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1 Introduction

Perturbative quantum field theory has been describing particle physics phenomena very

well, yet improving the perturbative series, i.e., calculating Feynman integrals, has been

always challenging. It becomes more and more important to include higher order cor-

rections to theoretical predictions as particle physics experiments, especially at the Large

Hadron Collider (LHC), become more and more precise over the years. This means that a

deeper understanding of higher order corrections is required to obtain meaningful theoret-

ical predictions.
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One of the most interesting problems in this field is higher order corrections to multi-

scale processes. The prime examples are the Higgs+jet, Higgs pair, and Higgs+Z produc-

tion cross sections at the LHC. These 2 → 2 processes involve two kinematical variables,

such as the center of mass energy and the transverse momentum, and the masses of inter-

nal or external particles serve as additional scales. Here, the word “multi-scale” is used

when there are more than three scales. The bottlenecks of the calculation of multi-scale

processes are the integration-by-parts (IBP) reduction and the evaluation of the resulting

master integrals. The subject of this paper is the second issue, namely, the evaluation of

multi-scale Feynman integrals.

Efforts to solve multi-scale Feynman integrals have persisted over the years. One of

the milestones is the analytic computation of all the planar master integrals contributing

to the Higgs → 3 partons process at two-loops [1]. Another milestone is the numeric eval-

uation of the Higgs+jet [2] and Higgs pair production [3, 4] cross sections at two-loop level

using the program SecDec [5, 6]. An independent numerical evaluation of the Higgs pair

production cross section is given recently [7]. It is worth mentioning some recent analytic

calculations of three-scale four-point two-loop diagrams; the non-planar master integrals

for µe scattering [8, 9], the planar double box integral relevant to top pair production [10]

and the planar master integrals relevant to di-photon and di-jet production [11]. These

works show that even three-scale problems are difficult to solve. Recently, some of the

non-planar master integrals for these processes in the limit mH = 0 have been solved [12],

but there still remain unsolved master integrals.

It is a promising idea to reduce the number of scales entering integrals by expanding

them in some small parameters. For a summary of this topic, see ref. [13]. In this direction,

the large-mt expansion of the Higgs+jet [14–20] and Higgs pair production [21–28] cross

sections is very well investigated. However, it is not until recently that expansions in other

parameters have been investigated. Concerning the Higgs+jet production cross section, the

expansion in the small bottom quark mass mb � mH [29, 30] and in the small top quark

and Higgs masses mt > mH [31] are performed. For the Higgs pair production cross section,

the expansion in small mt for the planar master integrals [32] and in small Higgs transverse

momentum [33] are performed. The rest of the master integrals of Higgs pair production

in the small-mt expansion are obtained in ref. [34] together with the results of this paper.

Many of the non-planar master integrals are the same as, or related to those of ref. [31]

but we provide some new information needed for Higgs pair production. Furthermore, the

method used in this paper — the method of regions — is completely different from the one

in ref. [31] at all steps of the calculation, so it provides a complementary understanding of

the massive non-planer integrals. We would like to emphasize that the method of regions

is a generic and systematic procedure to expand integrals, and thus the calculations shown

in this paper can be applied to other integrals in a straightforward way.

The concept of dividing the domain of integration variables into several regions and

expanding the integrand according to hierarchies in each region was introduced by Beneke

and Smirnov [35]. The method is now called “expansion by regions” or “strategy of re-

gions”, and in this paper we call it the method of regions. A mathematical proof of the

method of regions for a general integral is not yet known although many successful appli-
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cations have been reported. In fact, the author of the most up-to-date textbook on this

topic states in his book [36]

The strategy of expansion by regions still has the status of experimental mathematics.

In the cases of off-shell large-momentum expansion and large-mass expansion, a mathemat-

ical proof based on a graph-theoretical language is known and it is called as “expansion by

subgraphs” [13, 37]. The procedure of expansion by subgraphs is implemented and can be

performed in an automatic way [38, 39]. The large-mt expansion mentioned above belongs

to this category. A new proof of the method of regions was proposed by Jantzen [40] but

its application is limited. The purpose of this paper is to show non-trivial examples where

the method of regions works well, and our calculation shows the first application of the

method to the high energy expansion of non-planar four-point integrals.

The remainder of the paper is organized as follows: in section 2, we briefly summarize

the method of regions. In section 3 we introduce conventions, ideas, and techniques, which

will be used in the following sections. In section 4, 5 and 6, we apply the method of regions

to the one-loop box diagram, the two-loop planar massive diagrams, and the two-loop

non-planar massive diagrams, respectively.

2 General idea of the method of regions

The procedure of the method of regions is the following [13, 35, 36, 40, 41]:

• Step 1: Assign a hierarchy to the dimensionful parameters.

• Step 2: Reveal the relevant scaling of the integration variable.

• Step 3: For each region, expand the integrand according to its scaling.

• Step 4: Integrate. Scaleless integrals such as
∫∞

0 dx xa are set to zero.

• Step 5: Sum over the contributions from all the relevant regions.

The Step 2 is the crucial part of the method of regions, and an algorithm to reveal such

scalings for a general integral is established based on the analysis of the convex hull [42, 43].

One can use the algorithm, implemented in the Mathematica package asy2.1.m [43]. Al-

though it is not proved that the algorithm works correctly for all the cases, no counterex-

ample is known so far. Recently, a new idea to reveal relevant scalings is proposed based

on the technique of power geometry, which is implemented in the Mathematica package

ASPIRE [44]. In this paper we use asy2.1.m.

The practical bottleneck is Step 4, since the integration tends to be complicated even

after the expansion if the original integral is very complicated. This is one of the reasons

why testing the method of regions is difficult.

The method of regions was first applied to the momentum representation of the Feyn-

man integrals, so the “regions” mean some domains of the loop momenta. Later, it was

found that parametric representations such as the Feynman representation and the alpha
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representation are more convenient to apply the method [45]. Recently, it was proposed in

ref. [41] to use yet another parametric representation, Lee-Pomeransky representation [46],

to apply the method of regions. For all the representations mentioned above, one has to

follow Step 1 to 5 for practical calculation.

3 Notation and technical tools

3.1 Conventions

We distinguish the exact equal sign “=” and the equal sign under a certain analytic con-

tinuation. For this purpose, we introduce a sign “
AC
= ” and use it as, e.g.,

log(z + i0)
AC
= log(−z − i0) + iπ , (3.1)

where i0 represents an infinitesimal positive imaginary number. We interpret log(z) as the

principal value of the complex logarithm whose imaginary part lies in the interval (−π, π].

Both the left-hand side and the right-hand side of eq. (3.1) are well-defined in the entire

domain of z, but the equality is valid only in the upper half plane of z. This is how

analytic continuation is performed, and that is why we add “AC” to the normal equal sign

in eq. (3.1). The equality of a series expansion like

1

1−m/M
=

∞∑
n=0

(m
M

)n
(3.2)

is in principle also regarded as an analytic continuation. However, when a hierarchy like

m�M is explicitly stated in the text, we use normal equal sign.

We use a simplified expression of the Landau O notation for more than one variable as

X +O
(
(m2

H)nH , (m2
t )
nt , εn

)
≡ X +O

(
(m2

H)nH
)

+O
(
(m2

t )
nt
)

+O (εn) . (3.3)

The Euler-Mascheroni constant is denoted as γE .

We use the alpha representation to calculate Feynman integrals. The integration mea-

sure and the analytic regularization parameters are defined as∫
Dnαδ ≡

n∏
i=1

(∫ ∞
0

dαi α
δj
i

Γ(1 + δj)

)
. (3.4)

The analytic regularization parameters δj play one essential role and three secondary roles:

(i). The essential role is to regularize the contribution of individual regions which are

divergent if we naively expand in αi. This means that individual contributions are

regulator dependent, and the dependence on δj cancel after we sum all the contribu-

tions and take the limits δj → 0. In taking the limit, it is necessary to specify the

order because some of them do not commute. We express the sequence of limits as

lim
ε,δn,...,δ2,δ1→0

X ≡ lim
ε→0

lim
δn→0

· · · lim
δ2→0

lim
δ1→0

X . (3.5)
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(ii). We use δj to regularize the Mellin-Barnes integral. [See the text below eq. (A.2).]

(iii). By shifting δj → δj + 1, we can express polynomials of αi in the integrand. For

example, when n = 2,∫
D2αδ

(
α2

1 + α1α2

)
=

∫
D2αδ

∣∣∣∣
δ1→δ1+2

+

∫
D2αδ

∣∣∣∣
δ1→δ1+1,δ2→δ2+1

(3.6)

This property is usually used to express the integrals with higher powers of propaga-

tors.

(iv). We use the property of eq. (3.6) to express the higher order terms. [See the text

below eq. (4.20).]

The sum of the variables will be expressed as

αi1...in ≡ αi1 + · · ·+ αin , δi1...inin+1...in′ ≡ δi1 + · · ·+ δin − δin+1 + · · ·+ δin′ . (3.7)

The bar on an index indicates that the variable corresponding to the index is subtracted

instead of added. Sometimes ε and δj are treated in the same way, and in those cases we

express ε as δ0. For example, δ0012̄ = 2ε+ δ1 − δ2.

Also, we introduce the following compact notation for the product of Γ-functions

Γ [x1, . . . , xn] ≡
n∏
i=1

Γ(xi) . (3.8)

In Step 3 of section 2, we expand the integrand of Feynman integrals in terms of

soft parameters. In order to control the expansion in a systematic way, we introduce

an auxiliary soft-scaling parameter χ. For example, assume that we have four variables

α1, . . . , α4 whose scalings are

α1 ∼ m, α2 ∼M, α3 ∼ m, α4 ∼M, (3.9)

where m ∼ χ is a soft parameter and M ∼ 1 is a hard parameter. In this case, we apply a

substitution

m→ χm, M →M, α1 → χα1, α2 → α2, α3 → χα3, α4 → α4, (3.10)

to the integrand and expand in χ. After that, we can set χ = 1. In this paper we denote

the scalings (3.9) as

(α1, α2, α3, α4)
χ∼ (1, 0, 1, 0) (3.11)

or simply (1, 0, 1, 0).

– 5 –
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3.2 Kinematics and high energy expansion

The assignment of the external momenta q1, . . . , q4 is illustrated in figure 1. We consider

the 2 to 2 process but define all the external momenta as incoming. In addition to the usual

Mandelstam variables s, t, u, (which we call physical Mandelstam variables), we introduce

S, T, U as

S = −s = −(q1 + q2)2, T = −t = −(q1 + q3)2, U = −u = −(q2 + q3)2 . (3.12)

In our calculation we assume that S, T , and U are positive and thus call them positive

Mandelstam variables. Sometimes two of the three Mandelstam variables are sufficient to

express four-point functions, and indeed for planar integrals we do not use U [See section 5].

However for non-planar integrals, all of S, T, U are required to make the second Symanzik

polynomial positive [See subsection 6.1].

In this paper, we consider the master integrals of Higgs pair production at next-to-

leading order, where the loops are induced by the top quark. Therefore there are two mass

scales, the Higgs mass mH and the top quark mass mt. We consider the high energy limit

where the following hierarchy is satisfied

m2
H < m2

t � S, T, U . (3.13)

The high energy expansion in this case is two-fold. First, we treat m2
H as the soft parameter

and m2
t , S, T, U as the hard parameters. Afterwards, we treat m2

t as the soft parameter

and S, T, U as the hard parameters.

In the first expansion, i.e. the mH -expansion, mH enters the integrals through the

on-shell condition of the external momenta

q2
1 = 0, q2

2 = 0, q2
3 = m2

H , q2
4 = m2

H . (3.14)

In terms of χ, the scaling we impose here is

m2
H ∼ χ, m2

t ∼ 1, S ∼ 1, T ∼ 1, U ∼ 1 , (3.15)

and the resulting series expression of an integral I is expressed symbolically as1

I(S, T, U,m2
t ,m

2
H) =

∑
nH

(m2
H)nH cnH (S, T, U,m2

t ) . (3.16)

A note of caution should be made regarding the dependence on S, T, U . Since the physical

Mandelstam variables satisfy the relation s + t + u = 2m2
H , a similar relation should also

hold for the positive Mandelstam variables. As a result, functions expressed in terms of

S, T, U are not unique. However this is not a problem, because at the end of the calculation,

we express the result in a unique way. [See the text below eq. (3.20).] We use the linear

dependence of S, T, U to make the second Symanzik polynomial positive definite. [See

subsection 6.1.] After the mH -expansion, the external legs becomes massless legs.

1In general, the coefficients cnH depend on log(m2
H), but in our case not.
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q1

q2

q3

q4

Figure 1. The convention of the external momenta.

In the second expansion, i.e. the mt-expansion, the on-shell condition of the external

momenta becomes

q21 = 0, q22 = 0, q23 = 0, q24 = 0 . (3.17)

In terms of χ, the scaling we impose here is

m2
t ∼ χ, S ∼ 1, T ∼ 1, U ∼ 1 , (3.18)

and the resulting series for an integral I is expressed symbolically as

I(S, T, U,m2
t ,m

2
H) =

∑

nH

(m2
H)nH

∑

nt

(m2
t )

ntcnH ,nt(S, T, U, log(m
2
t )) . (3.19)

The result should be expressed in a way suitable for the evaluation with the physical

kinematics. In order to achieve that, the analytic continuation

S
AC
= e−iπ+i0(s+ i0), T

AC
= sv, U

AC
= s(1− v), (3.20)

is applied, where i0 represents an infinitesimal positive imaginary number, (note that the

massless on-shell condition (3.17) is adopted), and 0 ≤ v ≤ 1 in the physical kinematics.

After expressing the result in terms of s and v, the expression is unique. The analytic

continuation of T, U is trivial since their signs are consistent with those of the physical

kinematics. The results are expressed in terms of harmonic polylogarithms (HPL) [47] and

we introduce an abbreviation for HPL as

h0 = H(0; v), h1 = H(1; v), h2 = H(2; v), h2,1 = H(2, 1; v), (3.21)

and so on. The argument of the HPL is always chosen to be v. For example,

H
(
3;−u

s

)
= H (3; 1− v)

AC
= −h2,1 + h2h1 −

1

2
h21h0 −

π2

6
h1 + ζ3 . (3.22)

We use the Mathematica package HPL.m [48, 49] in dealing with HPL.

When diagrams of the same topology but with a different assignment of external mo-

menta are considered, it is convenient to relate them by applying replacements of the

external momenta, which means replacements of the Mandelstam variables. We call these
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F (S, T, U) F (U, T, S)

f(s, v) f̃(s, v)

crossing

crossing
(analytic continuation required)

analytic continuation analytic continuation

(a)

(b)

Figure 2. The commutative diagram of the crossing and the analytic continuation. Note that the
crossing at upper level is a literal replacement of S and U whereas the crossing at bottom level
changes the function in a nontrivial way. (a) Our approach. (b) Conventional approach.

replacements “crossing relations”. This subject is already well-established in the case of

HPL [50], but we propose a simpler way to obtain the crossing relations. In Fig. 2, the com-

mutative diagram of the crossing and analytic continuation is given. Usually an integral is

given as the bottom-left expression, where the result is expressed in terms of the physical

kinematic variables. On the other hand, we proceed the crossing in the upper expression,

where the result is expressed in terms of the positive Mandelstam variables. The analytic

continuation in the upper expression is the simple replacement of the positive Mandelstam

variables, whereas the analytic continuation of the bottom expression requires the precise

knowledge of the branch cuts. We take the approach (a) of Fig. 2 because it is easy to

implement in programs, and crosscheck the result using approach (b). One can interpret

the simplification by introducing the positive Mandelstam variables as the resolution of

singularities by increasing the dimension, or in another words, we lose some information

when we map the three-variable function F into the two-variable function f .

