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1 Introduction

The scattering equations are a set of algebraic equations connecting the kinematic space

Kn of n massless particles spanned by linearly independent Lorentz invariants sij := 2ki ·kj
and the moduli space of Riemann spheres with n marked points M0,n [1–8],

fa =
∑

b 6=a

sab
za − zb

= 0, a = 1, 2, . . . , n, (1.1)

where the unknowns za ∈ CP
1 denote punctures on the Riemann sphere, and the kinemat-

ical invariants sab satisfy momentum conservation and on-shell conditions, i.e.
∑

b 6=a sab =

−saa = 0. This system has a global SL(2,C) symmetry, and thus only n−3 out of the n

equations are independent. It has been proven that the number of independent solutions

to the scattering equations is (n−3)! [8, 9].

In a new formalism developed by Cachazo, He and Yuan (CHY) [10–13], the tree-level

S-matrix in massless field theories is expressed as a multiple integral over the M0,n. The

integral is fully localized to the zeroes of the scattering equations and can be written as a

sum over residues

An =

(n−3)!
∑

i=1

In(z, k)

det′Φ(z, k)

∣
∣
∣
∣
z=z(i)

, (1.2)

where z(i) ≡ (z
(i)
1 , . . . , z

(i)
n ) stands for the ith solution and det′Φ is the relevant Jacobian

determinant (see e.g. [10, 14] for its explicit expression). The scattering equations are

theory-independent, while the function In encodes dynamics of the specific theory. We

do not show the precise form of In for any theory, since this paper focuses mainly on the

scattering equations.

By now various aspects of the scattering equations and the CHY formalism have been

investigated. In the framework of the scattering equations, new representations for scatter-

ing amplitudes in a variety of theories (see e.g. [10–13, 15–19]), as well as for form factors

in gauge theory [20–22], have been proposed at the tree level. These new formulas have
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also shown the power to reveal new mathematical structures behind amplitudes, for ex-

ample the derivation of various soft theorems [23–29]. The concrete connection between

the CHY formalism and the ambitwistor string theory has been established [30, 31]. In

particular, the ambitwistor string formalism provides a systematic approach to extend the

CHY formulation beyond the tree level [32–38].

The scattering equations are universal for all theories, and are fundamental objects in

quantum field theory as well as string theory. They shed new light on the perturbative

S-matrix and even the theory itself. Due to the universality of the scattering equations,

the CHY formalism provides an elegant representation for exposing relations between dif-

ferent theories [10–12], such as the famous double-copy relation between amplitudes in

Yang-Mills theory and Einstein gravity [39–41]. Very recently, it was observed that the

scattering equations can be interpreted geometrically as a diffeomorphism from the world-

sheet associahedron to the kinematic associahedron [42]. This gives new insight into the

origin of the scattering equations and the CHY formalism [43].

Due to the importance, it is crucially important to solve the scattering equations.

Notwithstanding efforts have been made to solve the scattering equations or evaluate the

CHY formulas [8, 9, 44–54], a good method is still missing. In this paper, we close this

gap: we develop an efficient technique to solve the scattering equations based on the nu-

merical algebraic geometry.

2 Homotopy continuation

Let us give a brief introduction to homotopy continuation [55, 56], which is the primary

method in numerical algebraic geometry that we will use throughout this paper. In order

to solve a system of equations p(z) = 0 with p ≡ (p1, . . . , pN ) and z ≡ (z1, . . . , zN ), the

basic idea is to introduce a continuous deformation (homotopy) p(z) → p(z, t), t ∈ [0, 1],

that connects the target system p(z, 1) = p(z) with a start system p(z, 0) = q(z) whose

solutions z(0) are known. Then the solutions z(1) of the target system can be obtained

from z(0) via smooth paths as the continuation parameter t varies from 0 to 1. To be

explicit, constructing a differentiable homotopy p(z, t) and differentiating it with respect

to t lead to a system of ordinary differential equations (ODEs) on z = z(t) as follows:

dpi(z, t)

dt
=

N∑

j=1

∂pi(z, t)

∂zj

dzj(t)

dt
+

∂pi(z, t)

∂t
= 0. (2.1)

Viewing this as a system of linear equations on dzi/dt, it can be transformed into the

following standard form:

(
dz

dt

)

= −

(
∂p(z, t)

∂z

)−1(∂p(z, t)

∂t

)

, (2.2)

where terms in parentheses should be understood as matrices. Providing the initial con-

dition z(0), the desired solutions z(1) of the target system can be obtained by integrating

the system of the ODEs (2.2). Usually, numerical algorithms for initial value problems [57]
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are applied to obtain an estimate for z(1). This approximated solution serves as the ini-

tial guess of the true solution, and are fed to the Newton method to further improve its

precision [56].

