
brψjb ψ̄

ak[pl, Frjk]− iψrc ψ̄akFrkjpj , (4.6)

respectively. Then using (4.5) and (4.6) an analogue of equality (3.30) is (cf. (3.36))

{A,B′}+ {B,A′} = ∂rFljk(ψ
arψ̄ldψ̄

dkψjc + ψ̄lcψ
brψjb ψ̄

ak)− i

2
δnlFlnrprδ

a
c

= ∂rFjlk(ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk)δac −
i

2
δnlFlnrprδ

a
c .

Further on we have {B,B′} = 0 (cf. (3.37)). Therefore in total, we get that

{Qa, Q̄c} = −p
2

2
δac + {A,B′}+ {B,A′}

= −p
2

2
δac + ∂rFjlk(ψ

brψjb ψ̄
l
dψ̄

dk − ψrb ψ̄bjδlk)δac −
i

2
δnmFrmnprδ

a
c , (4.7)

and hence the statement follows.
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Lemma 4.2. Let T ab be given by (4.3), (4.4) and (3.6). Then relations (2.2) hold.

Proof. Firstly, we have that

[K,H] =
1

4
[x2, p2] +

i

4
δnmFrmn[x2, pr] =

i

2
{xr, pr}+

N

2
(2α+ 1) = −2iD,

as required. Moreover we have [Frmnpr, xjpj ] = −iFrmnpr + ixj∂jFrmnpr = −2iFrmnpr.

Then it is easy to see that [H,D] = iH, as required. Further on, [K,D] = −1
2 [x2, xjpj ] =

iK, which is the corresponding relation (2.2).

We note that since I and J keep the same form as in the first representation, the

statement of the lemmas 3.2, 3.3 hold.

Lemma 4.3. Let Qabc, Iab, Jab be given by (4.1), (4.2), (3.10), (3.8), (3.9). Then rela-

tions (2.4b), (2.4c) hold.

Proof. Relations (2.4b), (2.4c) are easy to verify by an adaptation of the proof of lemmas 3.4

and 3.5 respectively. Indeed let us first consider relations (2.4b) for [Jab, Q21c], which now

takes the form (cf. (3.16))

[Jab, Q21c] =
i

2

(
εbcplψ

al + εacplψ
bl − iεcaFlmnψdlψmd ψ̄bn − iεcbFlmnψdlψmd ψ̄an

)
= − i

2
(εcbQa + εcaQb) = iεc(aQ|21|b),

as required for (2.4b).

Further on, let us consider relations (2.4c) for [Iab, Q21c]. Expression (3.22) now takes

the form

[I22, Q21a] = −i[ψ̄drψ̄rd, Qa] = i
(
plψ̄

al + iFlmnψ̄
l
bψ̄

bmψan
)

= iQ̄a,

as required. The analogue of (3.23) is

[I12, Q21a] =
i

2

(
plψ

al + iFlmnψ
blψmb ψ̄

an
)

=
i

2
Qa,

which matches (2.4c). Finally, it is easy to see that [I11, Q21a] = 0 (cf. (3.17), (3.18) in

lemma 3.5). Relations (2.4) for Sa take the same form as in lemmas 3.4 and 3.5. The

remaining relations can be checked in a similar way.

Lemma 4.4. Let Qabc, Iab, Jab, T ab be given by formulas (4.1), (4.2), (3.10), (3.8),

(3.9), (3.6), (4.3), (4.4). Then relations (2.1) hold.

Proof. We first note that by theorem 4.1 we have {Qa, Q̄c} = εcb{Qa, Q̄b} = −2Hεca which

is the corresponding relation (2.1). The anticommutator {Q21a, Q21b} vanishes since the

terms (3.47), (3.48) cancel each other and the right-hand side of (3.50) vanishes. Further

on it is immediate that {Q21a, Q11f} is the same as in the first representation. Similarly for

{Q22a, Q22b}, {Q22a, Q12f}. Note also that {Q11a, Q11b}, {Q12a, Q12b}, {Q11a, Q12b} take

the same form as in lemma 3.8.
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Further on, let us consider {Q21a, Q12b}. The left-hand side of (2.1) now takes the

form (cf. (3.44) and the change in the generator D)

{Q21a, Q12b} = −2iψarψ̄br + xrprε
ab + 2i(1 + 2α)ψbrψ̄ar, (4.8)

and the right-hand side of (2.1) becomes (cf. (3.46))

{Q21a, Q12b} = xrprε
ab + 4iαψ(arψ̄br) − 2i(1 + α)εab(ψ2rψ̄1r − ψ1rψ̄2r)

= −2iψarψ̄br + xrprε
ab + 2i(1 + 2α)ψbrψ̄ar,

which is equal to (4.8) as required. The remaining relations can be checked similarly.

Lemma 4.5. Let T ab and Qabc be given by (3.6), (4.3), (4.4), (4.1), (4.2), (3.10). Then

relations (2.4a) hold.