We would like to emphasize that the method to obtain the crossing relations explained

above is a by-product of introducing the positive Mandelstam variables. The most impor-

tant point in introducing the positive Mandelstam variables is that it makes the Symanzik

polynomials positive and thus allows us to apply the method of regions safely. [See Sub-

section 6.1.]

4 A First Example: One-Loop Box Diagram

We consider the massive one-loop Feynman integral family

Ja1,a2,a3,a4 =

∫
ddℓ

iπd/2

1(
m2

t − ℓ2
)a1 (m2

t − (ℓ+ q1)2
)a2 (m2

t − (ℓ+ q1 + q2)2
)a3 (m2

t − (ℓ− q3)2
)a4 ,

(4.1)

where the infinitesimal negative imaginary part of each denominator is implicit. The exter-

nal momenta qi satisfy the on-shell conditions (3.14). We consider the box diagram shown
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q21 = 0

q22 = 0

q23 = m2
H

q24 = m2
H

ℓ

ℓ+ q1 + q2

ℓ+ q1 ℓ− q3

Figure 3. The one-loop box diagram considered in Section 4

in Fig. 3, J1,1,1,1 and its alpha representation is

J1,1,1,1
AC
= I =

∫
D4αδ U−d/2e−F/U , (4.2)

where the first Symanzik polynomial U and the second Symanzik polynomial F are given

by

U = α1234, F = m2
tα1234 U + Sα1α3 + Tα2α4 −m2

Hα13α4 . (4.3)

We make clear the analytic continuation in Eq. (4.2) because the right hand side is regu-

larized by δj whereas Eq. (4.1) is explicitly δj-independent. Also, we assume m2
H < 0 in

order to ensure the convergence of the integral and perform the analytic continuation of

the result to m2
H > 0 at the end, which turns out to be trivial.

4.1 Expansion in the Higgs Mass

We first expand in mH . By using asy2.1.m, we find that there is only one relevant scaling

(α1,α2,α3,α4)
χ∼ (0, 0, 0, 0) . (4.4)

The expansion corresponding to this scaling is actually just the Taylor expansion of the

integrand in m2
H , and the original integral can be written as

I =

∫
D4αδ U−d/2

[
e−F/U

∣∣∣
(m2

H)=0
+ (m2

H)
∂(e−F/U )

∂(m2
H)

∣∣∣
(m2

H)=0
+ · · ·

]
. (4.5)

In particular, the leading term is identical to the box diagram with completely massless

external legs.

The fact that the expansion in m2
H and the integration commute is reasonable be-

cause mH in the denominator of the integrand (appearing through q23 = m2
H) is always

accompanied by mt which regulates the integral and the limit mH → 0 always exists.

In collider physics, it is common to use s and the transverse momentum pT as the

kinematic variables, where t and pT are related as

p2T =
ut−m4

H

s
, (4.6)
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Figure 3. The one-loop box diagram considered in section 4.

in figure 3, J1,1,1,1 and its alpha representation is

J1,1,1,1
AC
= I =

∫
D4αδ U−d/2e−F/U , (4.2)

where the first Symanzik polynomial U and the second Symanzik polynomial F are given by

U = α1234, F = m2
tα1234 U + Sα1α3 + Tα2α4 −m2

Hα13α4 . (4.3)

We make clear the analytic continuation in eq. (4.2) because the right hand side is regu-

larized by δj whereas eq. (4.1) is explicitly δj-independent. Also, we assume m2
H < 0 in

order to ensure the convergence of the integral and perform the analytic continuation of

the result to m2
H > 0 at the end, which turns out to be trivial.

4.1 Expansion in the Higgs mass

We first expand in mH . By using asy2.1.m, we find that there is only one relevant scaling

(α1, α2, α3, α4)
χ∼ (0, 0, 0, 0) . (4.4)

The expansion corresponding to this scaling is actually just the Taylor expansion of the

integrand in m2
H , and the original integral can be written as

I =

∫
D4αδ U−d/2

[
e−F/U

∣∣∣
(m2

H)=0
+ (m2

H)
∂(e−F/U )

∂(m2
H)

∣∣∣
(m2

H)=0
+ · · ·

]
. (4.5)

In particular, the leading term is identical to the box diagram with completely massless

external legs.

The fact that the expansion in m2
H and the integration commute is reasonable be-

cause mH in the denominator of the integrand (appearing through q2
3 = m2

H) is always

accompanied by mt which regulates the integral and the limit mH → 0 always exists.

In collider physics, it is common to use s and the transverse momentum pT as the

kinematic variables, where t and pT are related as

p2
T =

ut−m4
H

s
, (4.6)
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or equivalently2

t = −1

2

[
s− 2m2

H −
√
s(s− 4m2

H − 4p2
T )

]
. (4.7)

Since these relations are mH -dependent, one should be careful when expanding in mH . In

order to clarify the point, let us consider two expressions

f1(t,m2
H) = f2(p2

T ,m
2
H) (4.8)

which are related by eq. (4.7). We would like to analyze the cross section for fixed pT but

not t, so let us consider the mH -expansion of f2(p2
T ,m

2
H):

f2(p2
T ,m

2
H) = f2(p2

T , 0) + (m2
H)

∂f2

∂(m2
H)

∣∣∣∣
mH=0

+
(m2

H)2

2

∂2f2

∂(m2
H)2

∣∣∣∣
mH=0

+O((m2
H)3) .

(4.9)

On the other hand, the kinematic variable appearing in the Feynman integral is t and the

natural representation is f1(t,m2
H). Thus, we express the ingredients of eq. (4.9) in terms

of f1(t,m2
H) as

f2(p2
T , 0) =f1(t0, 0) (4.10)

∂f2

∂(m2
H)

∣∣∣∣
mH=0

=
∂t

∂(m2
H)

∣∣∣∣
mH=0

∂f1

∂t

∣∣∣∣
t=t0,mH=0

+
∂f1

∂(m2
H)

∣∣∣∣
t=t0,mH=0

(4.11)

∂2f2

∂(m2
H)2

∣∣∣∣
mH=0

=
∂2t

∂(m2
H)2

∣∣∣∣
mH=0

∂f1

∂t

∣∣∣∣
t=t0,mH=0

+

[
∂t

∂(m2
H)

∣∣∣∣
mH=0

]2
∂2f1

∂t2

∣∣∣∣
t=t0,mH=0

+ 2
∂t

∂(m2
H)

∣∣∣∣
mH=0

∂2f1

∂t∂(m2
H)

∣∣∣∣
t=t0,mH=0

+
∂2f1

∂(m2
H)2

∣∣∣∣
t=t0,mH=0

(4.12)

where t0 = t|mH=0. Apparently, eq. (4.9) becomes complicated when eqs. (4.10), (4.11),

(4.12) are substituted. However, taking into account the mH -expansion of f1(t, 0)

f1(t, 0) = f1(t0, 0) + (mH)2 ∂t

∂(m2
H)

∣∣∣∣
mH=0

∂f1

∂t

∣∣∣∣
t=t0,mH=0

+ · · · , (4.13)

the expression becomes simpler

f2(p2
T ,m

2
H) = f1(t,0)+(m2

H)
∂f1

∂(m2
H)

∣∣∣∣
mH=0

+
(m2

H)2

2

∂2f1

∂(m2
H)2

∣∣∣∣
mH=0

+O((m2
H)3) , (4.14)

where the mH -dependent t (4.7) is used. In general, for a given order of m2
H , the difference

between the strict mH -expansion of f2(p2
T ,m

2
H) for fixed pT and the mH -expansion of

f1(t,m2
H) for the mH -dependent t is higher order in m2

H .

2When we solve eq. (4.6) in t using the relation s + t + u = 2m2
H , there are two solutions. The other

solution has “+” in front of the square root in eq. (4.7), and it corresponds to u in this case. Note that the

amplitude is symmetric under t ↔ u, so we could choose the sign the other way around. We choose the

sign such that t = −p2
T +O(p2

T /s,m
2
H/s).
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The conclusions of this subsection are the following:

(i). As the result of the mH -expansion, the integrals reduce to integrals with massless

external legs.

(ii). The mH -expansion for fixed pT is obtained by the mH -expansion with fixed t, keeping

the mH -dependence of t.

4.2 Expansion in the top quark mass

After the expansion in mH , we have integrals which depend on mt, S, and T . We now

consider the expansion in mt assuming the hierarchy (3.18). The integral of interest is∫
D4αδ U−d/2e−F/U , (4.15)

with

U = α1234, F = m2
tα1234U + Sα1α3 + Tα2α4 . (4.16)

Here we use the positive Mandelstam variables, S, T , to make all the terms in F positive.

Otherwise, hard terms could cancel and result in a soft term, which breaks the method of

regions. The use of positive Mandelstam variables in eq. (4.16) is conceptually not new,

since it corresponds to the integral in the u-channel where s < 0, t < 0 and u = −s− t > 0.

The absence of a negative term in the u-channel is reasonable because there is no physical

cut in those kinematics.

By using the package asy2.1.m [43], we reveal five relevant scalings:3

(0, 0, 0, 0)︸ ︷︷ ︸
1

, (0, 0, 1, 1)︸ ︷︷ ︸
2

, (0, 1, 1, 0)︸ ︷︷ ︸
3

, (1, 0, 0, 1)︸ ︷︷ ︸
4

, (1, 1, 0, 0)︸ ︷︷ ︸
5

. (4.17)

The scalings of regions 2 to 5 reflect the symmetries of the integral, α1↔α3 and α2↔α4.

Eq. (4.15) is thus expressed as the sum of the contributions from these five regions:
∑5

i=1I
(i).

Region 1 (all-hard region). The region where all the alpha variables scale as χ0, i.e.,

(α1, α2, α3, α4)
χ∼ (0, 0, 0, 0) is special, and we call this region the “all-hard region”. We

can make several general statements about this region within our high-energy expansion:

(a). Every integral has one all-hard region.

(b). There is only one soft parameter in the all-hard region, which is mt.

(c). The contribution from the all-hard region can be expressed as the massless integral of

the original topology. In particular, the leading order term is obtained by substituting

mt = 0 into the original integral.

(d). The leading order contribution of the all-hard region is O(χ0).

(e). The contribution from the all-hard region has no singularities in δj .

3More precisely, asy2.1.m reveals the scalings which lead to homogeneous and non-scaleless integrals.
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Because of these properties, the contribution from the all-hard region can be calculated in

two ways. The first is the procedure universal for any region, and the second is to use the

momentum representation. We show them in order.

First, we show the universal procedure. By expanding eq. (4.15) in terms of χm2
t , we

obtain the contribution of this region as

I(1) =

∫
D4αδ U (1)−d/2e−F

(1)/U(1)

[
1− χm2

tα1234 +
χ2

2

(
m2
tα1234

)2]
+O(χ3) , (4.18)

where U (1) = α1234 and F (1) = Sα1α3 + Tα2α4. As stated above, the leading order term

is the massless box integral and we name it T (1)
δ1,δ2,δ3,δ4,ε

for later use:

T (1)
δ1,δ2,δ3,δ4,ε

=

∫
D4αδ U (1)−d/2e−F

(1)/U(1)
(4.19)

=

∫
dz
T z Γ[−z,1+z+δ2,1+z+δ4,−1−z−δ0124,−1−z−δ0234,2+z+δ01234]

S2+z+δ01234Γ[−δ001234,1+δ1,1+δ2,1+δ3,1+δ4]
.

(4.20)

The integrand of the higher order corrections has additional factors of αi which can be

expressed by some shifts of δj → δj + 1. Indeed, eq. (4.18) can be expressed as

I(1) = T (1)
δ1,δ2,δ3,δ4,ε

− χm2
t

(
P1

1+δ1T
(1)

1+δ1,δ2,δ3,δ4,ε
+ P1

1+δ2T
(1)
δ1,1+δ2,δ3,δ4,ε

+P1
1+δ3T

(1)
δ1,δ2,1+δ3,δ4,ε

+ P1
1+δ4T

(1)
δ1,δ2,δ3,1+δ4,ε

)
+O(χ2) , (4.21)

where Pnx = Γ(x+n)/Γ(x) is the Pochhammer symbol. We call T (1)
δ1,δ2,δ3,δ4,ε

a “template inte-

gral” since all the higher order terms can be expressed in terms of T (1)
δ1,δ2,δ3,δ4,ε

by shifting δj .

Since there is no singularity in δj , we can safely set δj = 0 in eq. (4.21). Then, the

leading order term is expressed as

T (1)
0,0,0,0,ε =

∫ −1/2+i∞

−1/2−i∞

dz T z

S2+ε+z

Γ[−z, 1 + z, 1 + z,−1− ε− z,−1− ε− z, 2 + ε+ z]

Γ(−2ε)

∣∣∣∣∣
ε'−1

,

(4.22)

where the technique explained in appendix A is used to set the integration contour to a

straight line. The expression at ε→ 0 is obtained by using the package MB.m [51], and the

result is

T (1)
0,0,0,0,ε = eiπε

e−εγE

s2+εv

[
− 4

ε2
+

2h0 + 2iπ

ε
+

4π2

3
+O(ε)

]
. (4.23)

The higher order terms are given by T (1)
1,0,0,0,ε, T

(1)
0,1,0,0,ε etc, and can be calculated in a

similar way.

The other procedure to calculate the contribution of the all-hard region is the following.

We return to the momentum representation (4.1) and expand each propagator in mt as

1

m2
t − `2

→
∞∑
n=0

(−m2
t )
n

(−`2)n+1
. (4.24)
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Then, the contribution can be expressed in terms of the integral family

Jmassless
a1,a2,a3,a4

=

∫
dd`

iπd/2
1

(−`2)a1 (−(`+ q1)2)a2 (−(`+ q1 + q2)2)a3 (−(`− q3)2)a4
(4.25)

as

I(1) = Jmassless
1,1,1,1 −m2

t (J
massless
2,1,1,1 + Jmassless

1,2,1,1 + Jmassless
1,1,2,1 + Jmassless

1,1,1,2 ) +O(m4
t ) . (4.26)

This corresponds to eq. (4.21). Applying the IBP-reduction, all the integrals appearing

eq. (4.26) including higher order terms can be expressed by three master integrals

Jmassless
1,0,1,0 , Jmassless

0,1,0,1 , Jmassless
1,1,1,1 . (4.27)

The IBP-reduction of massless integrals is computationally easy even at the two-loop level,

and thus very useful. In the calculation of two-loop integrals, we adopt this approach to

calculate the contribution from the all-hard region.

Regions 2, 3, 4, 5. The contribution of Region 2 is obtained by applying the second

scaling of eq. (4.17) and expanding in χm2
t , χα3, χα4,

I(2) =

∫
D4α U (2)−d/2e−F

(2)/U(2)

[
1−χ

(
m2
tα34+

d

2

α34

U (2)
+S

α1α3α34

(U (2))2
+T

α2α4α34

(U (2))2

)]
+O(χ2) ,

(4.28)

where U (2) = α12 and F (2) = m2
tα12U (2) +Sα1α3 +Tα2α4. The integration over α1, . . . , α4

can be performed using the relation (A.3) and a variant of it, and the template integral of

this region is

T (2)
δ1,δ2,δ3,δ4,ε

=
(m2

t )
−ε−δ1−δ2

S1+δ3T 1+δ4

Γ[δ1 − δ3, δ2 − δ4, δ1 + δ2 + ε]

Γ[δ12 − δ34, 1 + δ1, 1 + δ2]
. (4.29)

The higher order terms in eq. (4.28) which contain the inverse of U (2) can be expressed by

the shift ε→ ε− 1 in the template integral. Thus eq. (4.28) is written as

I(2) = T (2)
δ1,δ2,δ3,δ4,ε

+χm2
t

(
P1

1+δ3T
(2)
δ1,δ2,δ3+1,δ4,ε

+P1
1+δ4T

(2)
δ1,δ2,δ3,δ4+1,ε

)
+χ

d

2

(
P1

1+δ3T
(2)
δ1,δ2,δ3+1,δ4,ε−1+P1

1+δ4T
(2)
δ1,δ2,δ3,δ4+1,ε−1

)
+χS

(
P1

1+δ1P
2
1+δ3T

(2)
δ1+1,δ2,δ3+2,δ4,ε−2+P1

1+δ1P
1
1+δ3P

1
1+δ4T

(2)
δ1+1,δ2,δ3+1,δ4+1,ε−2

)
+χT

(
P1

1+δ2P
1
1+δ3P

1
1+δ4T

(2)
δ1,δ2+1,δ3+1,δ4+1,ε−2+P1

1+δ2P
2
1+δ4T

(2)
δ1,δ2+1,δ3,δ4+2,ε−2

)
+O(χ2) .

