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Abstract: We introduce “binding complexity”, a new notion of circuit complexity which

quantifies the difficulty of distributing entanglement among multiple parties, each consist-

ing of many local degrees of freedom. We define binding complexity of a given state as the

minimal number of quantum gates that must act between parties to prepare it. To illustrate

the new notion we compute it in a toy model for a scalar field theory, using certain multi-

party entangled states which are analogous to configurations that are known in AdS/CFT

to correspond to multiboundary wormholes. Pursuing this analogy, we show that our states

can be prepared by the Euclidean path integral in (0 + 1)-dimensional quantum mechanics

on graphs with wormhole-like structure. We compute the binding complexity of our states

by adapting the Euler-Arnold approach to Nielsen’s geometrization of gate counting, and

find a scaling with entropy that resembles a result for the interior volume of holographic

multiboundary wormholes. We also compute the binding complexity of general coherent

states in perturbation theory, and show that for “double-trace deformations” of the Hamil-

tonian the effects resemble expansion of a wormhole interior in holographic theories.

Keywords: AdS-CFT Correspondence, Black Holes

ArXiv ePrint: 1811.04085

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2019)069

mailto:vijay@physics.upenn.edu
mailto:mdecross@sas.upenn.edu
mailto:arjunkar@sas.upenn.edu
mailto:parrikar@sas.upenn.edu
https://arxiv.org/abs/1811.04085
https://doi.org/10.1007/JHEP02(2019)069


J
H
E
P
0
2
(
2
0
1
9
)
0
6
9

Contents

1 Introduction 1

2 Lower bounds 5

3 Computation of the binding complexity 8

3.1 Complexity of Gaussian states 11

4 The interior volume of multiboundary wormholes 18

5 Euclidean path integrals 22

5.1 Permutation-symmetric graphs 23

5.2 Bipartite entanglement graphs 25

6 Complexity for coherent states in perturbation theory 28

6.1 Double-trace deformations: towards creating wormholes 30

7 Discussion 32

A Binding complexity for more general states 34

B Wavefunctions of permutation-symmetric graphs 37

C Perturbation theory to O(t3) 39

1 Introduction

The importance of quantum computational complexity in computer science became appar-

ent after Shor [1] proved that the quantum circuit model could solve integer factorization

in polynomial time. The typical notion of quantum computational complexity counts the

minimal number of simple unitary operations needed to reach some target state from a

specific initial state. For instance, one may be interested in how hard it is to prepare the

(generically entangled) ground state of a given Hamiltonian starting from an initial state

which is factorized across all degrees of freedom. This prompts the related question of

whether there is a relation between the strength and structure of the entanglement be-

tween degrees of freedom in a quantum state and the complexity of preparing that state.

In this work, we answer this question in the affirmative for a type of complexity we call

binding complexity that counts the number of quantum gates acting on multiple parties

simultaneously.

A motivating example that the binding complexity might be connected to the strength

of entanglement comes from examination of the two inequivalent classes of multiparty
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entanglement between three qubits [2], the GHZ and W states, and their n-party general-

izations:

|ψGHZ〉 =
1√
2

(|00 . . . 0〉+ |11 . . . 1〉) (1.1)

|ψW〉 =
1√
n

(|00 . . . 01〉+ |00 . . . 10〉+ . . .+ |10 . . . 00〉) . (1.2)

The GHZ states are separable upon tracing out any subset of the parties, whereas the W

states are not. In this sense, the W states can be thought of as possessing more robust

entanglement. We can understand the structure of these states better by computing the

entanglement entropy of one qubit with the rest, as the number of qubits n grows large. We

would normally understand this quantity as a diagnostic of the strength of entanglement

between parties.

In more detail, the entanglement entropy corresponding to a partition (A, Ā) of degrees

of freedom in a quantum state is defined as the von Neumann entropy of the reduced density

matrix on A: SA = −Tr(ρA ln ρA). For the GHZ states, we find that entanglement entropy

of a single qubit with the rest of the system is

S1,GHZ = ln 2, (1.3)

which is constant, nonzero, and independent of n. By contrast, for the W states the single

qubit entropy is

S1,W = −
(
n− 1

n
ln
n− 1

n
+

1

n
ln

1

n

)
→ 0 as n→∞. (1.4)

It is tempting to conclude from (1.3) and (1.4) that the GHZ states possess “stronger”

entanglement, at least for large n, since there is always maximal entanglement between

even a single party and the rest. This seems to be in qualitative tension with our conclusion

above that the W states have a more robust pattern of entanglement.

However, one should reinterpret these equations using the principle of monogamy of

entanglement [3]: although S1,GHZ is constant, tracing out one party removes all of the

entanglement as the remaining state is separable. Conversely, S1,W is small because as the

number of parties grows large, tracing out one party only removes a very small amount of

entanglement: nearly all of the entanglement remains tied up between the remaining n− 1

qubits which are still approximately in a W state. We would like to define a quantity that

captures this sort of “robustness” of entanglement: it is distributed between several parties

and is difficult to destroy.

Correspondingly, let us consider quantum circuits preparing the GHZ and W states,

and the binding complexities associated to them. To compute complexity we must fix a set

of allowed gates that we may use to prepare states. Here, we take the gate set to be the

set of all one-qubit or two-qubit unitary operators, although typically we will want further

restrictions on which unitaries are allowed.

In the case of the GHZ states, it is very easy to explicitly write down a circuit that

prepares a generalized GHZ state from the factorized state |0〉⊗n (figure 1). This circuit
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Figure 1. Quantum circuit diagram preparing the GHZ state from the factorized state |0〉⊗n. The

box labeled H indicates the Hadamard operator, a particular unitary one-qubit gate, while the

symbol connecting lines refers to the CNOT operator, a unitary two-qubit gate. Here CNOT =

|0〉〈0|A ⊗ 1B + |1〉〈1|A ⊗ σx
B and H = |+〉〈0|+ |−〉〈1|.

uses n gates, n−1 of which act on multiple parties. The binding complexity, i.e. the number

of gates acting on multiple parties at once, is simply n − 1. It is easy to understand that

one cannot write a more efficient circuit to construct a GHZ state because a minimum of

n − 1 two-party gates are required simply to couple all of the qubits; otherwise, the state

will factorize across some partition.

In the case of the W states, it is not simple to write down a circuit, and there is no

proof of minimality. However, [4] gives a deterministic construction of arbitrary W states

that requires 1
2n(n+ 1)− 2 ∼ O(n2) two-qubit gates. To our knowledge no asymptotically

more efficient construction has been found. In fact, we should expect that none exists —

intuitively, since the W state is not separable upon tracing out any number of parties, it

is as if
(
n
2

)
∼ O(n2) gates have been used to entangle all pairs of qubits. Consequently, at

least in the qubit context, we see that the binding complexity is a natural diagnostic of the

robustness of entanglement — the minimal number of gates required to entangle different

parties naturally controls how entangled the parties become in the final state. Indeed, we

will demonstrate bounds relating binding complexity to other measures of robustness such

as entanglement negativity, which quantifies non-separability of quantum states.

We will study binding complexity in a toy model of a free scalar field [5], which reduces

to a system of harmonic oscillators. Binding complexity is defined as the minimum num-

ber of gates acting on multiple parties that is needed to prepare the state starting from a

specified reference. In Nielsen’s geometric approach [6–8] to complexity, one places a Rie-

mannian metric on the space of unitaries, so that complexity is measured by the geodesic

distance between the identity and the unitary operator that makes the state of interest.

We choose a metric that is infinitesimal in directions that act only on a single party, so

that the geodesic length measures the binding complexity that we want to study.1

1The Nielsen approach was previously extended to free fermion fields in [9, 10], coherent states of

free scalar fields in [11], states in φ4 theory in [12], applied to the study of complexity growth following

a quench in [13, 14], and used to study the complexity of Hamiltonians and quantum phase transitions

in [15]. An axiomatic study of the Finsler geometry in the Nielsen approach and comparisons to the

holographic expectation in thermofield double states and their time evolutions was undertaken in [16–19].
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A key step in the computation of circuit complexity is the choice of the gate set. The

vacuum wavefunction for a coupled oscillator system is a Gaussian of the schematic form

e−~x
TΩ~x. In [5], the gate set acting on such states was chosen to change the components of

Ω. We will divide the oscillators into “parties” defined by block structure in Ω. We want

to compute the binding complexity of states that are entangled between these parties.