Proof. Firstly, it is easy to see that [T 11, Q21a] = −[K,Qa] = −2ixrψ
ar = iSa, and

[T 11, Q11a] = [K,Sa] = 0, and [T 12, Q11a] = −[D,Sa] = − i
2Q

11a. Moreover, we have

[T 12, Q21a] = i
2Q

21a as Qa is homogeneous in x of degree −1.

Let us recall that from the proof of lemma 3.9 (formula (3.53)) we have

∂rFjlk[ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk, ψam] = δkm∂kFrjl

(
ψbrψjb ψ̄

al − 1

2
δjlψar

)
.

Therefore an analogue of (3.54) takes the form

[H,Sa] = −1

2
[p2r , xmψ

am] + xm∂rFjlk[ψ
brψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk, ψam]− 1

2
δnmFrnmψ

ar

= iprψ
ar − Frjlψbrψjb ψ̄

al = iQa,

as required for the corresponding relation (2.4a). Further on, we have that [T 22, Qa] = 0

and similarly, [T 22, Q̄a] = 0, (cf. lemma 3.9). The remaining relations can be checked

similarly.

Lemma 4.6. Let T ab, Iab, Jab be given by (3.6), (4.3), (4.4), (3.8), (3.9). Then rela-

tions (2.5) hold.

The proof of the lemma is the same as the proof of lemma 3.10 for the first represen-

tation since Iab and Jab keep the same form, and the proof of commutation relations with

H in lemma 3.10 relies only on relations (2.1) which express H as the anticommutator of

the supercharges Qa and Q̄a.

5 Hamiltonians

We now proceed to explicit calculations of Hamiltonians appearing in theorem 3.6 and

theorem 4.1. We start with a Coxeter root system case.
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5.1 Coxeter systems

In this case we take R to be a Coxeter root system in V ∼= RN [40]. More exactly, let R be

a collection of vectors which spans V and is invariant under orthogonal reflections about

all the hyperplanes (γ, x) = 0, γ ∈ R, where (·, ·) is the standard scalar product in V . We

also assume that R can be decomposed as a disjoint union of its subsets R+ and −R+

such that each subsystem R+ and R− contains no collinear vectors. Furthermore, let us

assume that squared length (γ, γ) = 2 for any γ ∈ R, and that R is irreducible. Non-equal

choices of length of roots in the cases when the Coxeter group has two orbits on R are

covered by considerations in subsection 5.2 below.

The corresponding function F has the form

F (x1, . . . , xN ) =
λ

2

∑
γ∈R+

(γ, x)2 log(γ, x) , (5.1)

where λ∈C. It is established in [18, 41] that F satisfies generalized WDVV equations (2.10).

Recall the following property.

Lemma 5.1 (Chapter 5, [42]). For any u, v ∈ V∑
γ∈R+

(γ, u)(γ, v) = h(u, v),

where h is the Coxeter number of R.

Lemma 5.1 has the following corollary.

Lemma 5.2. Let F be given by (5.1). Then

xiFijk = λhδjk.

Proof. Let γ ∈ R have coordinates γ = (γ1, . . . , γN ). By lemma 5.1 we have

xiFijk = λ
∑
γ∈R+

xiγiγjγk
(γ, x)

= λ
∑
γ∈R+

γjγk = λh(ej , ek) = λhδjk.

The following identity will be useful below:∑
β,γ∈R+
β 6=γ

(β, γ)

(β, x)(γ, x)
= 0. (5.2)

It follows from the observation that the left-hand side is non-singular at all the hyperplanes

(β, x) = 0, β ∈ R+.

Let us choose now

α = −hλ+ 1

2
. (5.3)

Then hλ = −(2α + 1), so by lemma 5.2 function F satisfies the required condition (2.9).

Thus it leads to D(2, 1;α) superconformal mechanics with the Hamiltonians given by the-

orems 3.6, 4.1. We now simplify these Hamiltonians for the root system case.
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Theorem 5.3. Let function F be given by (5.1). Then the Hamiltonian H given by (3.27)

is supersymmetric with the superconformal algebra D(2, 1;α), where α is given by (5.3).

The rescaled Hamiltonian H1 = 4H has the form

H1 = −∆ +
∑
γ∈R+

2λ(λ+ 1)

(γ, x)2
+ Φ,

where ∆ = −p2 is the Laplacian in V and the fermionic term

Φ = 2λ
∑
γ∈R+

γiγjγkγl
(γ, x)2

ψbiψjb ψ̄
l
dψ̄

dk − 4λ
∑
γ∈R+

γiγj
(γ, x)2

ψibψ̄
bj . (5.4)

Proof. By formula (3.27) we have that

H =
p2

4
+ Ψ + U,

where potential

U = −1

8
∂iFjlkδ

ijδlk +
1

16
FijkFlmnδ

nmδjlδik

and

Ψ = −1

2
∂iFjlk(ψ

biψjb ψ̄
l
dψ̄

dk − ψibψ̄bjδlk).

Let us firstly simplify U . We have

Fjlk = λ
∑
γ∈R+

γjγlγk
(γ, x)

.

