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1 Introduction

The space of admissible vacua, or the moduli space, is among the simplest characteristics of

a quantum field theory. It is parametrised by vacuum expectation values of gauge-invariant

operators transforming as scalars under the Poincaré group. Despite their simplicity, mod-

uli spaces can be highly structured and mathematically interesting objects. Theories with

8 supercharges present a particularly rich selection of interesting and significant examples:
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they naturally occur as moduli spaces of brane systems in string theory, we have good

control over them thanks to supersymmetry, they feature genuinely interesting and calcu-

lable non-perturbative physics and can be connected by a web of dualities to moduli spaces

of other theories with 8 supercharges. For example, it was recently discovered that three-

dimensional N = 4 theories hold a wealth of interesting information about five-dimensional

N = 1 gauge theories [1].

One often restricts to the part of moduli space which is parametrised by the set of (si-

multaneously) 1/2-BPS operators — the chiral ring — on account of improved theoretical

control. It is then possible to naturally break the moduli space into several qualitatively

distinct subspaces, or branches. The Higgs branch is a Hyperkähler manifold and a su-

persymmetric non-renormalisation theorem protects it from quantum corrections; it is also

essentially the same in every dimension.1 Coulomb branches at classical and fully quantum

field theoretical levels can differ greatly, however. This is observed most dramatically in

three dimensions where new inherently non-perturbative particles — topological vortices

— emerge in the deep IR and open new directions in the moduli space. The new space is

also Hyperkähler and often exhibits highly non-trivial isometries.

Coulomb branches of 3d N = 4 theories have received much attention since the mid-

nineties and the following summary is by no means exhaustive. Initial investigations ex-

ploited mirror symmetry which relates a Coulomb branch of one theory to a Higgs branch

of another theory [4, 5]. Later papers treated the theory in an SCFT framework and

produced relatively limited but valuable results for some key examples [6, 7]. The authors

of [8] were able to generalise them for a wide range of three-dimensional quivers and laid the

groundwork for operator counting [9–12] . This work made it clear that Coulomb branches

provide interesting new examples of Hyperkähler varieties and more mathematicians had

become interested in this topic as a result [13, 14]. Finally, several recent papers have

provided algebraic constructions of the Coulomb branch chiral ring, albeit limited in scope

to unitary nodes and linear quivers [15–18], or a single symplectic node [19].

Unsurprisingly, each approach comes with its strengths and drawbacks. Operator

counting is very general, straightforwardly algorithmic and naturally captures the isom-

etry of the Coulomb branch and representation-theoretic content of chiral ring relations,

reducing the problem of finding the moduli space to identifying coefficients for finitely

many linear combinations of finitely many operators. The representation-theoretic data is

also often sufficient to solve this latter problem. However, turning on complex mass de-

formations compromises the computational utility of this method. Operator counting also

rarely aids physical interpretation of particular chiral ring operators. On the other hand

the recent algebraic construction leverages operators’ physical properties, naturally handles

complex mass deformations and in principle fully specifies the moduli space for arbitrary

quivers. However, the way in which it is defined obscures the isometry, corresponding

representation-theoretic data and as a result physical relations between gauge-invariant

chiral operators are difficult to extract.

1With a caveat: the Higgs branch is quantum-mechanically corrected in 5 and 6 dimensions, but only

in the infinite coupling regime [1, 2], and in 4 dimensions at Argyres-Douglas points [3].
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This paper demonstrates that operator counting and algebraic construction can be

synthesised into a new method which combines their strengths, removes many of their

drawbacks and provides a new and powerful way to derive relations between gauge-invariant

operators in 3d N = 4 theories. Our examples are drawn from families of balanced quiver

gauge theories of type A and D (i.e. shaped like their namesakes among Dynkin diagrams)

and, in the case of D, of Panyushev height2 2; these examples have been studied in [11]

using only operator counting. A follow-up paper will expand this work to types B and C,

also of height 2.

In section 2 we provide a brief introduction into generalities of quivers, their Coulomb

branch chiral rings and operator counting. Section 3 develops our tools for quivers of type

A, largely following the pioneering work of [15]. Section 4 expands the method to quivers

of type D and height 2. We close with section 6 sketching out the wide variety of directions

that are now open to investigation.

2 General remarks

2.1 Quivers

We investigate N = 4 balanced simply laced quiver gauge theories in 2+1 dimensions with

unitary gauge groups. Such theories are specified by a connected3 graph called a quiver.

Its circular nodes signify unitary4 groups U(r), whose product forms the overall gauge

group. Each gauge factor comes with supersymmetric vector multiplets in the adjoint

representation while each undirected link between two nodes corresponds to a hypermulti-

plet transforming under the fundamental (or anti-fundamental) representation under both

nodes connected by the link.5 We will only consider links which start and end on different

nodes, i.e. our theories will not include adjoint hypermultiplets. Each circular node can

be connected to a square node representing flavor symmetry. Links connecting a square

node to a circular node describe a matter hypermultiplet charged under the fundamental

representation of both the gauge group and the flavor group. Several simple quivers are

presented in figure 1.

These and similar quiver descriptions straightforwardly prescribe a Lagrangian and

vice versa.6 In the absence of a flavor node an overall U(1) gauge subgroup decouples and

can effectively provide a flavor node of rank 1. We preempt this decoupling phenomenon

by only considering quivers with at least one flavor node.

2Panyushev height is defined in section 2.1.
3We restrict to connected graphs since unconnected graphs describe decoupled sectors and hence add

nothing new to the discussion.
4There are also orthosymplectic quiver gauge theories whose gauge nodes alternate between orthogonal

and symplectic groups, but we do not consider them here.
5This is the only type of link in this paper although others exist: [20] study “multiple” and directed links

suggestively reminiscent of Dynkin diagrams of types B, C, F and G. All quivers in this paper are of type

A or D, hence “simply laced”.
6With the possible exception of non-simply laced quivers whose Lagrangians are unknown. We have

recently made some progress in developing a well-defined Lagrangian description and hope to present it in

a followup paper.
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Figure 1. Examples of balanced quivers of type A, B, C, resp. D.

In the interest of further simplicity, all gauge nodes are required to be balanced. This

is easily defined: start with the rank of a gauge node U(r), which is just r. Then let n

be the number of hypermultiplets charged under it; this will be the sum of ranks of all

adjacent gauge and flavor groups. Then, following [8], we define excess as

e = n− 2r (2.1)

If e = 0 we say the node is balanced. If the excess is zero at every gauge node then

the quiver as a whole is said to be balanced. All quivers in this paper are balanced but we

intend to adapt our techniques to quivers with unbalanced nodes in future work.7

Finally, all quivers in this paper fall into two categories: either their gauge subgraph

looks like the Dynkin diagram for sl(n,C), in which case we say the quiver is of type A,

or the gauge subgraph is that of so(2n,C) and the quiver is of type D. We will be able

to cover all quivers of type A (subject to stated restrictions) but have to impose a final

condition on type D: such quivers must have height 2.

The definition of quiver height [22] leverages the similarity between Dynkin diagrams

of simple Lie algebras and subgraphs of quivers formed by all gauge nodes and can be

calculated by taking a dot product between the vector of Coxeter labels and the vector of

flavor ranks. For example, the family of type D quivers depicted in figure 8, whose Coxeter

labels are (1, 2, . . . , 2, 1, 1), has height (0, 1, . . . , 0, 0, 0) · (1, 2, . . . , 2, 1, 1) = 2.

Although it may seem that we have narrowed the class of quivers almost out of ex-

istence, we have merely restricted to cases covered in [11], whose Coulomb branches are

closures of nilpotent orbits.8 They are the simplest exemplars of their kind and hence a

suitable arena for development of a new technique. We expect that once our method is

established for these basic cases most — if not all — of the imposed restrictions can be

lifted and the description will generalise to varieties beyond nilpotent orbits.

2.2 Chiral ring

Among the simplest aspects of a quiver theory one can study is its moduli space, or the

set of all admissible vacuum expectation values of Lorentz-invariant operators. We restrict

our attention to chiral operators which break one half of N = 4 supersymmetry. Let

7Ref. [21] treats a class of star-shaped quivers, which generally involve unbalanced nodes, with similar

tools.
8We will trade accuracy for brevity and refer to closures of nilpotent orbits as, simply, “nilpotent orbits”

in what follows.
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O1(x) and O2(y) be two such operators. General results show that O1(x)O2(y) is also

chiral and furthermore 〈O1(x)O2(y)〉 independent of x or y and we can suppress them.

Moreover cluster decomposition implies that 〈O1O2〉 = 〈O1〉〈O2〉. It follows that vevs of

chiral operators 〈Oi〉 form a ring. One can treat it as a coordinate ring and attempt to

reconstruct and study the corresponding algebraic variety formed of all possible vacua.

That is the general motivation of this paper.

Classical F -term equations imply that a non-zero vev on one chiral operator may

impose a zero vev condition on other operators and supersymmetric non-renormalisation

theorems (which naturally take into account D-terms) show that this feature persists in

the quantum theory. In this way the moduli space breaks into several branches: the

Higgs branch H, the Coulomb branch C and a number of mixed branches. The Higgs

branch admits vevs on all scalar operators originating from matter hypermultiplets and it is

protected from quantum corrections by supersymmetry.9 It is mathematically interesting

in its own right as a concrete example of a Hyperkähler quotient. Mixed branches are

essentially combinations of Higgs and Coulomb branches and while noteworthy we will not

consider them or the Higgs branch in this paper. Instead our focus will be on the Coulomb

branch. It can be morally defined as the subset of vacua where no scalars in matter

hypermultiplets exhibit vevs but scalars in vector multiplets possibly do. The chiral ring

is then precisely the coordinate ring of C and we will denote it C[C].
We are interested in the vacuum manifold so it is natural to consider the theory in the

deep IR. The only chiral operators with (potentially) non-zero vevs are the gauge-invariant

combinations of scalar superpartners of gauge bosons, which are present in the theory’s La-

grangian, and monopole operators, which become relevant in the deep IR. Loosely speaking,

monopole operators serve as creation and annihilation operators for topological particles

called vortices. Turning on monopole operator vevs leaves F− and D-terms (and hence the

conditions for a vacuum) intact. Consequently both kinds of operators (and their products)

admit simultaneous non-zero vevs.

