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1 Introduction, multi-Regge limit and recursion relations

In the real world, collisions of particles at high enough energy produce additional particles.

For example, the amplitude M2→4 for producing four particles out of two is non-zero in

a generic relativistic quantum field theory. Indeed, this amplitude is related by crossing

symmetry — implemented by an analytic continuation — to the amplitude M3→3 for

three particles to evolve into three particles and the later is typically nonzero in a generic

kinematical configuration. In two space-time dimensions, the so-called integrable theories

constitute an important loophole to this statement. In these theories M3→3 is localized to

a measure zero subspace of the kinematical space (corresponding to factorized scattering)

while M2→4 vanishes identically. In higher dimensions, such measure-zero theories are

necessarily free; i.e. if M3→3 is non-trivial then so is M2→4. At the same time — without

further physical input — it is hard to rule out a very small but non-vanishing M2→4.

A recent motivation for studying theories with such very small particle production

comes from the S-matrix bootstrap explorations of [1, 2]. In these works, the space of mas-

sive relativistic quantum field theories is carved out by looking for the maximal couplings

between various physical particles given a fixed mass spectrum. This search was performed
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analytically in two dimensions [1] and it was found that the theories which maximize var-

ious couplings have no particle production. In higher dimensions, one has to resort to a

numerical search [2] to find very little particle production also in this case.

This motivated us to explore the space of quantum field theories without particle

production. Concretely, we will consider massive scalars in two dimensions inspired by

a beautiful review article [3], where Patrick Dorey points out that already at tree level,

one can severely constrain the Lagrangians of two-dimensional quantum field theories by

imposing absence of particle production recursively. He illustrates how to carry out the first

few steps of this recursive program to recover the first few terms in the expansion of the

sine-Gordon and the Bullough-Dodd Lagrangians. These games are probably well known to

the experts and date back all the way to a beautiful paper by I. Arefeva and V. Korepin in

1974 [4] where they first point out these tree level cancellations for the sine-Gordon model

(and even considered the quantum version of these cancelations). In [5] more complicated

theories were considered along the same lines. What has never been done — as far as we

are aware — is a complete analysis of this recursive procedure which leads to the full form

of these Lagrangians. This is what we set out to do during the 2017 Perimeter Institute

Winter School.1 In this short note, we present the outcome of this exercise.

Let us present the gist of the argument. Consider for simplicity a single real scalar in

(1+1)D with mass m and interaction Lagrangian

Linteraction = −m2
∞∑
n=3

vn
n!
φn . (1.1)

The first production amplitude we want to suppress is M2→3. Setting all particles as

incoming, and using the light-cone coordinates pj = m(aj , 1/aj) we have

− 1

m2
M2→3 = v3v4

∑
α

G(α)︸ ︷︷ ︸
↵

+
1

2
v33
∑
α,β

G(α)G(β)︸ ︷︷ ︸
↵ �

+
1

2

∑
α

v5︸︷︷︸ , (1.2)

where α, β run over disjoint two-element subsets of the set of external particles {1, . . . , 5}
and where the (rescaled) propagator takes the form

G(α) =
1(∑

j∈α
aj

)(∑
k∈α

a−1k

)
− 1

. (1.3)

Total energy-momentum conservation reads
∑5

j=1 aj =
∑5

j=1 a
−1
j = 0. Rather remarkably,

on the support of these constraints and for v4 = 3v23 the first two terms in (1.2) sum to a

constant and can thus be cancelled by appropriately tuning the last term.

1We are grateful to all the PSI fellows and especially to Tibra Ali and Erica Goss for oranizing such a

wonderful school.

– 2 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
4

Having cancelled three-particle production by setting v4 = 3v23, we can now move on

to M2→4 where we get

+ +

++

+� 1

m2
M2!4 =

+ +

1

2

1

2

1

2

1

6
.

(1.4)

Again, we find that on the support of energy-momentum conservation, the first six terms

sum to a constant and can thus be cancelled by an appropriate choice of v6 in the last

term. It is possible to proceed in this way and find that one can always cancel M2→n−2
by appropriately fixing vn. After some tedious calculations, this leads to

Linteraction = −m2

(
v3
3!
φ3 +

3v23
4!
φ4 +

5v33
5!
φ5 +

11v43
6!

φ6 +
21v53

7!
φ7 + . . .

)
. (1.5)

At this point we could try to guess the result. Instead, we would like to proceed more

systematically.

Let us for the time being operate under the assumption that particle production can

be exactly cancelled and let us try to fix the coupling constants that guarantee it. We will

defer the proof of the possibility of complete cancellation to section 2. The key idea that

allows us to fix the couplings uniquely is to introduce a convenient multi-Regge limit where

one incoming particle is at rest, with light-cone momenta p1 = m(1, 1), and n− 3 outgoing

particles are very energetic with

pj = (p+j , p
−
j ) = −m(xj−2, 1/xj−2) , j = 3, . . . , n− 1 , (1.6)

where x is taken to be very large and positive. The momenta p2 and pn of the remaining two

particles are fixed by momentum conservation. We find that (without loss of generality)

particle 2 is outgoing and almost at rest while particle n is incoming and highly energetic.