Then

∂iFjlkδ
ijδlk = −λ

∑
γ∈R+

γiγjγlγk
(γ, x)2

δijδlk = −4λ
∑
γ∈R+

1

(γ, x)2
(5.5)

and

FijkFlmnδ
nmδjlδik = 4λ2

∑
β,γ∈R+

(β, γ)

(β, x)(γ, x)
=
∑
γ∈R+

8λ2

(γ, x)2
(5.6)

because of identity (5.2). The statement follows from formulas (5.5), (5.6).

The following theorem can be easily checked directly.

Theorem 5.4. For the function F given by (5.1) the Hamiltonian H given by (4.4) is

supersymmetric with the superconformal algebra D(2, 1;α), where α is given by (5.3). The

rescaled Hamiltonian H2 = 4H has the form

H2 = −∆ +
∑
γ∈R+

2λ

(γ, x)
∂γ + Φ,

where Φ is defined by (5.4).
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Proposition 5.5. Hamiltonians H1, H2 from theorems 5.3, 5.4 satisfy gauge relation

δ−1 ◦H2 ◦ δ = H1,

where δ =
∏
β∈R+

(β, x)λ.

The proof follows immediately by making use of the identity (5.2).

Remark 5.6. We note that the Hamiltonian H2 is not self-adjoint under hermitian involu-

tion defined by

ψaj† = ψ̄ja, p†j = pj , x†j = xj , i† = −i, and (AB)† = B†A†

for any two operators A,B. One could have considered another ansatz for Q̄a so that

to obtain self-adjoint Hamiltonian. Namely, let Qa be as in (4.1) and consider hermitian

conjugate (Qa)†. Let Qa, (Qa)† (a = 1, 2) be the ansatz for the supercharges. Then

(Qa)† = prψ̄
r
a + iFrjkψ

k
aψ̄

r
b ψ̄

bj .

Note that since Frjkψ
k
aψ̄

r
b ψ̄

bj = Frjk(ψ̄
r
b ψ̄

bjψka − ψ̄raδkj) we may express (Qa)† in terms of

Q̄a (see (4.2)) as follows

(Qa)† = Q̄a − iFlmnψ̄laδnm.

We then have

{Qa, (Qc)†} = {Qa, Q̄c} − i{Qa, Flmnψ̄lc}δnm

= {Qa, Q̄c} − ψarψ̄lc∂rFlmnδnm − ψrc ψ̄akFrklFlmnδnm +
i

2
Frmnprδ

a
c δ
nm,

with {Qa, Q̄c} defined by (4.7). Then supersymmetry algebra constraint {Qa, (Qc)†} =

−2δacH leads to restrictions α = −1
2 , or α = −h+2

4 . In both cases the bosonic part of the

Hamiltonian H can be seen to be zero.

5.2 General ∨-systems

Let us consider a finite collection of vectors A in V ∼= CN such that the corresponding

bilinear form

GA(u, v) =
∑
γ∈A

(γ, u)(γ, v), u, v ∈ V

is non-degenerate. Let us recall what it means that A is a ∨-system [18]. We can assume

by applying a suitable linear transformation to A that

GA(u, v) = (u, v)

for any u, v ∈ V . In this case A is a ∨-system if for any γ ∈ A and for any two-dimensional

plane π ⊂ V such that γ ∈ π one has∑
β∈A∩π

(β, γ)β = µγ,

for some µ = µ(γ, π) ∈ C.
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Let F = FA(x1, . . . , xN ) be the corresponding function

F =
λ

2

∑
γ∈A

(γ, x)2 log(γ, x) , (5.7)

where λ ∈ C. Then F satisfies generalised WDVV equations (2.10) (see [18]). Furthermore,

the condition

xiFijk = −(2α+ 1)δjk

is satisfied if

α = −1

2
(λ+ 1).

Therefore this leads to D(2, 1;α) superconformal mechanics with the Hamiltonians given

by theorems 3.6, 4.1, which we present explicitly in the following theorem.

Theorem 5.7. Let function F be given by (5.7). Then the Hamiltonian H given by (3.27)

is supersymmetric with the superconformal algebra D(2, 1;α), where α = −1
2(λ + 1). The

rescaled Hamiltonian H1 = 4H has the form

H1 = −∆ +
λ

2

∑
γ∈A

(γ, γ)2

(γ, x)2
+
λ2

4

∑
γ,β∈A

(γ, γ)(β, β)(γ, β)

(γ, x)(β, x)
+ Φ,

where ∆ = −p2 is the Laplacian in V and the fermionic term

Φ =
∑
γ∈A

2λγrγjγlγk
(γ, x)2

ψbrψjb ψ̄
l
dψ̄

dk −
∑
γ∈A

2λγrγj(γ, γ)

(γ, x)2
ψrb ψ̄

bj . (5.8)

Furthermore, the Hamiltonian H given by (4.4) is also supersymmetric with the supercon-

formal algebra D(2, 1;α), where α = −1
2(λ+1) and the rescaled Hamiltonian H2 = 4H has

the form

H2 = −∆ + λ
∑
γ∈A

(γ, γ)

(γ, x)
∂γ + Φ.