The chiral ring can be presented as a freely generated ring quotiented by an ideal:

C[C] = C[O1,O2, . . . ]/I (2.2)

We will refer to the Oi — which stand in for vevs of gauge-invariant chiral operators

— as generators. Elements of I are called relations and we usually find that the ideal is

non-trivial but finitely generated.

Presence of flavor nodes indicates hypermultiplets in the Lagrangian which can be

given complex mass by conventional means without breaking more supersymmetry. Quiver

theories are often studied at the IR superconformal point where all masses are set to zero,

but once the SCFT is understood one can turn on real and complex mass parameters and

study how its moduli space deforms. Our method is particularly suited for investigations

of complex mass deformations.10

9See footnote 1.
10Real mass deformations were recently studied in [23]. It would be interesting to integrate them with

methods covered in this paper.
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Coulomb branches with unitary nodes always exhibit some isometry and generators

will assemble into irreducible representations of this symmetry’s Lie algebra. We can be

even more precise with the subset of quivers to which we restrict: chiral ring generators

form the adjoint (or coadjoint) representation of the overall isometry, which can in turn be

read off the quiver reinterpreted as a Dynkin diagram for a simple Lie algebra. So quivers

of type A with n nodes have sl(n+1,C) isometry on their Coulomb branch while quivers of

type D with the same number of nodes exhibit so(2n,C) isometry [8] and the entire chiral

ring is generated by (components of) the appropriate (co)adjoint representation [11].

Relations can be stated in the form of various contractions of the adjoint tensor or

conditions on minors thereof. This is a very desirable presentation of the chiral ring because

it makes the isometry of C explicit. It also allows direct contact with a family of well

understood spaces: the nilpotent orbits of Lie algebras11 [11]. We will say more when we

are able to get the generators and relations in this form. But for that we need to first

introduce operator counting and algebraic construction of the chiral ring, which we then

combine into a “synthetic” method for determining the full gauge-invariant presentation

of the chiral ring.

2.3 Operator counting and monopole operators

We will now briefly review operator counting, or the Hilbert series approach to Coulomb

branch chiral rings. For more background see [9, 11, 24]. The two main insights behind this

method are that we can often easily identify a set of “basic” symmetries of the Coulomb

branch and that we in principle know exactly how many operators carry any particular

combination of charges under these symmetries. This information is preserved by ring

isomorphisms, so it in particular has to be the same for any description of the physical chiral

ring (which we can specify) and the coordinate ring of a putative geometric description of

the Coulomb branch (which we would like to find) and constitutes a highly non-trivial test

which is sometimes sufficient to fully specify the presentation in (2.2).

Monopole operators have a ready path integral interpretation as disorder operators

which insert a Dirac singularity into the gauge field [6]. Three dimensional magnetic

monopole operators are local operators but they are still charged under the dual (or Lang-

lands) gauge group Ǧ '
∏
i U(ri) [25]. Specifically, the set of admissible magnetic charges

forms the principal Weyl chamber of the dual gauge group’s weight lattice

ΓǦ/WǦ =
∏
i

ΓU(ri)/WU(ri). (2.3)

Each ΓU(ri)/WU(ri) holds ri integer-valued magnetic charges mi,j ordered in non-

increasing fashion by the action of the Weyl group:

mi,1 ≥ mi,2 ≥ · · · ≥ mi,ri (2.4)

Every magnetic monopole carries some non-zero array of magnetic charges while scalar

operators are inert under the dual gauge group. A product of monopole and scalar operator

11Roughly speaking, nilpotent orbits are well-defined subspaces of upper-triangular matrices in a fixed

Lie algebra, invariant under its adjoint action.
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then has the same magnetic charges as the original monopole operator; we say the scalar

operators dress the monopole.12 The chiral ring always contains a “basic” monopole of

a particular magnetic charge stripped of any factors of scalar fields, which we call a bare

monopole operator.

One might hope that monopole operators could be straightforwardly labelled (and

hence counted) by their magnetic charges but there is a subtlety which prevents this.

It turns out that magnetic charges are not conserved for general gauge groups, which

disqualifies them for counting purposes. But they are conserved for U(1) gauge groups —

and each U(ri) includes a U(1) factor. The Hodge dual of its field strength J = ?FU(1) is a

conserved current on account of Bianchi identity dFU(1)=0 and independently of equations

of motion:

? d ? J = − ? dFU(1) = 0. (2.5)

The conserved current J is called topological due to its relation to twists of the gauge

group’s principal bundle. Any conserved current indicates the presence of a continuous

symmetry by Noether’s theorem. The topological charge under this symmetry is given by:

qi =

ri∑
j=1

mi,j ∈ Z (2.6)

Each monopole operator can have any combination of integral topological charges (even

0 at every node) while scalar operators are always topologically uncharged.

There is one final charge to consider. The R-symmetry of 3d N = 4 theories is SO(4) '
SU(2)C × SU(2)H . The factor SU(2)C acts on Coulomb branch operators while SU(2)H
acts on operators in the Higgs branch. Both branches are Hyperkähler and therefore each

carries three complex structures arranged into triplets of the respective SU(2) symmetry.

We restrict our attention to the Coulomb branch and so disregard SU(2)H . We choose an

arbitrary complex structure on the Coulomb branch, which is equivalent to selecting an

N = 2 subalgebra or fixing the meaning of “chiral” by designating unbroken supercharges.

SU(2)C merely rotates this choice of complex structure, N = 2 subalgebra or unbroken

supercharges. Finally we restrict to holomorphic functions under this complex structure

as the rest can be reached by SU(2)C rotations.

Operators carry a charge under SU(2)C action; we refer to it as the R-symmetry spin

and normalise it so that the lowest non-trivial spin is 1/2, as is common in physics liter-

ature. Restriction to holomorphic functions is equivalent to restriction to highest weight

representatives within SU(2)C multiplets. Total SU(2)C spin of a product of two such op-

erators is therefore just the sum of of their individual spins. We say that spin is additive.

R-symmetry spin remains constant for protected operators throughout RG flow into

the deep IR [8] in good and ugly theories (which include all quivers in this paper). Since we

are only interested in protected operators we exploit this property to calculate R-symmetry

12Explicit construction of the chiral ring makes it clear that it is scalar operators, not their gauge-invariant

combinations in Casimir operators, which dress monopole operators. In the notation of later sections,

u+
2,1ϕ2,2 + u+

2,2ϕ2,1 is a dressed monopole operator even though it cannot be factorised into monopole and

Casimir operators.
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spin of an arbitrary Coulomb branch operator using the monopole formula of [9]. We cite

it in the form adapted to a unitary simply laced quiver. Its gauge nodes are labelled by

i ∈ I, the set of nodes adjacent to i is denoted A(i) and the number of attached flavors is

si. The R-symmetry spin ∆ of a bare monopole operator is given by:

∆(m) = −
∑
i∈I

ri−1∑
a=1

|mi,a−mi,a+1|+
1

4

∑
i

∑
j∈A(i)

ri∑
a=1

rj∑
b=1

|mi,a−mj,b|+
1

2

∑
i

ri∑
a=1

si|mi,a| (2.7)

(The unusual factor of 1/4 in front of the second term compensates for the fact that we

technically sum twice over each link between gauge nodes.)

Scalar operators have R-symmetry spin 1, but only enter the chiral ring in gauge-

invariant combinations. Since scalars belong to vector supermultiplets along with gauge

vectors, they necessarily transform under the adjoint representation of the gauge group

just like their vector superpartners. Their gauge-invariant combinations are then precisely

the Casimir invariants of the gauge group (and their sums and products). The invariant

of lowest order in scalars is merely linear and so its R-symmetry spin is also 1. We will

henceforth refer to gauge-invariant combinations of scalar operators in vector supermulti-

plets as Casimir operators and will reserve the term linear Casimir for Casimir operators

of spin 1.

Since spin is additive we can reconstruct R-symmetry spin for any monopole operator

by summing up the contribution due to magnetic charges with the contribution of scalar

dressing. So R-symmetry spins are known for all operators and we can ask how many

linearly independent chiral ring operators there are for a given spin s. Such operators

form a vector space Vs, so we are effectively inquiring about dim Vs. This data is typically

repackaged as an infinite series

HS(t) =

∞∑
2s=0

(dimVs) t
s (2.8)

called the (unrefined) Hilbert series of C. It can be naturally “refined” by bringing in

topological charges of each operator:

HS(t) =
∞∑

2s=0

∞∑
q1=−∞
q2=−∞

...

(dimVs,q1,q2,...) t
s
∏
i

zqii (2.9)

where Vs,q1,q2,... is the vector space of all chiral ring operators with R-symmetry spin s and

topological charges ~q = 〈q1, q2, . . .〉. The zi are called topological fugacities.

Now comes the crucial part: the polynomial multiplying ts is — trivially — a character

of the topological symmetry
∏
i U(1). But it may also be a character for a larger group.

That could happen by chance for a particular order in t, but it would be much less likely that

all coefficients of ts, for all s, are characters of the same larger group. Such a coincidence

provides strong evidence of enhanced symmetry of the Coulomb branch. For example the

Coulomb branch of the quiver in figure 2 has topological symmetry U(1) coming from

– 8 –
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its single gauge node, but the coefficient of t at every order in the Hilbert series is an

SU(2) character. The Coulomb branch isometry is then likely enhanced to overall SU(2).

New directions on the Coulomb branch correspond to vevs of monopole operators; we will

shortly see this example worked out in explicit detail.

Note that the Hilbert series is preserved under complex mass deformation. If we read

off the isometry of the SCFT Coulomb branch from the Hilbert series, and the series

remains untouched upon turning on complex mass parameters, it is natural to conjecture

that the isometry will also remain intact. We will be able to confirm it for worked examples.

So Hilbert series suggests the isometry; it also gives us quite a bit more than that.

The coefficient at the lowest non-trivial order in t must correspond to (at least some of)

the generators. The Casimirs must be linear if they are present at that order at all and the

monopole operators must be bare. In fact the rather special quivers in this paper always

have Coulomb branch chiral rings generated by operators at order t, i.e. by linear Casimirs

and (specific) bare monopole operators. They assemble into the adjoint representation of

the isometry — and the isometry is, as was already mentioned, precisely the simple Lie

algebra represented by the quiver reinterpreted as a quiver diagram. This claim contains

a slight subtlety as the Hilbert series does not distinguish between adjoint and coadjoint

representations due to their isomorphism, and indeed, we will see that the natural objects

to come out of our calculations are coadjoint. At the level of the Hilbert series, however,

there is no difference. Note that other types of quivers may have chiral rings generated by

operators beyond lowest order in t.