Essentially, this involves only counting the gates from [5] that act across parties — we will

call these the relevant gates. To calculate binding complexity we employ the Euler-Arnold

approach to simplify the geodesic equation using the Lie algebra of the gate set.2

It has been suggested that entanglement in quantum field theory can be holographically

realized by wormholes between otherwise disconnected regions of spacetime [34, 35]. In

these contexts complexity in field theory has been conjectured to be dual to the volume or

action of an interior region of the wormhole [36–40].3 It is also possible in 2+1 dimensions

to construct wormholes that connect multiple asymptotic regions [41–46]. Recently these

geometries were used to study multipartite holographic entanglement [35, 47–49]. Since

binding complexity measures the difficulty of entangling the wavefunctions of multiple

otherwise disconnected parties, we conjecture that it is related to the interior volume of

multiboundary wormholes, i.e.,

Binding Complexity = Volume of Wormhole Interior.

Here the volume is computed within the “stretched” horizons of the wormhole interior.

The “stretching” means that we include a thin region just outside the horizons in the

volume computation. We address this conjecture by computing the binding complexity for

a natural class of multiparty entangled states in our toy model, and showing that it has a

linear dependence on entanglement entropy like the interior volume of the multiboundary

wormholes of [35, 44, 45]. The CFT states dual to these wormholes were prepared by the

Euclidean path integral on a branched bulk topology [35]. Consequently, we consider states

in our toy model which are prepared by the Euclidean path integral on certain branched

graphs with wormhole-like structure.4 We find that such states have binding complexity

and entanglement structure that are (a) similar to properties of the wormhole interior

Other approaches to field theory definitions of complexity include complexity from distance between states as

measured by the Fubini-Study metric [20], complexity from optimization of the Euclidean path integral [21–

26], and complexity from the geometry of the space of Euclidean sources that create states [27, 28]. Current

work has taken first steps towards understanding the Nielsen complexity in CFT and connecting it to the

path-integral complexity [29, 30]. Most recently, it was argued that the Nielsen complexity is superior to

several of the other methods as only the Nielsen complexity displays the correct behavior under certain

forward- and backward- time evolutions [31].
2Nielsen suggested applying the Euler-Arnold equation in [8], which was originally explained in [32]. A

nice review can be found in [33].
3Binding complexity is distinct from the notion of state complexity that appears in the volume con-

jectures. Our new quantity represents a finite piece of the total complexity that does not grow with local

unitary time evolution. By contrast, state complexity does grow with time evolution, a fact that is proposed

to be reflected in the growth over time of the thermofield double wormhole interior. We return to this point

in the Discussion.
4A graphical representation of multiboundary wormholes was similarly put forth in [44], although their

graphs were used purely to represent geometric data regarding how to sew various boundaries together.
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Figure 2. We can “cut” a two-party gate (denoted by the red dashed line) by using its operator

Schmidt decomposition into a sum of products of one-party operators.

volume, and (b) reminiscent of the bit thread perspective on holographic states.5 As a

further check on the conjecture we test that adding small double-trace interactions between

distinct parties causes binding complexity to increase linearly in the expansion parameter,

as expected from the volume increase of holographic wormholes in the Gao-Jafferis-Wall

approach [50].

2 Lower bounds

To begin, we will demonstrate some elementary lower bounds on binding complexity in

terms of other measures of the entanglement structure of a state, such as the entanglement

entropy, separability, etc. For simplicity, we will focus on a gate set G consisting only of

one and two-party gates, although our arguments can be generalized to k-local gates.

We begin with the simplest example. Imagine that our Hilbert space can be decom-

posed into two tensor factors:

H = HA ⊗HB, (2.1)

where A consists of NA parties and B consists of the remaining NB parties. Let ψ be a

state in this Hilbert space, and consider a unitary quantum circuit which builds ψ from

the reference state |00 . . . 0〉

|ψ〉 = U1U2 · · ·UM |00 . . . 0〉, (2.2)

where the Ui are one and two party gates which are allowed within our gate set. Of these

gates Ui, those which act within A or B do not contribute to the entanglement between

A and B; only the two-party gates which act across this partition will contribute to the

entanglement. Let nAB be the number of such gates which act across the partition. As

discussed in the introduction, the binding complexity of the state ψ with respect to the

partition HA⊗HB is equal to the minimum value nAB in the setMψ,G of all the quantum

circuits which construct ψ using the gate set G:

Cb(A,B) = minMψ,G (nAB). (2.3)

In order to study the entanglement structure of ψ given such a quantum circuit in

Mψ,G , we introduce the concept of “cutting a gate” (see figure 2). Any two-party gate can

5Motivation for considering graphs of different topology also comes from the recent work [48] which

examined complexities of formation for wormholes of arbitrary internal topology.
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a1
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Figure 3. A sample piece of a unitary quantum circuit. The red lines denote the subsystem A

and the blue lines denote the subsystem B. We have “cut” all the two-party gates acting across the

bipartition by using their operator Schmidt decomposition into sums of products of one-party op-

erators.

always be written in the form

U =
J∑

a=1

saO(a)
1 ⊗O(a)

2 , (2.4)

where sa are positive real numbers, the {O(a)
1/2} are a basis of (not necessarily unitary)

operators on the first/second party, and J is called the operator Schmidt rank of U . This

is referred to as operator Schmidt decomposition [51]. Some examples of the operator

Schmidt decomposition of two-qubit gates are:

CNOT = |0〉〈0|A ⊗ 1B + |1〉〈1|A ⊗ σxB, (2.5)

SWAP =
1

2

(
1A ⊗ 1B + σxA ⊗ σxB + σyA ⊗ σ

y
B + σzA ⊗ σzB

)
. (2.6)

Turning to our original state ψ in (2.2), we repeatedly employ operator Schmidt de-

composition to cut all the two-party gates which act across the partition HA ⊗HB, while

leaving all other gates untouched. This allows us to rewrite the state in the form (see

figure 3)

|ψ〉 =
∑

~a

p~a|ψA~a 〉 ⊗ |ψB~a 〉. (2.7)

where ~a = (a1, · · · anAB ). If we denote by JG the maximum operator Schmidt rank of any

gate in the gate set G, then the above formula shows that the rank of the reduced density

matrix on A (or B) will be upper bounded by JnABG . Therefore, the entanglement entropy

between A and B satisfies the upper bound6

SA ≤ ln(JG)nAB. (2.8)

While this upper bound is satisfied by every quantum circuit which constructs ψ from

the given gate set G, the bound will be the tightest for the circuit which minimizes nAB.

Therefore, we conclude that

SA ≤ ln(JG) Cb(A,B), (2.9)

6There is of course the trivial bound on this entropy SA ≤ ln min(dimHA, dimHB). However, in general

this bound scales with the system size, and will be much weaker than the one in terms of the number of

cuts in the quantum circuit.
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or equivalently

Cb(A,B) ≥ 1

ln(JG)
SA. (2.10)

This bound shows that the binding complexity of the state with respect to a bipartition is

lower bounded by the entanglement entropy. Intuitively this is clear, because if we are to

build a state with a certain amount of entanglement, then we will need sufficiently many

gates to achieve this.

We can easily generalize this bound to multipartite systems. Consider for example a

tripartite system HA ⊗HB ⊗HC consisting of NA, NB, and NC qubits respectively. Then

by cutting arguments similar to those used above, we obtain

SA ≤ ln(JG) (nAB + nAC), SB ≤ ln(JG) (nBA + nBC), SC ≤ ln(JG) (nCB + nCA), (2.11)

which gives

(SA + SB + SC) ≤ 2 ln(JG)(nAB + nBC + nCA). (2.12)

For the tripartite system, the binding complexity is defined as the minimum value of

(nAB + nBC + nCA) across all circuits in Mψ,G , and therefore we obtain

Cb(A,B,C) ≥ 1

ln(J2
G)

(SA + SB + SC) . (2.13)

Similarly, the n-partite generalization of this result is

Cb(A1, · · · , An) ≥ 1

ln(Jn−1
G )

(SA1 + SA2 + · · ·+ SAn) . (2.14)

So far, we have focused on bounds involving the entanglement entropy. However, as we

discussed in the introduction, the entanglement entropy is not always sufficient to probe the

fine-grained multiparty entanglement structure of the state. For this purpose, it is useful

to consider other information theoretic concepts such as separability. Let us consider a

tripartite quantum system H = HA ⊗ HB ⊗ HC . If we trace out A, then the reduced

density matrix on BC is called separable if and only if it can be written in the form

ρBC =
∑

i

piρ
i
B ⊗ ρiC , (2.15)

where ρiB/C are density matrices on B/C, and pi are positive real numbers which sum up to

1. In this case, we interpret ρBC as having no quantum entanglement, i.e., tracing out the

subsystem A has destroyed the quantum entanglement between B and C. On the other

hand, if ρBC is not separable, the state retains quantum entanglement despite tracing

out A. A necessary (but not sufficient) criterion for separability is the Peres-Horodecki

positivity of partial transpose [52–54]. Here, we are instructed to construct the partial

transpose ρΓ
BC of the density matrix, which is defined as:

〈jB, jC |ρΓ
BC |j̃B, j̃C〉 ≡ 〈j̃B, jC |ρBC |jB, j̃C〉, (2.16)

where |jB, jC〉 and |j̃B, j̃C〉 denote basis vectors for HB ⊗ HC . If ρΓ
BC has any negative

eigenvalues, then this necessarily implies that the density matrix ρBC is not separable. We
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can therefore quantify the amount of non-separability of ρBC by the number of negative

eigenvalues of the partial transpose ρΓ
BC . We will denote as EA|BC the logarithm of one

plus the number of negative eigenvalues of ρΓ
BC . Another measure of the non-separability

is the entanglement negativity NA|BC , which is defined as

NA|BC =
||ρΓ

BC || − 1

2
, (2.17)

where ||A|| = Tr
(√

A†A
)

is the trace norm.