The proof is similar to the one in the Coxeter case. The following proposition can also

be checked directly.

Proposition 5.8. Hamiltonians H1, H2 from theorem 5.7 satisfy gauge relation

δ−1 ◦H2 ◦ δ = H1,

where δ =
∏
β∈A(β, x)

λ
2
(β,β).

6 Trigonometric version

In this section we consider prepotential functions F = F (x1, . . . , xN ) of the form

F =
∑
α∈A

cαf((α, x)), (6.1)
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where A is a finite set of vectors in V ∼= CN , cα ∈ C are some multiplicities of these vectors,

and function f is given by

f(z) =
1

6
z3 − 1

4
Li3(e

−2z)

so that f ′′′(z) = coth z.

We are interested in the supercharges of the form

Qa = prψ
ar + iFrjk〈ψbrψjb ψ̄

ak〉,
Q̄c = plψ̄

l
c + iFlmn〈ψ̄ldψ̄dmψnc 〉,

a, c = 1, 2, which is analogous to the first representation considered in section 3.

Function F should satisfy conditions

FrjkFkmn = FrmkFkjn, (6.2)

for all r, j,m, n = 1, . . . , N but we no longer assume conditions (2.9). Then we have the

following statement on supersymmetry algebra.

Theorem 6.1. Let us assume that F satisfies conditions (6.2). Then for all a, b = 1, 2

we have

{Qa, Qb} = {Q̄a, Q̄b} = 0 and {Qa, Q̄b} = −2Hδab ,

where the Hamiltonian H is given by

H =
p2

4
−
∂iFjlk

2

(
ψbiψjb ψ̄

l
dψ̄

dk − ψibψ̄bjδlk +
1

4
δijδlk

)
+

1

16
FijkFlmnδ

nmδjlδik.

Furthermore, the rescaled Hamiltonian H1 = 4H has the form

H1 = −∆ +
1

2

∑
α∈A

cα(α, α)2

sinh2(α, x)
+

1

4

∑
α,β∈A

cαcβ(α, α)(β, β)(α, β) coth(α, x) coth(β, x) + Φ,

(6.3)

where ∆ = −p2 is the Laplacian in V and the fermionic term

Φ =
∑
α∈A

2cααiαj

sinh2(α, x)

(
αlαkψ

biψjb ψ̄
l
dψ̄

dk − (α, α)ψibψ̄
bj
)
. (6.4)

The proof of the first part of the theorem is the same as the proof of theorem 3.6

together with the proof of the relevant part of lemma 3.8. The proof of formula (6.3) is

similar to the proof of theorem 5.3.

Let us now consider supercharges of the form

Qa = prψ
ar + iFrjkψ

brψjb ψ̄
ak,

Q̄c = plψ̄
l
c + iFlmnψ̄

l
dψ̄

dmψnc ,

a, c = 1, 2, which is analogous to the second representation considered in section 4. Then

we have the following statement on supersymmetry algebra.
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Theorem 6.2. Let us assume that F satisfies conditions (6.2). Then for all a, b = 1, 2

we have

{Qa, Qb} = {Q̄a, Q̄b} = 0 and {Qa, Q̄b} = −2Hδab ,

where the Hamiltonian H is given by

H =
p2

4
−
∂rFjlk

2
(ψbrψjb ψ̄

l
dψ̄

dk − ψrb ψ̄bjδlk) +
i

4
δnmFrmnpr. (6.5)

Furthermore, the rescaled Hamiltonian H2 = 4H, has the form

H2 = −∆ +
∑
α∈A

cα(α, α) coth(α, x)∂α + Φ, (6.6)

where Φ is the fermionic term defined by (6.4).

The proof of the first part of the theorem is the same as the proof of theorem 4.1

together with the proof of the relevant part of lemma 4.4. Then formula (6.6) can be easily

derived from the form (6.5) of H.

Let us now assume that A = R is a crystallographic root system, and that the mul-

tiplicity function c(α) = cα, α ∈ R is invariant under the corresponding Weyl group W .

For a general root system R the corresponding function F does not satisfy equations (6.2).

For example, if R = AN−1 then relations (6.2) do not hold. But for some root systems and

collections of multiplicities relations (6.2) are satisfied.

In the rest of this section we consider such cases when prepotential F satisfying (6.2)

does exist. The corresponding root systems R have more than one orbit under the action

of the Weyl group W . We start by simplifying the corresponding Hamiltonians H1 given

by (6.3).

Proposition 6.3. Let us assume that prepotential F given by (6.1) for a root system

R with invariant multiplicity function c satisfies (6.2). Then Hamiltonian (6.3) can be

rearranged as

H1 = −∆ +
∑
α∈R+

c̃α

sinh2(α, x)
+ Φ̃, (6.7)

where

c̃α =

{
cα(α, α)2

(
1 + cα(α, α)

)
, if 2α /∈ R,

cα(α, α)2
(
1 + (α, α)(cα + 8c2α)

)
, if 2α ∈ R,

Φ̃ = Φ + const, with Φ given by (6.4) and R+ is a positive subsystem in R.