Finally, operator counting can pin down the relations between generators. This is

largely thanks to its sensitivity to isometry: if generators form tensors of the isometry

then so must relations, since otherwise they would break the symmetry. Close analysis of a

calculated Hilbert series will typically reveal that there are fewer operators at higher orders

in t than would be expected from free (symmetric) products of generating tensors; they

must be “removed” by a set of relations which transform in irreducible representations of

the isometry.13

3 Type A

3.1 sl(2,C): a simple example

The main results of this paper are best introduced as generalisations of two concrete results,

both of which originally appeared in [15] in some form. The simpler of the two concerns

SQED with two electrons, depicted as a quiver in figure 2. We will initially set both

electrons’ masses to 0. The Hilbert series of the theory is

HS(t) = 1 + t

(
z + 1 +

1

z

)
+ t2

(
z2 + z + 1 +

1

z
+

1

z2

)
+O(t3)

= 1 + t(w2 + 1 + w−2) + t2(w4 + w2 + 1 + w−2 + w−4) +O(t3)

= 1 + t[2] + t2[4] +O(t3) (3.1)

where z 7→ w2 cast it into a manifest sum of sl(2,C) characters [n] = wn+wn−2 + · · ·+ 1
wn .

13This claim can be recast in more technical terms of plethystic logarithms and syzygies [26, 27].
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1

2

Figure 2. SQED with 2 electrons.

The series identifies a generator — call it N — transforming in the (co)adjoint rep-

resentation [2]. If the ring were freely generated then we would see a singlet [0] and a

tensor transforming in [4] at quadratic order, but the singlet is absent. Hence there must

be a quadratic singlet relation, which can only take the form A detN +B Tr(N2) = 0 for

some A,B; a quick calculation shows that every generic choice of A,B is equivalent.14 The

relation can also be written as

N2 = 0, (3.2)

which identifies the space of N , i.e. the Coulomb branch of this theory, as a nilpotent orbit

of sl(2).

This is a good result but some information is lost. There are three operators in N , but

what are they physically? How do they assemble into the matrix realisation of N? How

should we physically interpret the relation N2 = 0? If we set electrons’ (complex) masses

to M , would the relation change to Tr(N2) = M2? Hilbert series can help with some of

these questions but they are not the most suitable tools.

Let’s explore this problem using the algebraic construction of the chiral ring pioneered

in [15]. This approach has several virtues: it is directly connected to physics and very

cleanly handles complex mass deformations of the theory. However the Coulomb branch

isometry remains hidden.

The ring is generated by two monopole operators u± and one scalar operator ϕ subject

to the relation

u+u− = −(ϕ−M1)(ϕ−M2) (3.3)

where the Mi are complex masses of electrons. It is important to note that this relation

comes “for free” from the definition of the chiral ring provided by [15]. This is a particularly

simple example. There are no generators beyond u± and ϕ and no relations beyond (3.3).

In other words, this is our chiral ring, but it is not immediately obvious that it describes

(a deformation of) a nilpotent orbit of sl(2,C).

We want to develop a synthetic approach which adapts an important result of [15]:

the Coulomb branch, being Hyperkähler, has a moment map transforming in the coadjoint

representation of sl(2,C) and specifically given by

µ =

(
ϕ− M1

2 −
M2
2 u−

u+ −ϕ+ M1
2 + M2

2

)
(3.4)

14Exceptions such as A = B = 0 would reduce the relation to 0 = 0 and we can disregard them because

the Hilbert series indicates there is a non-trivial scalar relation.
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Figure 3. Quiver with sl(3,C) isometry of the Coulomb branch.

Recall that the adjoint and coadjoint representations of sl(2,C) are isomorphic and the

Hilbert series has no way of distinguishing between them, so N may in fact be a coadjoint

generator. We will see that it is most naturally expanded in the coadjoint representation’s

basis as defined in this paper.

µ also obeys the same relation as N of (3.2):

µ2 =

(
1
4(M1 +M2 − 2ϕ)2 + u+u− 0

0 1
4(M1 +M2 − 2ϕ)2 + u+u−

)
=

1

4
(M1 −M2)212×2

(3.5)

where we used (3.3) to simplify some quadratic expressions. Note that when the masses are

taken to 0 — that is, precisely in the case considered using Hilbert series — the equation

reduces to µ2 = 0.

Several features of this result are noteworthy:

• The matrix µ is traceless and hence belongs to sl(2) (or sl(2)∗) — but is valued in the

chiral ring R rather than C. The operator counting approach implied the existence

of a coadjoint matrix N whose complex coefficients are constrained by relations.

The synthetic approach defines µ as a ring-valued matrix and matrix relations are

reinterpreted as consequences of chiral ring relations which can be fully specified prior

to embedding into a matrix.

• sl(2,C) has a natural (co)adjoint action on µ and components of µ generate the chiral

ring — so µ = N .

• The fact that there are no independent higher-order relations is assured by Hilbert

series.

• However, the Coulomb branch Hilbert series provides no way of fixing the coefficient

on the complex-mass-deformed relation.

All of the above generalises to all examples considered in this paper and helps illustrate

some of the utility of our synthetic method.

3.2 sl(3,C): a slightly more complicated example

For the second example we pick the theory in figure 3. Its gauge group is U(1) × U(2).

Both gauge nodes are balanced so its Coulomb branch has an A2 ' sl(3,C) symmetry. We
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present its Hilbert series in terms of topological fugacities z1, z2 and w1, w2 related by

wi =
∏
j

z
κ−1
ij

j (3.6)

where κij is the Cartan matrix (
2 −1

−1 2

)
(3.7)

and we use the notation [p1,p2] as shorthand for the sl(3,C) character with highest weight

[p1, p2], e.g.

[1,1] = w1w2 +
w2

1

w2
+
w2

2

w1
+ 2 +

w1

w2
2

+
w2

w2
1

+
1

w1w2
(3.8)

We call wi, resp. zj fundamental weight, resp. simple root fugacities for reasons which

will shortly become apparent.

This notation significantly simplifies the Hilbert series and manifests its nature as a

class function:

HS(t) = 1 + t

(
z1z2 + z1 + z2 + 2 +

1

z1
+

1

z2
+

1

z1z2

)
+O(t2)

= 1 + t[1,1] + t2([2,2] + [1,1]) + t3([3,3] + [2,2] + [3,0] + [0,3]) +O(t4) (3.9)

A closer look at the Hilbert series (to all orders) shows that the (massless) chiral ring

is generated by a single sl(3,C) (co)adjoint tensor — whose character appears in (3.8) —

subject to

Tr N2 = Tr N3 = 0 (3.10)

which amounts to setting all eigenvalues to 0 and describes the maximal nilpotent orbit

of sl(3,C).

The Hilbert series predicts 8 generators in total, two of which are linear Casimirs. Ex-

pressing wp11 w
p2
2 = [p1, p2] and zn1

1 zn2
2 = 〈n1, n2〉, we observe the following correspondence

to bare monopoles with magnetic charges ~m = (m1;m2,1,m2,2):

[2,−1]↔〈1, 0〉 ↔ ~m = (1; 0, 0)

[−1, 2]↔〈0, 1〉 ↔ ~m = (0; 1, 0)

[1, 1]↔〈1, 1〉 ↔ ~m = (1; 1, 0)

[−2, 1]↔〈−1, 0〉 ↔ ~m = (−1; 0, 0)

[−1, 2]↔〈0,−1〉 ↔ ~m = (0;−1, 0)

[−1,−1]↔〈−1,−1〉 ↔ ~m = (−1;−1, 0)

It turns out that although the basis of fundamental weights is useful for pinning down the

isometry and representation content, going back to zi, or the basis of simple roots, is more

physically transparent so we will keep working in that basis.

We can now construct explicit generators and will label them as follows: generating

monopole operators are indexed by corresponding roots, ie V〈n1,n2〉, and linear Casimirs Φ
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carry the index of their gauge node, i.e. Φi. Ref. [15] provides a recipe to construct them

in terms of auxiliary gauge-dependent abelianised fields u±1 , ϕ1, u
±
2,1, u

±
2,2, ϕ2,1 and ϕ2,2:

V〈1,0〉 = u+
1

V〈0,1〉 = u+
2,1 + u+

2,2

V〈1,1〉 =
u+

1 u
+
2,1

ϕ1 − ϕ2,1
+

u+
1 u

+
2,2

ϕ1 − ϕ2,2

V〈−1,0〉 = u−1

V〈0,−1〉 = u−2,1 + u−2,2

V〈−1,−1〉 =
u−1 u

−
2,1

ϕ1 − ϕ2,1
+

u−1 u
−
2,2

ϕ1 − ϕ2,2

Φ1 = ϕ1

Φ2 = ϕ2,1 + ϕ2,2

The algebraic construction also posits a set of relations:

u+
1 u
−
1 = −(ϕ1 − ϕ2,1)(ϕ1 − ϕ2,2)

u+
2,1u

−
2,1 = −(ϕ2,1 − ϕ1)(ϕ2,1 −M2,1)(ϕ2,1 −M2,2)(ϕ2,1 −M2,3)

(ϕ2,1 − ϕ2,2)2

u+
2,2u

−
2,2 = −(ϕ2,2 − ϕ1)(ϕ2,2 −M2,1)(ϕ2,2 −M2,2)(ϕ2,2 −M2,3)

(ϕ2,1 − ϕ2,2)2

There are several structural features to point out. Firstly, operators such as ϕ2,1 and

ϕ2,2 are gauge-dependent quantities; in fact, the Weyl group of U(2) transforms one into

the other. Their sum Φ2 = ϕ2,1 + ϕ2,2, however, is gauge-invariant, as would be e.g.

ϕ2,1ϕ2,2. We will always reserve ϕ, resp. Φ, for gauge-dependent, resp. gauge-independent

manifestations of the scalar superpartners of gauge bosons and ϕi,a will refer to the a-th

gauge-dependent (abelianised) scalar superpartner of the gauge bosons associated to the

i-th node.

Secondly, complex mass parameters Mi,p, again labelled as being the p-th mass on

the i-th node, enter relations in a similar way to complex scalars ϕ. This is because

complex masses can be interpreted as forming background supermultiplets with analogous

coupling rules.