(4.30)

Recall that Pnx = Γ(x+ n)/Γ(x) is the Pochhammer symbol.

As mentioned in subsection 3.1, the result of the limits δj → 0 depends on the order

in which we take them. For example, when we take the sequence of limits with ascending

values of j, we obtain

lim
ε,δ4,δ3,δ2,δ1→0

T (2)
δ1,δ2,δ3,δ4,ε

=
e−εγE

s2v(m2
t )
ε

1

ε

(
1

δ3
+

1

δ4
− log s− h0 + iπ

)
+O(ε) , (4.31)
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whereas with descending values of j, we instead obtain

lim
ε,δ1,δ2,δ3,δ4→0

T (2)
δ1,δ2,δ3,δ4,ε

=
e−εγE

s2v(m2
t )
ε

[
2

ε2
− 1

ε

(
1

δ1
+

1

δ2
−2log(m2

t )

)
−π

2

6

]
+O(ε) . (4.32)

The order dependence is not problem, provided we use the same order throughout the

calculation. The artifacts caused by the δj will cancel after we sum the contributions from

all the relevant regions.

Due to the symmetries of the diagrams, the template integrals of the other regions can

be expressed in terms of T (2)
δ1,δ2,δ3,δ4,ε

with exchanged δj as

T (3)
δ1,δ2,δ3,δ4,ε

= T (2)
δ1,δ4,δ3,δ2,ε

(4.33)

T (4)
δ1,δ2,δ3,δ4,ε

= T (2)
δ3,δ2,δ1,δ4,ε

(4.34)

T (5)
δ1,δ2,δ3,δ4,ε

= T (2)
δ3,δ4,δ1,δ2,ε

, (4.35)

and when we take the ascending order of limits, we obtain

lim
ε,δ4,δ3,δ2,δ1→0

T (3)
δ1,δ2,δ3,δ4,ε

=
e−εγE

s2v(m2
t )
ε

[
1

ε2
+

1

ε

(
log(m2

t )−logs+iπ+
1

δ3
− 1

δ4

)
−π

2

12

]
+O(ε)

(4.36)

lim
ε,δ4,δ3,δ2,δ1→0

T (4)
δ1,δ2,δ3,δ4,ε

=
e−εγE

s2v(m2
t )
ε

[
1

ε2
+

1

ε

(
log(m2

t )−h0−
1

δ3
+

1

δ4

)
−π

2

12

]
+O(ε) (4.37)

lim
ε,δ4,δ3,δ2,δ1→0

T (5)
δ1,δ2,δ3,δ4,ε

=
e−εγE

s2v(m2
t )
ε

[
2

ε2
+

1

ε

(
2log(m2

t )−
1

δ3
− 1

δ4

)
−π

2

6

]
+O(ε) . (4.38)

Sum of all regions. Summing eqs. (4.23), (4.31), (4.36), (4.37), (4.38), we obtain the

leading term of eq. (4.1):

Eq. (4.1) = eiπε
e−εγE

s2+εv

{
π2−2

[
log

(
s

m2
t

)
−iπ

][
log

(
s

m2
t

)
+h0

]}
+O(m2

H ,m
2
t , ε) . (4.39)

As mentioned, the result is δj-independent. There are 24 possible ways to order δ1, δ2, δ3, δ4

in taking the limit, and we have confirmed that the result is the same for all of the orderings.

Since the original integral is finite in the limit ε → 0, the poles of ε in the individual

contributions from each region cancel.

4.3 Higher order terms in mt

The method of regions can be used to obtain a series expansion up to arbitrary order in

the soft parameters, mH or mt. For example, eqs. (4.21), (4.30) includes the contributions

up to O(χ). In general, the higher order terms can be expressed in terms of the template

integrals. Therefore, in principle, it is straightforward to calculate higher order terms up

to arbitrary order, once the template integrals have been obtained.

However, the number of integrals to calculate increases rapidly with the order of χ,

and this makes it hard to calculate higher order terms. Especially in the two-loop case,

some of the template integrals contain multi-dimensional Mellin-Barnes integrals, which
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are not so easy to solve. Furthermore, the number of integrals increases more rapidly than

in the case of the one-loop calculation. Therefore it is better to use another method to

calculate the higher-order corrections.

The use of differential equations solves this issue [29, 31, 32, 34]. We use the differential

equation with respect to m2
t to obtain higher order corrections in m2

t . Since we know that

the integral has the form

Eq. (4.15) =
∑
n1

∑
n2

cn1,n2(S, T )(m2
t )
n1
(
logm2

t

)n2 , (4.40)

the set of differential equations reduces to a set of linear relations of cn1,n2(S, T ) which

simplifies the problem a lot. In this sense, the leading order terms which we calculate in the

previous subsections play the role of the boundary conditions of the differential equations.

4.4 Integrals with fewer lines

Once we have calculated the box integral, there are several shortcuts to calculate integrals

with fewer lines such as the triangle integral and the self energy integral. Let us consider

the s-channel triangle diagram, J1,1,1,0, as an example.

The alpha representation of J1,1,1,0 is obtained by setting α4 → 0 in eq. (4.3), since the

forth propagator is absent in J1,1,1,0. If we use asy2.1.m to reveal the relevant scalings for

J1,1,1,0, we obtain

(0, 0, 0), (0, 0, 1), (1, 0, 0), (4.41)

however, we do not have to do that. We do not have to derive the template integrals for

J1,1,1,0 because they are derived from the template integrals of J1,1,1,1.

Using the fact that the δj-dependence of the alpha representation is expressed by the

replacement of ai → 1 + δj , the triangle integral J1,1,1,0 can be expressed by the limit

δ4 → −1. Therefore by taking the limit δ4 → −1 to the template integral of J1,1,1,1, one

can obtain the template integral for J1,1,1,0. For example,

lim
δ4→−1

Eq. (4.29) =
(m2

t )
−ε−δ1−δ2

S1+δ3

Γ[δ1 − δ3, 1 + δ2, δ1 + δ2 + ε]

Γ[1 + δ12 − δ3, 1 + δ1, 1 + δ2]
, (4.42)

and this is the template integral for the region (0, 0, 1). Sometimes the limit vanishes due

to a suppression factor 1/Γ(1 + δ4). For example,

lim
δ4→−1

Eq. (4.33) = 0 . (4.43)

This fact is reasonable because the number of relevant regions for J1,1,1,0 is smaller than

for J1,1,1,1. Two of the four soft template integrals are non-vanishing after taking the limit,

and they are the two soft template integrals of J1,1,1,0.
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Figure 4. The two-loop massive planar diagrams defined in Eq. (5.1) (left) and Eq. (5.2) (right).

(1, 0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1, 0), (1, 0, 0, 1, 0, 0, 1), (1, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 1),

(1, 0, 0, 1, 1, 1, 1), (1, 1, 1, 0, 0, 1, 1), (1, 1, 1, 1, 0, 0, 1) . (5.7)

The template integrals of these regions are summarized in Appendix B, and can be found

in the ancillary file to this paper [52]. The result of this integral at the leading order in

mt, up to O(ϵ), is given by

IPL1 =
1∑

n1=0

n1+4∑

n2=0

dn1,n2

v
ϵn1 logn2(mt) +O(mt, ϵ

2) , (5.8)

where the coefficients dn1,n2 are given by

d0,4 = 16 , d0,3 = −64h0
3

+
32iπ

3
, d0,2 = 8h20 − 16iπh0 −

8π2

3
,

d0,1 = 8iπh20 +
16π2h0

3
− 8ζ3 +

8iπ3

3
,

d0,0 = 16h0h3 −
h40
3

− 4

3
iπh30 − 4h20h2 − 2π2h20 − 8iπh0h2 + 4h0ζ3 −

4

3
iπ3h0 + 16iπh3 − 24h4 −

7π4

15
,

d1,5 = −128

3
, d1,4 =

152h0
3

− 56iπ , d1,3 = −16h20 +
208iπh0

3
+

160π2

9
,

d1,2 =
4h30
3

+ 4h20h1 − 20iπh20 + 8iπh0h1 − 8h0h2 − 28π2h0 − 8iπh2 + 8h3 − 16ζ3 −
4iπ3

3
,

d1,1 = −4h40
3

− 8h30h1
3

− 4iπh30 − 4iπh20h1 +
28π2h20

3
− 8iπh0h2 + 16h0h3 + 24iπh3 − 32h4

− 8

3
π2h0h1 + 16h0ζ3 −

28

3
iπ3h0 +

8π2h2
3

+
218π4

45
,

d1,0 =
h50
2

+
h40h1
2

+ 6h30h2 + 6h20h1h2 + 4h20h21 − 20h20h3 − 4h0h
2
2 − 12h0h22

+
11

6
iπh40 +

2

3
iπh30h1 + 18iπh20h2 + 12iπh0h1h2 − 24h0h1h3 + 36h1h4 − 4iπh22 + 4h2h3

+
π2h30
9

+
5

3
π2h20h1 − 6π2h0h2 + 8iπh0h21 − 32iπh0h3 − 24iπh1h3 − 12iπh22 − 16iπh4

− 4h20ζ3 + 5iπ3h20 + 2iπ3h0h1 −
157π4h0

90
− 2π4h1

5
+

10

3
iπ3h2 +

26π2h3
3

+
61iπ5

90
+ 24h0h1ζ3 + 24iπh1ζ3 − 56h2ζ3 + 4(4h23 + 7h32 + 21h5 − 13ζ5) + 6π2ζ3 . (5.9)
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Figure 4. The two-loop massive planar diagrams defined in eq. (5.1) (left) and eq. (5.2) (right).

5 Two-loop planar diagrams

We consider the following Feynman integral families

JPL1
a1,a2,a3,a4,a5,a6,a7

=

∫
dd`1

iπd/2
dd`2

iπd/2
1

(−p2
7)a7

6∏
n=1

1

(m2
t − p2

n)an
(5.1)

JPL2
a1,a2,a3,a4,a5,a6,a7

=

∫
dd`1

iπd/2
dd`2

iπd/2

∏
n=1,2,3,7

1

(m2
t − p2

n)an

6∏
n=4

1

(−p2
n)an

(5.2)

where the momenta of the lines are

{p1, p2, p3, p4, p5, p6, p7} = {`1 + q1, `1, `1 − q2, `2 − q2, `2 + q13, `2 + q1, `1 − `2} . (5.3)

Recall that q13 = q1 + q3. We consider the integrals IPL1 = JPL1
1,1,1,1,1,1,1 and IPL2 =

JPL2
1,1,1,1,1,1,1 whose diagrammatic representations are shown in figure 4.

The mH -expansion can be performed in the same way as in subsection 4.1, and the

alpha representations of the integrals after the mH -expansion are given by

UPL1 =UPL2 =α123α456+α123456α7 , (5.4)

FPL1 =m2
tα123456UPL1+S [α1 (α4α67+α3α4567)+α6 (α23α4+α34α7)]+Tα2α5α7 , (5.5)

FPL2 =m2
tα1237UPL2+S [α1 (α4α67+α3α4567)+α6 (α23α4+α34α7)]+Tα2α5α7 . (5.6)

Conceptually there is no difference between the procedure of applying the method of regions

to these integrals and the example discussed in section 4. In particular, the property of

the F -function that it is positive definite in the u-channel is the same [cf. the text below

eq. (4.16)]. The only new ingredient is that now the template integrals are expressed by at

most two-dimensional Mellin-Barnes integrals, which are not trivial to solve. However, their

calculation is a subset of the calculation of the non-planar integrals, so we do not describe

it here [cf. subsection 6.4]. Therefore we briefly summarize the important ingredients of

the two-loop planar integrals in this section.

– 16 –



J
H
E
P
0
2
(
2
0
1
9
)
0
8
0

Double massive box diagram. By using the package asy2.1.m, we reveal thirteen

relevant scalings:

(0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 1), (0, 0, 1, 1, 0, 0, 1), (0, 0, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0, 0),

(1, 0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1, 0), (1, 0, 0, 1, 0, 0, 1), (1, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 1),

(1, 0, 0, 1, 1, 1, 1), (1, 1, 1, 0, 0, 1, 1), (1, 1, 1, 1, 0, 0, 1) . (5.7)

The template integrals of these regions are summarized in appendix B, and can be found

in the supplementary file attached to this paper. The result of this integral at the leading

order in mt, up to O(ε), is given by

IPL1 =

1∑
n1=0

n1+4∑
n2=0

dn1,n2

v
εn1 logn2(mt) +O(mt, ε

2) , (5.8)

where the coefficients dn1,n2 are given by

d0,4 = 16 , d0,3 =−64h0

3
+

32iπ

3
, d0,2 = 8h2

0−16iπh0−
8π2

3
,

d0,1 = 8iπh2
0+

16π2h0

3
−8ζ3+

8iπ3

3
,

d0,0 = 16h0h3−
h4

0

3
− 4

3
iπh3

0−4h2
0h2−2π2h2

0−8iπh0h2+4h0ζ3

− 4

3
iπ3h0+16iπh3−24h4−

7π4

15
,

d1,5 =−128

3
, d1,4 =

152h0

3
−56iπ , d1,3 =−16h2

0+
208iπh0

3
+

160π2

9
,

d1,2 =
4h3

0

3
+4h2

0h1−20iπh2
0+8iπh0h1−8h0h2−28π2h0−8iπh2+8h3−16ζ3−

4iπ3

3
,

d1,1 =−4h4
0

3
− 8h3

0h1

3
−4iπh3

0−4iπh2
0h1+

28π2h2
0

3
−8iπh0h2+16h0h3+24iπh3−32h4

− 8

3
π2h0h1+16h0ζ3−

28

3
iπ3h0+

8π2h2

3
+

218π4

45
,

d1,0 =
h5

0

2
+
h4

0h1

2
+6h3

0h2+6h2
0h1h2+4h2

0h21−20h2
0h3−4h0h

2
2−12h0h22

+
11

6
iπh4

0+
2

3
iπh3

0h1+18iπh2
0h2+12iπh0h1h2−24h0h1h3+36h1h4−4iπh2

2+4h2h3

+
π2h3

0

9
+

5

3
π2h2

0h1−6π2h0h2+8iπh0h21−32iπh0h3−24iπh1h3−12iπh22−16iπh4

−4h2
0ζ3+5iπ3h2

0+2iπ3h0h1−
157π4h0

90
− 2π4h1

5
+

10

3
iπ3h2+

26π2h3

3
+

61iπ5

90

+24h0h1ζ3+24iπh1ζ3−56h2ζ3+4(4h23+7h32+21h5−13ζ5)+6π2ζ3 . (5.9)

Single massive double box diagram. By using the package asy2.1.m, we reveal ten

relevant scalings:

(0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0, 0), (1, 0, 0, 0, 1, 1, 0),