Indeed, it is easy to see that for the crystallographic root system R the term∑
β,α∈R
β 6∼α

cαcβ(α, α)(β, β)(α, β) coth(α, x) coth(β, x)
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is non-singular at tanh(α, x) = 0 for all α ∈ R, hence it is constant. One can show that

the Hamiltonian H1 given by (6.3) simplifies to the required form.

We now show that solutions to equations (6.2) exist for the root systems R = BCN ,

R = F4 and R = G2, with special collections of invariant multiplicities.

Let R+ be a positive subsystem in the root system R. For a pair of vectors a, b ∈ V
we define a 2-form B(a,b)R+

by

B(a,b)R+
=

∑
β,γ∈R+

cβcγ(β, γ)Bβ,γ(a, b)β ∧ γ, (6.8)

where Bα,β(a, b) = α ∧ β(a, b) = (α, a)(β, b) − (α, b)(β, a). The form B(a,b)R+
has good

properties with regard to the action of the corresponding Weyl group W . Namely, the

following statement takes place.

Proposition 6.4. The 2-form (6.8) is W -invariant, that is

wB(a,b)R+
= B(wa,wb)R+

= B(wa,wb)wR+
, (6.9)

for any w ∈W .

Proof. Let us choose a simple root α ∈ R+. It is sufficient to prove the statement for

w = sα. Let us rewrite B(a,b)R+
as

B(a,b)R+
= 2cα

∑
β∈R+

cβ(α, β)Bα,β(a, b)α ∧ β +
∑

β,γ∈R+\{α}

cβcγ(β, γ)Bβ,γ(a, b)β ∧ γ.

It is easy to see that for any β, γ ∈ R

Bβ,γ(sαa, sαb) = Bsαβ,sαγ(a, b) (6.10)

since (u, sαv) = (sαu, v) for any u, v ∈ V . Let us now apply sα to equality (6.8). Since

sα(R+ \ {α}) = R+ \ {α} we have

sαB(a,b)R+
= −2cα

∑
β∈R+

cβ(α, β)Bα,β(a, b)α ∧ β +
∑

β,γ∈R+\{α)

cβcγ(β, γ)Bβ,γ(a, b)sαβ ∧ sαγ

= 2cα
∑
β∈R+

cβ(α, β)Bsαα,sαβ(a, b)α ∧ β +
∑

β,γ∈R+\{α)

cβcγ(β, γ)Bsαβ,sαγ(a, b)β ∧ γ

= B(sαa,sαb)R+
,

by the relation (6.10). This proves the first equality in (6.9). In order to prove the second

equality (6.9) let us notice that in fact∑
β∈R+

cβ(α, β)Bα,β(a, b)α ∧ β = 0.

Hence sαB(a,b)R+
= B(sαa,sαb)sαR+

.
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Let us derive some conditions for a function F to satisfy equations of the form (6.2).

Let Fi be the N × N matrices of third derivatives of F , (Fi)lm = ∂3F
∂xi∂xl∂xm

, and for any

vector a = (a1, . . . , aN ) ∈ V let us denote Fa =
∑N

i=1 aiFi.

Theorem 6.5. Let a, b ∈ V . Then the equations

FaFb = FbFa

are satisfied if and only if for any positive system R+

B(a,b)R+
= 0. (6.11)

Proof. We have

(Fa)lk =
∑
α∈R

cα(α, a)αlαk coth(α, x),

and therefore

FaFb =
∑
α,β∈R

cαcβ(α, a)(α, b)(α, β) coth(α, x) coth(β, x)α⊗ β.

Hence the equations [Fa, Fb] = 0 are equivalent to∑
α,β∈R

cαcβBα,β(a, b)(α, β) coth(α, x) coth(β, x)α⊗ β = 0,

which can be easily checked to be equivalent to∑
α,β∈R+

cαcβBα,β(a, b)(α, β) coth(α, x) coth(β, x)α ∧ β = 0. (6.12)

It is easy to see that the sum in the left-hand side of the equality (6.12) is non-singular at

tanh(α, x) = 0 for all α ∈ R+, hence this sum is always constant. In an appropriate limit

in a cone coth(α, x)→ 1 for all α ∈ R+, and therefore the equality (6.12) is equivalent to

the equality ∑
α,β∈R+

cαcβBα,β(a, b)(α, β)α ∧ β = 0,

as required.

Let ei, i = 1, . . . , N be the standard orthonormal basis in V . We may express B(a,b)R+
in

the basis ei ∧ ej of Λ2V ,

B(a,b)R+
=

∑
1≤i<j≤N

gijei ∧ ej , (6.13)

for some scalars gij = gij(a, b). Then linear independence of the basis vectors and condi-

tion (6.11) give rise to
(
N
2

)
equations gij(a, b) = 0. If AN−1 ⊂ R then by Proposition 6.4

we should have that gij(a, b) = ±gσ(i)σ(j)(σ(a), σ(b)) for any transposition σ ∈ SN which

acts on vectors a, b by the corresponding permutation of coordinates. This shows that the

condition (6.11) reduces to a single equation gij = 0 for any fixed i, j and general a, b ∈ V .