3 Solving scattering equations

The homotopy continuation method described above has been well-studied, in particular on

polynomial systems, during the past decades. Therefore this technique can be straightfor-

wardly applied to the system of the scattering equations, since it is equivalent to a system

of polynomial equations as follows [9]:

hm(z) = 0, 1 ≤ m ≤ n−3, (3.1)

with

hm(z) ≡
∑

I⊂{2,...,n−1},|I|=m

(

s{n}∪I
∏

i∈I

zi

)

, (3.2)

where sA :=
∑

i<j∈A sij , and three punctures have been fixed as (z1, z2, zn) → (0, 1,∞)

by SL(2,C) invariance. Following the homotopy continuation method, a frequently used

homotopy is: hm(z, t) = t hm(z) + (1−t)(zmm+2−1). The advantage of such construction

is that the start system has (n−3)! known solutions and the number of solutions remains

unchanged for any regular t. Although such a homotopy can be used to solve the scat-

tering equations (3.1) in principle, with some experimentations, we found that it is highly

inefficient. One reason is on the technical side, saying that the complexity of evaluating

ODEs (2.1) corresponding to the polynomial system is too high. Another reason is that

the initial system is significantly different from the target system, thus implies that a lot

of steps are spent to reach the target system.

In this paper, we extend the homotopy continuation method to solve the fractional

scattering equations (1.1) by establishing an appropriate homotopy.

Instead of constructing the homotopy for the system of the scattering equations di-

rectly, we propose the physical homotopy in the kinematic space, i.e. S → St, where S is

a point in Kn. The momentum conservation and on-shell conditions hold for St at any t.

More explicitly, a simple construction is:

sij(t) = (1− t) s̄ij + t sij , (3.3)

where s̄ij and sij are two sets of Mandelstam variables belonging to the physical region

of interest in Kn. Clearly, as long as on-shell conditions and momentum conservation are

satisfied for s̄ij and sij , they are satisfied for sij(t). We define the kinematic homotopy1 as

a one-parameter smooth path in the kinematic space Kn, like (3.3). The physical kinematic

homotopy connects different points in Kn, and this may be used to establish the connection

between the physics quantities evaluated at different points.

1Here we abuse terminology a bit.
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The kinematic homotopy St naturally induces a homotopy for the scattering equations

fa(t) =
∑

b 6=a

sab(t)

za(t)− zb(t)
= 0. (3.4)

Since the physical homotopy preserves on-shellness and momentum conservation, the sys-

tem has exact (n−3)! solutions for any regular t. To proceed, let us use the SL(2,C)

redundancy to fix three punctures, for example (z1, z2, zn) → (0, 1,∞). The last equation

fn = 0 is then trivially satisfied [8]. Differentiating other equations with respect to t gives

the following system of ODEs:

n−1∑

j=3

Φij żj + f ′
i = 0, i ∈ {1, 2, . . . , n−1} (3.5)

with

żi ≡
dzi(t)

dt
, Φij ≡

∂fi(z, t)

∂zj
, f ′

i ≡
∂fi(z, t)

∂t
. (3.6)

A perfect property is that the matrix Φ(t) has exactly rank n−3 at any t [8]. This ensures

that there is no singularity in our algorithm. To improve numerical stability, we retain all

(n−1) equations except fn = 0 which is satisfied trivially, and employ matrix decomposition

methods [57] to generate the standard form, like eq. (2.2). Therefore, once the solutions of

the scattering equations for s̄ij is known, the solutions for sij can be obtained by numerically

integrating the ODEs.

However, so far the start solutions (the solutions of the scattering equations for kine-

matical invariants sij(0) = s̄ij) are not readily available yet. We would like to emphasize

that it is highly non-trivial to obtain the start solutions, in particular when the multiplicity

n is large. In order to initiate our program, we develop an algorithm based on the proper-

ties of the scattering equations in some special kinematical regions as well as the homotopy

continuation technique. This algorithm will be described in detail in the following.

We employ the homotopy (3.3) again, i.e. sij(t) = (1−t) ŝij+ts̄ij . Here the kinematical

invariants ŝij satisfy

ŝ1i > 0, ŝ2i > 0, ŝij > 0, i, j ∈ {3, . . . , n−1}, (3.7)

which are referred to as the positive region denoted by K+
n in [58]. A remarkable property is

that all (n−3)! solutions of the scattering equations in K+
n are real [58]. More interestingly,

after using the gauge fixing condition given previously, all puncturs (z3, . . . , zn−1) live inside

the interval (0, 1) and distinct from each other for each solution. It is clear that due to

this feature, the scattering equations in K+
n can be solved much more easily, compared

to generic kinematic regions. As will be detailed below, all (n−3)! real solutions can be

obtained using the homotopy continuation technique too.2 Once these solutions are readily

2In [58], for the kinematics in the positive region, one kind of algorithms were proposed based on

interpreting the scattering equations as the equilibrium equations for a stable system of n−3 particles on

the real interval (0, 1).
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available, they will serve as start solutions, and we can use the homotopy (3.3) and integrate

the system of the ODEs (3.5) to generate the solutions for general kinematics s̄ij . It is also

worth stressing that we can encounter singularities if we still adopt the real contour for t

from 0 to 1, since the starting and target points live in unphysical and physical regions of

Kn respectively. A solution to avoiding the singularities is to employ a complex contour

for t. In our program, we choose a simple contour consisting of two line segments in the

complex t plane: 0 → 0.5 + 0.5 i → 1.