The configuration is illustrated in figure 1.

At tree level, any propagator separates a subset α ⊂ {1, . . . , n} of the external particles

from its complement. Most such subsets make highly energetic jets and thus vanishingly

small propagators. The only propagators which survive in the limit x → ∞ are the ones

where particles {1, 2, . . . , j − 1} are on one side and particles {j, j + 1, . . . , n− 1, n} on the

other so that the momentum transfer is small. Specifically,

lim
x→∞

G(α) =

{
−1 if α = {j, j + 1, . . . , n} (or equivalently α = {1, 2, . . . , j − 1})
0 otherwise .

(1.7)

Hence, the only surviving tree-level Feynman graphs are one-dimensional chains with all

particles ordered. Figure 2 shows an example of a surviving Feynman diagram. For ex-

ample, the 2→ 4 amplitude (1.4) immediately simplifies to −M2→4/m
2 = −v43 + 2v23v4 +

v23v4 − v24 + 2v3v5 + 0 + v6 .
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1

2

n

n� 13 . . .

p+1 = +m,

p+2 ' �m

p+j = �mxj�2 , j = 3, . . . , n� 1

p+n ' +mxn�3 .

Figure 1. The precise expression for the momenta of particles 2 and n are given by solving

energy-momentum conservation
∑
p+j =

∑
1/p+j = 0. In the multi-Regge limit with x � 1 we

have a highly energetic particle hitting a particle at rest producing a particle which is almost

at rest plus a shower of very energetic particles. (More precisely, one finds the momenta p+n =

−p+n−1 − · · · − p+3 +O(x−1) ' mxn−3 and p−2 = −p−1 − p−3 − · · · − p−n−2 +O(x2−n) ' −m.)

1

2

n

n� 13 . . .

1

2

3

n

n� 1

n� 24 . . .

4 n� 2

= v4 ⇥ (�1)⇥ v3 ⇥ (�1)⇥ v3 ⇥ (�1)⇥ v4

=

Figure 2. The only surviving diagrams in the multi-Regge limit are one-dimensional chains with

particles ordered along the chain. They evaluate to the product of involved vertices and (−1) per

propagator.
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2

1

2

1

+

+ 2

1

3

n

(n+ 1)

(n+ 2)

+

(n+ 1)

(n+ 2)

+ . . . +

0 0
3

+

. . .

2

1

3 n

. . .

2

1

3 (n+ 1)

. . .

(n+ 2)

3
(n− 1)

. . .

...

...

2

1

3
. . .

3 (n− 2)

. . .

0

...

Figure 3. We organize all ordered diagrams so that particle 1 is always on the left. The sum of

diagrams where particle 1 is attached to a k-point vertex with k < n evaluates to zero since it is

attached to a total amplitude with n − k + 4 > 4 external particles. As a result, only the three

contributions in the last row survive.

It is now easy to find the general Lagrangian by induction. We considerM2→n assum-

ing M2→3, . . . ,M2→n−1 were already tuned to vanish by fixing the vertices up to vn+1.

The amplitude M2→n in the multi-Regge limit is given by a sum of one-dimensional or-

dered chains. Particle 1 must therefore be at an end-point of such chains and can interact

through a vertex of any valency, as illustrated in figure 3. The only surviving graphs

are those where the vertex is an n-, (n + 1)- or (n + 2)-particle vertex since those are

respectively dressed by 4, 3 and 2 total particle amplitudes which are the only non-zero

amplitudes (since 5, 6, . . . , n + 1 were already constrained to vanish, by assumption). We

thus find

− 1

m2
M2→n = vn+2︸︷︷︸

1

+ (−vn+1v3)︸ ︷︷ ︸
1

+ vn
(
v23 − v4

)︸ ︷︷ ︸
1 +1

. (1.8)

Recalling that v4 = 3v23 and requiring this amplitude to vanish, we obtain the desired

recursion relation which one can readily solve,

0 = vn+2 − vn+1v3 − 2vnv
2
3 ⇒ vn =

2 + (−2)n

6
λn−2 , (1.9)

thus obtaining the famous Bullough-Dodd model,

LBD =
1

2
(∂φ)2 − m2

6λ2

[
2eλφ + e−2λφ − 3

]
. (1.10)

We see that this is the only theory with a single massive scalar particle, a cubic coupling,

a perturbative expansion with no derivative couplings and no particle production at tree-

level. It is a pleasure to check that the Taylor expansion of this potential does match with

the painfully obtained data in (1.5).

We can also study Z2-symmetric scalar theories, i.e. those where all odd-point inter-

action vertices vanish. In this case, we can set v3 = 0 in (1.8) to obtain the simpler Z2
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recursion relation vn+2 − vnv4 = 0 leading to vn = βn−2 for n even so that the potential

resums to the sinh-Gordon theory2

LsG =
1

2
(∂φ)2 − m2

β2
[cosh(βφ)− 1] . (1.11)

In section 2 we tie up some loose ends of the above derivation. First, we discuss in

more detail the seeds of the recursion relations, i.e. the remarkable identities which state

that particular sums of diagrams arising in lower amplitudes actually add up to constants.