Going back to our state ψ ∈ HA⊗HB⊗HC , consider once again some unitary quantum

circuit inMψ,G which builds the state from the chosen gate set. By cutting all the two-party

gates which act across the tripartition, we can now express the state in the form

|ψ〉 =
∑

~a,~b,~c

p
~a,~b,~c
|ψA~a,~c〉 ⊗ |ψB~a,~b〉 ⊗ |ψ

C
~b,~c
〉, (2.18)

where as before ~a = (a1, · · · anAB ), ~b = (b1, · · · bnBC ) and ~c = (c1, · · · cnCA). It is clear from

this expression that if we trace out A, then the number of negative eigenvalues of ρΓ
BC will

be upper bounded by the maximum allowed rank of ρBC minus one (there needs to be at

least one positive eigenvalue so the trace can be one), i.e., (JnAB+2nBC+nCA
G −1). Therefore,

EA|BC ≤ ln(JG) (nAB + 2nBC + nCA) . (2.19)

Using the same argument by in turn tracing out B and C, we obtain

(
EA|BC + EB|CA + EC|AB

)
≤ ln(J3

G) (nAB + nBC + nCA) . (2.20)

Once again, the tightest bound is obtained for the circuit which minimizes the right hand

side, from which we conclude

Cb(A,B,C) ≥ 1

ln(J3
G)

(
EA|BC + EB|CA + EC|AB

)
. (2.21)

At least in the case of qubit systems, the same bound is also true for the (logarithmic)

entanglement negativity, i.e., if we replace E → ln(1 + 2N ) in all the terms above. This

follows from the fact that the magnitude of all negative eigenvalues is always upper bounded

by 1/2 [55]. However, the bound is tighter when stated in terms of E . The bound in

equation (2.21) shows that the binding complexity is a much more fine grained probe of

the entanglement structure than the entanglement entropy, and in particular is sensitive

to multiparty entanglement measures such as separability.

3 Computation of the binding complexity

To begin, we review the definition of complexity as a geodesic length in the space of unitary

operators and explain how the group structure of this space simplifies the geodesic equation.

We will keep all sums explicit below as some repeated indices will not be summed. Let us

consider a general quantum system with Hilbert space H. We start by fixing some base

– 8 –
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state ψ0, such as a completely factorized state. Now consider some other pure state ψ of

the entire system, which we wish to study — for instance, ψ could be the ground state of

some interesting Hamiltonian. Let U be the space of all unitary maps on H, and let {OI}
be a basis for its Lie algebra u:

[OI ,OJ ] = i
∑

K

fIJ
KOK . (3.1)

We may think of OI as generators of the elementary unitary gates at our disposal (thus

eiOI are the elementary gates). Let U ∈ U be an operator such that

|ψ〉 = U |ψ0〉. (3.2)

In order to define the complexity of U , we need a notion of distance on the group manifold

U . One possibility is the standard bi-invariant metric which is obtained from the Cartan-

Killing form KIJ on the Lie algebra u, defined in terms of the structure constants as7,8

KIJ = Trad(OIOJ) =
∑

M,N

fIM
NfJN

M . (3.3)

If we allow gates that can act on any number of qubits at the same time, arbitrarily complex

operations could be done in a single step. Thus, it is necessary to restrict the gate set to

be “local” in some sense. We will require gates to be “bilocal”, acting on no more than

two qubits at the same time.

So far our discussion has been general, but now we wish to specialize the notion of

complexity to study multiparty entanglement. To this end, let us consider a system which

has a natural tensor factorization of the form

H = H1 ⊗H2 ⊗ · · ·HN . (3.4)

In order to study the multiparty entanglement structure (with respect to the above par-

tition) of a state in this Hilbert space, we define the binding complexity as the minimal

number of gates, required in a quantum circuit construction of U , which act on more than

one factor at a time, i.e., they act across the chosen partition. Gates which act within a

tensor factor do not add to entanglement, and as such are treated as irrelevant. However,

gates which act on two or more factors do contribute to the entanglement between various

parties, and as such will be regarded as relevant. We wish to optimize over the number of

relevant gates in building the unitary U .

To accomplish this we can define a different inner product GIJ on the Lie algebra,

which assigns a different “cost” for gates acting on one vs. multiple parties. We define the

inner product by the metric

GIJ =
cI + cJ

2
KIJ , (3.5)

7The Cartan-Killing form satisfies
∑
N fIJ

NKNM = −
∑
N fIM

NKNJ , which is simply the statement

that it is invariant under adjoint action of the group, i.e., Trad([Z,X]Y ) + Trad(X[Z, Y ]) = 0 for any three

elements X,Y, Z of the Lie-algebra.
8We have defined the Cartan-Killing form up to overall sign and normalization here, since our main goal

is using it to construct a right-invariant Riemannian metric whose normalization is fixed by “cost factors”

(see (3.5)).
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where the cI are the cost factors for the operators OI . We can then construct a right-

invariant metric g on U as follows: if X = dU
dt is a tangent vector to U at some point

U , then we can define a corresponding Lie algebra element XU−1. Then the metric is

defined by

gU (X,Y ) = G(XU−1, Y U−1). (3.6)

To define the cost factors, let us split our generators OI into Oα ∈ R and Oᾱ ∈ R̄,

where Oα are the relevant generators which simultaneously act on multiple factors, while

Oᾱ are irrelevant and act within individual factors. Then we can simply take the metric

GIJ to be of the form in (3.5) with the cost factors given by

cI =

{
ε2, OI ∈ R̄,
1, OI ∈ R,

(3.7)

where ε is a small parameter that will be taken to zero at the end. We now define the

Nielsen binding complexity (or simply binding complexity, for brevity) Cb of a unitary U as

the minimal distance between U and the identity with respect to the above metric, in the

limit ε→ 0. Many different unitary operators may prepare the same state — e.g., we can

always multiply one such unitary by others that rotate the part of the Hilbert space that

is orthogonal to the reference state. Consequently, the complexity (binding or otherwise)

of a state as opposed to an operator is defined as the complexity of the simplest unitary

operator preparing that state. In the examples we study it will turn out that there is a

unique operator preparing each state, so we can avoid this subtlety.

From this perspective the binding complexity Cb of a unitary operator is its minimal

geodesic distance from the identity in the metric (3.6) [6–8].9 For group manifolds with

right-invariant metrics of the form discussed above, the geodesic equation takes a simple

form, often referred to as the Euler-Arnold equation (perhaps familiar from rigid-body

dynamics). Let U(s) be a geodesic on U , and let v(s) = dU
ds U

−1 ∈ u be the velocity vector

pulled back to the identity. Then the Euler-Arnold equation is

∑

J

GIJ
dvJ

ds
=
∑

L,M,N

fIM
LGLNv

MvN . (3.8)

There is a slightly different way to express this equation, which will be convenient at times.

Let us define a matrix IIJ such that GIJ =
∑

M KIMIMJ . If we assume that the Cartan-

Killing form is invertible, then we get IIJ =
∑

M KIMGMJ . In terms of I, the Euler-Arnold

equation reads
∑

J

IIJ
dvJ

ds
=
∑

L,M,N

fMN
IvM

(
INLvL

)
. (3.9)

where we have used the invariance property of the Cartan-Killing form, explained in foot-

note 7. Alternatively, if we define L =
∑

I,J IIJvJOI , and v =
∑

I v
IOI , then we obtain

i
dL

ds
= [v,L] . (3.10)

9It was shown in [6] that Nielsen’s geodesic approach provides a lower bound on gate complexity for

an appropriate choice of the inner product GIJ . Here we are adopting this approach to compute binding

complexity.
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Note that it is crucial that the structure constants mix generators with different cost

factors for the term on the right to survive. In order to obtain the geodesics, we must solve

equation (3.9) for the velocity vI . We then use this to obtain the geodesic, which satisfies

dU

ds
(s) = i

∑

I

vI(s)OIU(s), (3.11)

and implement the boundary conditions U(0) = 1 and U(1) = U , where U is the unitary

whose complexity we wish to study.