(1, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 1), (1, 0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 0) . (5.10)
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The template integrals of these regions are summarized in appendix B, and can be found

in the supplementary file attached to this paper. The result of this integral at the leading

order in mt, up to O(ε), is

IPL2 =
1∑

n1=−2

n1+4∑
n2=0

dn1,n2

v
εn1 logn2(mt) +O(mt, ε

2) , (5.11)

where the coefficients dn1,n2 are now given by

d−2,2 = 8 , d−2,1 =−4h0+4iπ , d−2,0 =−π2−2iπh0 ,

d−1,3 =−32

3
, d−1,2 =−4h0−20iπ , d−1,1 = 4h2

0+4iπh0+
20π2

3
,

d−1,0 =
h3

0

3
+h2

0h1+3iπh2
0+2iπh0h1−2h0h2−

4π2h0

3
−2iπh2+2h3−14ζ3+2iπ3 ,

d0,4 = 8 , d0,3 =
32h0

3
+

80iπ

3
, d0,2 =−4h2

0+8iπh0−
70π2

3
,

d0,1 =−4iπh2
0+4π2h0+20ζ3−

10iπ3

3
,

d0,0 =−5h4
0

6
− 4h3

0h1

3
−h

2
0h

2
1

2
−3h2

0h2+2h0h1h2−2h0h21+20h0h3+
h2

2

2
−h22

− 10

3
iπh3

0−4iπh2
0h1−iπh0h

2
1−6iπh0h2+2iπh1h2−2h1h3−2iπh21+20iπh3−34h4

+
11π2h2

0

6
+

7

3
π2h0h1+14h0ζ3−

7

3
iπ3h0+2h1ζ3−

1

3
iπ3h1−

7π2h2

3
+24iπζ3+

259π4

180
,

d1,5 =−64

15
, d1,4 =−12h0−

68iπ

3
, d1,3 =

8h2
0

3
− 56iπh0

3
+

272π2

9
,

d1,2 =
2h3

0

3
+2h2

0h1+6iπh2
0+4iπh0h1−4h0h2+

16π2h0

3
−4iπh2+4h3−

220ζ3

3
+

40iπ3

3
,

d1,1 =−2h4
0

3
− 4h3

0h1

3
−2iπh3

0−2iπh2
0h1−

8π2h2
0

3
−4iπh0h2+8h0h3+12iπh3−16h4

− 4

3
π2h0h1+

44h0ζ3

3
− 16

3
iπ3h0+

4π2h2

3
− 176iπζ3

3
+

5π4

18
,

d1,0 =
43h5

0

60
+

5h4
0h1

4
+

2h3
0h

2
1

3
+

17h3
0h2

3
+
h2

0h
3
1

6
+5h2

0h1h2−h0h
2
1h2

+5h2
0h21+2h0h1h21−3h0h

2
2−

h1h
2
2

2
+h1h22+

h2h21

3
−h212

3

−22h2
0h3−28h0h1h3−2h0(h211+7h22)+h2

1h3+
7h2h3

3
−h221+

53h23

3

+
13

4
iπh4

0+
13

3
iπh3

0h1+2iπh2
0h

2
1+

1

3
iπh0h

3
1+46h1h4+33h32+98h5

+17iπh2
0h2+10iπh0h1h2+10iπh0h21−iπh2

1h2+2iπh1h21−3iπh2
2−2iπ(h211+7h22)

− 22

9
π2h3

0−3π2h2
0h1−

7

6
π2h0h

2
1−5π2h0h2−40iπh0h3−28iπh1h3−8iπh4

+
10

3
iπ3h2

0+
4

3
iπ3h0h1+

1

6
iπ3h2

1+
7

3
π2h1h2+5iπ3h2−

7π2h21

3
+16π2h3

−9h2
0ζ3+26h0h1ζ3−

599π4h0

180
−h2

1ζ3−
161π4h1

180
−64h2ζ3−

47iπ5

90

− 32

3
iπh0ζ3+26iπh1ζ3+29π2ζ3−121ζ5 . (5.12)
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Figure 5. The two-loop massive non-planar diagrams defined in Eq. (6.1) (left) and Eq. (6.3)
(right).

6.1 Relevant Scaling

A new feature appears in Eq. (6.7): if we impose the relation S + T + U = 0, we obtain

F AC
= m2

tα34567U + S (α1α7α45 + α2α5α37 + α5α7α34 − α2α4α6) + T (α1α3α6 − α2α4α6) ,

(6.8)

and the sign of F becomes indefinite. In such a case, it is not guaranteed that the method

to reveal the relevant scalings works properly [43]. An idea to solve this problem is to

perform a proper change of variables and decompose the integration domain such that F
is positive-definite [43]. However in our case, this approach does not resolve the indefinite

sign of F since there is no simple change of variables to make F positive-definite.

The solution to this problem is to keep S, T, U as independent variables. It is obvious

that Eq. (6.7) is positive definite in this case, and we can apply the method of regions,

expand the integrand, and express the result in terms of Mellin-Barnes integrals in terms

of the positive Mandelstam variables. The procedure to obtain expression (6.7) is the

following: we first compute F respecting the original definition of the Mandelstam vari-

ables (3.12). At this point, there are some redundant terms in F such as (S+T+U)α2α3α6.

We minimize the number of terms, under the condition that F remains positive definite.

The resulting F is unique.

There are two commands in the package asy2.1.m to reveal the relevant regions. The

first is AlphaRepExpand, which accepts a set of propagators and replacement rules as input.

The other is WilsonExpand, which accepts the Symanzik polynomials as input. Here we

must use WilsonExpand since the conventional routine used in AlphaRepExpand either

eliminates U completely or keeps U completely, whereas we want to eliminate U partially,

as explained above. There is an option Preresolve in AlphaRepExpand which makes it

attempt some changes of variables to make F positive definite, but in our cases this option

did not solve the problem.

With this setup and the hierarchy (3.18), we obtain the following fourteen relevant

– 20 –

Figure 5. The two-loop massive non-planar diagrams defined in eq. (6.1) (left) and eq. (6.3) (right).

6 Two-loop non-planar diagram

For the two-loop massive non-planar diagrams, we consider the following two Feynman

integral families

JNPL1
a1,a2,a3,a4,a5,a6,a7

=

∫
dd`1

iπd/2
dd`2

iπd/2

2∏
n=1

1

(−p2
n)an

7∏
n=3

1

(m2
t − p2

n)an
(6.1)

where the momenta of the lines are given by

{p1, p2, p3, p4, p5, p6, p7} = {`1 + q12, `1 − q3, `12 + q23̄, `12 + q2, `2 − q1, `2, `2 + q2} , (6.2)

and

JNPL2
a1,a2,a3,a4,a5,a6,a7

=

∫
dd`1

iπd/2
dd`2

iπd/2

4∏
n=1

1

(m2
t − p2

n)an

7∏
n=5

1

(−p2
n)an

(6.3)

where the momenta of the lines are

{p1, p2, p3, p4, p5, p6, p7} = {`1, `1 + q3, `12 + q23, `12 − q1`2 − q1, `2, `2 + q2} . (6.4)

Recall that q23̄ = q2− q3 and q23 = q2 + q3. We consider INPL1 = JNPL1
1,1,1,1,1,1,1 as an example

in this section. The template integrals of INPL2 = JNPL2
1,1,1,1,1,1,1 is provided in appendix B.

The Feynman diagrams corresponding INPL1 and INPL2 are illustrated in figure 5.

In subsection 4.1 we showed that the expansion in mH can be obtained by the naive

Taylor expansion of the integrand. This holds also in this case, and the mH -expansion is

straightforward. Therefore we again consider only integrals with massless external legs.

The alpha representation of our non-planar integral is

INPL1 AC
=

∫
D7αδ U−d/2e−F/U , (6.5)

where

U = α12α34567 + α34α567 (6.6)

F = m2
tα34567U + S (α1α7α45 + α2α5α37 + α5α7α34) + Tα1α3α6 + Uα2α4α6 . (6.7)
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6.1 Relevant scaling

A new feature appears in eq. (6.7): if we impose the relation S + T + U = 0, we obtain

F AC
= m2

tα34567U + S (α1α7α45 + α2α5α37 + α5α7α34 − α2α4α6) + T (α1α3α6 − α2α4α6) ,

(6.8)

and the sign of F becomes indefinite. In such a case, it is not guaranteed that the method

to reveal the relevant scalings works properly [43]. An idea to solve this problem is to

perform a proper change of variables and decompose the integration domain such that F
is positive-definite [43]. However in our case, this approach does not resolve the indefinite

sign of F since there is no simple change of variables to make F positive-definite.

The solution to this problem is to keep S, T, U as independent variables. It is obvious

that eq. (6.7) is positive definite in this case, and we can apply the method of regions,

expand the integrand, and express the result in terms of Mellin-Barnes integrals in terms

of the positive Mandelstam variables. The procedure to obtain expression (6.7) is the

following: we first compute F respecting the original definition of the Mandelstam vari-

ables (3.12). At this point, there are some redundant terms in F such as (S+T+U)α2α3α6.

We minimize the number of terms, under the condition that F remains positive definite.

The resulting F is unique.

There are two commands in the package asy2.1.m to reveal the relevant regions. The

first is AlphaRepExpand, which accepts a set of propagators and replacement rules as input.

The other is WilsonExpand, which accepts the Symanzik polynomials as input. Here we

must use WilsonExpand since the conventional routine used in AlphaRepExpand either

eliminates U completely or keeps U completely, whereas we want to eliminate U partially,

as explained above. There is an option Preresolve in AlphaRepExpand which makes it

attempt some changes of variables to make F positive definite, but in our cases this option

did not solve the problem.

With this setup and the hierarchy (3.18), we obtain the following fourteen relevant

scalings4

(0, 0, 0, 0, 0, 0, 0),

(
0,

1

2
,
1

2
, 0, 0,

1

2
, 1

)
,

(
1

2
, 0, 0,

1

2
, 1,

1

2
, 0

)
, (0, 0, 0, 1, 1, 1, 0)

(0, 0, 1, 0, 0, 1, 1), (0, 1, 0, 0, 0, 1, 1), (0, 1, 1, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0, 0),

(1, 1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 1, 1, 1), (1, 1, 1, 1, 0, 0, 1), (1, 1, 1, 1, 1, 0, 0) .

(6.9)

In the case of the planar integrals [32], the scalings consist of only 0 and 1. Here, we

additionally have a scaling (0, 1
2 ,

1
2 , 0, 0,

1
2) which is particular to these non-planar integrals.

4In fact, it turns out that the correct scalings (6.9) can be obtained by using eq. (6.8) or by using

AlphaRepExpand, provided suitable values for S and T are chosen (e.g. S = 1, T = 1), such that U 6= 0.

This may be because there is no cancellation between two hard-scaling terms resulting in a soft-scaling

term in eq. (6.8). However, this observation is made in hindsight, since in principle it is not guaranteed

that the regions are found correctly. One could also use ASPIRE [44] instead of asy2.1.m and obtain the

correct scalings, if one similarly chooses suitable values for S and T .
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The contribution of the all-hard regions can be calculated by using the massless integral

family and IBP-reduction [cf. the text below eq. (4.24)]. Therefore we do not need a

template integral for Region 1, and we show the calculation of Region 1 separately. The

template integrals for Regions 2 to 14 are calculated in the next subsection, and can be

found in the supplementary file attached to this paper.

Region 1 (0, 0, 0, 0, 0, 0, 0) (all-hard region). As shown in subsection 4.2, the con-

tribution from the all-hard region can be expressed in terms of massless integrals of the

same topology. The massless integral that is relevant here has been calculated in ref. [52].

6.2 Template integrals for Regions 2 to 14

The template integral of each region is expressed as

T (j)
δ1,δ2,δ3,δ4,δ5,δ6,δ7,ε

=

∫
D7αδ

(
U (j)

)−d/2
e−F

(j)/U(j)
(6.10)

where 2 ≤ j ≤ 14. For simplicity, we omit the subscripts of T (j)
δ1,δ2,δ3,δ4,δ5,δ6,δ7,ε

and write

T (j) when they are in the ordinary order.

Region 2 (0, 1
2
, 1
2
, 0, 0, 1

2
, 1), Region 3 (1

2
, 0, 0, 1

2
, 1, 1

2
, 0). The Symanzik polynomials

of Region 2 are given by

U (2) = α1α45 + α4α5 (6.11)

F (2) = m2
tα45 U (2) + S(α2α3α5 + α1α45α7 + α4α5α7) + Tα1α3α6 + Uα2α4α6 . (6.12)

The integration in α7 can be performed using the relation (A.3). Then, we perform the

following change of variables

α2 → β1β3/β2, α3 → β1β2/β3, α6 → β2β3/β1 , (6.13)

and the template integral becomes

T (2) = 4S−1−δ7
∫ ∞

0
dα1dα4dα5dβ1dβ2dβ3 α

δ1
1 α

δ4
4 α

δ5
5 β

δ236̄
1 β

δ2̄36
2 β

δ23̄6
3

× (α1α4 + α1α5 + α4α5)−d/2 e−m
2
tα45−(Sb21α5+Tb22α1+Ub23α4)/U(2)

Γ[δ1 + 1, δ2 + 1, δ3 + 1, δ4 + 1, δ5 + 1, δ6 + 1]
. (6.14)

The integration in β1, β2, β3 is now straightforward. To integrate over the remaining vari-

ables, it is easiest to integrate in α1 first using the relation (A.4) and then integrate in

α4, α5. Finally we obtain the template integral as

T (2) =
1

2
(m2

t )
−(1+4ε+δ112344556)/2S−(3+δ236̄77)/2T−(1+δ2̄36)/2U−(1+δ23̄6)/2

×
Γ[δ0̄1̄2̄,

1+δ236̄
2 , 1+δ23̄6

2 , 1+δ2̄36
2 , 1+δ1123̄6̄

2 , 1+δ001123446̄
2 , 1+δ001123̄556

2 , 1+δ0000112344556
2 ]

Γ[δ1 + 1, δ2 + 1, δ3 + 1, δ4 + 1, δ5 + 1, δ6 + 1, δ0011245 + 1, 1−δ00236
2 ]

.

(6.15)

The template integral of the Region 3 is obtained by the replacement α1 ↔ α2, α3 ↔
α4, α5 ↔ α7, T ↔ U of T (2)

T (3)
δ1,δ2,δ3,δ4,δ5,δ6,δ7,ε

= T (2)
δ2,δ1,δ4,δ3,δ7,δ6,δ5,ε

∣∣∣
T↔U

. (6.16)
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Region 4 (0, 0, 0, 1, 1, 1, 0), Region 5 (0, 0, 1, 0, 0, 1, 1). The Symanzik polynomials

of Region 4 are given by

U (4) = α12α37 + α3α7 (6.17)

F (4) = m2
tα37 U (4) + S(α3α5α7 + α1α45α7 + α2α5α37) + Tα1α3α6 . (6.18)

The integrations in α4, α5, α6 can be done using the relation (A.3). Then the template

integral is

T (4) =
1

S2+δ45T 1+δ6

∫ ∞
0

dα1dα2dα3dα7 α
−2+δ14̄6̄
1 αδ22 α

−1+δ36̄
3 α

−1+δ4̄7
7

× (α12α37 + α3α7)3−d/2+δ456 (α13α7 + α2α37)−1−δ5 e−m
2
tα37

Γ[δ1 + 1, δ2 + 1, δ3 + 1, δ7 + 1]
. (6.19)

We introduce a Mellin-Barnes integral to separate α12α37 +α3α7 into two factors, α13α7 +

α2α37 and α1α3, then the integration in α1 and α2 can be done using the relation (A.4).

The remaining integration is also straightforward and we obtain

T (4) =

∫
dz1

Γ[δ0̄1̄2̄, δ001237,z1̄+δ0267+1,z1̄,z1+δ01236̄,z1+δ14̄6̄−1,z1+δ0̄4̄5̄6̄−1]

(m2
t )
δ001237S2+δ45T 1+δ6Γ[δ1+1, δ3+1, δ0̄4̄5̄6̄−1, δ7+1, δ0012237+1,z1+δ0̄4̄6̄]

.