Thirdly, monopole operators V〈±1,±1〉 have a curious structure of rational functions

(and also the property of gauge-invariance-by-averaging which was just mentioned). The

nature of such operators is, in our experience, a common source of confusion. One could

think of e.g. u+
1 u

+
2,1/(ϕ1 − ϕ2,1) as a new abstract ring element along with the relation

u+
1 u

+
2,1

(ϕ1 − ϕ2,1)
(ϕ1 − ϕ2,1) = u+

1 u
+
2,1. (3.11)

The chiral ring is still specifically a ring and division is not in general defined as a valid

operation.
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Fourthly, the theory’s chiral ring includes the quadratic Casimir operator ϕ2,1ϕ2,2 – in

fact it’s already present in the UV description. It is easy to check that

ϕ2,1ϕ2,2 = −Φ1(Φ1 − Φ2)− V〈1,0〉V〈−1,0〉 (3.12)

Our method does not provide an algorithmic recipe for deriving this relation but its exis-

tence is ensured.

Finally, relations are given in terms of the abelianised and hence gauge-dependent

fields. But the Coulomb branch only has directions corresponding to gauge-independent

operators. So we would like to find gauge-independent relations to complement them;

indeed, they should be exactly the relations predicted by Hilbert series. Our synthetic

method can determine them.

The prescription for the coadjoint moment map (and the chiral ring generator) is

N =

Φ1 − M2,1+M2,2+M2,3

3 V〈−1,0〉 −V〈−1,−1〉
V〈1,0〉 −Φ1 + Φ2 − M2,1+M2,2+M2,3

3 V〈0,−1〉
−V〈1,1〉 V〈0,1〉 2

M2,1+M2,2+M2,3

3 − Φ2

 (3.13)

and indeed, one easily finds that

Tr (N2) =
2

3
(M2

2,1 +M2
2,2 +M2

2,3 −M2,1M2,2 −M2,1M2,3 −M2,2M2,3) (3.14)

Tr (N3) =
1

9
(2M2,1 −M2,2 −M2,3)(2M2,2 −M2,1 −M2,3)(2M2,3 −M2,1 −M2,2) (3.15)

both of which vanish in the massless limit. So we simultaneously derived gauge-invariant

relations in the chiral ring and also generalised them for the case of massive quarks, demon-

strating the advantages of the synthetic method over pure operator counting or algebraic

construction.

3.3 Construction of generators and gauge-dependent relations

All balanced quivers of type An (of type A with n gauge nodes) and at least one gauge

node of rank 1 share the same pattern of generators [11]. They always have R-symmetry

spin 1 and include n linear Casimirs originating from gauge scalars at the n gauge nodes.

The remaining generators are bare monopole operators labelled by their topological charges

~q = 〈q1, . . . , qn〉,15 uniquely without any degeneracies. Every monopole generator exhibits

the following pattern of charges:

~q = 〈0, . . . , 0,±1, . . . ,±1, 0, . . . , 0〉, (3.16)

or an uninterrupted string of ±1 padded by zeroes. The string of ones can stretch to each

end so, for example, 〈1, 1, 1〉 is a valid charge vector of a monopole generator in an A3

quiver. The choice of +1 or −1 must be made consistently in a given charge vector so

15Topological charge vectors are written with angled brackets in anticipation of a thorough correspondence

between their associated generating monopole operators and roots in the isometry algebra.
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no A3 monopole generator carries the charge vector 〈1,−1, 0〉 or other similarly “mixed”

charges. Such monopole operators still exist within the chiral ring but we do not count

them among a canonical set of generators.

Overall we get n2+n monopole operators and n linear Casimirs which together generate

the chiral ring. Ref. [15] provides a general prescription for these generators in terms of

gauge-dependent quantities, or abelianised variables as they are described in the original

paper. The prescription was tested on several linear quivers in the original paper and

succeeded when compared against known results. Principles behind the proposal have

received further support in [16, 17] which exploit quantum mechanics of vortices and string

theory respectively. The chiral ring can be specified algorithmically:

• Label each gauge node with an index i ∈ {1, . . . , n} starting from the leftmost node.

Let ri be the rank of the unitary group U(ri) at the gauge node i.

• Define the abelianised ring Rabel.

1. Any node with gauge group U(ri) and index i gives rise to 3ri abelianised vari-

ables: u+
i,a, u

−
i,a and ϕi,a, where a runs from 1 to ri. They physically correspond

to directions in the moduli space of the fully broken gauge group U(1)ri . As

an abelian theory it gives rise to ri different monopoles of charge +1 under

the various U(1) factors — those would be the u+
i,a — their counterparts with

charges −1 — the u−i,a — and complex scalars in the vector supermultiplet — the

ϕi,a. They are essentially eigenvalues of the adjoint-valued scalar superpartner

of gauge bosons.

2. We identify all topologically charged generators of the abelianised ring. Some

of these operators carry no topological charge except ±1 at a single node i; we

call such operators minimally charged and they are already represented by ri
operators u±i,a. The remaining monopole generators are topologically charged

under several adjacent nodes and have to be constructed from the abelianised

variables. They can be constructed in different (but equivalent) ways.

– Ref. [15] defines the Poisson bracket {·, ·} acting on the abelianised chiral

ring; we reproduce it in (3.56). An abelianised monopole charged under

adjacent nodes i and i+ 1 is given by

{u±i,a, u
±
i+1,b} ∝

u±i,au
±
i+1,b

ϕi,a − ϕi+1,b
(3.17)

with coefficient ±1. This can be extended by action of an adjacent node,

e.g. u±i+2,c:{
u±i,au

±
i+1,b

ϕi,a − ϕi+1,b
, u±i+2,c

}
∝

u±i,au
±
i+1,bu

±
i+2,c

(ϕi,a − ϕi+1,b)(ϕi+1,b − ϕi+2,c)
(3.18)

This operator can again be extended by the action of an adjacent node; the

maximal operator “stretches” between the leftmost and the rightmost nodes.
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– Alternatively one can just give a general prescription for the non-minimally

charged monopole generator. We will adopt this method and define a

monopole charged ±1 under nodes i, i+ 1, . . . , j − 2, j − 1 as

u±i:j,(ai,...,aj−1) =
u±i,ai · · ·u

±
j−1,aj−1

(ϕi,ai − ϕi+1,ai+1) · · · (ϕj−2,aj−2 − ϕj−1,aj−1)
(3.19)

In particular, u±i,a = u±i:i+1,(a). Note that we selected the sign to be positive

for all monopoles.

3. A flavor node of rank si connected to the gauge node i contributes complex mass

parameters Mi,p, where p runs from 1 to si.

4. Define A(i) as the set of all nodes (resp. their indices) adjacent to node i; for

most nodes A(i) = {i− 1, i+ 1}.

5. For each gauge node define two auxiliary polynomials:

Pi(z) =
∏

1≤p≤si

(z −Mi,p) (3.20)

Qi(z) =
∏

1≤a≤ri

(z − ϕi,a) (3.21)

6. Abelianised variables are subject to relations16

u+
i,au
−
i,a = −

Pi(ϕi,a)
∏
j∈A(i)Qj(ϕi,a)∏

b 6=a(ϕi,a − ϕi,b)2
(3.22)

which can be repackaged as generators of the ideal

I =

〈
u+
i,au
−
i,a +

Pi(ϕi,a)
∏
j∈A(i)Qj(ϕi,a)∏

b 6=a(ϕi,a − ϕi,b)2

〉
(3.23)

7. The abelianised ring Rabel is then a quotient of a polynomial ring freely generated

by scalars and monopole generators:

Rabel = C[u±i:j,(ai,...,aj−1), ϕi,a]/I (3.24)

with 1 ≤ i < j ≤ n+ 1.

• The overall gauge group of the quiver is G =
∏
i U(ri). Its Weyl group is thenW(G) =∏

i Sri . W(G) has a natural action on the u±i,a and ϕi,a: each Sri permutes indices

a for a fixed i. The true, physical chiral ring R can only include gauge-invariant

operators; this is satisfied by restricting Rabel to W(G)-invariant polynomials:

R = R
W(G)
abel = C[u±i:j,(ai,...,aj−1), ϕi,a]

W(G)/I (3.25)

16Note that these relations fix R-symmetry spin of bare abelianised monopoles u±
i,a since topological

charge conjugation should commute with R-symmetry and ϕ have spin 1.
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where u±i:j,(ai,...,aj−1) are interpreted using (3.19)17 and indices are implicitly

ranged over.

Note that this construction manifestly includes Casimir invariants of scalar operators

such as (3.12) in the chiral ring and, if the Casimir invariant in question is not itself

a generator, implies that it can be built up from other operators.

Several elements of R are significant enough to deserve a name:

V ±i:j =
∑
a,...,d

u±i:j,(a,...,d) =
∑
a,...,d

u±i,a · · ·u
±
j−1,d

(ϕi,a − ϕi+1,b) · · · (ϕj−2,c − ϕj−1,d)
(3.26)

Φi =
∑
a

ϕi,a (3.27)

Hilbert series computations for balanced type A quivers show that such operators form (at

least some of) the generating set for R. It will also be helpful to repackage mass parameters

into symmetric polynomials:

Mi =
s∑

p=1

Mi,p (3.28)

~M = (M1, . . . ,Mn) (3.29)

3.4 Chevalley-Serre basis

One of the goals of this paper is to assemble gauge-invariant generators of R into an

irreducible representation of the Coulomb branch symmetry. Provided the quiver is of

the type described in section 2.1, all generators form a single coadjoint representation of

the symmetry. In the particular case of balanced linear quivers all n2 + 2n generators of

the form (3.26) and (3.27) assemble into a traceless (n+ 1)× (n+ 1) complex matrix and

parametrise a subspace of all such matrices — in particular a nilpotent orbit of sl(n+1,C).

This section identifies an appropriate basis of the coadjoint representation sl(n+ 1,C)∗ so

that each basis vector corresponds to one chiral ring generator. We simply restate the

choice of basis employed in [15] for type A quivers but motivate the choice in a way that

allows us to straightforwardly generalise to the novel case of type D.18

In order to derive such a basis for the coadjoint representation we will first look for the

basis of its dual, the corresponding adjoint representation, which is equivalent to finding a

particularly nice basis of the Lie algebra itself.

We set off with a review of some basic facts about Lie algebras and declare our notation.