Second, we explain in more detail why, once this is established, we are guaranteed to be

able to cancel higher-particle production by suitably adjusting the higher-point interaction

vertices. We can then pick any simplifying kinematics to find these couplings and the

multi-Regge derivation we just described is a particularly convenient choice. The method

generalizes to other theories. Section 3 contains a very preliminary start of such explo-

rations. There, we comment on generalizations to a higher number of fields, theories with

derivative interactions and theories with color orderings and make contact with Toda the-

ories and non-linear sigma models. We were told that a supersymmetric analysis is to

appear in [6] following similar techniques.

Can any of this can shed light on the very small particle production observed in the

recent higher-dimensional S-matrix bootstrap explorations? Perhaps in a similar multi-

Regge limit we can develop some intuition? Or perhaps, the better analogy is in terms of

enhanced soft limits? We should explore this further.

2 No particle production via analytic properties

In this section, we tie up the two loose ends of the discussion above. First, we discuss

in more detail the seeds of the recursion relations, i.e. the remarkable identities which

state that particular sums of diagrams arising in lower-point amplitudes actually add up

to constants. Second, we explain in more detail why, once this is established, we are guar-

anteed to be able to cancel higher-particle production by suitably adjusting the remaining

interaction vertices.

2.1 General comments

Let us treat all particles as incoming and parametrize the external momenta by aj so

that pj = m(aj , 1/aj) in light-cone coordinates. Since we want to cancel tree-level par-

ticle production in a generic kinematical configuration, we can set ε = 0 in the iε pre-

scription. This is because a nonzero ε can only introduce additional momentum-space

delta-functions in the ε → 0 limit (at tree level). We will denote the n-point scattering

amplitude by Mn. Firstly, we would like to comment on the complex-analytic properties

ofMn. The Feynman-diagrammatic prescription givesMn as a rational function of all aj ,

j ∈ {1, . . . , n}. However, the ajs satisfy a pair of algebraic constraints corresponding to

momentum conservation
∑n

j=1 aj =
∑n

j=1 a
−1
j = 0. We can solve these constraints to find,

say an−1, an in terms of a1, . . . , an−2. The solution contains square roots, reflecting the fact

2Or sine-Gordon if we take β to be purely imaginary.
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that the constraints are symmetric under the transformation an−1 ↔ an. Fortunately,Mn

is also symmetric under this transformation. This guarantees that after substituting for

an−1, an in terms of a1, . . . an−2, all square roots drop out and Mn becomes a symmetric

rational function of the independent variables a1, . . . , an−2. By permutation symmetry, we

can think of Mn as a rational function of any (n− 2)-element subset of the ajs.

Another useful property of Mn is that it is left invariant under the simultaneous

rescaling aj 7→ λaj . Now, imagine we can demonstrate thatMn has no poles as a function

of any of the ajs. Since it is a rational function, it must be a polynomial. The invariance

under the simultaneous rescaling then shows that it must in fact be a constant. Therefore,

to demonstrate the constancy of a given amplitude, it is sufficient to show it has no poles.

Our proof that particle production can be cancelled at tree-level in the sine-Gordon and

Bullough-Dodd theories proceeds by induction on the number of external particles. First,

we will analyze the base casesM5 andM6, and then move on to proving the induction step.

2.2 Base case for sine-Gordon

SinceM5 = 0 in the sine-Gordon theory by the Z2 symmetry, it is enough to analyze M6.

We want to show that on the support of momentum conservation, the function∑
σ

G(σ)︸ ︷︷ ︸
�

=
∑
σ

aσ(1)aσ(2)aσ(3)

(aσ(1) + aσ(2))(aσ(1) + aσ(3))(aσ(2) + aσ(3))
(2.1)

has no poles as a function of the ajs, where the sum runs over all three-element subsets

of {1, . . . , 6}. Poles may only occur when aj → −ak. Thanks to the symmetry under

arbitrary permutations of the external particles, it is enough to look at the one when

a5 → −a6. When this happens, particles 5 and 6 annihilate each other and disappear from

the momentum conservation constraints which thus become
∑4

j=1 aj =
∑4

j=1 1/aj = 0.

These still admit several two-parameter branches of solutions. Thanks to symmetry, we

can pick one of the branches, say a1 = −a2 and a3 = −a4. We ended up with three pairs of

particles all annihilating at the same time. The terms of (2.1) singular in this limit must

have any of the pairs (12), (34) or (56) either inside σ or in its complement. There are six

such terms. For example for σ = {1, 2, 3}, we find

Res
a1→−a2

a1a2a3
(a1 + a2)(a2 + a3)(a3 + a1)

=
a22 a3
a22 − a23

. (2.2)

But this term cancels with the term where a3 is replaced by a4 since a3 is approaching −a4
in this limit. All other terms cancel in the same pairwise fashion thus showing that (2.1)

is a constant.