3.1 Complexity of Gaussian states

Our starting point is the toy model of [5], which takes a system of harmonic oscillators

as an approximation to a free scalar field theory on an n-point lattice. Since we are

interested in using this as a setting for the study of multiparty entanglement, we partition

the oscillators into m groups of N oscillators each, so that n = Nm. We will refer to each

group of oscillators as a “party”. The operator content of the theory are the “position”

and “momentum” operators φ̂i and π̂i at each site, with i = 1, 2, . . . , n and canonical

commutation relation [φ̂i, π̂j ] = iδij . We consider Gaussian states of the form:

|Ψ〉 =

(
det Ω

πn

)1/4 ∫
d~ϕ e−

1
2
~ϕTΩ~ϕ|~ϕ〉, (3.12)

where d~ϕ = dϕ1 . . . dϕn, |~ϕ〉 = |ϕ1〉⊗ . . .⊗|ϕn〉 with |ϕi〉 an eigenstate of φ̂i, Ω a symmetric

matrix with positive-definite eigenvalues, and the coefficient out front is for normalization.

The vacuum state has a specific Ω.

We will determine the binding complexity of such states with respect to a reference in

which Ω is diagonal. The gate set for measuring complexity will consist of the Hermitian

operators:10

Ô(A) =
1

2

∑

i,j

Aij(φ̂
iπ̂j + π̂jφ̂i). (3.13)

A is an arbitrary n × n matrix, so A ∈ gl(n,R). It is straightforward to check that[
Ô(A), Ô(B)

]
= −iÔ([A,B]), so the Ô(A) operators form a representation of gl(n,R).

Choosing as generators of gl(n,R) the elementary matrices (Mij)k` = δikδj`, we corre-

spondingly define the generators of the gate set:

Ôij = Ô(Mij) =
1

2
(φ̂iπ̂j + π̂jφ̂i). (3.14)

(That is, ei
∑
i,j ε

ijÔij are the gates we use.) A short computation gives the structure

constants

fij,k`
mn = δi`δ

m
k δ

n
j − δkjδmi δn` . (3.15)

10This gate set is universal, i.e. can prepare any state, when we restrict ourselves to the subspace of

Gaussian states (3.12). However, it is not sufficient to prepare arbitrary states, for which we would need to

supply additional gates.
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To be clear, the Ôij are the OI in the discussion above (3.1), where now I = ij is a double-

index since we are working with a matrix Lie group. A unitary operator that prepares the

general Gaussian state (3.12) from the reference state can then be reached from the identity

by a continuous sequence of unitary operators, described by the path-ordered exponential

Û(s) = P exp

(
i

∫ s

0
ds′

∑

i,j

V ij(s′)Ôij
)
, (3.16)

where s parameterizes a trajectory in the space of unitary operators and the V ij(s) describe

the instantaneous direction in the tangent space gl(n,R), i.e., “velocity” in the space of

unitary operators. We pick the boundary condition so that Û(1) is the unitary operator

that prepares the desired state.

To define binding complexity we follow the geodesic formalism described above. In

terms of the non-degenerate metric on the space of generators (3.5), GIJ ≡ Gij,k`, operator

complexity is defined as the length of the geodesic trajectory connecting Û(s = 1) to

the identity,

C =

∫ 1

0
ds

√∑

i,j,k,`

Gij,k`V ij(s)V k`(s). (3.17)

If there are multiple such geodesics, complexity is defined as the minimum of their lengths.

The relevant and irrelevant operator directions are defined by the “costs” in the met-

ric (3.7), so that Gij,k` = (cij + ck`)Kij,k`/2. Here cij = 1 if Ôij ∈ R and cij = ε2 if Ôij ∈ R̄
where R is the set of operators Ôij such that oscillators i and j are located in different

parties. We take Kij,k` to be the Cartan-Killing form for gl(n,R),

Kij,k` =

(
δi`δjk −

1

n
δijδk`

)
, (3.18)

where we have included an additional normalization factor of 1
2n for convenience as com-

pared to (3.3). In the end, ε will be taken to zero and is included to make sure that G is

non-degenerate.

A subtlety here is that the Cartan-Killing form for gl(n,R) has a degenerate direction,

which in our notation reads11
∑

i Ôii. This leads to a degeneracy in the metric, which we

had wanted to avoid. Fortunately, the direction with a vanishing line element is irrelevant

(i.e. it represents a gate acting within parties, as opposed to between them). So the

degeneracy does not affect the binding complexity. However it can potentially lead to an

ambiguity in the geodesic equation (3.8), because in the degenerate directions the equation

becomes 0 = 0. Fortunately, in the rigid-body form (3.9), degeneracies arising from the

Cartan-Killing form drop out allowing us to avoid this subtlety. Other than that, our

metric is block diagonal (i.e., does not mix relevant and irrelevant directions), permutation-

symmetric between parties, and only the relevant operators creating entanglement between

parties contribute to binding complexity.

11This can equivalently be stated as
∑
k,`Kij,k`δ

k` = 0, since
∑
i Ôii =

∑
ij δ

ijÔij .
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In the ε→ 0 limit, the binding complexity is then

Cb =

∫ 1

0
ds
√ ∑

Ôij∈R

|V ij(s)|2. (3.19)

To compute the velocities V ij(s) on geodesics we use the Euler-Arnold equation (3.9). In

the present case this equation takes the form

∑

k,`

Iijk`
dV k`

ds
−

∑

k,`,p,q,m,n

Ik`pqfmn,k`ijV mnV pq = 0, (3.20)

where the structure constants are given in (3.15), and the matrix Iijk` = cijδ
i
kδ
j
` .

12 To

solve (3.20), we must consider two cases: either i, j are in the same party, or they are in

different parties. The resulting equations are

ε2
dV ij

ds
= 0, Ôij ∈ R̄, (3.21)

dV ij

ds
− (1− ε2)(V jj − V ii)V ij = 0, Ôij ∈ R. (3.22)

These are in general solved by:

V ij(s) = vij , Ôij ∈ R̄, (3.23)

V ij(s) = vije(1−ε2)(vjj−vii)s, Ôij ∈ R, (3.24)

where the vij are integration constants. We are going to choose final states that are

symmetric between the parties just like the initial states. Thus we expect to find a geodesic

that is permutation-symmetric between the parties, and also between the oscillators within

each party. Enforcing this permutation symmetry, we take all vii = a to be identical, as

a consequence of which V ij(s) = vij is constant in s. Similarly, we take all vij = b

when i 6= j but Ôij ∈ R̄ (irrelevant operators), and all vij = c when i 6= j and Ôij ∈
R (relevant operators). Therefore, by requiring total permutation symmetry, we have

restricted the matrix of velocities to three independent parameters that determine the final

unitary operator Û(s). Of course, permutation symmetry between parties as opposed to

oscillators is not essential; for example, we could consider final states that are not symmetric

in this way. In appendix A we demonstrate how to compute binding complexity for a less

symmetric case and conjecture a solution for the completely general case.

Since the parameters a, b, and c determine the operator Û(s) that evolves from

initial state to final state, we fix them by specifying these boundary conditions on the

wavefunction. Namely, we take the initial wavefunction to be determined by the matrix

Ω(i) = diag(ω0, ω0, . . . , ω0) and the final wavefunction to be determined by

Ω
(f)
ij =





ω, i = j,

λ1, i 6= j and Ôij ∈ R̄,

λ2, i 6= j and Ôij ∈ R.

(3.25)

12Even though the Cartan-Killing form is not invertible, it can be checked that solving this equation is

equivalent to solving the Euler-Arnold equation (3.8).
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Thus, the initial wavefunction is the product of Gaussians in every oscillator; it contains

no entanglement. The final state wavefunction contains “couplings” ω of each oscillator to

itself, couplings λ1 between different oscillators in the same party, and couplings λ2 between

oscillators in different parties. The structure of the final wavefunction above is meant to be

a permutation-symmetric toy model to mimic the structure of entanglement in a generic

quantum field theory state, where if we partition our system into m parties (i.e., either

subregions or boundaries in the multiboundary case), then the state will have some internal

entanglement within each party, in addition to entanglement between different parties. In

Ω(f), the couplings λ1 create the internal entanglement between the oscillators inside each

block/party, while the couplings λ2 create entanglement between different blocks/parties.