A Lie algebra g can be decomposed into two vector spaces

g = h + Φ, (3.30)

17Some authors prefer treating u±
i:j,(ai,...,aj−1)

as new abelian variables at the expense of loading the ideal

I with new relations analogous to (3.11), which would effectively impose (3.19). This alternative viewpoint

is arguably mathematically cleaner but we find ours more computationally convenient.
18Analogous constructions also do the job for types B and C.
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where h, known as the Cartan subalgebra, is the maximal commutative subalgebra generated

by n elements hi, and Φ is its complement called the root space. The root space can be

partitioned into mutual eigenspaces of all hi. Each subspace is one-dimensional and their

generators are known as roots. Crucially, the roots’ eigenvalues under the action of [hi, ·],
known as weights, are integer-valued.

Complex simple Lie algebras are uniquely specified by their associated Dynkin dia-

grams up to isomorphisms. Conversely, given a Dynkin diagram one can reconstruct a Lie

algebra isomorphism class. This is typically done using an appropriate Chevalley-Serre

basis. Given a Lie algebra g described by a Dynkin diagram one can construct the corre-

sponding n × n Cartan matrix κij . The Chevalley-Serre basis is then generated (as a Lie

algebra) by n positive simple roots α+
i , n negative simple roots α−i and n generators ha of

the commutative Cartan subalgebra h together with a Lie bracket [·, ·] subject to relations

[ha, hb] = 0 (3.31)

[ha, α
±
j ] = ±κjaα±j (3.32)

[α+
i , α

−
i ] = 2hi (3.33)

[α±i , ·]
1−κijα±j = 0. (3.34)

The final relation is called the Serre relation.

The remaining elements of the Lie algebra g are generated by repeated action of [α±i , ·].
Note that this prescription only specifies a Lie algebra up to isomorphism.

Weight vectors ~λα are defined by

[ha, α] = λαaα (3.35)

and as mentioned above can be used to label generators of the root space Φ.

Simple roots α±i are specifically represented by Cartan matrix row vectors λ
α±
i
a =

±(~κi)a = ±κia. The basis in which integers λ
α±
i
a are evaluated is called the basis of fun-

damental weights. Although important in the theory of Lie algebras, it is less suitable for

our purposes than the simple root basis19 which expands a root’s eigenvalues in terms of

eigenvalues of simple roots:

~λα
±

=
n∑
i=1

cα
±
i
~λα

±
i = 〈cα±

1 , . . . , cα
±
n 〉 (3.36)

We use angled brackets to signify expansion in the simple root basis. The Jacobi

identity implies that

[hi, [α
±, β±]] = (λα

±
+ λβ

±
)a[α

±, β±] (3.37)

This in particular implies that, since the Lie algebra is generated by brackets of simple

roots, all c±i are integers.

19There is a basis for the roots — in terms of fundamental weights or simple roots — and a matrix basis

of sl(n+ 1,C) realising these same roots which we eventually use to construct a matrix realisation for the

adjoint representation. The multiple uses of “basis” should not be mutually confused.
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Moreover, any positive (negative) root is constructed by finitely many bracket oper-

ations between positive (negative) roots, which implies we only need to expand ~λ in the

eigenvalues of only positive (only negative) simple roots, as denoted by ± in superscripts

of eq. (3.36).

One can easily convert vectors from the basis of fundamental weights to the simple

root basis by multiplying with κ−1 from the right:

[λα
±

1 , . . . , λα
±
n ](κ−1) = 〈cα±

1 , . . . , cα
±
n 〉 (3.38)

For a concrete example, consider the roots of A3:

ΦA3 = {[1, 0, 1], [−1, 1, 1], [1, 1,−1], [−1, 2,−1], [2,−1, 0], [0,−1, 2],

[0, 1,−2], [−2, 1, 0], [1,−2, 1], [−1,−1, 1], [1,−1,−1], [−1, 0,−1]}
(3.39)

The numbers in square brackets state roots’ fundamental weights. Multiplying on the

right by the inverse of the Cartan matrix κ−1 amounts to expressing a root in terms of the

simple root basis (for which we use angled brackets). For example,

[1, 0, 1](κ−1) = 〈1, 1, 1〉
[1, 1,−1](κ−1) = 〈1, 1, 0〉
[2,−1, 0](κ−1) = 〈1, 0, 0〉
[0,−1, 2](κ−1) = 〈0, 0, 1〉

[−1,−1, 1](κ−1) = 〈−1,−1, 0〉

All roots of An are given by unbroken strings of 1 or −1. Utility of the simple root

basis lies partly in its exact correspondence with the set of topological charges exhibited

by monopoles generators and partly in its description of the root’s adjoint action. For

example:

[〈1, 0, 0〉, 〈0, 1, 0〉] ∝ 〈1, 1, 0〉 (3.40)

[〈1, 1, 0〉, 〈0, 0, 1〉] ∝ 〈1, 1, 1〉 (3.41)

Note that this mirrors the Poisson algebra defined on the chiral ring.

The precise coefficients, i.e. structure constants, are in this case ±1. While many

relations between structure constants can be found, the constants are not uniquely fixed.

Every choice produces a different (but isomorphic) algebra, so it makes more sense to speak

of Chevalley-Serre bases, each of which satisfies relations (3.31)–(3.34). We will select the

algebra which leaves monopole operators in their simplest form.

This section has so far treated elements of the Chevalley-Serre basis as abstract al-

gebra elements (with a Lie bracket action) rather than concrete matrices (with the Lie

bracket implemented through commutators). The remainder of this section is dedicated

to construction of a concrete matrix realisation. In order to do this we introduce one final

basis for roots: the orthonormal basis given by ei − ej where ei are the orthonormal basis

vectors of Cn+1. Simple roots are represented as

α±i ↔ ±ei ∓ ei+1 (3.42)
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and brackets act by adding the orthonormal representatives, e.g.

[α+
1 , α

+
2 ]↔ e1 − e2 + e2 − e3 = e1 − e3 ↔ [α+

2 , α
+
1 ]. (3.43)

This example demonstrates that the orthonormal representation loses some information

— namely the sign of the root’s coefficient and hence the order in which two roots enter

a Lie bracket — but it still serves an important structural purpose. Since any root can

be expressed in the simple root basis as an unbroken string of ±1, the ei − ej cover and

exhaust all roots. Each root is therefore labelled by two numbers, i and j, with i < j for

positive roots and j < i for negative roots. The orthonormal representation then provides

a more compact labelling scheme for roots:

α+
i:j ↔ ei − ej (i < j) (3.44)

α−i:j ↔ ei − ej (i > j) (3.45)

so in particular α±i = α±i:i+1. In words α±i:j is the root whose weight vector (in the simple

root basis) consists of a string of ±1 starting at i and terminating at j − 1.

It is now easy to guess that the matrix representatives of α±i:j is precisely the zero

matrix with the i, j or j, i component changed to ±1 (according to the sign of the root and

chosen convention for structure constants). Representatives of the Cartan subalgebra can

be found by eq. (3.33). We pick the Chevalley-Serre basis given by

(Ei,j)ab = δiaδjb (3.46)

α+
i:j = (−1)i−j+1Ei,j+1 (3.47)

α−i:j = (−1)i−j+1Ej+1,i (3.48)

hi = Ei,i − Ei+1,i+1 (3.49)

The structure of alternating signs can already be seen in the following example of

sl(4,C), where coefficients c range over C:

ad(sl(4,C)) =

{ ∑
〈i,j,k〉∈Φ

c〈i,j,k〉〈i, j, k〉+
3∑
i=1

chihi

}

=




ch1 c〈1,0,0〉 −c〈1,1,0〉 c〈1,1,1〉
c〈−1,0,0〉 −ch1 + ch2 c〈0,1,0〉 −c〈0,1,1〉
−c〈−1,−1,0〉 c〈0,−1,0〉 −ch2 + ch3 c〈0,0,1〉
c〈−1,−1,−1〉 −c〈0,−1,−1〉 c〈0,0,−1〉 −ch3




=

{ ∑
1≤i<j≤n
s∈{+,−}

csi:jα
s
i:j +

3∑
i=1

chihi

}

=




ch1 c+
1:2 −c+

1:3 c+
1:4

c−1:2 −ch1 + ch2 c+
2:3 −c+

2:4

−c−1:3 c−2:3 −ch2 + ch3 c+
3:4

c−1:4 −c−2:4 c−3:4 −ch3




(3.50)
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The final step is to identify the corresponding coadjoint basis which is dual to the

adjoint basis with respect to the scalar product

〈X,Y 〉 = Tr(XY ). (3.51)

Labelling elements of the Chevalley-Serre basis Xm with the index m ranging from 1

to dim g, we compute the matrix C

Cmn = Tr(XmXn). (3.52)

Up to an overall multiplicative constant (the second order Dynkin index [28]), C is

precisely the Killing form. It is well known that the Killing form is non-degenerate and so

C can be inverted. We use it to define matrices

X∗m =
∑
p

(C−1)mpXp (3.53)

satisfying the property

〈X∗m, Xn〉 = Tr(X∗mXn) =
∑
k

(C−1)mpTr(XpXn) = (C−1C)mn = δmn. (3.54)

X∗m constitute the desired basis for the coadjoint representation of g and dualisation ∗ :

g→ g∗ can be defined through linear extension of (3.53).

For the Chevalley-Serre basis of type A one gets α±∗i:j = α∓i:j . On the other hand the

Cartan subalgebra mixes in a non-trivial way, i.e. elements of the Cartan subalgebra map

to other elements in the subalgebra. C|h = Tr(HiHj), the restriction of the Killing form

to h ⊂ g, is still non-degenerate, so we can define

h∗i =
∑
j

(C|h)−1
ij hj (3.55)

3.5 Moment map

The moment map of a symplectic space is a coadjoint-valued map, so we should be able

to expand it in the basis (3.53). The coefficients will be precisely the vevs of the Coulomb

branch operators of 3.3; in fact both the monopole generators and dual roots are labelled

by unbroken strings of ±1 padded by zeroes and there are as many linear Casimirs as there

are generators of the Cartan subalgebra, although here the correspondence is marginally

more involved.