2.3 Base cases for Bullough-Dodd

The base cases of our argument for the BD model consist of showing the constancy of M5

andM6. ForM5, we need to demonstrate that on the support of momentum conservation,

– 7 –
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the quantity

∑
σ

aσ(1)aσ(2)aσ(3)

(aσ(1) + aσ(2))(aσ(1) + aσ(3))(aσ(2) + aσ(3))
×

×
(

1 +
λ

2

∑
µ

aµ(1)aµ(2)aµ(3)

(aµ(1) + aµ(2))(aµ(1) + aµ(3))(aµ(2) + aµ(3))

)
︸ ︷︷ ︸

�

µ

�
+
�

2

(2.3)

has no poles for properly tuned λ. σ runs over all three-element subsets of {1, . . . , 5} and µ

runs over three-elements subsets of {1, . . . , 5} sharing exactly one element with σ. Again,

it suffices to analyze the pole that occurs as a1 → −a2. The pole could come from the µ

propagator or the σ propagator. Hence, using (2.2) we get the residue

∑
j=3,4,5

a22 aj
a22−a2j


1+2

λ

2

a3a4a5
(a3+a4)(a3+a5)(a4+a5)︸ ︷︷ ︸

=−1 for a1→−a2

+2
λ

2

∑
l=1,2

∑
k,r 6=j

alarak
(al+ar)(al+ak)(ar+ak)︸ ︷︷ ︸

=−
2a22arak

(a22−a2r)(a22−a2k)
for a1→−a2



=
a22∏5

k=3(a
2
2−a2k)


(1−λ)

∑
k

ak
∏
l 6=k

(a22−a2l )︸ ︷︷ ︸
a42

(∑
k
aj

)
−2a22

(∑
k 6=l

aka
2
l

)
+a02a3a4a5

(∑
k 6=l

akal

)
− 3×2λa22a3a4a5


.

(2.4)

Now, because of momentum conservation we have
∑5

k=3 aj =
∑5

k 6=j akaj = 0 so only the

terms quadratic in a2 survive. Finally, multiplying both momentum conservation con-

straints yields 0 = (a3 +a4 +a5)(a4a5 +a3a5 +a3a4) yields 2
∑

k 6=j aka
2
l = −3a3a4a5 so this

remaining quadractic term is simply equal to a22a3a4a5(3(1 − λ) − 6λ) and thus vanishes

for λ = 1/3. We have thus shown that provided v4 = 3v23, M5 has no poles and thus is a

constant.

Provided the constant M5 is cancelled by an appropriately chosen v5, it is a simple

matter to also demonstrate the constancy of M6, which we leave as an exercise to the

reader.
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2.4 The induction step

The purpose of this subsection is to prove the step of our induction. Specifically, we would

like to show that if Mj vanishes for all j ∈ {5, . . . , n} and n ≥ 6, then the n + 1-point

coupling can be chosen so that also the Mn+1 amplitude vanishes.

Let us assume that Mj vanishes for j = 5, . . . , n with n ≥ 6 and study Mn+1 as a

function of the complex variable a1 with a2, . . . , an−1 generic. The only allowed singular-

ities correspond to a single propagator going on-shell. This is because a given internal

propagator separates a tree amplitude into two subamplitudes. When such propagator

goes on-shell, we obtain two on-shell amplitudes. An on-shell amplitude is non-singular for

generic momenta, implying no additional singularities occur for generic external momenta

with a single internal propagator going on-shell.

Take the propagator to separate the external legs into subsets A, {1, . . . n+ 1}\A and

denote p0 =
∑

i∈A pi. The residue at the pole is propotional to a product of lower-point

on-shell amplitudes

Resp20→0Mn+1 ∼Mk+1(a0, ai)Mn−k+2(−a0, aj) , (2.5)

where k = |A|, i ∈ A and j ∈ {1, . . . n+ 1}\A. Since 2 ≤ k ≤ n− 1, one of the two on-shell

subamplitudes vanishes by the induction hypothesis. Indeed, the first factor on the r.h.s.

of (2.5) vanishes if k ≥ 4, and the second factor certainly vanishes in the remaining cases

k = 2, 3. We conclude Mn+1 has no poles as a function of a1.

The same argument applies to Mn+1 as a function of the remaining variables a2, . . . ,

an−1 and we conclude Mn+1(a1, . . . , an−1) is a polynomial. The Feynman-diagrammatic

definition implies that Mn+1 is invariant under the simultaneous rescaling ai 7→ λai, so

that the polynomial is in fact a constant. The coupling vn+1 can now be chosen to cancel

this constant, which completes the proof of the induction step.

3 Generalizations

3.1 Multiple fields

In this subsection, we will generalize parts of the above analysis to the case of multiple

scalar fields. We consider the most general Lagrangian for a two-dimensional theory with

N real scalar fields φα, α = 1, . . . , N with non-derivative interactions:

L =
1

2
(∂µφα)(∂µφα)− 1

2
m2
αφ

2
α −

∞∑
n=3

vα1...αn
n

n!
φα1 . . . φαn , (3.1)

where repeated field indices are summed over from 1 to N and vα1...αn
n is a totally symmetric

tensor of rank n. As before, we would like to constrain vα1...αn
n by imposing the theory

has no particle production at tree-level. Since the external particles can be arbitrary, this

requirement clearly fixes all n-point vertices for n ≥ 5 in terms of the cubic and quartic

couplings. We would like to find the recursion relation on the couplings analogous to (1.8),

using the obvious analogue of the multi-Regge limit (1.6). We consider the scattering of n