For convenience we will write below Bei,ej (a, b) as Bij(a, b).
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Theorem 6.6. Let R = BCN . Let the positive half of the root system BCN be

ηei, 2ηei, 1 ≤ i ≤ N ; η(ei ± ej), 1 ≤ i < j ≤ N,

where η ∈ C× is a parameter. Let r be the multiplicity of vectors ηei, and let s be the

multiplicity of vectors 2ηei. Let q be the multiplicity of vectors η(ei±ej). Then the function

F =

N∑
i=1

(rf(ηxi) + sf(2ηxi)) + q

N∑
i<j

f(η(xi ± xj)) (6.14)

satisfies conditions (6.2) if and only if r = −8s− 2(N − 2)q. The corresponding supersym-

metric Hamiltonians given by (6.6), (6.7) take the form

H1 = −∆ + η4
N∑
i=1

(
−(8s+ 2(N − 2)q)(1− 2(N − 2)qη2)

sinh2 ηxi
+

16s(1 + 4sη2)

sinh2 2ηxi

)
(6.15)

+ η4
N∑
i<j

4q(1 + 2qη2)

sinh2(η(xi ± xj))
+ Φ̃,

and

H2 = −∆ + 2η3
N∑
i=1

(
− (8s+ 2(N − 2)q) coth ηxi + 8s coth 2ηxi

)
∂i (6.16)

+ 4qη3
N∑
i<j

coth(η(xi ± xj))(∂i ± ∂j) + Φ,

with Φ given by

Φ = 4η4
N∑
i=1

(
−(8s+ 2(N − 2)q)

sinh2 ηxi
+

16s

sinh2 2ηxi

)(
ψbiψibψ̄

i
dψ̄

di − ψibψ̄bi
)

+ 4η4
∑

ε∈{1,−1}

N∑
m<t

∑
i,j,l,k

qdmtidmtj

sinh2(η(xm + εxt))

(
dmtldmtkψ

biψjb ψ̄
l
dψ̄

dk − 2ψibψ̄
bj
)
,

where dmtk = dmtk(ε) = δmk + εδtk, and Φ̃ = Φ + const.

Proof. Let us use theorem 6.5 in order to deal with conditions (6.2). Let us consider the

coefficient g12(a, b) at e1∧e2 by collecting respective terms in the corresponding form B(a,b)R+

given by (6.8), (6.13). The non-trivial contribution to g12 comes only from the following

pairs of vectors {β, γ} in the expansion (6.8):

(1) {ηe1, η(e1 ± e2)}, (2) {2ηe1, η(e1 ± e2)}, (3) {η(e1 ± e2), η(e1 ± ej)}, 3 ≤ j ≤ N,

since contributions from pairs {η(e1 ± e2), η(e2 ± ej)} and {η(e1 ± ej), η(e2 ± ej)} is zero

each. Pairs (1) contribute 4rqη6B12(a, b), pairs (2) contribute 32sqη6B12(a, b) and pairs

(3) contribute 8q2(N − 2)η6B12(a, b). Therefore

g12(a, b) = 4q(r + 8s+ 2(N − 2)q)η6B12(a, b).
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By Proposition 6.4, gij = 0 for all 1 ≤ i < j ≤ N if and only if r = −8s− 2(N − 2)q. The

form of the Hamiltonians H2, H1 follows from theorem 6.2 and Proposition 6.3 respectively.

Then the statement follows.

Remark 6.7. We note that for the multiplicity s = 0 theorem 6.6 is contained in [38].

Indeed, theorem 2.3 in [38] states that the function F given by formula (6.14) with root

system R = BN satisfies WDVV equations. It also follows from the proof of theorem 2.3

in [38] that the corresponding metric is proportional to the standard metric δij . Therefore

WDVV equations are equivalent to equations (6.2).

Theorem 6.8. Let R = F4. Let the positive half of the root system F4 be

ηei, 1 ≤ i ≤ 4; η(ei ± ej), 1 ≤ i < j ≤ 4;
η

2
(e1 ± e2 ± e3 ± e4),

where η ∈ C× is a parameter. Let r be the multiplicity of short roots ηei,
η
2 (e1±e2±e3±e4)

and let q be the multiplicity of long roots η(ei ± ej). The function

F = r
4∑
i=1

f(ηxi) + r
∑

εi∈{1,−1}

f
(η

2
(ε1x1 + ε2x2 + ε3x3 + x4)

)
+ q

4∑
i<j

f(η(xi ± xj))

satisfies conditions (6.2) if and only if r = −2q or r = −4q. The corresponding supersym-

metric Hamiltonians (6.7), (6.6) take the form

H1 = −∆ + r(1 + rη2)η4

 4∑
i=1

1

sinh2 ηxi
+

∑
εi∈{1,−1}

1

sinh2(η2 (ε1x1 + ε2x2 + ε3x3 + x4))