The symplectic structure of the Coulomb branch gives rise to the Poisson bracket on

operators (3.56), which is closely related to the moment map and described by its action

on the abelianised variables in [15]:

{ϕi,a, u±i,a} = ±u±i,a

{u+
i,a, u

−
i,a} =

∂

∂ϕi,a

[
Pi(ϕi,a)

∏
j∈Ai

Qj(ϕi,a)∏
b 6=a(ϕi,a − ϕi,b)2

]

{u±i,a, u
±
j,b} = ±κij

u±i,au
±
j,b

ϕi,a − ϕj,b

(3.56)

The remaining undetermined brackets vanish.
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In fact, one can think of the moment map N as a homomorphism from the Lie algebra

of the Coulomb branch symmetry to the Poisson algebra of operators. More explicitly, for

all Xm, Xn ∈ g

Tr(N [Xm, Xn]) = {Tr(NXm),Tr(NXn)}. (3.57)

Before assembling N we should identify the operator analogue of hi in (3.32). Our

simple roots are represented by operators V ±i:i+1 and one can easily check that

{
∑
k

κikΦk −Mi, V
±
j:j+1} = ±

∑
k

κikδjkV
±
j:j+1 = ±κijV ±j:j+1 (3.58)

and less easily, but straightforwardly on concrete cases, that

{V +
i:i+1, V

−
i:i+1} =

∑
k

κikΦk −Mi. (3.59)

We can then define Hi ≡
∑

k κikΦk −Mi,
20 and construct the coadjoint-valued mo-

ment map:

N( ~M) =
∑

1≤i<j≤n
s∈{+,−}

V s
i:jα

s∗
i:j +

n∑
i=1

Hih
∗
i (3.60)

=


Φ̄1( ~M) V −1:2 −V −1:3 · · · (−1)n+1V −1:n+1

V +
1:2 −Φ̄1( ~M) + Φ̄2( ~M) V −2:3 · · · (−1)nV −2:n+1

−V +
1:3 V +

2:3 −Φ̄2( ~M) + Φ̄3( ~M) · · · (−1)n−1V −3:n+1

. . . . . . . . .
. . .

...

(−1)n+1V +
1:n+1 (−1)nV +

2:n+1 (−1)n−1V +
3:n+1 · · · −Φ̄n( ~M)


where Φ̄i( ~M) = (C−1κΦ)i − (C−1 ~M)i.

21 The homomorphism (3.57) follows from the

definition of N and (3.54).

Hilbert series then predict that components of N(~0),22 will generate the Coulomb

branch chiral ring R:

R = C[Nij(~0)]/I (3.61)

where I is the ideal of gauge-dependent relations as defined in (3.23).

This claim is already non-trivial (and was made in [15] for cases of type A). To see

this note that as a gauge-invariant operator, the Casimir invariant
∑

1<a<b<ri
ϕi,aϕi,b can

be found in the chiral ring. It should be possible to express it in terms of ring generators

Nij(~0) but that clearly cannot be done without invoking some relations in I and we would

like a guarantee that those relations are sufficient for this purpose.

20Note that Mi can be viewed as a scalar component of a background vector supermultiplet associated to

the flavor node adjacent to i and that the definition of Hi treats it on the same footing as scalar components

of vector supermultiplets of gauge nodes j adjacent to i, for which κij = −1.
21C−1κ = 1 for type A and 1

2
1 for type D, respectively, given our choices of bases.

22We treat the complex masses ~M as parameters of the theory rather than new moduli. Then C−1 ~M

is just a vector of complex numbers and components of N(~0) are straightforwardly generated as shifts of

components of N( ~M) by constant numbers and vice versa, so the two generating sets are equivalent.
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Figure 4. A 3d N = 4 quiver with n gauge nodes. Its Coulomb branch is isomorphic to the

minimal nilpotent orbit of sl(n+ 1,C) when the difference of complex mass parameters vanishes.

However, one should expect such a guarantee on theoretical grounds. On the one

hand, the abelianisation approach manifestly includes all Casimir invariants of ϕi,a. On

the other hand, Casimir invariants of degree d exhibit R-symmetry spin d and all chiral

rings considered in this paper are generated by operators of spin 1, as computed using

Hilbert series methods. Therefore any Casimir invariants of degree greater than 1 must be

equal to some combination of spin 1 operators.

We are not aware of a generic formula for relations between Casimir invariants and

moment map components but they can always be derived with a sensible ansatz: just try

all linear combinations of generators with vanishing topological charges with the correct

overall R-symmetry spin.

3.6 Further examples

Previous sections identify gauge-invariant generators of the chiral ring and lay the ground-

work for generalisation to more general quivers. The current section concludes our in-

vestigation of quivers of type A by expressing (3.61) as a ring quotiented by an ideal of

gauge-invariant relations.

3.6.1 Minimal nilpotent orbit of sl(n+ 1,C)

The Coulomb branch of the quiver in figure 4 is known from operator counting to be

the minimal nilpotent orbit of sl(n+ 1,C) [11], provided all mass parameters are set to

0. Then the Hilbert series identifies a single (co)adjoint generator N subject to several

relations transforming in particular representations. The only possible candidates are:

rank N(~0) < 2 (3.62)

TrN(~0)k = 0 (3.63)

where k ranges from 1 (trivially) to n+1; the second condition is equivalent to the vanishing

of all eigenvalues of N .

One can now construct the chiral ring and the moment map (3.60) to explicitly check

that, in fact, (
Na
i − δai

M1 −Mn

n+ 1

)(
N b
j − δbj

M1 −Mn

n+ 1

)
− (a↔ b) = 0 (3.64)

TrNk − n(M1 −Mn)k + (−n)k(M1 −Mn)k

(n+ 1)k
= 0 (3.65)

where N = N( ~M) and we redefined Mi =: Mi,1 to reduce clutter.
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Figure 5. The Coulomb branch of this quiver is isomorphic to the maximal nilpotent orbit of

sl(n+ 1,C) when the difference of mass parameters vanishes.

This calculation is particularly tractable owing to the quiver’s abelian gauge nodes

and was partially done in [15]. Note that when complex mass parameters are set equal

the equations reproduce predictions from Hilbert series. Moreover, the left hand sides of

eqs. (3.64)–(3.65) generate an ideal J( ~M) of gauge-invariant operators. And in fact the

Hilbert series implies that

R = C[Nij(~0)]/I( ~M) = C[Nij(~0)]/J( ~M) (3.66)

Nij and J( ~M) are both specified in terms of gauge-invariant operators, making good on

our promise to define the chiral ring purely in terms of physically measurable moduli.

The space can be identified with T∗Pn which is known to have a single deformation

parameter, here the difference of masses.

3.6.2 Maximal nilpotent orbit of sl(n+ 1,C)

Coulomb branches of quivers depicted in figure 5 are isomorphic to maximal nilpotent

orbits of sl(n+ 1,C) [11]. Hilbert series show that their chiral rings are again generated by

the (co)adjoint generator N defined by (3.60). The (massless) relations are known to be

TrN(~0)k = 0 (3.67)

for 1 ≤ k ≤ n+ 1.

Calculating complex-mass-deformed relations for general n proves much more chal-

lenging than for minimal nilpotent orbits but numerical calculations at low enough n are

viable. It suffices to replace N(~0) 7→ N( ~M) and straightforwardly evaluate:23

• n = 1:

TrN( ~M)2 =
1

2
(M1 −M2)2 (3.68)

• n = 2:

TrN( ~M)2 =
2

3
(M2

1 +M2
2 +M2

3 −M1M2 −M1M3 −M2M3) (3.69)

TrN( ~M)3 = −1

9
(−2M1 +M2 +M3)(M1 − 2M2 +M3)(M1 +M2 − 2M3) (3.70)

23Complex masses were relabelled Mn,i →Mi for cleaner presentation.
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• n = 3:

TrN( ~M)2 =
1

4
(3M1 + 3M2 + 3M3 + 3M4 − 2M1M2 − 2M1M3 − 2M1M4

− 2M2M3 − 2M2M4 − 2M3M4)
(3.71)

TrN( ~M)3 =
3

8
(M3

1 +M3
2 +M3

3 +M3
4 −M2

1M2 −M2
1M3 −M2

1M4

−M2
2M1 −M2

2M3 −M2
2M4 −M2

3M1 −M2
3M2 −M2

3M4

−M2
4M1 −M2

4M2 −M2
4M3 + 2M1M2M3 + 2M1M2M4

+ 2M1M3M4 + 2M2M3M4)

(3.72)

TrN( ~M)4 =
1

64
(21M4

1 + 21M4
2 + 21M4

3 + 21M4
4 − 28M3

1M2 − 28M3
1M3

− 28M3
1M4 − 28M3

2M1 − 28M3
2M3 − 28M3

2M4 − 28M3
3M1

− 28M3
3M2 − 28M3

3M4 − 28M3
4M1 − 28M3

4M2 − 28M3
4M3

+ 30M2
1M

2
2 + 30M2

1M
2
3 + 30M2

1M
2
4 + 30M2

2M
2
3 + 30M2

2M
2
4

+ 30M2
3M

2
4 + 12M2

1M2M3 + 12M1M
2
2M3 + 12M1M2M

2
3

+ 12M2
1M2M4 + 12M1M

2
2M4 + 12M1M2M

2
4

+ 12M2
1M3M4 + 12M1M

2
3M4 + 12M1M3M

2
4

+ 12M2
2M3M4 + 12M2M

2
3M4 + 12M2M3M

2
4

+ 72M1M2M3M4)

(3.73)

These relations are necessary and sufficient, as can be seen in their theories’ Hilbert

series.

4 Type D

4.1 so(8): an example

The synthetic method extends to balanced quivers of type D and height 2 which we demon-

strate on one of the simplest examples. The quiver in question, pictured in figure 6, is

shaped as the Dynkin diagram of D4, suggesting so(8,C) isometry on the Coulomb branch.