– 9 –
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particles of species α1, . . . , αn and parametrize their light-cone momenta using the variables

zj as pj = mj(zj , 1/zj). In the multi-Regge limit, we take

z1 = 1 and zj = −xj−2 for j = 3, . . . , n− 1 (3.2)

with x → ∞. We use momentum conservation to solve for z2 and zn. On one of the two

branches of solutions, we find

z2 = −m2

m1
+O(x−1) and zn =

mn−1
mn

xn−3 +
mn−2
mn

xn−4 + . . .+
m3

mn
x+O(x0) . (3.3)

Again, the only diagrams which survive the x→∞ limit are linear chains. The rest of the

derivation of the recursion relation is identical to the single field case, except for the need

to sum over particle species in internal propagators. To write the recursion relation, it is

first convenient to define

ṽα1...αn
n =

vα1...αn
n

mα1 . . .mαn

. (3.4)

The recursion then reads

ṽα1...αn
n = ṽ

α1...αn−2β
n−1 ṽ

βαn−1αn
3 + ṽ

α1...αn−3β
n−2

(
ṽ
βαn−2αn−1αn
4 − ṽβαn−2γ

3 ṽ
γαn−1αn
3

)
, (3.5)

where repeated indices β, γ are summed over. The recursion relation determines the ṽα1...αn
n

for n ≥ 5 in terms of ṽαβγ3 and ṽαβγδ4 . Moreover, it turns out it imposes non-trivial

constraints on ṽαβγ3 and ṽαβγδ4 too since the right-hand side must be invariant under re-

ordering the αs since the left-hand side is fully symmetric. For example, when N = 2, it

allows us to fix the quartic couplings in terms of the cubic couplings as follows3

ṽ11114 = v̂11114 + ṽ1113 ṽ1113 − ṽ1113 ṽ1223 + 2ṽ1123 ṽ1123 + ṽ1223 ṽ1223 − ṽ1123 ṽ2223

ṽ11124 = v̂11124 + ṽ1113 ṽ1123 + ṽ1123 ṽ1223

ṽ11224 = v̂11224 + ṽ1123 ṽ1123 + ṽ1223 ṽ1223

ṽ12224 = v̂12224 + ṽ1123 ṽ1223 + ṽ1223 ṽ2223

ṽ22224 = v̂22224 + ṽ1123 ṽ1123 − ṽ1113 ṽ1223 + 2ṽ1223 ṽ1223 − ṽ1123 ṽ2223 + ṽ2223 ṽ2223 ,

(3.6)

where v̂αβγδ4 is a solution of the following linear homogenous problem

ṽ1123 ṽ1223 − ṽ1113 −ṽ1123 0 0

−ṽ1223 2ṽ1123 − ṽ2223 2ṽ1223 − ṽ1113 −ṽ1123 0

ṽ1223 ṽ2223 − ṽ1123 −ṽ1223 0 0

0 ṽ1223 ṽ2223 − ṽ1123 −ṽ1223 0

0 −ṽ1223 2ṽ1123 − ṽ2223 2ṽ1223 − ṽ1113 −ṽ1123

0 0 ṽ1223 ṽ2223 − ṽ1123 −ṽ1223


·



v̂11114

v̂11124

v̂11224

v̂12224

v̂22224


= 0 . (3.7)

3Some of these equations can be given a nice physical meaning. For instance, consider an integrable the-

ory with an arbitrary number of particles but where m2 6= m1. Then the inelastic amplitude 11→ 12 should

vanish and that amplitude is of course given at tree level by v1112+
∑N
x=1 v11xv12x

(
1

s−m2
x

+ 1
t−m2

x
+ 1

u−m2
x

)
.

Vanishing of this component yields many constraints. One which is quite obvious is found at high energies

when s → ∞, then we have t → −∞ and u → 0 so that we get simply 0 = v1112 +
∑N
x=1 v11xv12x/(−m

2
x)

which reduces to the second equation in (3.6) when N = 2 and for v̂4 = 0. The third and fourth equation

there have similar interpretations.

– 10 –
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For generic values of the cubic vertices, the matrix has rank five, and therefore the only

solution is v̂αβγδ4 = 0. However, there are special values of the cubic vertices where the

matrix degenerates and a nontrivial v̂αβγδ4 is allowed. It would be interesting to see whether

there are further consistency constraints from the permutation symmetry of (3.5) for n > 5,

and understand the space of solutions for N > 2.

The recursion relation (3.5) is a necessary condition to have no tree-level particle

production. In order to find sufficient conditions, we need to establish that the seeds of the

recursion work by repeating the analysis of sections 2.2 and 2.3. We performed this analysis

for the case N = 2, assuming the cubic vertices are such that the matrix in (3.7) has full

rank, so we can use (3.6) with v̂4 = 0. By imposing that the five-particle amplitude (which

ought to vanish altogether) has no poles as a function of the external momenta, we find

a set of six discrete solutions for the masses and cubic vertices. Only one of our solutions

contains particles with equal masses and matches the A2 affine Toda field theory [5, 7],

which has the following Lagrangian

LA2 =
1

2
(∂µφα∂

µφα)− m2

3β2

[
e
√
2β φ1 + eβ(

√
3/2φ2−φ1/

√
2) + e−β(

√
3/2φ2+φ1/

√
2) − 3

]
. (3.8)

When the masses are distinct, our solutions correspond to the remaining five affine Toda

field theories with two particles. In the notation of [7], they have the following mass spectra:

B2 = C2 : m2 =
√

2m1

G2 : m2 =
√

3m1

A
(2)
3 = D

(2)
3 : m2 =

√
3m1

A
(2)
4 : m2 =

1 +
√

5

2
m1

D
(3)
4 : m2 =

√
2 +
√

3m1 .