(6.20)

The template integral of Region 5 can be obtained in a similar manner and the result is

T (5) =

∫
dz1

Γ[δ0̄1̄2̄, δ001245,z1̄+δ0156+1,z1̄,z1+δ23̄6̄−1,z1+δ01246̄,z1+δ0̄3̄6̄7̄−1]

(m2
t )
δ001245S2+δ37U1+δ6Γ[δ2+1, δ4+1, δ5+1, δ0011245+1, δ0̄3̄6̄7̄−1,z1+δ0̄3̄6̄]

.

(6.21)

Region 6 (0, 1, 0, 0, 0, 1, 1), Region 8 (1, 0, 0, 0, 1, 1, 0). The Symanzik polynomials

of Region 6 are given by

U (6) = α1α345 + α34α5 (6.22)

F (6) = m2
tα345 U (6) + S(α2α3α5 + α34α5α7 + α1α45α7) + Tα1α3α6 . (6.23)

The integrations in α2, α6, α7 are straightforward using the relation (A.3) and the template

integral is given by

T (6) =
1

S2+δ27T 1+δ6

∫ ∞
0

dα1dα3dα4dα5 α
−1+δ16̄
1 α

−2+δ2̄36̄
3 αδ44 α

−1+δ2̄5
5

× (α1α345 + α34α5)3−d/2+δ267 (α34α5 + α1α45)−1−δ7 e−m
2
tα345

Γ[δ1 + 1, δ3 + 1, δ4 + 1, δ5 + 1]
. (6.24)

This looks similar to eq. (6.19) but has one extra massive integral, and thus it is necessary

to introduce two Mellin-Barnes integrals, giving

T (6) =

∫
dz1dz2

Γ[δ015, z1̄, z1 + δ16̄, z1 + δ0̄2̄6̄7̄ − 1, z2̄ + δ0124 + 1]

(m2
t )
δ001345S2+δ27T 1+δ6Γ[δ1 + 1, δ3 + 1, δ4 + 1, δ5 + 1]

× Γ[z1̄2̄ + δ0012456 + 1, z2̄, z2 + δ0̄1̄2̄, z12 + δ2̄36̄ − 1]

Γ[δ0̄2̄6̄7̄ − 1, z1 + δ0̄2̄6̄, z2̄ + δ0011245 + 1]
. (6.25)
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The template integral of Region 8 can be obtained in a similar manner and the result is

T (8) =

∫
dz1dz2

Γ[δ0̄1̄2̄, z1̄, z1 + δ1̄46̄ − 1, z1 + δ0̄1̄5̄6̄ − 1, z1̄2̄ + δ067]

(m2
t )
δ002347S2+δ15U1+δ6Γ[δ2 + 1, δ3 + 1, δ4 + 1, δ0̄1̄5̄6̄ − 1]

× Γ[z2̄, z2 + δ3 + 1, z12 + δ26̄, z12 + δ02346̄]

Γ[δ7 + 1, z1 + δ0̄1̄6̄, z12 + δ1̄346̄]
. (6.26)

Region 7 (0, 1, 1, 0, 0, 0, 1), Region 9 (1, 0, 0, 1, 1, 0, 0). The Symanzik polynomials

of Region 7 are given by

U (7) = α1α456 + α4α56 (6.27)

F (7) = m2
tα456 U (7) + S(α4α5α7 + α1α45α7) + Tα1α3α6 + Uα2α4α6 . (6.28)

The template integral is obtained in a similar way as that of Region 6 and the resulting

two-dimensional integral is given by

T (7) =

∫
dz1dz2

Γ[δ014, z1̄ + δ0012345 + 1, z1 + δ2̄3̄6 − 1, z1 + δ0̄2̄3̄7̄ − 1, z1̄2̄ + δ1̄3]

(m2
t )
δ001456S1+δ7T 1+δ3U1+δ2Γ[δ1 + 1, δ4 + 1, δ5 + 1, δ6 + 1]

× Γ[z1̄2̄ + δ0235 + 1, z2̄, z2 + δ13̄, z12 + δ0̄2̄3̄]

Γ[δ0̄2̄3̄7̄ − 1, z1 + δ0̄2̄3̄, z1̄2̄ + δ0012345 + 1]
. (6.29)

The template integral of Region 9 can also be obtained in a similar manner and the

result is given by

T (9) =

∫
dz1dz2

Γ[δ023, z1̄ + δ0012347 + 1, z1 + δ0̄1̄4̄5̄ − 1, z1 + δ1̄4̄6 − 1, z1̄2̄ + δ2̄4]

(m2
t )
δ002367S1+δ5T 1+δ1U1+δ4Γ[δ2 + 1, δ3 + 1, δ0̄1̄4̄5̄ − 1, δ6 + 1]

× Γ[z1̄2̄ + δ0147 + 1, z2̄, z2 + δ24̄, z12 + δ0̄1̄4̄]

Γ[δ7 + 1, z1 + δ0̄1̄4̄, z1̄2̄ + δ0012347 + 1]
. (6.30)

Region 10 (1, 1, 0, 0, 0, 0, 1), Region 11 (1, 1, 0, 0, 1, 0, 0). The Symanzik polyno-

mials of Region 10 are given by

U (10) = α34α56 (6.31)

F (10) = m2
tα3456 U (10) + S(α2α3α5 + α34α5α7) + Tα1α3α6 + Uα2α4α6 . (6.32)

The template integral is obtained in a similar way as that of Region 5 and the resulting

one-dimensional integral is given by

T (10) =

∫
dz1

Γ[δ034, δ056,z1̄+δ1̄2̄3−1,z1̄+δ2̄57̄−1,z1̄,z1+δ2+1,z1+δ4+1,z1+δ1̄6]

(m2
t )
δ003456S2+z1+δ27T 1+δ1U z1̄Γ[δ2+1, δ3+1, δ4+1, δ1̄2̄34, δ5+1, δ6+1, δ1̄2̄567̄−1]

.

(6.33)

The template integral of Region 11 can be obtained in a similar manner and the result

is given by

T (11) =

∫
dz1

Γ[δ034, δ067,z1̄+δ1̄2̄4−1,z1̄+δ1̄5̄7−1,z1̄,z1+δ1+1,z1+δ3+1,z1+δ2̄6]

(m2
t )
δ003467S2+z1+δ15T z1̄U1+δ2Γ[δ1+1, δ3+1, δ4+1, δ1̄2̄34, δ6+1, δ7+1, δ1̄2̄5̄67−1]

.

(6.34)
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Region 12 (1, 1, 0, 0, 1, 1, 1). The Symanzik polynomials of Region 12 are given by

U (12) = α34α12567 (6.35)

F (12) = m2
tα34 U (12) + S(α2α3α5 + α1α4α7 + α34α5α7) + Tα1α3α6 + Uα2α4α6 . (6.36)

We introduce Mellin-Barnes integrals four times, and the template integral is given by

T (12) =

∫
dz1dz2dz3dz4

Γ[δ034,z1̄,z2̄,z12+δ6+1,z1̄2̄3̄+δ0̄1̄2̄5̄6̄−2,z3̄,z13+δ3+1,z23+δ2+1]

(m2
t )
δ034S3+z12+δ012567T z1̄U z2̄Γ[δ1+1, δ2+1, δ3+1, δ4+1]

×Γ[z1̄3̄4̄+δ0̄1̄2̄45̄6̄7̄−2,z2̄3̄4̄+δ0̄2̄5̄6̄7̄−2,z4̄,z34+δ5+1,z1234+δ012567+3]

Γ[δ5+1, δ6+1, δ0̄0̄1̄2̄5̄6̄7̄−1, δ7+1,z4̄+δ0̄1̄2̄345̄6̄7̄−1]
. (6.37)

Region 13 (1, 1, 1, 1, 0, 0, 1), Region 14 (1, 1, 1, 1, 1, 0, 0). The Symanzik polyno-

mials of Region 13 are given by

U (13) = α1234α56 (6.38)

F (13) = m2
tα56U (13) + S(α134α5α7 + α2α37α5) + Tα1α3α6 + Uα2α4α6 . (6.39)

It is necessary to introduce the Mellin-Barnes integral twice in order to separate the terms

proportional to S, T , or U , respectively, and we obtain

T (13) =

∫
dz1dz2

Γ[δ056, z1̄ + δ0̄1̄2̄3̄4̄6 − 1, z1̄, z1 + δ57̄, z2̄ + δ0̄1̄3̄4̄ − 1, z1̄2̄ + δ0̄1̄2̄3̄ − 1, z2̄]

(m2
t )
δ056S1+z1̄+δ7T z2̄U2+z12+δ01234Γ[δ1 + 1, δ2 + 1, δ3 + 1, δ0̄0̄1̄2̄3̄4̄]

× Γ[z2 + δ1 + 1, z12 + δ3 + 1, z12 + δ01234 + 2]

Γ[δ4 + 1, δ5 + 1, δ6 + 1, δ0̄1̄2̄3̄4̄567̄ − 1]
. (6.40)

The template integral of Region 14 can be obtained in a similar manner and the result is

T (14) =

∫
dz1dz2

Γ[δ067, z1̄ + δ0̄1̄2̄3̄4̄6 − 1, z1̄, z1 + δ5̄7, z2̄ + δ0̄2̄3̄4̄ − 1, z1̄2̄ + δ0̄1̄2̄4̄ − 1, z2̄]

(m2
t )
δ067S1+z1̄+δ5T 2+z12+δ01234U z2̄Γ[δ1 + 1, δ2 + 1, δ3 + 1, δ0̄0̄1̄2̄3̄4̄]

× Γ[z2 + δ2 + 1, z12 + δ4 + 1, z12 + δ01234 + 2]

Γ[δ4 + 1, δ6 + 1, δ7 + 1, δ0̄1̄2̄3̄4̄5̄67 − 1]
. (6.41)

In the limit where all the regularization parameters go to zero, eq. (6.40) becomes

T (13) = −2ε

∫
dz1dz2

S−1+z1T z2

U2+z1+z2
Γ[z1̄ − 1, z1̄, z1, z2̄ − 1, z2̄, z2 + 1, z1̄2̄ − 1, z12 + 1, z12 + 2]

+ (one-dimensional Mellin-Barnes integrals) + O(ε2) , (6.42)

which means that the two-dimensional integral does not contribute at ε0-order. Thus, the

representation (6.40) is most useful when the required order is ε0.

There is another representation of T (13) which is more suitable if we require calculation

beyond order ε0:

T (13) =

∫
dz1

Γ[δ0̄, δ0̄1̄2̄, δ012+1, δ056, δ57̄,z1̄+δ0̄1̄−1,z1̄,z1+1,z1+δ0̄1̄2̄6]

(m2
t )
δ056S2+z1+δ7T z1̄U1+δ012Γ[δ0̄0̄1̄2̄, δ2+1, δ5+1, δ6+1,z1̄+δ0̄,z1+δ0̄1̄2̄567̄]

−
∫

dz1dz2
Γ[δ0̄, δ0̄1̄2̄, δ056,z1̄+δ0̄1̄2̄57̄−1,z1̄,z1+δ1+1,z1+δ012+1]

(m2
t )
δ056S2+z12̄+δ0127T 1+z1̄2Γ[δ1+1, δ0̄0̄1̄2̄, δ2+1, δ5+1]

× Γ[z12̄+δ6,z2̄,z2+1,z1̄2+δ0̄1̄]

Γ[δ6+1,z2̄+δ0̄1̄2̄567̄−1,z2+δ0̄+1]
. (6.43)
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This representation consists of two integrals with at most two kinematic parameters,

and their calculation is simpler. It has some disadvantages, however; it holds only when

δ3 and δ4 are non-negative integers, and eq. (6.43) is shown in the special case that δ3 =

0, δ4 = 0, since that is the typical situation (here we may set these values because T (13) is

regular in δ3 and δ4). Another disadvantage is that each integral produces singularities in ε

which cancel in their sum, however as a by-product, higher-order derivatives of Γ-functions

contribute to the ε0 order.

6.3 Analytic continuation

As mentioned in the text below eq. (A.1), the Mellin-Barnes integrals in the template

integrals are assumed to be regularized by choosing suitable values of δj . However, the

quantity we need is the one where δj → 0 for all j. Therefore we need to analytically

continue the Mellin-Barnes integrals in terms of δj . We describe the procedure of the

analytic continuation showing the case of Region 7, which is one of the most involved

cases, as a concrete example.5 We take the limit of the ascending order of δj ,

lim
ε,δ7,δ6,δ5,δ4,δ3,δ2,δ1→0

T (7) . (6.44)

As mentioned below eq. (A.1), in general the integral contours of z1, . . . , z4 are assumed

to be straight lines parallel to the imaginary axis [cf. figure 6 (b)]. For Region 7, we have

only z1, z2 as integration variables. We choose Re(z1) = −1/5, Re(z2) = −1/3. Then, we

may choose

δ1 = 0, δ2 = 0, δ3 = −13

30
, δ4 =

1

300
, δ5 =

1

500
, δ6 =

17881

15540
, δ7 = −64003

62160
, ε = − 2507

10360
(6.45)

to regularize the template integral T (7).6 We try to set as many parameters as possible to

zero in ascending j order in eq. (6.45). The limit of δ1,2 → 0 in eq. (6.44) is now trivial.

The analytic continuation of δ3 from −13/30 to 0 makes the first rightmost left poles

of Γ(z1 + δ3̄6 − 1), Γ(z2 − δ3), and Γ(z12 − δ03) into right poles, which must be compen-

sated by adding their residues. This analytic continuation procedure is automatized in

the Mathematica package MB.m [51]. After the analytic continuation in terms of δ3, the

integral depends on δ4, . . . , δ7 and ε, and we repeat the same procedure for δ4, then, δ5 and

so on. In this way, we obtain a combination of integrals for which the arguments of the

Γ-functions in the integrand contain only z1 and z2 such as∫
dz1dz2

Γ[1− z1,−1 + z1,−1 + z1,−z12,−z2, z2, z12]

Γ(z1)
. (6.46)

The methods to solve these integrals are explained in the next subsection.

5In terms of the dimension of the Mellin-Barnes integrals, the most involved is Region 12. However, the

analytic continuation turns out to be rather simple in this region.
6These values can be changed, provided they do not cross the integration contours.
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6.4 Solving the Mellin-Barnes integrals

The usual idea to solve the Mellin-Barnes integral is to apply the first and the second

Barnes lemma and variants of them. The Mathematica package barnesroutines.m [53]

performs this procedure in an automatic way, and solves some of the Mellin-Barnes integrals

we encounter. Unfortunately, not all of them are solved by this package, and we describe

here how to treat such cases. The essential points are mentioned in ref. [32], and we fit or

extend them to our integrals.

Three- and four-dimensional Mellin-Barnes integrals. The template integral of

the Region 12 (6.37) is expressed as a four-dimensional Mellin-Barnes integral. Thus, the

contribution from Region 12 contain a four-dimensional integral of the form∫
dz1dz2dz3dz4

(
T

S

)z1 (U
S

)z2 Γ[−z4, 1 + z34,−2− z134,−2− z234, 3 + z1234]

Γ(−1− z4)

× Γ[−z1,−z2,−z3, 1 + z12, 1 + z13, 1 + z23,−2− z123] . (6.47)

We use the relation

Γ[−z4, 1 + z34,−2− z134,−2− z234, 3 + z1234]

Γ(−1− z4)

= Γ[−2− z134,−1− z234, 1 + z34, 3 + z1234]

+
Γ[2 + z23,−2− z134,−2− z234, 1 + z34, 3 + z1234]

Γ(1 + z23)
(6.48)

to reduce the number of the Γ-functions whose argument contains z4 from 6 to 4. Now one

can apply the first Barnes lemma to solve the z4-integral. The resulting three-dimensional

integral can be easily reduced to a sum of two-dimensional integrals since the z3-integral

can be solved by the variants of the first and second Barnes lemmas. Thus, we have

two-dimensional integrals, and the way to solve them will be explained below.