Now the final task is to obtain all solutions to the scattering equations for one point

in K+
n . Inspired by the soft limit of the scattering equations, we propose the following

homotopy3

ŝ1i(t) = ŝ1i, ŝ2i(t) = ŝ2i, 3 ≤ i ≤ n−2

ŝij(t) = ŝij , 3 ≤ i < j ≤ n−2

ŝa,n−1(t) = t ŝa,n−1, 1 ≤ a ≤ n−2.

(3.8)

All the remaining kinematic invariants can be easily obtained via on-shell conditions and

momentum conservation. Clearly, this homotopy preserves the “positivity” of the kinematic

region K+
n . Another remarkable property is that, in the limit t → 0 which defines the soft

limit kn−1 → 0, the kinematic space of n particles is reduced to (n−1)-particle one which

is still in positive region. In this limit, fn−1(t) is invariant up to a factor t, i.e.,

fn−1(t) = t f̃n−1(t), f̃n−1(t) =
n−2∑

a=1

ŝa,n−1

zn−1−za
, (3.9)

while other equations become nothing but the system of scattering equations associated

with (n−1) particles without the soft leg in K+
n−1.

In order to solve the scattering equations in K+
n−1, we can use the inverse soft ho-

motopy (3.8) recursively until the four-particle case, whose unique solution is known, i.e.

z3 = −s12/s13 with gauge fixing (z1, z2, z4) → (0, 1,∞). The equation corresponding to

the soft particle f̃n−1 = 0 (referred to as the soft equation) is equivalent to a polynomial

equation of degree n−3 in zn−1. For each solution of the scattering equations for the (n−1)-

point system without the soft particle, the n−3 zeroes of the soft equation f̃n−1(zn−1) = 0

are distributed in the n−3 sub-intervals of (0, 1), separated by z3, z4, · · · , zn−2. Thus

simple numerical techniques such as the bisection method can be applied to obtain all n−3

roots. For using the inverse soft homotopy (3.8) each time, the similar method can be used

to solve the soft equation. Here it should be noted that the fn−1(t) is always replaced by

f̃n−1(t) when we employ the inverse soft homotopy (3.8). Finally, we can obtain all (n−3)!

solutions to the scattering equations for one point in K+
n .

With the start solutions from solving the scattering equations in K+
n , by integrating

the corresponding differential equations given in (3.5), we can obtain the solutions to the

scattering equations for one point in Kn.

3Inspired by the soft limit, one alternative algorithm was constructed and implemented in Mathematica

in [8].
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To summarise, we have proposed a homotopy continuation method to solve the scat-

tering equations and given a workable framework in detail. As shown schematically below

(superscript (s) stands for the soft limit), our method consist of two main steps.

K
+(s)
5

(3.8)
−−−→ · · ·

(3.8)
−−−→ K+(s)

n

(3.8)
−−−→ K+

n

(3.3)
−−−→

︸ ︷︷ ︸

Step I

Kn
(3.3)
−−−→ Kn

︸ ︷︷ ︸

Step II

.
(3.10)

The first step is to obtain the start solutions, which consists of two substeps: first, solve the

scattering equations in K+
n by using the inverse soft homotopy (3.8) recursively. Then, with

these solutions as start solutions, we can use the homotopy (3.3) to solve the scattering

equations for one point in the realistic target region. As the next step, once we have

all (n−3)! solutions to the scattering equations for one physically realistic point in the

kinematic space, we can track these solutions to any point in the kinematic space using

the homotopy (3.3). In the second step, the solutions of the start system can be continued

to the target system much more easily, since they both live in the same physically realistic

region.

The method presented above has been implemented into a C++ program. For the

numerical integration of differential equations, we adopt the Runge-Kutta-Fehlberg 7 (8)-

th order method [59] provided by Odeint [60], and for the numerical solution of linear

equation system, we adopt the Householder QR decomposition with column pivoting pro-

vided by Eigen [61]. In obtaining the start solutions, the local accuracy is set to be

10−15, while in the second step, the local accuracy is set to be 10−7. In both steps, the

Newton method is adopted to increase the precision to 10−15. The code is available at

[https://github.com/zxrlha/sehomo].