(3.9)

We can now go back and check that indeed in all these cases, matrix in (3.7) has full

rank. All cases of lower rank that we encountered correspond to a pair of decoupled sine-

Gordon and Bullough-Dodd theories. sG+sG leads to rank zero, sG+BD to rank three

and BD+BD also to rank three. If these decoupled cases are all there is, then we are done

with the classification of theories with two fields and no particle production. Would be

interesting to look for more exotic possibilities and explore the lower rank cases further.

Moving to N > 2, we were able to check that the B4 Toda, containing four particles,

all of which have a distinct mass, satisfies the recursion relation (3.5). The analysis of

the seed problem for N > 2 is beyond the scope of this work. It would be remarkable

if one could use our algorithm to uncover theories with no classical particle production

and Lagrangian of the form (3.1) which are not affine Toda field theories, thus plausibly

discovering overlooked integrable field theories.

Finally, we can use the recursion (3.5) to demonstrate that there are no O(N)-symmet-

ric theories of the type (3.1) without particle production. Such theories would have van-

ishing cubic coupling and quartic couplings constrained by O(N) symmetry to take the

– 11 –
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form vabcd4 = A1δ
abδcd +A2δ

acδbd +A3δ
adδbc. Plugging this into the right-hand side of our

recursion (3.5) for n = 6 and imposing that the right-hand side if fully symmetric leads to

Aj = 0 and hence to a trivial free theory where all couplings vanish.

3.2 Colour-ordered theories

In this section we repeat the procedure done in the introduction for theories of Hermi-

tian matrix valued massless fields interacting through two-derivative terms4 with (gn,k for

bn/2c < k are redundant due to cyclic invariance)

L(h) =
1

2
Tr(∂µh∂

µh) +

∞∑
n=3

bn/2c∑
k=1

gn,k Tr(hk−1∂µhh
n−k−1∂µh)︸ ︷︷ ︸

k

(3.10)

and obtain a recursion rule constraining the gn,k’s to ensure absence of tree level particle

production in the planar limit. As in the previous subsection, we will only discuss necessary

conditions coming from cancellation of particle production in the multi-Regge limit, and

omit an analysis of the seed for the recursion, i.e. analogues of 2.2 and 2.3.

First, we will systematically fix field redefinition ambiguities in (3.10). We shall then

discuss the expected scattering behavior in integrable massless theories. Finally, we define

the appropriate multi-regge limit and construct the recursion relation. It admits a single

solution — the U(N) Non-Linear-Sigma-Model (NLSM).

3.2.1 Amplitudes, kinematics and jets

We decompose the full amplitude according to the trace structure and focus on the single-

trace parts

Mτ1...τk (p1, . . . , pk) ⊃
∑

σ∈Sn/Zn

Tr
[
TRτσ(1) . . . T

R
τσ(n)

]
M
(
pσ(1), . . . , pσ(k)

)
, (3.11)

where M is a planar ordered amplitude. Vanishing of the full amplitude implies the

vanishing of the planar ordered amplitude. In two dimensions, when we scatter massless

particles they can be right or left movers with

p+ ≡ {p, 0} , and , p− ≡ {0, p} , (3.12)

respectively so these partial amplitudes will split further into a bunch of independent

possibilities as

M(−+ +−) =M(p
(1)
− , p

(2)
+ , p

(3)
+ , p

(4)
− ) , M(−+−+) =M(p

(1)
− , p

(2)
+ , p

(3)
− , p

(4)
+ ) , etc .

(3.13)

4Single scalar theories with two-derivative interactions L = 1
2
Tr(∂µφ∂

µφ) +
∑∞
n=3 gnφ

n−2∂µφ∂
µφ are

free theories in disguise since we can field refine the interactions away, L = 1
2
Tr(∂φ′)2 with φ′ = φ+ g3

2
φ2 +

2g4−g23
6

φ3 + . . . .