Note that the reduction in eq. (6.48) can be done only after the limits δj → 0 and ε→ 0

since the Γ-functions of the denominator and the numerator have different dependence on

ε, thus the cancellation does not occur before the limits have been taken.

The content of this subsection is not formulated in an algorithmic way and has been

done manually.

Two-dimensional Mellin-Barnes integrals. In the cases of integrals with no argu-

ment such as∫
dz1dz2 Γ[−z1,−1 + z1,−z2, z2, 1− z12,−1 + z12]ψ(z1)ψ(1− z12) , (6.49)

or integrals with a single argument of the form∫
dz1dz2 X

z2Γ[−z1,−1 + z1,−z2, z2, 1− z12,−1 + z12]ψ(z1)ψ(1− z12) , (6.50)
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we first reduce them to a one-dimensional integral using the generalized Barnes lemma [32]∫
C

dz

2πi

Γ[a1 − z, a2 − z, a3 + z, a4 + z, a5 + z]

Γ(−a6 + z)

=
Γ[a13, a23, a14, a24, a15, a25]

Γ[a1235, a1245,−a56]
3F2

(
a15, a25, a123456

a1235, a1245
; 1

)
, (6.51)

where 3F2 is the generalized hypergeometric function [54, 55]. A useful corollary of

eq. (6.51) is presented in appendix C. The resulting one-dimensional integrals can be solved

by the method below.

Integrals with two different arguments are difficult to solve. However in our case, such

integrals only appear at higher orders in ε so we do not need to consider them.

One-dimensional Mellin-Barnes integrals. For integrals with no argument such as7

∫
dz1 Γ[−z1,−1 + z1, 1− z1,−1 + z1]ψ(z1)ψ(−2− z1) , (6.52)

we evaluate them numerically using Mathematica and apply the PSLQ algorithm [56, 57]

to fit them to a basis of constants which consists of all possible products of

{1, γE , π2, ζ3, ζ5} (6.53)

up to a transcendental weight of five. The results turn out to only require constants to

weight four. Typically, 50–70 digits of the numerical result are sufficient to obtain the

correct answer, which we verify with 100 more digits.

The integrals with one argument typically have the form∫
dz1X

z1 Γ[−z1,−1 + z1, 1− z1,−1 + z1], X =
X1

X2
, X1, X2 ∈ {S, T, U} . (6.54)

Various combinations of X1, X2 appear since the template integrals contain them. We

obtain the series expansion of eq. (6.54) by taking the residue of the left poles or the right

poles. By adjusting which poles we consider, we can choose the series in terms of either

T/S, U/S, or T/U :8

∫
dz1X

z1 Γ[−z1,−1 + z1, 1− z1,−1 + z1]
AC
=

4∑
n1=0

∞∑
n2=0

(logX)n1Xn2 . (6.55)

7After the analytic continuation described in subsection 6.3, we may have an expression where some of

the poles merge. The following procedure can be applied also in these cases.
8Below eq. (3.2), it was stated that we use the normal equal sign for series representations when the

hierarchy is obvious. However, here we have to introduce additional assumptions for X = T/S, U/S, T/U ,

since hierarchies between the positive Mandelstam variables have not been fixed up to this point. Thus we

use the sign “
AC
= ” in eq. (6.55), indicating that a certain analytic continuation should be performed in order

to ensure X � 1.

– 27 –



J
H
E
P
0
2
(
2
0
1
9
)
0
8
0

Now we apply analytic continuation and obtain

X = T/S : logX
AC
= h0 − log s+ iπ, X

AC
= −v (6.56)

X = U/S : logX
AC
= −h1 − log s+ iπ, X

AC
= −(1− v) (6.57)

X = T/U : logX
AC
= h0 + h1, X

AC
=

v

1− v
. (6.58)

Recall that h1 = − log(1− v). We fit the series with HPL and express the result in terms

of hN . In the case of (6.56), the series in v is directly fit to hN . In the case of (6.57), we

first fit the series to HPL with the argument of (1 − v) and then express them in terms of

hN . In the case of (6.58), we first fit the series to HPL with the argument of v/(1− v) and

then express them in terms of hN . Taking into account that 0 ≤ v ≤ 1 and the brach cut of

hN>0 lies on the real axis of v > 1, we never cross the branch cut in the above procedure.

The information of the branch cut is encoded in the analytic continuation of logX.

We already cover all of the combinations of X = X1/X2, so the calculation of the

crossed diagrams can be done with the same procedure. For our sample integral (6.1),

there are about 50 one-dimensional Mellin-Barnes integrals which are treated in this way.

6.5 Combining the results

Summing the contributions from all the relevant regions, we obtain for our sample integral

I =
iπ3e−2εγE

mts
5
2
√
v
√

1− v

(
1

ε
− 2 log(m2

t )− 10 log 2

)

+
e2iπεe−2εγE

s3+2ε

0∑
i1=−1

4+i1∑
i2=0

di1,i2
v(1− v)

εi1 logi2(mt) +O(mt, ε) (6.59)

where

d−1,3 =−4

3
, d−1,2 =h0(4v+2)+h1(4v−6)+6iπ ,

d−1,1 =−h2
0+2h0h1+8h0v+2iπh0(2v−1)−h2

1+8h1(v−1)+2iπh1(2v−1)− 10π2

3
+8iπ ,

d−1,0 =−1

2
iπh2

0+4h0h1+iπh0h1−
1

2
iπh2

1−8iπ+4iπh1v

+
1

6
h3

0(1−2v)+
1

3
π2h0(5−8v)+h1(8−8v)+π2h1

(
1− 8v

3

)
− 4iπ3

3

+h2
0h1

(
1

2
−v
)

+h0h
2
1

(
1

2
−v
)

+4iπh0(v−1)−8h0v+
1

6
h3

1(1−2v) ,

d0,4 =−10

3
, d0,3 =h0(4−8v)+h1(4−8v)− 20iπ

3
,

d0,2 =−h2
0+6h0h1−2iπh0(6v+1)−h2

1−2iπh1(6v−7)+
47π2

3
,

d0,1 =−iπh2
0+16h0h1−16iπh0+16iπh1−32iπ+π2h0

(
2v− 7

3

)
+

1

3
h3

0(−2v−1)−2iπh0h1−iπh2
1−iπ3+16π2+π2h1

(
2v+

1

3

)
+h2

0h1(−2v−1)+h0h
2
1(3−2v)−32h0v+h3

1

(
1− 2v

3

)
−32h1(v−1)+6ζ3 ,
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d0,0 = 8h0h
2
1−32h0h1−12iπh1h2 +h1h3(8−16v)+h4(60−48v)−16π2+

22

3
π2h2(1−2v)

+h2
0h1(8−8v)+h2

0h2(10−8v)+
11

12
π2h2

1(1−4v)+h0h
3
1

(
1

2
−2v

)
+

1

8
h4

1(5−4v)

+h2
0h

2
1

(
−v− 1

4

)
+16h0h2(v−2)− 2

3
π2h1(v−13)−16iπh0(v−2)− 8

3
h3

1(v−1)

− 8h3
0v

3
−8iπh2

0(v−1)+8iπh2
1v+8iπh0h2(v+1)− 2

3
π2h0(v+12)−16iπh1(v+1)

− 1

6
iπh3

0(2v−11)+
1

6
iπ3h1(2v−7)+π4

(
151v

90
− 19

9

)
+h3

0h1

(
2v− 3

2

)
−8iπh0h1(2v−1)

− 1

2
iπh2

0h1(2v+1)− 1

6
iπh3

1(2v+9)−4iπh3(2v+5)+
11

12
π2h2

0(4v−3)+8h0h3(4v−5)

+
1

8
h4

0(4v+1)+
1

2
iπh0h

2
1(6v−1)− 2

3
iπ3(4v+1)+

1

6
iπ3h0(2v+17)−16h3(v−2)

+h0h1h2(16v−8)+
1

6
π2h0h1(44v−31)+h2

2(14v−7)+16iπh2(2v−1)

+h0(h21(20−40v)+64v)+4h1(4h21v+h21+16(v−1))−4iπ(h21(2v−7)−16)

+h0(−30v−3)ζ3+h1(21−30v)ζ3−2(8h21(v+1)+6h211(4v+1)+7h22(2v−1))

+16vζ3+iπ(8v−61)ζ3 . (6.60)

This result is consistent with ref. [31] after a proper analytic continuation.

One remarkable feature of the result is that it contains terms proportionals to 1/mt.

Higher mt-order correction also contain odd-power terms. These odd-power terms come

from Region 2 and 3:

lim
ε,δ7,δ6,δ5,δ4,δ3,δ2,δ1→0

(
T (2) + T (3)

)
× e2εγE

=
iπ3

mts
5
2
√
v
√

1− v

(
1

ε
− 2 log(m2

t )− 10 log 2

)
+m0

t ∆(1/δj) +O(ε,mt) , (6.61)

where ∆(1/δj) has poles in δj , and these poles are cancelled by the contributions from the

other regions.

6.6 Other master integrals

Seven-line integrals. After the IBP-reduction described in ref. [34], we find that there

are four more diagrams which have seven internal lines. We consider JNPL1
2,1,1,1,1,1,1, JNPL1

1,1,2,1,1,1,1,

JNPL1
1,1,1,2,1,1,1, JNPL1

1,1,1,1,1,2,1 which are used to calculate the Higgs pair production cross section.

(For the detail, see ref. [34].) These integrals can be expressed by the proper shifts of δj :

δ1 → δ1 + 1 for JNPL1
2,1,1,1,1,1,1, for example.

Six-line integrals. We can use the method described in subsection 4.4 to compute the

integral with fewer lines. For example, JNPL1
1,1,1,1,1,1,0 is obtained by shifting δ7 → δ7 − 1 and

repeat the same procedure described above. Note that the analytic continuation of δj may

change due to the shift. For example, the template integral of Region 12 (6.37) can be

regularized with δi>0 = 0, whereas JNPL1
1,1,1,1,1,1,0 requires a non-zero δ7 to regularize that

template integral.
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7 Summary

Asymptotic expansion is useful to extract information from multi-scale Feynman integrals,

which are difficult to solve exactly. The method of regions plays an essential role in this

extraction. The crucial part of the method of regions is to reveal the relevant regions

correctly, and a naive application of the conventional method fails in the case of non-

planar integrals for which the second Symanzik polynomial does not have a definite sign.

We solve this problem by performing an analytic continuation of the Mandelstam variables

such that the second Symanzik polynomial is positive definite.

We show the applicability of the method of regions by the explicit calculation of the

master integrals of the Higgs pair production cross section at two-loop order, in the high

energy limit. It is straightforward to extend our calculation to other four-point two-loop

integral which satisfy q2
i � m2 � S, T, U where qi are the external momenta and m is

the mass of the internal lines. We anticipate that our idea to make the second Symanzik

polynomial positive definite works in more general cases.

In addition to solving the issue of the sign of the second Symanzik polynomial, we

formulate the procedure of the calculation in a systematic way. The contribution from

each region is expressed in terms of Mellin-Barnes integrals, and a way to solve them is

presented. The procedure presented here to solve the Mellin-Barnes integrals beyond the

Barnes lemmas is not applicable to the general case, although it is sufficient to solve our

master integrals completely. The automatization of this part is a future project.

As a by-product of introducing the positive Mandelstam variables, it becomes easier to

obtain the crossed integrals, since the crossing of the positive Mandelstam variables does

not cross any branch cut.

We compute the first few terms of the series in mt, and the higher order terms can

be obtained by the use of the mt-differential equations. In this sense, our results can be

considered as the boundary conditions of the differential equations with respect to mt.
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A Mellin-Barnes integrals

Here we explain elementary aspects of the Mellin-Barnes integrals. The basic tool is the

identity

1

(A+B)λ
=

∫
C

dz

2πi

Bz

Aλ+z

Γ[−z, λ+ z]

Γ(λ)
, (A.1)

where the integration contour C satisfies the following three properties:
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(a)

× ××××× ◦ ◦ ◦ ◦ ◦ ◦

(b)

×××× ◦ ◦ ◦ ◦

Figure 6. A circle (◦) represents the right pole and a cross (×) represents the left pole. (a) An
example of the contour in Eq. (A.1) with λ = −5/2. (b) An example of the contour in Eq. (A.2)
with λ = 2, c0 = 1.

are always satisfied. We choose δj to ensure the condition λ ̸∈ {0,−1,−2,−3, ...}.9 When

Re(λ) > 0, it is possible to set C as a straight line along the imaginary axis [See Fig. 6 (b).]

1

(A+B)λ
=

∫ −c0+i∞

−c0−i∞

dz

2πi

Bz

Aλ+z

Γ[−z,λ+ z]

Γ(λ)
0 < c0 < Re(λ) . (A.2)

The integrand converges rapidly to zero at Im(z) = ±∞ rapidly so that we can shift the

end points of the integration.

It is sometimes difficult to fix the contour C immediately when the Mellin-Barnes

representation is introduced because additional convergence conditions concerning the αi-

integration should be taken into account. For example, the relations
∫ ∞

0
dα αae−Aα AC

= Γ(1 + a)A−1−a , (A.3)

∫ ∞

0
dα αa(A+Bα)b

AC
= A1+a+bB−1−aΓ[1 + a,−1− a− b]

Γ(−b)
, (A.4)

require Re(a) > −1 and Re(a+b) < −1, and if a or b contains the Mellin-Barnes integration

variable z, C should be chosen accordingly. This kind of convergence condition appears

every time an integration is performed, and it can happen that an analytic continuation of

the regularization parameters is necessary between two successive integrations. Therefore

it is necessary to deform C smoothly in each step of the integration assuming a flexible

contour like Fig. 6 (a) in order to ensure convergence. Note that after the integration, the

analytic continuation of Γ-functions in the left hand sides of Eqs. (A.3), (A.4) is possible.

After the integration with respect to all αi is solved, we deform C to a straight line

by tuning δj to separate the right poles and the left poles as in Fig. 6 (b). We obtain

an expression which is valid for certain values of δj . In order to take the limit δj → 0,

it is necessary to apply a final analytic continuation of δj from their initial values into a

neighborhood around 0. This time, we allow poles to cross C. For this procedure, we use

the package MB.m [51].

9 If some of the left poles and right poles merge for any choice of δj , it is necessary to compensate the

contributions of the merged poles by adding or subtracting the residue of the poles. However, it turns out

that the merger of poles does not happen in our cases.
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Figure 6. A circle (◦) represents the right pole and a cross (×) represents the left pole. (a) An

example of the contour in eq. (A.1) with λ = −5/2. (b) An example of the contour in eq. (A.2)

with λ = 2, c0 = 1.

◦ C runs from −i∞ to +i∞.

◦ The poles of Γ(−z) lie on the right side of C. (We call them right poles.)

◦ The poles of Γ(λ+ z) lie on the left side of C. (We call them left poles.)

The separation of the left poles and right poles is possible if λ 6∈ {0,−1,−2,−3, . . .}. For

example, when λ = −7/2, some of the left poles lie on the right side of the left-most

right pole, but there exists a contour which separates the left poles and the right poles in

the proper manner. [See figure 6 (a).] In our calculation, λ is a combination of ε and δj
and integration variables of other Mellin-Barnes integrals, and A,B are combinations of

the positive Mandelstam variables and the alpha parameters. In particular, A > 0 and

B > 0 are always satisfied. We choose δj to ensure the condition λ 6∈ {0,−1,−2,−3, . . .}.9

When Re(λ) > 0, it is possible to set C as a straight line along the imaginary axis [See

figure 6 (b).]