Although the wavefunction does not have the expected “spatial locality” of a quantum field

theory state within each party, this locality can be added to the wavefunction by further

acting on it with local unitary transformations which act only within each block; since such

unitaries do not change the binding complexity, they will not affect our result below. For

illustration, in the N = 3 case, the matrix Ω(f) takes the form

Ω(f) =




ω λ1 λ1 λ2 λ2 λ2 λ2 λ2 λ2

λ1 ω λ1 λ2 λ2 λ2 . . . λ2 λ2 λ2

λ1 λ1 ω λ2 λ2 λ2 λ2 λ2 λ2

λ2 λ2 λ2 ω λ1 λ1 λ2 λ2 λ2

λ2 λ2 λ2 λ1 ω λ1 . . . λ2 λ2 λ2

λ2 λ2 λ2 λ1 λ1 ω λ2 λ2 λ2

...
. . .

. . .
...

λ2 λ2 λ2 λ2 λ2 λ2 ω λ1 λ1

λ2 λ2 λ2 λ2 λ2 λ2 . . . λ1 ω λ1

λ2 λ2 λ2 λ2 λ2 λ2 λ1 λ1 ω




. (3.26)

Importantly, there are three independent couplings, matching the number of indepen-

dent parameters of V mn: a, b, and c. We determine the velocities a, b, and c in terms

of these couplings by examining how the matrix Ω flows under the infinitesimal action of

the unitary Û(s). Since Û(s) does not take the wavefunction out of the set of Gaussian

wavefunctions, we can label the state at an arbitrary time s as

|Ψ(s)〉 = Û(s)|Ψ〉 =

(
det Ω(s)

πn

)1/4 ∫
d~ϕ e−

1
2
~ϕTΩ(s)~ϕ|~ϕ〉. (3.27)

Over an infinitesimal parameter length ds, the state changes according to

d

ds
|Ψ(s)〉 = i

∑

i,j

V ijÔij |Ψ(s)〉. (3.28)

This follows because (3.28) is a Schrödinger equation, the solution of which for the operator

Û(s) is well-known to be the path-ordered exponential (3.16).

– 14 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
9

Using the expression (3.14) for the Ôij operators and π̂i = −i ∂
∂ϕi

in the |ϕi〉 basis, the

right-hand side becomes in this basis

〈~ϕ|iV ijÔij |Ψ(s)〉 =

(
−1

2
~ϕ(2V Ω)~ϕ+

1

2
Tr(V )

)
〈~ϕ|Ω〉, (3.29)

where V is the matrix of velocities V ij . The symmetry of both Ω and V has been used in

deriving (3.29). The trace term can be absorbed into the wavefunction normalization, so

the action of the Ôij operators induces the following flow of the matrix Ω:

dΩ

ds
= 2V Ω. (3.30)

Since Ω(s) has only three independent components ω(s), λ1(s), and λ2(s) by the

ansatz (3.25), the matrix equation (3.30) reduces to the three independent equations

dω(s)

ds
= 2aω(s) + 2(N − 1)bλ1(s) + 2N(m− 1)cλ2(s) (3.31)

dλ1(s)

ds
= 2bω(s) + 2[a+ (N − 2)b]λ1(s) + 2N(m− 1)cλ2(s) (3.32)

dλ2(s)

ds
= 2cω(s) + 2c(N − 1)λ1(s) + 2[a+ (N − 1)b+N(m− 2)c]λ2(s). (3.33)

The coefficients above have been derived by expanding (3.30) and counting the number of

terms of each type. Solving with the boundary conditions Ω(i) and Ω(f) specified earlier

by taking ω(1) = ω, λ1(1) = λ1, and λ2(1) = λ2, we determine the constants a, b, and c.

In terms of the three independent eigenvalues (λ+, λ0, λ−) of Ω,

λ+ = ω + (N − 1)λ1 +N(m− 1)λ2 (3.34)

λ0 = ω − λ1 (3.35)

λ− = ω + (N − 1)λ1 −Nλ2, (3.36)

the constants are

a =
1

2mN
ln

(
λ+λ

m−1
−

λm0

)
+

1

2
ln

(
λ0

ω0

)
(3.37)

b =
1

2mN
ln

(
λ+λ

m−1
−

λm0

)
(3.38)

c =
1

2mN
ln

(
λ+

λ−

)
. (3.39)

Plugging into (3.19) and counting the number of relevant operators Ôij ∈ R, the binding

complexity of the general Gaussian wavefunction is therefore

Cb = N |c|
√
m(m− 1) =

1

2

√
m− 1

m

∣∣∣∣ln
(
λ+

λ−

)∣∣∣∣ . (3.40)

Unlike conventional circuit complexity [5], the binding complexity as computed here is

finite in the N →∞ continuum limit of a large number of oscillators.
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We can also write the binding complexity in terms of the dimensionless, UV-finite

parameter µ = Nλ2
ω+(N−1)λ1

as

Cb =
1

2

√
m− 1

m

∣∣∣∣ln
(

1 + (m− 1)µ

1− µ

)∣∣∣∣ . (3.41)

This parameterization is convenient because the entanglement entropy of a single party of

oscillators relative to the rest is also controlled by µ. Using the method of Srednicki [56],

it is straightforward to compute that this entanglement entropy is

S = − ln(1− ξ)− ξ

1− ξ ln ξ, ξ =
β′

1 +
√

1− β′2
, β′ =

(m− 1)µ2

2 + 2(m− 2)µ− (m− 1)µ2
.

(3.42)

For S to be finite, we must have 1
1−m < µ < 1; if we require S to remain finite in the large

N limit, this similarly constrains λ2
λ1

. At the points µ = 1 and µ = 1
1−m , the entanglement

entropy associated with a single party as well as the binding complexity both diverge.

Expanding about either point, where the argument of the logarithm in (3.41) becomes

large, as does the macroscopic entanglement entropy (i.e. we are at high temperature),

we find that the binding complexity and entanglement entropy are related as (also see

figure 4):

Cb =

m∑

i=1

αiSi + γ +O(e−S), (3.43)

αi =
1

m

√
m− 1

m
, γ =

√
m− 1

m

(
ln 2− 1 +

1

2
ln

m2

m− 1

)
, (3.44)

where Si refers to the entanglement entropy associated to the ith party. (For our symmetric

wavefunctions all Si = S are equal). That is, the binding complexity scales linearly with

the entanglement entropy, up to a constant term and corrections exponentially small in

the entropy. As we will discuss below, this scaling of binding complexity with entropy

resembles expectations from holographic duality.

That the binding complexity scales linearly with the entanglement entropy with both

controlled by the same parameter µ is remarkable. Nevertheless, as discussed in the in-

troduction, the single-party entanglement entropy may yield a misleading characterization

of the robustness of entanglement in quantum states. To diagnose this robustness in the

Gaussian states (3.12), we use the Peres-Horodecki separability criterion as written by

Simon [57]. This criterion is a necessary and sufficient condition for separability of a two-

oscillator Gaussian state. Therefore, for the remainder of this section we work in the special

case N = 1, so that there are m total oscillators with a single oscillator in each of the m

parties. We will check the separability of the reduced density matrix upon tracing out

m− 2 parties.

The Peres-Horodecki separability criterion is expressed in terms of the variance matrix

Vab = 1
2〈∆ξ̂a∆ξ̂b+∆ξ̂b∆ξ̂a〉, with ξ̂a = (φ̂1, π̂1, φ̂2, π̂2)a the phase-space coordinate operators
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Figure 4. When the entanglement entropy is large, the binding complexity varies linearly with the

entropy up to exponentially small corrections. Here the number of parties is m = 12. Other values

of m give similar results.

of two oscillators and ∆ξ̂a = ξ̂a − 〈ξ̂a〉. Writing V in the block form V =
(
A C
CT B

)
and

defining the symplectic form J =
(

0 1
−1 0

)
, the density matrix ρ is separable if and only if

Ng = − detA detB −
(

1

4
− | detC|

)2

+ tr
(
AJCJBJCTJ

)
+

1

4
(detA+ detB) ≤ 0

(3.45)

We will call Ng the Gaussian negativity. Taking N = 1 and tracing out m−2 parties yields

a state ρ on two oscillators for which Ng evaluates to

Ng =
µ2

4(1− µ)(1 + µ(m− 1))
, (3.46)

where µ = λ2
ω is the N → 1 limit of the same parameter µ previously defined above (3.41).

Recalling that 1
1−m < µ < 1 for the entropy and binding complexity to be finite, we see

that this same condition leads to Ng > 0. We conclude that the Gaussian states (3.12) for

N = 1 are robustly entangled like the W states. When N > 1, the condition Ng ≤ 0 is no

longer equivalent to separability [58].13 However, the similar structure of the wavefunction

leads us to expect that the states will remain robustly entangled when N > 1.