+ η4

4∑
i<j

4q(1 + 2qη2)

sinh2(η(xi ± xj))
+ Φ̃,

and

H2 = −∆ + rη3
∑

εi∈{1,−1}

coth
(η

2
(ε1x1 + ε2x2 + ε3x3 + x4)

)
(ε1∂1 + ε2∂2 + ε3∂3 + ∂4)

+ 2rη3
4∑
i=1

coth ηxi∂i + 4qη3
4∑
i<j

coth(η(xi ± xj))(∂i ± ∂j) + Φ

with Φ given by

Φ = 4η4
4∑
i=1

r

sinh2 ηxi

(
ψbiψibψ̄

i
dψ̄

di − ψibψ̄bi
)

+ 4η4
∑

ε∈{1,−1}

4∑
m<t

∑
i,j,l,k

qdmtidmtj

sinh2 η((xm + εxt))

(
dmtldmtkψ

biψjb ψ̄
l
dψ̄

dk − 2ψibψ̄
bj
)

+ 4η4
∑

εi∈{1,−1}

∑
i,j,l,k

rdidj

sinh2(η2 (ε1x1 + ε2x2 + ε3x3 + x4))

(
dldkψ

biψibψ̄
i
dψ̄

di − ψibψ̄bi
)
,

where r = −2q or r = −4q, di = di(ε1, ε2, ε3) = ε1δ1i+ε2δ2i+ε3δ3i+δ4i and Φ̃ = Φ+const.
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Proof. Since B4 ⊂ F4 we have the contribution to the coefficient g12 of the form (6.8), (6.13)

from the pairs of vectors {β, γ} ∈ B4 which is equal to 4q(4q+r)η6B12(a, b). The remaining

contribution to the coefficient g12 comes from the following pairs of vectors {β, γ} in the

expansion (6.8):

(1)
{
ηe1,

η

2
(e1 ± e2 ± e3 ± e4)

}
, (2)

{
η(e1 ± e3),

η

2
(e1 ± e2 ± e3 ± e4)

}
,

(3)
{
η(e1 ± e4),

η

2
(e1 ± e2 ± e3 ± e4)

}
.

Indeed, let us demonstrate why pairs of vectors of the form

η

2
(e1 ± e2 ± e3 ± e4) (6.17)

contribute trivially to the coefficient g12 of the form (6.8), (6.13). Let β = η
2 (e1+λe2+µe3+

νe4) and β̃ = η
2 (e1+λe2−µe3−νe4), where λ, µ, ν = ±1. Non-trivial contribution with this

β to g12 can only come from the two pairs {β,±γ}, where γ± = η
2 (e1− λe2± (µe3 + νe4)).

The same holds for β̃. The contribution from the two pairs {β, γ±} is −λr2

4 η6Be1+λe2,µe3+νe4
while the contribution from the two pairs {β̃, γ±} is λr2

4 η6Be1+λe2,µe3+νe4 . Hence altogether

contributions to g12 from pairs of vectors of the form (6.17) cancel. Similarly, one can check

that contributions from pairs {ηe2, η2 (e1±e2±e3±e4)} and {η(e1±e2), η2 (e1±e2±e3±e4)}
is zero.

Then pairs (1) contribute 2r2η6B12(a, b) and pairs (2), (3) contribute 4rqη6B12(a, b)

each. Therefore in total

g12(a, b) = 2(8q2 + 6rq + r2)η6B12(a, b).

By Proposition 6.4, gij = 0 for all 1 ≤ i < j ≤ 4 if and only if r = −2q or r = −4q. The

form of the Hamiltonians H2, H1 follows from theorem 6.2 and Proposition 6.3. Then the

statement follows.

Theorem 6.9. Let R = G2. Let the positive half of the root system G2 considered in three

dimensional space be

α1 = η(e1 − e2), α2 = η(e1 − e3), α3 = η(e2 − e3),
α4 = η(2e1 − e2 − e3), α5 = η(e1 + e2 − 2e3), α6 = η(e1 − 2e2 + e3),

where η ∈ C× is a parameter. Let s be the multiplicity of the short roots αi, i = 1, 2, 3 and

let r be the multiplicity of the long roots αj, j = 4, 5, 6. Then the function

F = s

3∑
i<j

f(η(xi − xj)) +
r

2

∑
σ∈S3

f(η(2xσ(1) − xσ(2) − xσ(3)))

satisfies conditions (6.2) if and only if s = −3r or s = −9r. The corresponding supersym-

metric Hamiltonians (6.7), (6.6) take the form

H1 = −∆ + η4
3∑
i<j

4s(1 + 2sη2)

sinh2(η(xi − xj))
+ η4

∑
σ∈S3

18r(1 + 6rη2)

sinh2(η(2xσ(1) − xσ(2) − xσ(3)))
+ Φ̃,
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and

H2 = −∆ + 4sη3
3∑
i<j

coth(η(xi − xj))(∂i − ∂j)