We consider the randomly selected non-exceptional points in the phase space corre-

sponding to 2 → n−2 scattering up to n = 13. All tests were performed on a Macintosh

laptop with a 2.7GHz processor. The results of the computation times are summarized

in table 1. In the table, tn are the computation times for obtaining all ♯(n) = (n−3)!

solutions, and t̄n ≡ tn/(n−3)! represents the average time for each solution, for solving the

scattering equations with a set of prepared initial solutions in the physically realistic region

of Kn. That is to say, they correspond to the Step II shown in (3.10). Here we would also

like to note that our algorithm for obtaining the start solutions (i.e. the Step I in (3.10))

works well. In this step, the time cost is dominated by tracking solutions from unphysical

positive region to physically realistic region in Kn, while solving the scattering equations

in the positive region recursively is very fast. For example, it costs less than 30 minutes

for n = 11 case.

As a consequence of the Newton method, all solutions can be obtained with an accuracy

of 10−15. We have also checked that all solutions are distinct each other, thus we can verify

that no solution is missed.

We observed that the total time to obtain all solutions increases significantly as n

increases, mainly due to a factorial increase in the number of solutions. On the other

hand, the average time of obtaining one solution increases much more slowly, and it is still

at O(ms) level even for n = 13. It is noteworthy that obtaining different solutions are

completely independent, thus can be done in parallel.

– 6 –
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n ♯(n) tn t̄n (ms)

5 2 1.3ms 0.7

6 6 5.0ms 0.8

7 24 35ms 1.5

8 120 0.22 s 1.8

9 720 1.3 s 1.8

10 5040 13 s 2.5

11 40 320 2.3min 3.2

12 362 880 30min 4.9

13 3 628 800 5.6 h 5.5

Table 1. The total time costs tn of solving n-point scattering equations are shown. The number

of solutions as well as the averaged time per solution t̄n ≡ tn/(n− 3)! are also shown.

We also found that the time costs are dominated by solving the differential equations.

Therefore if higher precision on solutions are requested, only the last step, i.e. the Newton

iterations should be performed within higher precision, which have only small impact on

the total time cost.

In addition, due to the property of the algorithm, for two neighboring points in the

phase space, clearly it will be much easier to obtain the solutions of the scattering equations

from each other. Therefore, one could speed up the calculation through a book-keeping

method: first the initial solutions are prepared at several typical kinematic points rather

than only one point, and the closest point are adopted as the initial point when do actual

calculation.

Lastly, let us make a comparison between methods in our paper and in ref. [52]. In

four dimensions in the spinor-helicity formalism, the scattering equations can be decom-

posed into ‘helicity sectors’ and written in terms of two-component spinors with additional

variables involved (see e.g. refs. [62–65]). In ref. [52], a method was introduced to solve the

spinor-valued scattering equations proposed in ref. [63] and implemented in Mathematica.

Overall, our algorithm is much faster than the one in ref. [52] for obtaining all (n−3)!

solutions. Here we identify some significant differences as follows. As already pointed out,

obtaining solutions is completely independent of each other in our algorithm. In contrast,

in ref. [52] the solutions are obtained sequentially, and as more solutions obtained, finding

the next solution becomes increasingly difficult. Consequently, we can easily obtain all

solutions for high points (e.g. n = 13), while even for n = 10 it is quite challenging to solve

the equations for all helicity sectors by the package in ref. [52].

4 Conclusion and outlook

In this paper we have proposed the kinematic homotopy which connects different points in

kinematic space. Such a homotopy always preserves momentum conservation and on-shell

– 7 –
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conditions. With the physical homotopy, we developed an efficient algorithm to generate all

numerical solutions of the scattering equations. This opens a new window of opportunity

for further explorations in various prospectives.

First of all, this powerful method allows us to solve the scattering equations with

high accuracy and high efficiency in different contexts. It is interesting to investigate the

properties of the scattering equations and the CHY formulas in various kinematical regions,

such as collinear and multi-Regge limits. While the discussion above is limed at the tree

level, our method can be simply generalized to solve the scattering equations at loop level,

which have been derived from ambitwistor strings.

In practical terms, it allows one to develop a new framework to compute scattering

amplitudes at tree and loop level. Once one obtains all solutions to the scattering equations,

as a next step, it is straightforward to generate tree amplitudes or loop integrands by

summing up the contributions from these solutions. For instance, since the scheme to

extend the CHY formalism to loop level has been developed at least for gauge and gravity

theories, this makes possible to compute the amplitudes in these theories up to the two

loop order.

More interestingly, the kinematic homotopy developed in this paper has further signifi-

cance beyond solving the scattering equations. It is intriguing that the kinematic homotopy

may provide an avenue to study various physical quantities, such as scattering amplitudes

and scattering forms [42, 66, 67], in the kinematic space directly.
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