1

(A+B)λ
=

∫ −c0+i∞

−c0−i∞

dz

2πi

Bz

Aλ+z

Γ[−z, λ+ z]

Γ(λ)
0 < c0 < Re(λ) . (A.2)

The integrand converges rapidly to zero at Im(z) = ±∞ rapidly so that we can shift the

end points of the integration.

It is sometimes difficult to fix the contour C immediately when the Mellin-Barnes

representation is introduced because additional convergence conditions concerning the αi-

integration should be taken into account. For example, the relations∫ ∞
0

dα αae−Aα
AC
= Γ(1 + a)A−1−a , (A.3)∫ ∞

0
dα αa(A+Bα)b

AC
= A1+a+bB−1−aΓ[1 + a,−1− a− b]

Γ(−b)
, (A.4)

require Re(a) > −1 and Re(a+b) < −1, and if a or b contains the Mellin-Barnes integration

variable z, C should be chosen accordingly. This kind of convergence condition appears

9If some of the left poles and right poles merge for any choice of δj , it is necessary to compensate the

contributions of the merged poles by adding or subtracting the residue of the poles. However, it turns out

that the merger of poles does not happen in our cases.
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every time an integration is performed, and it can happen that an analytic continuation of

the regularization parameters is necessary between two successive integrations. Therefore

it is necessary to deform C smoothly in each step of the integration assuming a flexible

contour like figure 6 (a) in order to ensure convergence. Note that after the integration, the

analytic continuation of Γ-functions in the left hand sides of eqs. (A.3), (A.4) is possible.

After the integration with respect to all αi is solved, we deform C to a straight line

by tuning δj to separate the right poles and the left poles as in figure 6 (b). We obtain

an expression which is valid for certain values of δj . In order to take the limit δj → 0,

it is necessary to apply a final analytic continuation of δj from their initial values into a

neighborhood around 0. This time, we allow poles to cross C. For this procedure, we use

the package MB.m [51].

B Template integrals for the two-loop master integrals of Higgs pair

production

The results for the template integrals listed here can be found in the supplementary file

attached to this paper, in a computer-readable format.

Template integrals of NPL2. The template integrals of INPL2 are

T (2) =
1

2
(m2

t )
−(1+4ε+δ112344556)/2S−(3+δ236̄77)/2T−(1+δ2̄36)/2U−(1+δ23̄6)/2

×
Γ[δ0̄5̄6̄,

1+δ236̄
2 , 1+δ23̄6

2 , 1+δ2̄36
2 , 1+δ2̄3̄556

2 , 1+δ001123̄556
2 , 1+δ002̄344556

2 , 1+δ0000112344556
2 ]

Γ[δ1+1, δ2+1, δ3+1, δ4+1, δ5+1, δ6+1, δ0014556+1, 1−δ00236
2 ]

(B.1)

T (3) =
1

2
(m2

t )
−(1+4ε+δ122334677)/2S−(3+δ14556̄)/2T−(1+δ14̄6)/2U−(1+δ1̄46)/2

×
Γ[δ0̄6̄7̄,

1+δ146̄
2 , 1+δ14̄6

2 , 1+δ1̄46
2 , 1+δ1̄4̄677

2 , 1+δ001224̄677
2 , 1+δ001̄334677

2 , 1+δ0000122334677
2 ]

Γ[δ1+1, δ2+1, δ3+1, δ4+1, δ6+1, δ7+1, δ0023677+1, 1−δ00146
2 ]

(B.2)

T (4) =

∫
dz1

(m2
t )
−δ001234Γ[δ012, δ034,z1̄+δ35̄6̄−1,z1̄+δ16̄7̄−1,z1̄,z1+δ25̄,z1+δ6+1,z1+δ47̄]

S2+δ57T 1+z1+δ6U z1̄Γ[δ1+1, δ2+1, δ3+1, δ4+1, δ6+1, δ125̄6̄7̄−1, δ345̄6̄7̄−1]

(B.3)

T (5) =

∫
dz1

Γ[δ037, δ001237, δ4̄7,z1̄+δ0267+1,z1̄,z1+δ14̄6̄−1,z1+δ0̄4̄5̄6̄−1,z1+δ0̄6̄7̄]

(m2
t )
δ001237S2+δ45T 1+δ6Γ[δ1+1, δ2+1, δ3+1, δ0̄4̄5̄6̄−1, δ7+1, δ001234̄77,z1+δ0̄4̄6̄]

(B.4)

T (6) =

∫
dz1

Γ[δ3̄5, δ045, δ001245,z1̄+δ0156+1,z1̄,z1+δ23̄6̄−1,z1+δ0̄5̄6̄,z1+δ0̄3̄6̄7̄−1]

(m2
t )
δ001245S2+δ37U1+δ6Γ[δ1+1, δ2+1, δ4+1, δ5+1, δ00123̄455, δ0̄3̄6̄7̄−1,z1+δ0̄3̄6̄]

(B.5)

T (7) =

∫
dz1

Γ[δ015, δ2̄5, δ001345,z1̄+δ0456+1,z1̄,z1+δ2̄36̄−1,z1+δ0̄5̄6̄,z1+δ0̄2̄6̄7̄−1]

(m2
t )
δ001345S2+δ27T 1+δ6Γ[δ1+1, δ3+1, δ4+1, δ5+1, δ0012̄3455, δ0̄2̄6̄7̄−1,z1+δ0̄2̄6̄]

(B.6)

T (8) =
Γ[δ0̄5̄6̄, δ2̄3̄6−1, δ013̄56, δ001456, δ02̄456, δ0̄6̄7̄]

(m2
t )
δ001456S1+δ7T 1+δ3U1+δ2Γ[δ1+1, δ4+1, δ0̄6̄+1, δ6+1, δ0012̄3̄45566, δ0̄2̄3̄7̄−1]

(B.7)
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T (9) =

∫
dz1

Γ[δ1̄7, δ027, δ002347,z1̄+δ0367+1,z1̄,z1+δ1̄46̄−1,z1+δ0̄1̄5̄6̄−1,z1+δ0̄6̄7̄]

(m2
t )
δ002347S2+δ15U1+δ6Γ[δ2+1, δ3+1, δ4+1, δ0̄1̄5̄6̄−1, δ7+1, δ001̄23477,z1+δ0̄1̄6̄]

(B.8)

T (10) =
Γ[δ0̄5̄6̄, δ1̄4̄6−1, δ0̄6̄7̄, δ01̄367, δ002367, δ024̄67]

(m2
t )
δ002367S1+δ5T 1+δ1U1+δ4Γ[δ2+1, δ3+1, δ0̄1̄4̄5̄−1, δ0̄6̄+1, δ6+1, δ001̄234̄6677]

(B.9)

T (11) =

∫
dz1dz2dz3dz4

Γ[δ012,z1̄,z2̄,z12+δ6+1,z3̄,z13+δ2+1,z23+δ3+1,z1̄2̄3̄+δ0̄3̄4̄5̄6̄−2]

(m2
t )
δ012S3+z12+δ034567T z2̄U z1̄Γ[δ1+1, δ2+1, δ3+1, δ4+1]

×Γ[z1̄3̄4̄+δ0̄13̄4̄5̄6̄7̄−2,z4̄,z34+δ5+1,z1234+δ034567+3,z2̄3̄4̄+δ0̄3̄5̄6̄7̄−2]

Γ[δ5+1, δ6+1, δ0̄0̄3̄4̄5̄6̄7̄−1, δ7+1,z4̄+δ0̄123̄4̄5̄6̄7̄−1]
(B.10)

T (12) =

∫
dz1dz2dz3dz4

Γ[δ034,z1̄,z2̄,z12+δ6+1,z3̄,z13+δ3+1,z23+δ2+1,z1̄2̄3̄+δ0̄1̄2̄5̄6̄−2]

(m2
t )
δ034S3+z12+δ012567T z1̄U z2̄Γ[δ1+1, δ2+1, δ3+1, δ4+1]

×Γ[z1̄3̄4̄+δ0̄1̄2̄45̄6̄7̄−2,z4̄,z34+δ5+1,z1234+δ012567+3,z2̄3̄4̄+δ0̄2̄5̄6̄7̄−2]

Γ[δ5+1, δ6+1, δ0̄0̄1̄2̄5̄6̄7̄−1, δ7+1,z4̄+δ0̄1̄2̄345̄6̄7̄−1]
. (B.11)

Template integrals of PL1. The template integrals of IPL1 = JPL1
1,1,1,1,1,1,1 defined in

eq. (5.1) are

T (2) =

∫
dz1

Γ[δ012, δ045,z1̄+δ13̄7̄−1,z1̄+δ46̄7̄−1,z1̄,z1+δ2+1,z1+δ5+1,z1+δ7+1]

(m2
t )
δ001245S3+z1+δ367T z1̄Γ[δ1+1, δ2+1, δ4+1, δ5+1, δ123̄7̄, δ456̄7̄, δ7+1]

(B.12)

T (3) =
Γ[δ012, δ13̄, δ4̄6, δ056, δ27̄, δ57̄]

(m2
t )
δ001256S2+δ34T 1+δ7Γ[δ1+1, δ2+1, δ5+1, δ6+1, δ123̄7̄, δ4̄567̄]

(B.13)

T (4) =

∫
dz1dz2

Γ[δ067,z1̄,z1+δ0̄3̄4̄5̄−1,z1+δ5̄7,z2̄+δ017,z1̄2̄+δ001567,z2̄,z2+δ0̄7̄+1]

(m2
t )
δ001267S2+δ34T 1+δ5Γ[δ1+1, δ2+1, δ0̄3̄4̄5̄−1, δ6+1, δ7+1,z1+δ0̄3̄5̄]

× Γ[z12+δ25̄,z12+δ0̄3̄5̄]

Γ[z2̄+δ001677,z12+δ0̄5̄+1]
(B.14)

T (5) =

∫
dz1dz2

Γ[δ017,z1̄,z1+δ0̄2̄3̄4̄−1,z1+δ2̄7,z2̄+δ067,z1̄2̄+δ001267,z2̄,z2+δ0̄7̄+1]

(m2
t )
δ001567S2+δ34T 1+δ2Γ[δ1+1, δ0̄2̄3̄4̄−1, δ5+1, δ6+1, δ7+1,z1+δ0̄2̄4̄]

× Γ[z12+δ0̄2̄4̄,z12+δ2̄5]

Γ[z2̄+δ001677,z12+δ0̄2̄+1]
(B.15)

T (6) =
Γ[δ1̄3, δ023, δ045, δ46̄, δ27̄, δ57̄]

(m2
t )
δ002345S2+δ16T 1+δ7Γ[δ2+1, δ3+1, δ4+1, δ5+1, δ1̄237̄, δ456̄7̄]

(B.16)

T (7) =

∫
dz1dz2

Γ[δ047,z1̄,z1+δ0̄1̄5̄6̄−1,z1+δ5̄7,z2̄+δ037,z1̄2̄+δ003457,z2̄,z2+δ0̄7̄+1]

(m2
t )
δ002347S2+δ16T 1+δ5Γ[δ2+1, δ3+1, δ4+1, δ0̄1̄5̄6̄−1, δ7+1,z1+δ0̄1̄5̄]

× Γ[z12+δ0̄1̄5̄,z12+δ25̄]

Γ[z2̄+δ003477,z12+δ0̄5̄+1]
(B.17)

T (8) =

∫
dz1

Γ[δ023, δ056,z1̄+δ1̄37̄−1,z1̄+δ4̄67̄−1,z1̄,z1+δ2+1,z1+δ5+1,z1+δ7+1]

(m2
t )
δ002356S3+z1+δ147T z1̄Γ[δ2+1, δ3+1, δ5+1, δ6+1, δ1̄237̄, δ4̄567̄, δ7+1]

(B.18)

T (9) =

∫
dz1dz2

Γ[δ037,z1̄,z1+δ0̄1̄2̄6̄−1,z1+δ2̄7,z2̄+δ047,z1̄2̄+δ002347,z2̄,z2+δ0̄7̄+1]

(m2
t )
δ003457S2+δ16T 1+δ2Γ[δ3+1, δ4+1, δ5+1, δ0̄1̄2̄6̄−1, δ7+1,z1+δ0̄2̄6̄]

× Γ[z12+δ2̄5,z12+δ0̄2̄6̄]

Γ[z2̄+δ003477,z12+δ0̄2̄+1]
(B.19)
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T (10) =

∫
dz1dz2

Γ[δ012,z1̄,z1+δ2+1,z1+δ5+1,z1̄+δ0̄5̄6̄7̄−1,z2̄,z2+δ13̄,z12+δ7+1]

(m2
t )
δ012S3+z1+δ034567T z1̄Γ[δ1+1, δ2+1, δ4+1, δ5+1, δ6+1, δ0̄0̄4̄5̄6̄7̄]

×Γ[z12+δ04567+2,z1̄2̄+δ0̄4̄5̄7̄−1]

Γ[δ7+1,z12+δ123̄+1]
(B.20)

T (11) =

∫
dz1dz2

Γ[δ023,z1̄,z1+δ2+1,z1+δ5+1,z1̄+δ0̄4̄5̄7̄−1,z2̄,z2+δ1̄3,z12+δ7+1]

(m2
t )
δ023S3+z1+δ014567T z1̄Γ[δ2+1, δ3+1, δ4+1, δ5+1, δ6+1, δ0̄0̄4̄5̄6̄7̄]

×Γ[z12+δ04567+2,z1̄2̄+δ0̄5̄6̄7̄−1]

Γ[δ7+1,z12+δ1̄23+1]
(B.21)

T (12) =

∫
dz1dz2

Γ[δ045,z1̄,z1+δ2+1,z1+δ5+1,z1̄+δ0̄2̄3̄7̄−1,z2̄,z2+δ46̄,z12+δ7+1]

(m2
t )
δ045S3+z1+δ012367T z1̄Γ[δ1+1, δ2+1, δ3+1, δ4+1, δ5+1, δ0̄0̄1̄2̄3̄7̄]

×Γ[z12+δ01237+2,z1̄2̄+δ0̄1̄2̄7̄−1]

Γ[δ7+1,z12+δ456̄+1]
(B.22)

T (13) =

∫
dz1dz2

Γ[δ056,z1̄,z1+δ2+1,z1+δ5+1,z1̄+δ0̄1̄2̄7̄−1,z2̄,z2+δ4̄6,z12+δ7+1]

(m2
t )
δ056S3+z1+δ012347T z1̄Γ[δ1+1, δ2+1, δ3+1, δ5+1, δ6+1, δ0̄0̄1̄2̄3̄7̄]

×Γ[z12+δ01237+2,z1̄2̄+δ0̄2̄3̄7̄−1]

Γ[δ7+1,z12+δ4̄56+1]
. (B.23)

Template integrals of PL2. The template integrals of IPL2 = JPL2
1,1,1,1,1,1,1 defined in

eq. (5.2) are

T (2) =

∫
dz1dz2

Γ[δ067,z1̄+δ0156+1,z1̄,z1+δ0̄3̄4̄5̄−1,z1+δ0̄5̄6̄,z1̄2̄+δ001567,z2̄,z2+δ6+1]

(m2
t )
δ001267S2+δ34T 1+δ5Γ[δ1+1, δ2+1, δ0̄3̄4̄5̄−1, δ6+1, δ7+1,z1̄+δ0015667+1]

× Γ[z12+δ25̄,z12+δ0̄3̄5̄]

Γ[z1+δ0̄3̄5̄,z12+δ0̄5̄+1]
(B.24)

T (3) =

∫
dz1

Γ[δ0̄4̄5̄, δ0̄5̄6̄, δ001567,z1̄+δ0126+1,z1̄,z1+δ0̄2̄3̄4̄−1,z1+δ2̄5,z1+δ02̄567]

(m2
t )
δ001567S2+δ34T 1+δ2Γ[δ1+1, δ0̄2̄3̄4̄−1, δ0̄5̄+1, δ5+1, δ7+1, δ0015667+1,z1+δ0̄2̄4̄]