Its Hilbert series shows that the chiral ring is generated by 28 generators assembled into the

(co)adjoint representation N of so(8,C) [11]. The (massless) relations can also be identified

through operator counting:

N(~0)2 = 0 (4.1)

N(~0)[ijN(~0)kl] = 0 (4.2)

The operators in N correspond to 4 generators of the Cartan subalgebra, 12 positive

roots and their 12 negative root counterparts. As expressed in the simple root basis, the
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Figure 6. The Coulomb branch of this quiver is isomorphic to the so(8,C) minimal nilpotent orbit.

positive roots are:

Φ+ = {〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉, 〈1, 1, 0, 0〉, 〈0, 1, 1, 0〉,
〈0, 1, 0, 1〉, 〈1, 1, 1, 0〉, 〈1, 1, 0, 1〉, 〈0, 1, 1, 1〉, 〈1, 1, 1, 1〉, 〈1, 2, 1, 1〉}

(4.3)

Roots label monopole operators by specifying charges at appropriate nodes: the first

integer gives the topological charge under the leftmost node, followed by topological charges

at the central, top right and finally bottom right node. Each node also contributes a topo-

logically uncharged linear Casimir corresponding to the generator of the Cartan subalgebra

h ⊂ so(8,C) carrying the same label. The fully assembled coadjoint generator — again

playing the role of the moment map to the theory’s Coulomb branch — is

N( ~M) =


JΦ̄1 D̄

〈1,0,0,0〉
〈1,2,1,1〉 D̄

〈1,1,0,0〉
〈1,1,1,1〉 D̄

〈1,1,1,0〉
〈1,1,0,1〉

−
(
D̄
〈1,0,0,0〉
〈1,2,1,1〉

)T
J(−Φ̄1 + Φ̄2) D̄

〈0,1,0,0〉
〈0,1,1,1〉 D̄

〈0,1,1,0〉
〈0,1,0,1〉

−
(
D̄
〈1,1,0,0〉
〈1,1,1,1〉

)T
−(D̄

〈0,1,0,0〉
〈0,1,1,1〉)

T J(−Φ̄2 + Φ̄3 + Φ̄4) D̄
〈0,0,1,0〉
〈0,0,0,1〉

−
(
D̄
〈1,1,1,0〉
〈1,1,0,1〉

)T
−
(
D̄
〈0,1,1,0〉
〈0,1,0,1〉

)T
−
(
D̄
〈0,0,1,0〉
〈0,0,0,1〉

)T
J(−Φ̄3 + Φ̄4)

 (4.4)

where

Dα
β =

1

4

(
i(Vα + V−α + Vβ + V−β) Vα − V−α − Vβ + V−β
−Vα + V−α − Vβ + V−β i(Vα + V−α − Vβ − V−β)

)
(4.5)

J =

(
0 i

−i 0

)
(4.6)

Φ̄i =
1

2
Φi − (C−1 ~M)i (4.7)

The Vα and Φi are gauge-invariant objects which can be expressed in terms of gauge-

dependent abelianised variables; those are in turn defined just as in section 3.3. The explicit
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expressions are:

Φ1 = ϕ1 (4.8)

Φ2 = ϕ2,1 + ϕ2,2 (4.9)

Φ3 = ϕ3 (4.10)

Φ4 = ϕ4 (4.11)

V〈±1,0,0,0〉 = u±1 (4.12)

V〈0,±1,0,0〉 = u±2,1 + u±2,2 (4.13)

V〈0,0,±1,0〉 = u±3 (4.14)

V〈0,0,0,±1〉 = u±4 (4.15)

V〈±1,±1,0,0〉 =
u±1 u

±
2,1

ϕ1 − ϕ2,1
+

u±1 u
±
2,2

ϕ1 − ϕ2,2
(4.16)

V〈0,±1,±1,0〉 =
u±2,1u

±
3

ϕ2,1 − ϕ3
+

u±2,2u
±
3

ϕ2,2 − ϕ3
(4.17)

V〈0,±1,0,±1〉 =
u±2,1u

±
4

ϕ2,1 − ϕ4
+

u±2,2u
±
4

ϕ2,2 − ϕ4
(4.18)

V〈±1,±1,±1,0〉 =
u±1 u

±
2,1u

±
3

(ϕ1 − ϕ2,1)(ϕ2,1 − ϕ3)
+

u±1 u
±
2,2u

±
3

(ϕ1 − ϕ2,2)(ϕ2,2 − ϕ3)
(4.19)

V〈±1,±1,0,±1〉 =
u±1 u

±
2,1u

±
4

(ϕ1 − ϕ2,1)(ϕ2,1 − ϕ4)
+

u±1 u
±
2,2u

±
4

(ϕ1 − ϕ2,2)(ϕ2,2 − ϕ4)
(4.20)

V〈0,±1,±1,±1〉 =
u±2,1u

±
3 u
±
4

(ϕ2,1 − ϕ3)(ϕ2,1 − ϕ4)
+

u±2,2u
±
3 u
±
4

(ϕ2,2 − ϕ3)(ϕ2,1 − ϕ4)
(4.21)

V〈±1,±1,±1,±1〉 =
u±1 u

±
2,1u

±
3 u
±
4

(ϕ1 − ϕ2,1)(ϕ2,1 − ϕ3)(ϕ2,1 − ϕ4)
+

u±1 u
±
2,2u

±
3 u
±
4

(ϕ1 − ϕ2,2)(ϕ2,2 − ϕ3)(ϕ2,2 − ϕ4)

(4.22)

V〈±1,±2,±1,±1〉 =
(ϕ2,1 − ϕ2,2)2u±1 u

±
2,1u

±
2,2u

±
3 u
±
4

(ϕ1 − ϕ2,1)(ϕ1 − ϕ2,2)(ϕ2,1 − ϕ3)(ϕ2,2 − ϕ3)(ϕ2,1 − ϕ4)(ϕ2,2 − ϕ4)

(4.23)

with (3.23) acting on abelianised variables as the ideal of relations. A simple exercise in

computer-assisted algebra is sufficient to check that (4.1) and (4.2) are satisfied by N(~0)

and further that the gauge-invariant relations still hold without modification for N( ~M):

N( ~M)2 = 0 (4.24)

N( ~M)[ijN( ~M)kl] = 0 (4.25)

This is not to say that complex mass parameters have no effect at all on the Coulomb

branch: they modify the generator N( ~M) itself by shifting scalar operators. However,

this effect can be fully removed by redefining scalar fields with the opposite shift. The

algebraic structure of relations (4.24) and (4.25) is also preserved in this particular case.
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Figure 7. Numbers represent topological charges at each node.

Consequently, complex mass physically reparametrises rather than deforms this Coulomb

branch.

Note that for (4.25) this is the only result consistent with preservation of Coulomb

branch isometry under mass deformation since there are no so(8,C)-invariant tensors which

could stand on the right hand side of that particular relation. Eq. (4.24) could have been

deformed by ( ~M · ~M)12n.

4.2 Charges of chiral ring generators

If the D-type quiver is of height 2 the chiral ring is generated by spin 1 operators assembled

into the adjoint representation of so(2n,C). The generators again split into linear Casimirs,

of which there is one per node, and bare monopole operators labelled by topological charges.

In this section we gather our knowledge about the latter.

Extensive sets of Hilbert series calculations [11] applied to these theories show that all

monopole operators at R-symmetry spin 1 belong to one of two categories. The following

classification identifies a monopole generator with a labelled quiver diagram whose flavour

nodes and gauge rank information have been removed:

• Unbroken (and linear) strings of either only +1 or only −1 stretching anywhere across

the quiver — see figure 7(a) for an example stretching all the way to the spinor node.

• Unbroken strings of ±1 (with uniform choice of sign) with charges ±1 on both right-

most (spinor) nodes — see figure 7(b). If both spinor nodes are turned on then a

string of ±2 (with the same choice of sign as ±1) can be extended from the trivalent

node arbitrarily far to the left, terminating with a string of ±1 which must have

length at least 1 — see figure 7(c).

It will prove convenient to arrange topological charges into linear vectors and we pick

the usual convention, i.eṫhe first n− 2 entries describe charges on the linear segment from

the first node to the trivalent node and the n − 1-th, resp. n-th entries belong to the top

right, resp. top bottom nodes.

4.3 Construction of the chiral ring

Construction of the chiral ring is closely analogous to that of section 3.3 with differences

arising only with respect to monopoles whose topological charges stretch across multi-

ple nodes.
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The simplest and cleanest way to identify monopole operators is to utilise the sym-

plectic structure defined in [15] and captured in the Poisson brackets of operators (3.56).

Minimally charged (gauge-invariant) monopoles at node i are defined as

U±i =
∑
a

u±i,a (4.26)

and we can use the action they induce along with the Poisson bracket, {U±i , ·}, to generate

the entire set of bare monopole operators. The procedure is inductive on the sum of topo-

logical charges of a monopole, q =
∑
qi, where we treat positive and negative monopoles

separately:

• Restrict to positively charged monopole operators and take the first non-trivial case

of q = 1. These are the minimally charged monopoles and their description is

given above.

• To get the expression for a positive monopole operator V with topological charges ~q

whose sum is
∑

i qi = q = r + 1 one can start by assuming the inductive hypothesis,

that is, expressions are known for all bare monopole operators up to and including

overall topological charge r > 1. The classification of monopoles given in the pre-

vious section is enough to establish that there exists a monopole operator V ′ with

topological charges ~r such that
∑

i ri = r and ~q − ~r is the usual unit vector ~ei. Then

the monopole V is obtained as follows:

V = ±{U+
i , V

′} (4.27)

and the sign is chosen so that, when scalar fields in denominators are ordered “lowest

indices to the left, highest indices to the right” — e.g. in combinations (ϕ1−ϕ3) but

not (ϕ4 − ϕ2) — the expressions are monic. This generates all positive monopoles.

• To generate negative monopoles merely replace positive abelianised monopole vari-

ables with their negative counterparts: u+
i,a 7→ u−i,a.

In the so(8,C) example the monopole operator with highest overall topological charge

was obtained by

V〈1,2,1,1〉 ∝ {U+
2 , V〈1,1,1,1〉} (4.28)

and it is worth taking a look at the structure of (4.23) to see how this monopole operator

arrives at overall R-symmetry spin 1.

4.4 Chevalley-Serre basis

The orthonormal basis for Dn is exhausted by roots of the form ±ei∓ ej and ±ei± ej and

the simple roots are in particular given by

α±i ↔ ±ei ∓ ei+1, 1 ≤ i ≤ n− 1

α±n ↔ ±en−1 ± en.
(4.29)
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The remaining roots are obtained through bracket products of simple roots. For ex-

ample (using angled brackets to signify expansion in the simple root basis),

[〈1, 1, 0, 0〉, 〈0, 0, 1, 0〉] ∝ 〈1, 1, 1, 0〉 (4.30)

[〈1, 1, 1, 1〉, 〈0, 1, 0, 0〉] ∝ 〈1, 2, 1, 1〉. (4.31)

This corresponds to addition in the orthonormal basis:

〈1, 1, 1, 0〉 ↔ e1 − e4 = (e1 − e2) + (e2 − e3) + (e3 − e4) (4.32)

〈1, 2, 1, 1〉 ↔ e1 + e2 = (e1 − e2) + 2(e2 − e3) + (e3 − e4) + (e3 + e4). (4.33)

Whereas positive (negative) roots of An corresponded to strings of 1 (−1) in the simple

root basis, the corresponding structure is marginally more complicated for Dn but it is

exactly the same as that of monopole generators. We repeat (and very slightly fine-grain

for the reader’s convenience) the categorisation of roots from section 4.2, augmenting it

with information about the orthonormal basis:

1. Unbroken strings of ±1 anywhere on the Dynkin diagram (see figure 7(a)). They are

the ±ei ∓ ej and ±ei ± en in the orthogonal basis.