– 12 –
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Note that because of the left/right moving nature of massless particles in two dimensions,

multi-particle scattering involving large number of particles can have a dramatically dif-

ferent space-time interpretation. Take an extreme example such as

M(−−−−+ + + + +︸ ︷︷ ︸
incoming

+ + + +−−−−−︸ ︷︷ ︸
outgoing

) (3.14)

which would describe a collision of two big jets of collinear particles to produce two jets

in the final state. Since jets resemble individual particles one could expect that this big

amplitude would be simply proportional to the first 2 → 2 amplitude in (3.13) with some

large momenta and be non-zero even in an integrable theory. In the other extreme, an

amplitude like

M(−+−+−+−+︸ ︷︷ ︸
incoming

−+−+−+−+︸ ︷︷ ︸
outgoing

) (3.15)

would describe a bunch of non-collinear particles colliding into another non-degenerate

bunch. In an integrable theory we expect this to vanish. Another example would be

M(−−−−+ + + + +︸ ︷︷ ︸
incoming

+ + + +−−−−−+ + + ++︸ ︷︷ ︸
outgoing

) (3.16)

which would describe two jets colliding into three jets and which we would again expect

to vanish in an integrable theory (and be proportional to the five particle amplitude in

a non-integrable theory). To summarize, when cancelling particle production we want

to impose that all amplitudes involving many particles are zero except, potentially, the

dangerous case (3.14). Nicely, we will see below that imposing the cancellation of the most

non-degenerate scattering configurations such as (3.15) (and of small deformations thereof)

is already enough to completely constrain all the couplings and allow us to rediscover the

NLSM as the unique massless matrix valued theory with two derivative interactions and

no tree-level planar particle production.

3.2.2 Field redefinitions

Under the field redefinition h→ h+ α3h
2 + α4h

3 + . . . we obtain a new Lagrangian of the

same form as in (3.10) but with the couplings gn,k reshuffled. More precisely, α3 shifts the

cubic couplings (n = 3) and higher, α4 affects the quartic couplings (n = 4) and higher etc

in this triangular fashion. So we can exploit this field redefinition freedom to set to zero

one of the couplings gn,k at each n for example. We use it to set

gn,2 = 0 . (3.17)

At this point, this choice could seem rather arbitrary as we can also make other choices

such as taking gn,1 to be zero or any other more complicated choices of which k’s to

contraints for each n but we will see below that the gn,2 = 0 has great advantage when we

apply the induction process.

Note also that at the cubic level g3,1 = g3,2 so we are killing the cubic coupling alto-

gether and we see that can restrict to theories without cubic couplings without any loss of

generality.

– 13 –
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P� � 1

Figure 4. If four momenta are much larger than the other ones then the contact amplitude

is simply given by the four terms in the vertex which couple pairs of such large momenta with

opposite chirality. No particle production thus sets those simple combinations to vanish. Carefully

choosing which momenta are large immediately lead to gn,2k+1 = gn,1 as illustrated here.

Since we have no cubic coupling and since we set one of the two independent quartic

couplings to zero, we see that the four-particle scattering at tree level is given by a single

quartic interaction Lquartic = 2g4,1Tr(h2(∂h)2) so that M(p1, . . . , p4) ∝ (p1 · p2) + (p2 ·
p3) ∝ (p2 · p4) using momentum conservation and massless conditions. Hence, the second

amplitude in the example list (3.13) vanishes while the first one, M(−+ +−) survives.

3.2.3 Vanishing of odd terms

Since we have no cubic couplings, the five particle scattering process is purely given by

contact interactions given by the five particle vertices. Imposing that these vanish set all

the quintic couplings to zero. Then the seven particle scattering process is again a purely

contact interaction and setting it to vanish again sets all n = 7 couplings to vanish and so

on. To see this rather explicitly, consider for example the amplitude

M(−−+−+−+− . . . ) (3.18)

and take two of the left-moving momenta (and two of the right-moving momenta) to be

very large, much larger than all other momenta, and with opposite sign as to be compatible

with momentum conservation. Then, to leading order in the magnitude of the momenta of

these very energetic particles, the amplitude — which is given by contact interactions only

— is given by the only vertices whose derivatives couple these four very large momenta.

As illustrated in figure 4, by playing with which momenta we take to be large we can in

this way readily show that

gn,2k+1 = gn,1 = goddn (3.19)

and since the cyclic relation gn,k = gn,n−k relates k and n− k which have different parity,

we conclude that gn,k is actually k independent altogether. Since we have already gn,2 = 0

from our gauge choice (3.17) we thus conclude that

gn,k = 0 for n odd , (3.20)

for theories without particle production.
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3.2.4 Determination of even terms

Next we move to the even couplings. We first impose the vanishing of the alternating and

nearly alternating amplitudes

M(+−+ · · · −+−) , M(+−+ · · · −++) . (3.21)

To do so, we will use the vanishing of the more general off-shell currents

M(+−+ · · · −+α) (3.22)

where the last particle is off-shell. It is clear that the first of these currents vanishes,

M(+ − +α) = −4 g4,1 p1 · p3 = 0. If such currents vanish for n particles or less then

the same currents for n + 2 particles are given by contact vertices only since any internal

propagator will have currents with n particles or less on one of it’s sides. Hence, our full

induction loop goes as follows

1. Start with amplitudes (3.21) and currents which vanish for n particles.

2. The amplitudes of the form n + 2 are given by pure contact vertices since in their

factorization channels only vanishing lower amplitudes such as (3.21) and currents of

the form (3.22) show up. Imposing that these contact amplitudes vanish mimics the

odd n analysis of the previous section almost verbatim. A key difference here is that

gn,k = gn,n−k now relates k and n − k which have the same parity so the even and

odd terms are more independent now. Indeed, following the very same limits as in

figure 4 for the amplitudes (3.21) immediately leads to

gn,k = δn evenδk odd gn . (3.23)

3. Finally we check that with these couplings the more general currents (3.22) also vanish

for n+ 2 particles. This is a rather straightforward exercise since for purely contact

interactions there is no big difference between currents and amplitudes. Explicit

computation indeed leads to a vanishing result for these currents. We thus have a

perfect induction loop.