Since Ng is also controlled by the parameter µ, we may again expand about the point

where the binding complexity becomes large to find that the binding complexity scales

linearly with the logarithm of the Gaussian negativity up to exponential corrections (see

figure 5),

Cb = αN lnNg + γN +O
(

1

Ng

)
, (3.47)

with αN = 1
2

√
m−1
m , and γN =

√
m−1
m log 2m.

Since the single-party entanglement entropy is controlled by the same parameter µ

as the binding complexity Cb and the Gaussian negativity Ng, it is not obvious if a large

13A criterion for the inseparability of Gaussian states with N > 1 has been established [59] but requires

an infinite series of inequalities to hold, which are difficult to check.
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Figure 5. The binding complexity varies linearly with the logarithm of the Gaussian negativity

up to exponential corrections. Here the number of parties is again m = 12 and other values of m

give similar results.

(a) (b)

Figure 6. (a) The binding complexity per party Cb/m plotted versus S and lnNg for a two-

parameter family of states parameterized by µ and m. (b) A cross section of the left-hand side with

fixed S ≈ 3.07 chosen for plotting purposes, showing that Cb/m increases with lnNg.

binding complexity ultimately stems from a robust entanglement structure rather than

merely a large entanglement entropy. To address this question, figure 6 shows that even at

fixed entropy S, the binding complexity per party Cb/m increases with lnNg. Consequently,

binding complexity does diagnose robustness of entanglement.

4 The interior volume of multiboundary wormholes

Multiboundary wormholes [41–46] are vacuum solutions of Einstein’s equations in 2+1 di-

mensions that have multiple asymptotic regions (figure 7). Recently, properties of these

geometries were used in [35, 47, 48] to investigate the entanglement structure and com-

plexity of the boundary CFT state. Tensor network models for multiboundary wormholes

were presented in [49].

Like the two-sided BTZ black hole [60], the multiboundary wormholes are constructed

as quotients of AdS3 space. On the t = 0 slice, AdS3 is just hyperbolic space H2, which has

an isometry group PSL(2,R). The t = 0 slice of the wormhole is obtained by quotienting

this H2 by a discrete diagonal subgroup Γ ⊂ PSL(2,R) with hyperbolic generators. The

action of Γ will identify pairs of boundary-anchored geodesics in H2, so M = H2/Γ will

be a Riemann surface with m boundaries (each topologically S1), where m − 1 is the

number of generators of Γ. Since any two disjoint boundary-anchored geodesics in H2
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Figure 7. Quotient construction of a three-boundary wormhole from vacuum AdS3. Geodesics in

blue and in red have been identified by the quotient, leading to boundary regions B1 ∪B′1, B2, and

B3, with corresponding causal horizons H1 ∪H ′1, H2, and H3 bounding an interior region.

are joined by a unique minimal length geodesic, the endpoints of the latter join to form

causal horizons for the newly disjoint conformal boundary. The set of causal horizons

bounds the interior of a wormhole that connects all the asymptotic regions together. A

holographic observer with access to observables on just a single boundary cannot access

physics in the wormhole interior. It was shown in [35] that the CFT state dual to these

wormholes contains multipartite entanglement between degrees of freedom localized on the

different boundaries.

Following [49], we can think of the complexity of the quantum state dual to a wormhole

in holographic terms by imagining a tensor network that tiles the bulk Cauchy slice. Such a

tensor network will prepare a state with the necessary pattern of entanglement (figure 8a).

The complexity of the state is then proposed to be related to the number of gates in the

tensor network [21, 47, 48, 61, 62], an idea which correlates nicely with the proposal that

complexity is holographically dual to the volume of spatial slices [61].

In this tensor network construction of the boundary state dual to the wormhole, the

tensors outside the horizons correspond to unitary operations acting within each boundary

(figure 8b). On the other hand, tensors enclosed within the wormhole interior may be

thought of as corresponding to unitary quantum gates acting simultaneously on multiple

boundaries. Thus, we might expect that binding complexity corresponds to the interior

volume of the wormhole.

To make this comparison, we compute the interior volume of the wormhole. Since all

of our calculations pertain to an equal-time slice of the 2 + 1-dimensional spacetime, the

volume of the interior is really an area. It is easy to compute this area using the Gauss-

Bonnet theorem in terms of the number of asymptotic boundary regions m, the genus of

the interior g, and the geodesic curvature of each causal horizon. The interior Wg,m is
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(a) (b)

Figure 8. A schematic tensor network (a) preparing the boundary state dual to a three-boundary

wormhole. In (b), the network has been distilled by local unitaries acting on each boundary, leaving

sets of entangled bits lined up at each horizon as well as a multipartite residual region I. Stretching

the horizons by `AdS captures nearby tensors contributing to the entanglement between boundaries.

topologically a Riemann surface of genus g with m punctures, and the area of this surface,

with the constant curvature metric inherited from H2, is given by

Area(Wg,m) = 2π(2g +m− 2) +

∮

∂Wg,m

kgds, (4.1)

where the second term on the right hand side is the integral of the geodesic curvature on

the boundary of the interior.

We will set g = 0 for simplicity, i.e., the wormhole has a spherical internal topology.14

If we choose the interior region to end strictly at the causal horizons (which are geodesic),

then the geodesic curvature term vanishes. In this case the area (4.1) vanishes for the BTZ

black hole (which has m = 2).15 Nevertheless, we know that there is bipartite entanglement

between the two boundaries of BTZ, and there will be an associated binding complexity.

Thus the interior volume on the t = 0 slice cannot be literally equal to complexity.

In view of this, we are led to consider “stretched horizons”, which are non-geodesic

curves pushed slightly away from the true horizons in the full wormhole geometry toward

the asymptotic boundaries (see [63] and references therein). In the tensor network picture

of complexity, we interpret this procedure as including tensors just outside the horizons

14In principle, we could extend our toy model construction to higher genus by considering states of more

complicated entanglement structure (see section 5). For example, the (m = 4, g = 1) case might correspond

to removing the y2-y4 and y1-y3 edges in figure 9(c). The Euler-Arnold equation in the general form of this

case becomes very difficult to solve, but such a calculation could serve as another check of our proposal

that the (stretched) interior volume equals binding complexity.
15This is because the causal horizons of the two asymptotic regions of the eternal BTZ black hole coincide

on the t = 0 surface at the bifurcation point of the horizon, so that, unlike the multiboundary case, the

internal volume vanishes.
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which still contribute to the entanglement between multiple boundary CFTs, cf. figure 8(b).

This interpretation is substantiated by [49], which showed that for tensor network models

built by quotienting the networks preparing vacuum AdS3 states, it is possible for an

“bipartite residual region” to remain after entanglement distillation in the m = 2 case. We

are thinking of these residual tensors as living inside the stretched horizon. We will take

the stretched horizon to be a surface of constant geodesic curvature kg.

In sum, we obtain a contribution to the area that is proportional to the length of each

stretched causal horizon

Area(W0,m) = 2π(m− 2) + 4G
m∑

i=1

aiSi . (4.2)

Here we used the fact that the horizon lengths are equal to 4G times the entropies of

entanglement of the CFT on the ith boundary with all the other boundaries.16 The O(`−1
AdS)

constants ai are given in terms of the horizon lengths by

aiLi ≡
∮

∂iW0,m

kgds, (4.3)

where Li is the horizon length and ∂iW0,m is the ith boundary of the interior.

The formula (4.2) for the volume of the (stretched) wormhole is structurally similar

to the formula (3.43) for binding complexity. Both expressions have a constant piece, and

a part that is linear in the entanglement entropies of each disconnected party. Thus it is

tempting to propose the correspondence17

Binding Complexity = Volume of Stretched Wormhole Interior (4.4)

In this correspondence, the factor 1
m

√
m−1
m in the binding complexity (3.43) plays the role

of the coefficients ai in (4.2). However, the constant term in the binding complexity (3.43)

scales as O(lnm) and is nonzero for m = 2, while the interior volume of the wormhole scales

as O(m) and vanishes for m = 2. The origin of this discrepancy may lie in the simplicity

of the toy model of section 3 and might be resolved with an appropriate generalization

of the framework for computing binding complexity of states in a nontrivial conformal

field theory with a semiclassical bulk dual. However, it also might simply be that the toy

model states whose complexity we considered were not structured in the same way as in

holographic theories. In section 5 we will provide evidence that the latter is indeed the

case by using the Euclidean path integral to construct a natural class of states in our toy

model whose binding complexity reproduces the form of the stretched wormhole volume.