2. ±1 on both spinor ((n − 1)-th and n-th) nodes and an arbitrarily long string of ±1

towards the vector (first) node (see figure 7(b)). They are the ±ei ± en−1 in the

orthogonal basis.

3. ±1 on both spinor nodes, a string of ±2 starting at the (n−2)th node and terminating

before the first node, continued by a string (of length at least 1) of ±1 toward the

first node (see figure 7(c)). They are the rest of the ±ei± ej in the orthogonal basis.

We can therefore find two integers i, j associated to each root, just as in the case of A

algebras. The complex Lie algebra of Dn, soC(2n), acts linearly on the vector space C2n and

the adjoint representation therefore admits realisation as a 2n× 2n antisymmetric matrix,

which naturally breaks into 2×2 blocks indexed precisely by i, j = 1, . . . , n. Antisymmetry

of matrices in soC(2n) also relates the two off-diagonal 2 × 2 blocks indexed by i, j and

j, i (where i 6= j). This is schematically represented by the following matrix, which has

zeroes everywhere apart from two 2 × 2 blocks D sitting in the (2i− 1)-th and 2i-th row,

(2j− 1)-th and 2j-th column and vice versa, modified by an overall constant dependent on

the position of the D block within the larger matrix:

D (ij) =

. . . 2i− 1 & 2i . . . 2j − 1 & 2j . . .

↓ ↓



...

ii−j+1D(ij) ← 2i− 1 & 2i
...

−(ii−j+1)(D(ij))T ← 2j − 1 & 2j
...

(4.34)
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Since the same indices i and j also label roots through the orthonormal basis, we should

expect a correspondence between the two and indeed, each pair of off-diagonal blocks D

contains precisely 4 complex degrees of freedom: just enough to represent all of ei − ej ,
ei + ej , −ei + ej and −ei − ej for 1 ≤ i < j ≤ n. Each root is represented by a slightly

different D block, which we will denote D+− for roots of the form ei− ej (i < j), D++ for

ei + ej and D−+, D−− for their respective counterparts among negative roots. They are

given by:

D+− =
i

2

(
1 i

−i 1

)

D++ =
i

2

(
1 −i

−i −1

)

D−+ =
i

2

(
1 −i

i 1

)

D−− =
i

2

(
1 i

i −1

)

The full block D is then a linear combination of the four matrices above,

D = c
(ij)
+−D+− + c

(ij)
++D++ + c

(ij)
−+D−+ + c

(ij)
−−D−−. (4.35)

Therefore the matrix realisation represents roots as

ei − ej ↔ D (ij)|
c
(ij)
+−=1

= α
(ij)
+− (4.36)

ei + ej ↔ D (ij)|
c
(ij)
++=1

= α
(ij)
++ (4.37)

−ei + ej ↔ D (ij)|
c
(ij)
−+=1

= α
(ij)
−+ (4.38)

−ei − ej ↔ D (ij)|
c
(ij)
−−=1

= α
(ij)
−− (4.39)

where 1 ≤ i < j ≤ n and all other coefficients vanish.

All that remains is to define appropriate generators of the Cartan subalgebra, but that

is easily achieved by invoking (3.33). A Cartan subalgebra generator is given by

hi =

. . . 2i-1 & 2i 2i+1 & 2i+2 . . .

↓ ↓



0
. . .

...

H 0 ← 2i-1 & 2i

0 −H ← 2i+1 & 2i+2
. . .

...

0

(4.40)
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for i = 1, . . . , n− 1, where

H =

(
0 i

−i 0

)
(4.41)

and the remaining entries of hi are zero. The final Cartan generator differs only very

slightly from hn−1, as one might expect:

hn =

. . . 2n-3 & 2n-2 2n-1 & 2n

↓ ↓


0
. . .

...

H 0 ← 2n-1 & 2n

0 H ← 2n+1 & 2n+2

. (4.42)

The full adjoint representation is then realised as

adj(so(2n,C)) =


∑

1≤i<j≤n
a,b ∈{+,−}

c
(ij)
ab α

(ij)
ab +

∑
1≤i≤n

chihi

 (4.43)

where coefficients c range over C.

We were unable to find an earlier matrix realisation of the so(2n,C) Chevalley-Serre

basis and had to construct it ourselves. Therefore as far as we can tell its form is an original

result. We will gladly accept corrections and references to prior work.

As was the case with type A Chevalley-Serre bases, we finish this section by identifying

the basis of the coadjoint representation. The generalisation is completely straightforward.

We define the dual of a root X∗m ≡
∑

n(C−1)mnXn through the inverse of the matrix

Cmn = Tr(XmXn), (4.44)

which is again proportional to the non-degenerate Killing form. As was the case with type

A, positive roots are swapped with their negative counterparts, although now an overall

rescaling factor is involved:

α
(ij)∗
ab =

1

2
α

(ij)
(−a)(−b) (4.45)

There is no additional subtlety in the dualisation of the Cartan subalgebra, which

again mixes non-trivially through the the restriction of the Killing form to h:

h∗i =
∑
j

(C|h)−1
ij hj . (4.46)

4.5 Moment map

All that remains to define the Coulomb branch moment map is to associate generators of

the coadjoint basis with monopole and linear Casimir operators.
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Figure 8. The Coulomb branch of this quiver is the minimal nilpotent orbit of Dn where n is the

number of gauge nodes.

• For monopole operators use (4.29) to translate labels in the simple root basis into

the orthonormal basis:

Vα ↔ V
(ij)
ab (4.47)

where a, b ∈ {+,−} and 1 ≤ i < j ≤ n and pair them with the corresponding

dual roots:

α
(ij)∗
ab ↔ V

(ij)
ab (4.48)

• Linear Casimirs need to be suitably combined to reproduce Poisson brackets analo-

gously to the case of type A; a mass shift is also allowed by the abelianised Poisson

brackets:

h∗i ↔ Hi =
∑
j

κijΦj −Mi (4.49)

Putting everything together the moment map comes out as

N =
∑

1≤i<j≤n
a,b ∈{+,−}

V
(ij)
ab α

(ij)∗
ab +

∑
1≤i≤n

Hih
∗
i (4.50)

This prescription tends to lead to matrices which struggle to fit on a page so we refer

to the case of so(8,C) in (4.4) as an exemplar.

The moment map still generates the Lie algebra homomorphism (3.57), albeit for a

Dn algebra.

4.6 Further examples

4.6.1 Minimal nilpotent orbit of so(2n,C)

The Dn analogue of quivers investigated in 3.6.1 is depicted in figure 8. Their Coulomb

branches are the closures of minimal nilpotent orbits of Dn. The conditions on such an

orbit are

N(~0)2 = 0 (4.51)

rank N(~0) < 2 (4.52)

and have been numerically verified for low values of n. The lack of a complex mass defor-

mation in the minimal nilpotent orbit of so(8,C) generalises to minimal nilpotent orbits of

so(2n,C) with n > 4.
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Figure 9. The Coulomb branch of this quiver is isomorphic to the so(8,C) next-to-minimal nilpo-

tent orbit.

4.6.2 Next-to-minimal nilpotent orbit of so(8,C)

We provide one final example of Dn nilpotent orbits, the next-to-minimal nilpotent orbit

in figure 9. The relations are known to be

TrN(~0)2 = 0 (4.53)

N(~0)[ijN(~0)kl] = 0 (4.54)

and have been verified by our methods. Turning on masses leads to the related set of

equations

TrN( ~M)2 =
1

2
(M1,1 −M1,2)2 (4.55)

N( ~M)[ijN( ~M)kl] = 0 (4.56)

The trace equation shows that this Coulomb branch has a complex mass deformation.

5 Summary

We aimed to demonstrate a certain kind of workflow for investigations of 3dN = 4 Coulomb

branches:

1. Calculate the Hilbert series and identify representations of generators and relations

under the Coulomb branch isometry.

2. Explicitly construct gauge-invariant monopole operators and scalar operators out of

abelianised variables and attempt to assemble them into the aforementioned generator

representations.

3. Test gauge-invariant relations at the SCFT point and, if successful, turn on complex

mass parameters to identify SUSY-preserving deformations of the Coulomb branch.

While our examples only cover a narrow slice of available quiver theories we believe

the general workflow fully generalises to many (all?) 3d N = 4 theories.
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6 Future developments

This work develops several results of [15], particularly its explicit and physically inter-

pretable construction of the Coulomb branch moment map for many balanced unitary

quivers of type A. We were able to extend our understanding to a subclass of type D

quivers.

Such results naturally call for further extension to quivers of types B, C, E, F and G

and indeed we intend to carry out these investigations in the near future. B and C cases

require the development of quiver folding, a non-trivial procedure along the lines of [29],

which we hope to address in upcoming work. Since our method embeds gauge-operators

into a matrix realisation of the isometry’s coadjoint representation, it is most readily suited

for cases in which the isometry is described by a classical algebra. Quivers of types E, F

and G would require a different approach.

Increase in quiver height adds several new generators to the chiral ring of type D

quivers. It would be interesting to express them in terms of abelianised variables and con-

struct their gauge-invariant relations. A similar phenomenon appears upon generalisation

to quivers without a U(1) node and our methods could provide a novel window into quiver

subtractions of [30].

We may also sacrifice balance. Quivers with one overbalanced node (excess greater

than 0) were recently identified as relevant to the vacuum structure of five-dimensional su-

persymmetric theories. Such quivers’ chiral rings are generated by a tensor in the coadjoint

representation and additional tensors in another representation of the overall symmetry.

We have also studied classes of ugly quivers in a so far unpublished research note written

jointly with S. Cabrera.

Finally, it should be possible to extend our methods to orthosymplectic quivers but

such a move would require a generalisation of the analysis in [15] along the lines of [19].
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