We will now derive a simple recursion relation on these gn. We impose the vanishing of

the n-particle amplitude,

M(+ +− · · ·+−−) (3.24)

in the limit,

pj-even = xj/2 , pj-odd = y(j−1)/2 . (3.25)

p1 and pn are determined by momenta conservation. Channels that have p1 and pn on

the same side of the propagator must vanish (see figure 5) since there is a vanishing cur-

rent (3.22) on the other side of the propagator.

The resulting constraint is depicted in figure 6 leading to

gn = 2g4 gn−2 . (3.26)
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trivial factorization channel since
the upper lower sub-amplitude is of the form
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which was already set to vanish.

momenta increase in magnitude counter-clockwise
with the particles in the yellow region being the
fastest left- and right- moving particles.

Figure 5. Non-vanishing factorizations have p1 and pn on different sides of the propagator. Or-

ganizing the contributions by the vertex including p1 (see figure 6) we see that all of them are

proportional to full amplitudes. Hence, only the one with an (n−2)-particle vertex on one side and

the 4-particle amplitude on the other survives.

leading to gn = 1
2F
−n+2 with F being a constant, i.e.

gn,k =
1 + (−1)n

2

1− (−1)k

2

1

2
F−n+2 . (3.27)

In the next section we identify a well known theory corresponding precisely to these cou-

plings.

3.2.5 The Cayley parametrization of the non-linear sigma model

In the last section we found the only candidate for integrability defined by a Lagrangian of

the form (3.10), in other words we proved it’s uniqueness. However, we did not prove that

all amplitudes of more than four jets (see section 3.2.1) vanish. In other words, we did not

prove existence. Since it is well known that the U(N) non-Linear-Sigma-Model (NLSM) is

a quantum integrable theory, it better be that the unique solution we found corresponds

precisely to this well known theory! This is what we verify in this section.

To do so we will simply re-sum our Lagrangian. Plugging (3.27) into (3.10) we get

L(g) =
1

2

∑
a,b≥0

1 + (−1)a

2

1 + (−1)b

2

1

F a+b
Tr
[
ha(∂µh)hb(∂µh)

]
(3.28)

which we can re-sum into

L(g) =
1

2
Tr

[
1

1− h2/F 2
(∂µh)

1

1− h2/F 2
(∂µh)

]
. (3.29)
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Figure 6. As done for the case with no derivative interactions, one groups the Feynman diagrams

contributing to this amplitude by the vertex containing p1. The sum of diagrams in the group

corresponding to an m-particle vertex is proportional, to leading order, to a full (n−m+2)-particle

amplitude and vanishes for m < n− 2. The propagator can be treated as an on-shell right moving

particle because its left-moving part is of order ym/2−1 and is vanishingly small in comparison to

any left-moving momenta to the left of the propagator.

At this point we note that the objects showing up are the derivatives of an U(N) group

element

∂µ

(
g ≡ 1+h/F

1−h/F

)
= ∂µ

(
1+2

∞∑
n=1

hn

Fn

)
=

1

2

∑
a,b≥0

ha(∂µh)hb

F a+b+1
=

1

2F

1

1−h/F ∂µh
1

1−h/F .

(3.30)

Indeed, g−1 is equal to the group element g with h→ −h and hence, using cyclicity of the

trace, we see that

L(g) =
1

2
Tr

 1

1− h/F (∂µh)
1

1− h/F︸ ︷︷ ︸
2F∂µg

1

1 + h/F
(∂µh)

1

1 + h/F︸ ︷︷ ︸
2F∂µg−1

 = 2F 2
[
Tr(∂µg)(∂µg−1)

]
(3.31)

thus precisely recognizing the NLSM as expected! The parametrization of g in (3.30) is

known as the Cayley parametrization, see e.g. a recent work [8] exploring these and many

other parametrizations in a higher-dimensional context.
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4 Summary

In this paper, we considered relativistic two-dimensional quantum field theories at tree

level. We investigated how imposing the absence of particle production can efficiently

restrict the Lagrangians of these theories, often determining them completely. Key in our

analysis was the idea of using high-energy limits to isolate particular exchange processes

and thus tame the otherwise very complicated tree-level combinatorics. The chief example

is the multi-Regge limit introduced in figure 1. Using these high-energy limits, we derived

recursion relations constraining various couplings in theories with no particle production.

We found (1.8) for theories with a single massive scalar, (3.5) for multiple massive scalars

and (3.26) for theories with massless matrix-valued fields with two-derivative interactions.

By solving these recursion relations, we made contact with well-known integrable theories

such as sine-Gordon, Bullough-Dodd, multiple Toda theories and the non-linear sigma

models.5 Especially for the multiple field theories, it would be very interesting to perform

a more systematic analysis of the recursion relations and seeds. It would be formidable if we

could unveil new overlooked integrable models as solutions to these high-energy recursion

relations.
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