+ 6rη3
∑
σ∈S3

coth(η(2xσ(1) − xσ(2) − xσ(3)))(2∂σ(1) − ∂σ(2) − ∂σ(3)) + Φ,

with Φ given by

Φ = 4η4
3∑

m<t

∑
i,j,l,k

sd−mtid
−
mtj

sinh2(η(xm − xt))

(
d−mtld

−
mtkψ

biψjb ψ̄
l
dψ̄

dk − 2ψibψ̄
bj
)

+ 2η4
∑
σ∈S3

∑
i,j,l,k

rdσi d
σ
j

sinh2(η(2xσ(1) − xσ(2) − xσ(3)))

(
dσl d

σ
kψ

biψjb ψ̄
l
dψ̄

dk − 6ψibψ̄
bj
)

where s = −3r or s = −9r, d−mti = δmi−δti, dσi = 2δσ(1)i−δσ(2)i−δσ(3)i, and Φ̃ = Φ+const.

Proof. The coefficient at e1 ∧ e2 in the form B(a,b)R+
given by (6.8), (6.13) is

g12(a, b) =
6∑
i<j

2cαicαj (αi, αj)Bαi,αj (a, b)(αi ∧ αj , e1 ∧ e2) =

5∑
i=1

Ai,

where (αi∧αj , e1∧e2) = det(c1, c2) where ck are the column vectors ck = ((αi, ek), (αj , ek))
ᵀ,

k = 1, 2, and

Ai =

6∑
j=i+1

2cαicαj (αi, αj)Bαi,αj (a, b)(αi ∧ αj , e1 ∧ e2).

We have

A1 = 6srη6Bα1,α5(a, b),

A2 = 2sη6
(
sBα2,α3(a, b)− 3rBα2,α6(a, b)

)
,

A3 = 0,

A4 = 18r2η6Bα4,3α3(a, b),

A5 = 18r2η6Bα5,α6(a, b).

Simplifying we obtain

g12(a, b) = 2η6(27r2 + 12rs+ s2)(B12(a, b)−B13(a, b) +B23(a, b)).

By Proposition 6.4, gij = 0 for all 1 ≤ i < j ≤ 3 if and only if s = −3r or s = −9r. The

form of the Hamiltonians H1, H2 follows from theorem 6.2 and Proposition 6.3 respectively.

Then the statement follows.
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Remark 6.10. The bosonic part of the supersymmetric Hamiltonians (6.6), (6.7) becomes

Calogero-Moser Hamiltonian in the rational limit. For example let us consider the case

of the root system BCN and let us introduce rescaled multiplicities ŝ = η2s, q̂ = η2q

and r̂ = η2r in theorem 6.6. Then in the limit η → 0 bosonic parts of Hamiltonians H1

and H2 given by (6.15), (6.16) become the rational BN Hamiltonians Hb,r
1 , Hb,r

2 with two

independent coupling parameters, namely,

Hb,r
1 = −∆ +

N∑
i<j

4q̂(2q̂ + 1)

(xi ± xj)2
+

N∑
i=1

l(l − 1)

x2i
,

and

Hb,r
2 = −∆ +

N∑
i<j

4q̂

xi ± xj
(∂i ± ∂j)−

N∑
i=1

2l

xi
∂i,

where l = 2((N − 2)q̂ + 2ŝ). Thus supersymmetric Hamiltonians (6.15), (6.16) can be

viewed as η-deformation of the rational superconformal Hamiltonians considered in theo-

rems 5.3, 5.4 for the root system R = BN .

7 Concluding remarks

Since work [14] there were extensive attempts to define superconformal N = 4 Calogero-

Moser type systems for sufficiently general coupling parameters and suitable superconfor-

mal algebras. Some low rank cases were treated in [22, 23]. A number of works were

devoted to the superconformal extensions of Calogero-Moser systems where extra spin

type variables had to be present (see [43] for a discussion and the review). In the current

work we presented superconformal extensions of the ordinary Calogero-Moser system with

scalar potential as well as its generalisations for an arbitrary ∨-system, which includes

Olshanetsky-Perelomov generalisations of Calogero-Moser systems with arbitrary invari-

ant coupling parameters. The superconformal algebra is D(2, 1;α) where parameter α is

related to the coupling parameter(s). It is crucial for our considerations that we deal with

quantum rather than classical Calogero-Moser type systems.

We also presented supersymmetric non-conformal deformations of the Calogero-Moser

type systems related with the root system BN (which may be thought of as the Calogero-

Moser system with boundary terms) as well as with some other exceptional root systems.

It would be very interesting to see if there are any relations of considered systems with

black holes (cf. [11] for the conjectural relation with supersymmetric Calogero-Moser sys-

tems and e.g. [12, 44] and references therein for non-conformal deformations of AdS2 black

hole geometry).

All our considerations are also extended to non-self-adjoint gauge of the Calogero-

Moser type Hamiltonians. There has been considerable interest in such non-self-adjoint

but PT symmetric bosonic Hamiltonians (see e.g. [45] and references therein). It would be

interesting to see whether these Hamiltonians play a role in the context of supersymmetry.

It may also be interesting to clarify integrability of considered supersymmetric

Hamiltonians.
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