(B.25)

T (4) =

∫
dz1dz2

Γ[δ047,z1̄+δ0345+1,z1̄,z1+δ0̄4̄5̄,z1+δ0̄1̄5̄6̄−1,z1̄2̄+δ003457,z2̄,z2+δ4+1]

(m2
t )
δ002347S2+δ16T 1+δ5Γ[δ2+1, δ3+1, δ4+1, δ0̄1̄5̄6̄−1, δ7+1,z1̄+δ0034457+1]

× Γ[z12+δ0̄1̄5̄,z12+δ25̄]

Γ[z1+δ0̄1̄5̄,z12+δ0̄5̄+1]
(B.26)

T (5) =

∫
dz1

Γ[δ0̄4̄5̄, δ0̄5̄6̄, δ003457,z1̄+δ0234+1,z1̄,z1+δ2̄5,z1+δ0̄1̄2̄6̄−1,z1+δ02̄457]

(m2
t )
δ003457S2+δ16T 1+δ2Γ[δ3+1, δ0̄5̄+1, δ5+1, δ0̄1̄2̄6̄−1, δ7+1, δ0034457+1,z1+δ0̄2̄6̄]

(B.27)

T (6) =

∫
dz1dz2

Γ[δ012,z1̄,z1+δ2+1,z1+δ5+1,z1̄+δ0̄5̄6̄7̄−1,z1̄2̄+δ0̄13̄4̄5̄6̄7̄−2,z2̄,z2+δ6+1]

(m2
t )
δ012S3+z1+δ034567T z1̄Γ[δ1+1, δ2+1, δ4+1, δ5+1, δ6+1, δ0̄0̄4̄5̄6̄7̄]

×Γ[z12+δ04567+2,z2̄+δ0̄4̄5̄6̄−1]

Γ[δ7+1,z2̄+δ0̄123̄4̄5̄6̄7̄−1]
(B.28)

T (7) =

∫
dz1dz2

Γ[δ023,z1̄,z1+δ2+1,z1+δ5+1,z1̄+δ0̄4̄5̄7̄−1,z1̄2̄+δ0̄1̄34̄5̄6̄7̄−2,z2̄,z2+δ4+1]

(m2
t )
δ023S3+z1+δ014567T z1̄Γ[δ2+1, δ3+1, δ4+1, δ5+1, δ6+1, δ0̄0̄4̄5̄6̄7̄]

×Γ[z12+δ04567+2,z2̄+δ0̄4̄5̄6̄−1]

Γ[δ7+1,z2̄+δ0̄1̄234̄5̄6̄7̄−1]
(B.29)

T (8) =

∫
dz1

Γ[δ07−1,z1̄,z1+δ2+1,z1+δ5+1,z1+δ0123456+4,z1̄+δ0̄2̄3̄4̄5̄−2,z1̄+δ0̄1̄2̄5̄6̄−2]

(m2
t )
−1+δ07S4+z1+δ0123456T z1̄Γ[δ2+1, δ34+2, δ5+1, δ0̄0̄1̄2̄3̄4̄5̄6̄−2, δ16+2, δ7+1]

.

(B.30)
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C A corollary of the generalized Barnes lemma

The generalized Barnes lemma (6.51)∫
C

dz

2πi

Γ[a1−z,a2−z,b1+z,b2+z,b3+z]

Γ(c+z)

=
Γ[a1+b1,a2+b1,a1+b2,a2+b2,a1+b3,a2+b3]

Γ[a12+b13,a12+b23,−b3+c]
3F2

(
a1+b3,a2+b3,a12+b123−c

a12+b13,a12+b23
;1

)
,

(C.1)

contains the generalized hypergeometric function 3F2. We try to reduce 3F2 to a product

of Γ-functions on a case-by-case basis, using the relations given in refs. [54, 55]. In this

appendix we present a formula which is, to the knowledge of the author, not published. It

yields a useful corollary of the generalized Barnres lemma (6.51).

Consider the case where

a1 = n1 − b1, a2 = n2 − b2, n1, n2 ∈ N, (C.2)

where N is the set of positive integers. Note that n1 6= 0, n2 6= 0 because otherwise the left

pole and the right pole merge.

Substituting eq. (C.2) into eq. (C.1), the arguments of 3F2 become

3F2

(
−b1 + b3 + n1,−b2 + b3 + n2, b3 − c+ n1 + n2

−b1 + b3 + n1 + n2,−b2 + b3 + n1 + n2
; 1

)
. (C.3)

and here we express this type of 3F2 in terms of the Γ-function only. To this end, consider

I = 3F2

(
x1, x2, x3

x1 + n1, x2 + n2
; 1

)

=
∞∑
m=0

1

m!

Γ[x1 +m,x2 +m,x3 +m,x1 + n1, x2 + n2]

Γ[x1 +m+ n1, x2 +m+ n2, x3, x1, x2]

=

∞∑
m=0

1

m!

(
n1−1∏
i1=0

1

x1 +m+ i1

)(
n2−1∏
i2=0

1

x2 +m+ i2

)
Γ[x3 +m,x1 + n1, x2 + n2]

Γ[x3, x1, x2]
, (C.4)

where x1, x2, x3 can contain n1, n2. The products are resolved by the partial fraction

decomposition

j∏
n=0

1

x+ n
=

j∑
n=0

(−1)n

n!(j − n)!

1

x+ n
(C.5)

and we obtain

I =
∞∑
m=0

1

m!

n1−1∑
i1=0

n2−1∑
i2=0

Ci1,i2
1

(x1+m+i1)(x2+m+i2)

Γ[x3+m,x1+n1,x2+n2]

Γ[x3,x1,x2]
(C.6)

Ci1,i2 =
(−1)i1+i2

i1!i2!(n1−i1−1)!(n2−i2−1)!
. (C.7)
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We can apply the partial fraction decomposition further and obtain

I =

∞∑
m=0

1

m!

n1−1∑
i1=0

n2−1∑
i2=0

Ci1,i2

1
x1+m+i1

− 1
x2+m+i2

x2 − x1 + i2 − i1
Γ[x3 +m,x1 + n1, x2 + n2]

Γ[x3, x1, x2]
. (C.8)

Here the equation in the case of x1−x2 6∈ Z is shown, but the case of x1−x2 ∈ Z is similar.

It is also possible to set x2 → x1 + n, n ∈ Z at the end. The infinite sum of m in eq. (C.8)

is now possible, and we obtain

I =

n1−1∑
i1=0

n2−1∑
i2=0

Ci1,i2Γ[x1 + n1, x2 + n2]

(x2 − x1 + i2 − i1)Γ[x1, x2]

{
Γ[x1 + i1, 1− x3]

Γ[1 + x1 + i1 − x3]
− Γ[x2 + i2, 1− x3]

Γ[1 + x2 + i2 − x3]

}
.

(C.9)

Substituting the replacement x1 → −b2+b3+n2, x2 → −b1+b3+n1, x3 → b3−c+n1+n2

into eq. (C.9), we obtain∫
C

dz

2πi

Γ[n1−b1−z,n2−b2−z,b1+z,b2+z,b3+z]

Γ(c+z)

=

n1−1∑
i1=0

n2−1∑
i2=0

(−1)i1+i2

b1−b2−n1+n2+i1−i2

{
Γ[−b1+b3+n1+i2]

Γ[1−b1+c−n2+i2]
− Γ[−b2+b3+n2+i1]

Γ[1−b2+c−n1+i1]

}
×Γ[n1,n2,−b1+b2+n1, b1−b2+n2,1−b3+c−n1−n2]

Γ[i1+1, i2+1,n1−i1,n2−i2,−b3+c]
. (C.10)

In this expression, there are only finite sums, so they are evaluated in a straightforward

way. Among the six variables in eq. (C.10), two of them (n1, n2) should be positive integers,

but the other four (b1, b2, b3, c) can take any value, provided the left poles and right poles

do not merge.

Once the integral is expressed in terms of the Γ-function, we can easily compute deriva-

tives of, or analytically continue the result.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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Next-to-Leading-Order QCD Corrections to Double-Higgs Production, Phys. Rev. Lett. 121

(2018) 162003 [arXiv:1806.11564] [INSPIRE].

[34] J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double Higgs boson production at

NLO in the high-energy limit: complete analytic results, JHEP 01 (2019) 176

[arXiv:1811.05489] [INSPIRE].

[35] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,

Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

[36] V.A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts Mod. Phys. 250 (2012)

1.

[37] V.A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Commun.

Math. Phys. 134 (1990) 109 [INSPIRE].

[38] R. Harlander, T. Seidensticker and M. Steinhauser, Corrections of O(ααs) to the decay of the

Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].

– 38 –

https://doi.org/10.1103/PhysRevD.95.014004
https://arxiv.org/abs/1609.00367
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00367
https://doi.org/10.1007/JHEP09(2016)151
https://arxiv.org/abs/1606.09519
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.09519
https://doi.org/10.1016/j.physletb.2013.06.046
https://doi.org/10.1016/j.physletb.2013.06.046
https://arxiv.org/abs/1305.5206
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5206
https://doi.org/10.1016/j.nuclphysb.2013.06.024
https://arxiv.org/abs/1305.7340
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7340
https://doi.org/10.1103/PhysRevLett.111.201801
https://arxiv.org/abs/1309.6594
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6594
https://doi.org/10.1007/JHEP11(2014)079
https://arxiv.org/abs/1408.6542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6542
https://doi.org/10.1016/j.nuclphysb.2014.09.003
https://arxiv.org/abs/1408.2422
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2422
https://doi.org/10.1016/j.nuclphysb.2015.09.012
https://arxiv.org/abs/1508.00909
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00909
https://doi.org/10.1140/epjc/s10052-016-4256-9
https://arxiv.org/abs/1603.00385
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.00385
https://doi.org/10.1007/JHEP11(2016)104
https://arxiv.org/abs/1610.03747
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.03747
https://doi.org/10.1103/PhysRevD.95.054012
https://arxiv.org/abs/1702.00426
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00426
https://doi.org/10.1007/JHEP02(2018)135
https://arxiv.org/abs/1712.06549
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06549
https://doi.org/10.1007/JHEP03(2018)048
https://arxiv.org/abs/1801.09696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.09696
https://doi.org/10.1103/PhysRevLett.121.162003
https://doi.org/10.1103/PhysRevLett.121.162003
https://arxiv.org/abs/1806.11564
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.11564
https://doi.org/10.1007/JHEP01(2019)176
https://arxiv.org/abs/1811.05489
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.05489
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9711391
https://doi.org/10.1007/978-3-642-34886-0
https://doi.org/10.1007/978-3-642-34886-0
https://doi.org/10.1007/BF02102092
https://doi.org/10.1007/BF02102092
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,134,109%22
https://doi.org/10.1016/S0370-2693(98)00220-2
https://arxiv.org/abs/hep-ph/9712228
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9712228


J
H
E
P
0
2
(
2
0
1
9
)
0
8
0

[39] T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman

diagrams, in 6th International Workshop on New Computing Techniques in Physics

Research: Software Engineering, Artificial Intelligence Neural Nets, Genetic Algorithms,

Symbolic Algebra, Automatic Calculation (AIHENP 99), Heraklion, Crete, Greece,

April 12–16, 1999 [hep-ph/9905298] [INSPIRE].

[40] B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076

[arXiv:1111.2589] [INSPIRE].

[41] T.Y. Semenova, A.V. Smirnov and V.A. Smirnov, On the status of expansion by regions,

arXiv:1809.04325 [INSPIRE].

[42] A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals,

Eur. Phys. J. C 71 (2011) 1626 [arXiv:1011.4863] [INSPIRE].

[43] B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and

Glauber regions automatically, Eur. Phys. J. C 72 (2012) 2139 [arXiv:1206.0546] [INSPIRE].

[44] B. Ananthanarayan, A. Pal, S. Ramanan and R. Sarkar, Unveiling Regions in multi-scale

Feynman Integrals using Singularities and Power Geometry, Eur. Phys. J. C 79 (2019) 57

[arXiv:1810.06270] [INSPIRE].

[45] V.A. Smirnov, Problems of the strategy of regions, Phys. Lett. B 465 (1999) 226

[hep-ph/9907471] [INSPIRE].

[46] R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11

(2013) 165 [arXiv:1308.6676] [INSPIRE].

[47] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15

(2000) 725 [hep-ph/9905237] [INSPIRE].

[48] D. Mâıtre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput.

Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

[49] D. Mâıtre, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012)

846 [hep-ph/0703052] [INSPIRE].

[50] C. Anastasiou, T. Gehrmann, C. Oleari, E. Remiddi and J.B. Tausk, The Tensor reduction

and master integrals of the two loop massless crossed box with lightlike legs, Nucl. Phys. B

580 (2000) 577 [hep-ph/0003261] [INSPIRE].

[51] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys.

Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].

[52] J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys.

Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].

[53] D. Kosower, https://mbtools.hepforge.org.

[54] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press (1966).

[55] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and series, volume 3, Gordon

and Breach Science Publishers (1990).

[56] H.R.P. Ferguson and D.H. Bailey, A Polynomial Time, Numerically Stable Integer Relation

Algorithm, RNR Technical Report, RNR-91-032 (1992).

[57] H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an Integer Relation Finding

Algorithm, NAS Technical Report, NAS-96-005 (1996).

– 39 –

https://arxiv.org/abs/hep-ph/9905298
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905298
https://doi.org/10.1007/JHEP12(2011)076
https://arxiv.org/abs/1111.2589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2589
https://arxiv.org/abs/1809.04325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.04325
https://doi.org/10.1140/epjc/s10052-011-1626-1
https://arxiv.org/abs/1011.4863
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4863
https://doi.org/10.1140/epjc/s10052-012-2139-2
https://arxiv.org/abs/1206.0546
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.0546
https://doi.org/10.1140/epjc/s10052-019-6533-x
https://arxiv.org/abs/1810.06270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.06270
https://doi.org/10.1016/S0370-2693(99)01061-8
https://arxiv.org/abs/hep-ph/9907471
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9907471
https://doi.org/10.1007/JHEP11(2013)165
https://doi.org/10.1007/JHEP11(2013)165
https://arxiv.org/abs/1308.6676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6676
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905237
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.cpc.2005.10.008
https://arxiv.org/abs/hep-ph/0507152
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0507152
https://doi.org/10.1016/j.cpc.2011.11.015
https://doi.org/10.1016/j.cpc.2011.11.015
https://arxiv.org/abs/hep-ph/0703052
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0703052
https://doi.org/10.1016/S0550-3213(00)00251-0
https://doi.org/10.1016/S0550-3213(00)00251-0
https://arxiv.org/abs/hep-ph/0003261
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0003261
https://doi.org/10.1016/j.cpc.2006.07.002
https://doi.org/10.1016/j.cpc.2006.07.002
https://arxiv.org/abs/hep-ph/0511200
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0511200
https://doi.org/10.1016/S0370-2693(99)01277-0
https://doi.org/10.1016/S0370-2693(99)01277-0
https://arxiv.org/abs/hep-ph/9909506
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9909506
https://mbtools.hepforge.org

	Introduction
	General idea of the method of regions
	Notation and technical tools
	Conventions
	Kinematics and high energy expansion

	A first example: one-loop box diagram
	Expansion in the Higgs mass
	Expansion in the top quark mass
	Higher order terms in m(t)
	Integrals with fewer lines

	Two-loop planar diagrams
	Two-loop non-planar diagram
	Relevant scaling
	Template integrals for Regions 2 to 14
	Analytic continuation
	Solving the Mellin-Barnes integrals
	Combining the results
	Other master integrals

	Summary
	Mellin-Barnes integrals
	Template integrals for the two-loop master integrals of Higgs pair  production
	A corollary of the generalized Barnes lemma