Indeed in AdS3/CFT2 [35] precisely such a Euclidean procedure constructs the CFT states

dual to the multiboundary wormhole.

16Note that assumes that we are in a region of the moduli space for the interior geometry of the wormhole

where the entropy of each boundary is holographically given by the causal horizon separating it from the

other asymptotic regions. Remarkably, there are other regions of the moduli space where the entropy of

boundary i is actually give by the sum of areas of the causal horizons of all the other boundaries. This

surprising fact is explained in [35].
17The volume here is being expressed in units of 1

`AdSGN
, as is usual in discussions of complexity.
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5 Euclidean path integrals

In the previous section we argued that the binding complexity of Gaussian states that we

calculated in section 3 resembles the volume of the interior of multiboundary wormholes

in AdS3/CFT2. However, there was a discrepancy in the scaling of the complexity with

the number of entangled parties m which could arise if the permutation-symmetric states

of section 3 do not have the same entanglement structure as the states in AdS/CFT. In

the AdS setting, the states dual to multiboundary wormholes can be constructed within

the CFT by performing the Euclidean path integral on 2-manifolds with the topology of

the bulk wormhole (i.e., the time-reflection symmetric Cauchy surface in the bulk) [35].18

To compare with the wormhole it would therefore be natural to compute the complexity

of states in our toy model constructed in terms of similar Euclidean path integrals. In our

case we have a collection of n harmonic oscillators. So, we should perform a path integral

on a (0 + 1)-dimensional graph with n external legs. As will see, the binding complexity

depends on the topology of the Euclidean graph.

A general 1D Euclidean path integral for a system of n = Nm harmonic oscillators

is computed on a graph G consisting of a set of vertices VG, n of which are external, and

a set of edges EG each of different lengths. Such a graph may contain internal vertices.

The value of the oscillator field at these vertices is a boundary condition which must be

matched in the propagators at all incoming edges and integrated over. Each edge (v1, v2, β)

of length β between vertices v1, v2 at positions x1, x2 respectively in the graph corresponds

to a factor of the propagator K(x1, x2, β) in the integrand:

K(x1, x2, β) = 〈x2|e−βH |x1〉 =

∫ φ(β)=x2

φ(0)=x1

[Dφ]e−
∫ β
0 dτ( 1

2
φ̇2+ 1

2
M2φ2) , (5.1)

where β is the length of the edge in the graph and M is oscillator mass. The Euclidean

propagator for the harmonic oscillator can be computed exactly; it is a Gaussian function

known as the Mehler kernel:

K(x1, x2, β) ∝ exp

(
−M((x2

1 + x2
2) cosh(Mβ)− 2x1x2)

2 sinh(Mβ)

)
. (5.2)

Let us label all external vertices by the vector ~x and internal vertices by the vector

~y. The wavefunction of a state prepared by the Euclidean path integral on the graph G

is therefore

ψ(~x) =

∫
d~y

∏

(v1,v2,β)∈EG

K(v1, v2, β). (5.3)

Since the propagator is Gaussian, the end result of the integrals over the internal vertices

is also a Gaussian wavefunction, which can always be written

ψ(~x) = N exp

(
−1

2
~xTΩ~x

)
, (5.4)

where Ω is a real symmetric matrix and N is a normalization constant. Consequently, we

may bring to bear the technology of section 3 in computing the binding complexity.

18In general, quantum field theory states on a (d− 1)-dimensional Cauchy surface Σ can be constructed

by carrying out the Euclidean path integral on d-manifolds of different topologies and boundary Σ.
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5.1 Permutation-symmetric graphs

We are interested in the complexity of states in which the different parties are multiparty

entangled. It is natural to imagine that such entanglement is produced in the Euclidean

path integral if the graph is branched so as to connect between the parties. In section 3

we considered states (3.25) in which the oscillators within parties were entangled with one

strength, while the parties as a whole were entangled block-wise with other parties and

with a different strength. We will first see how to construct such permutation-symmetric

states through a Euclidean path integral.

In the Euclidean path integral, oscillators become entangled if their propagators meet

at a vertex where a shared boundary condition is integrated over. This suggests that to

construct the states in the previous section we need a graph with m groups of N external

lines that each meet at a vertex to create the internal entanglement within parties. These

vertices can then be connected by further propagators to create entanglement between the

parties. Three such graphs are shown in figure 9. We label the vertices at the end of the

external lines as xij for the ith oscillator in the jth party. The internal vertices can have any

number of lines ending on them — the internal structure of the graph can be completely

arbitrary up to the permutation symmetry of the state we are trying to construct. In

analogy with the holographic setting, we might refer to the internal part of the graphs in

figure 9 as a “wormhole” connecting the exterior legs.

First consider the simplest graph figure 9(a). The internal vertices on the ith branch are

labeled yi, and the central vertex is labeled yc. We integrate over the boundary condition

of the field at each vertex to perform the path integral. The lengths of the edges are moduli

of the graph, and the wavefunction generated by the path integral is a function of these

parameters. Permutation symmetry of the states (3.25) dictates that the external lines

have the same length (β1) and the internal lines have the same length (β2). Similarly,

figures 9(b), 9(c) have three moduli.

Performing the path integral on the family of graphs of figure 9(a) according to the pro-

cedure of (5.3), one obtains a Gaussian state (5.4) in the permutation-symmetric form (3.25)

with parameters ω, λ1, λ2 where ω and λ1 quantify entanglement within a party and λ2

quantifies entanglement between parties. We find that (see appendix B for details)

ω =
ωN
ωD

(5.5)

λ1 =
Mcsch2(Mβ1) coth(Mβ2)(mN coth(Mβ1) +m coth(Mβ2)− 2(m− 1)csch(2Mβ2))

m(N coth(Mβ1) + coth(Mβ2))(N coth(Mβ1) coth(Mβ2) + 1)

λ2 =
Mcsch2(Mβ1)csch2(Mβ2)

m(N coth(Mβ1) + coth(Mβ2))(N coth(Mβ1) coth(Mβ2) + 1)
, (5.6)

with

ωN = M

(
mN2 coth3(Mβ1) coth(Mβ2) +mN coth2(Mβ1)

(
coth2(Mβ2) + 1

)

+m coth(Mβ1) coth(Mβ2)
(
1−Ncsch2(Mβ1)

)

− 1

2
csch2(Mβ1)csch2(Mβ2)(m cosh(2Mβ2)−m+ 2)

)
(5.7)

ωD = m(N coth(Mβ1) + coth(Mβ2))(N coth(Mβ1) coth(Mβ2) + 1). (5.8)
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(a) (b) (c)

Figure 9. Three similar branched graphs with different internal topology. On the left, (a) displays

the simplest case for m = 3 and N = 3 where the lines meet at a central vertex yc. In the middle

and on the right, (b) and (c) demonstrate a higher degree of internal connectedness. The internal

lines of (b) form a complete graph including a central vertex yc, while (c) is identical except for

the removal of the central vertex. We have taken m = 3 for (b), m = 4 for (c), and N = 3 for

both. Euclidean path integrals on all these graphs produce states that are permutation-symmetric

between the parties.

Since this is a permutation-symmetric Gaussian state, the binding complexity is given

by (3.43) and the entanglement entropy of a single party is given by (3.42). Both quanti-

ties vanish in the limit N →∞ with β1, β2,M fixed since λ2 (which quantifies entanglement

between parties) scales as 1/N2 at large N . This disentangling at large N can be under-

stood as a manifestation of the principle of entanglement monogamy: when the number

of oscillators within a party grows large, most oscillators are entangled within their party

rather than with other parties. We can compensate by taking a kind of ’t Hooft limit

in which β1N is held fixed as N → ∞, in which case both the binding complexity and

entanglement entropy will be finite and nonzero since λ2 approaches a finite value in the

large N limit. The latter scaling limit can also be thought of as a rescaling of the couplings

with the lattice scale so that the couplings remain finite in the continuum for a lattice

quantization of scalar field theory.

Figure 10 shows the moduli dependence of the binding complexity for the graph fig-

ure 9(a) as computed in (5.5)–(5.6). The complexity increases as β1, β2 become small.

This is because as β → 0 the propagator in (5.2) becomes the identity, thus more closely

coupling the values of the fields at either end of a line in the graph. In the other limit, as

β →∞, the propagator projects onto the ground state, essentially decoupling the external

oscillators from the internal structure of the graph. Finally, consider wavefunctions associ-

ated with the graphs figure 9(b) and figure 9(c). Because all the integrals are Gaussian, we

will again get Gaussian wavefunctions and because the graphs are permutation-symmetric,

the wavefunctions will be as well. Of course, the coefficients in the wavefunctions will

contain different functions of the moduli in each case because the detailed integrals are

different. However, all of these wavefunctions are necessarily of the form (3.25), and there-
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Figure 10. Binding complexity for states constructed by the Euclidean path integral on the graph

figure 9(a) as function of the moduli. Here, for illustration, we take m = 12, N = 20, and M = .01.

fore the constant term in the binding complexity will scale as the logarithm of the number

of entangled parties, unlike the linear scaling with parties of the interior volume of multi-

boundary wormholes.

5.2 Bipartite entanglement graphs

We would like to find graphs that generate states with complexity-entropy scaling relations

that match the holographic form. First note that the scaling relation (3.43) between com-

plexity and entropy holds in the large β limit in which the entropy associated with any

single party is large. It was shown in [47] in the holographic setting that in this regime, the

entanglement structure of the multiboundary wormhole is dominated by bipartite entangle-

ment between boundaries.19 Consequently, to better match the holographic expectations,

we seek graphs on which the path integral will produce strongly bipartite entanglement.

There is an independent reason to be interested in such graphs: in the “bit thread” inter-

pretation of holographic entanglement entropy [64, 65] one expects the correlations between

independent tensor factors of a CFT to be dominated by bipartite entanglement (i.e., be-

tween the two qubits connected by a bit thread). In our setup, the mixing of terms in

the wavefunction is dictated by topological connectedness in the graph on which we per-

form the path integral. Therefore, we engineer multipartite entangled states with locally

bipartite entanglement structure by using graphs which factorize so that a given connected

component of the graph connects only two parties.

In figure 11(a), we display such a “bipartite entanglement graph”, in which the os-

cillators in each party have been partitioned into groups that are only entangled with

oscillators in one other party. The overall graph factorizes into a collection of the two-

party permutation-symmetric graphs of section 5.1. Let N = (m − 1)k be the number of

oscillators in each party, where m is the total number of parties and k is the number of

oscillators per grouping, so that each of the k groups connects to a different one of the other

19This was justified by computations of the mutual information both from the CFT state dual to the

wormhole and holographically using the Ryu-Takayanagi formula. The tensor network models for multi-

boundary wormholes considered in [49] corroborate the dominance of bipartite entanglement in the large

β limit.
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(a)

...
...k

(b)

Figure 11. (a) The m = 4, N = 6, k = 2 bipartite entanglement graph. Note that there is no

central vertex in the interior; the graphs overlap each other but are not connected. (b) The graph

corresponding to ψbranch,k, with k oscillators in each of the two parties.

m−1 parties (see figure 11 for details). We again choose β2 to be the length of internal lines

and β1 to be the length of external lines. As drawn in figure 11(a) it appears that only part

of each party is connected to part of another party. However, as before, one may always

mix the oscillators in a single party via local unitaries which will not affect the binding

complexity or the entanglement entropy associated with that party. Therefore, we may

think of figure 11(a) as encoding locally bipartite entanglement between parties without

restricting the entanglement to reside in some subsystem of each party. In other words, in

figure 11(a) we have used local unitary transformations to “diagonalize” the entanglement

structure in each party.

Since the manifold on which we are performing the Euclidean path integral is topologi-

cally disconnected, the path integral factorizes over the connected components, as does the

resulting wavefunction. Consequently, ψ(~x) is the product of
(
m
2

)
= m(m−1)

2 permutation-

symmetric wavefunctions. Let ψbranch,k be the wavefunction of the graph in figure 11(b),

which has k oscillators in each party. This is a permutation-symmetric graph as described

in section 5.1, so ψbranch,k is a two-party permutation-symmetric wavefunction. Then the

wavefunction of the full bipartite entanglement graph can be explicitly written as

ψ(~x1, . . . , ~xm) = ψbranch,k(x
(m−2)k+1
1 , . . . , x

(m−1)k
1 , x1

2, . . . , x
k
2)× . . .

× ψbranch,k(x
(m−2)k+1
m , . . . , x(m−1)k

m , x1
1, . . . , x

k
1), (5.9)

where the product includes m(m − 1)/2 such terms corresponding to the bipartite con-

nection between each pair of parties. The total wavefunction is still Gaussian and takes

the form of (5.4), but Ω is no longer permutation symmetric within each party. Since we

have the freedom to relabel oscillators so that topologically connected vertices are ordered

adjacently in the matrix, Ω takes a block-diagonal form, consisting of m(m−1)/2 identical

permutation-symmetric subblocks each of size 2k×2k. Each subblock is of the form (3.25)

with the couplings ω, λ1, and λ2 given by (5.5)–(5.6) with the replacement m → 2 and
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N → k. The structure of the matrix Ω in the special case m = 3, N = 4, k = 2 is shown

below, where the solid lines demarcate parameters corresponding to the same party and

dashed lines demarcate parameters corresponding to topologically connected oscillators:

Ω =




ω λ1 0 0 0 0 0 0 0 0 λ2 λ2

λ1 ω 0 0 0 0 0 0 0 0 λ2 λ2

0 0 ω λ1 λ2 λ2 0 0 0 0 0 0

0 0 λ1 ω λ2 λ2 0 0 0 0 0 0

0 0 λ2 λ2 ω λ1 0 0 0 0 0 0

0 0 λ2 λ2 λ1 ω 0 0 0 0 0 0

0 0 0 0 0 0 ω λ1 λ2 λ2 0 0

0 0 0 0 0 0 λ1 ω λ2 λ2 0 0

0 0 0 0 0 0 λ2 λ2 ω λ1 0 0

0 0 0 0 0 0 λ2 λ2 λ1 ω 0 0

λ2 λ2 0 0 0 0 0 0 0 0 ω λ1

λ2 λ2 0 0 0 0 0 0 0 0 λ1 ω




. (5.10)

We have not yet relabeled oscillators above to bring Ω into block diagonal form, so that

the grouping of oscillators in each party is clearer.

Although Ω is not permutation-symmetric, each of its subblocks is permutation-

symmetric. Consequently, the entanglement entropy associated with a single party is

S = (m− 1)Sbranch,k, (5.11)

where Sbranch,k refers to the entanglement entropy associated with a single party of the

wavefunction ψbranch,k. Equation (5.11) follows automatically from the factorized form of

the graph as shown in figure 11(a): the wavefunction splits over each component in the

graph, so the total entanglement entropy is the sum of the entropies of each component.20

In other words, the entanglement entropy associated to a single party essentially counts

the minimal number (m− 1) of edges which are “cut” in separating the oscillators in that

party from the rest. This continues to hold for the entropy associated with other partitions:

the prefactor m − 1 in (5.11) changes to the minimal number of edges cut in separating

those parties from the rest. It is tempting to compare this result to bit threads and to the

tensor network picture of holographic entanglement entropy, in that the entropy associated

to a given party is directly proportional to the number of “threads” leaving that party.

This counting property of entropy is thought to underlie the Ryu-Takayanagi formula for

holographic entanglement entropy.

Upon tracing out m − 2 parties, the reduced density matrix ρ associated with two

parties of a bipartite entanglement graph has a robust W-like entanglement structure.

From the product structure of the wavefunction (5.9), it follows that ρ takes the schematic

form ρ = ρmixed
1 ⊗ ρ12 ⊗ ρmixed

2 , where the subscripts refer to the first and second party.

Here ρ12 is a pure state corresponding to the two-party permutation-symmetric graph that

connects a single group of oscillators in each of the two parties, while ρmixed
1 refers to

20This follows from the property S(ρA ⊗ ρB) = S(ρA) + S(ρB).
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the complicated mixed state of the remaining oscillators in the first party and similarly

for 1 ↔ 2. In section 3 we argued that a permutation-symmetric state like ρ12 has a

robust entanglement structure, so ρ will demonstrate this structure as well. In figure 11(a)

and in (5.9), we have picked an adapted basis that has separated the oscillators in such

a way that upon doing partial traces, the degrees of freedom that remain entangled are

distinct from the degrees of freedom that are in a mixed state. In general, we can act with

local unitary transformations so that all the degrees of freedom retain both entanglement

and mixedness.

The binding complexity of these graphs is
√(

m
2

)
times the binding complexity of

ψbranch,k as computed by (3.41), giving

Cb =
1

4

√
m(m− 1)

∣∣∣∣ln
(

1 + µ

1− µ

)∣∣∣∣ . (5.12)

Here µ = kλ2
ω+(k−1)λ1

as is appropriate for ψbranch,k. Equation (5.12) follows from the

factorized nature of the wavefunction, since the minimal circuit preparing the final state

splits over each of the
(
m
2

)
components in the graph, as can be checked by explicitly solving

the Euler-Arnold equation. This splitting leads to an overall factor of
√(

m
2

)
from the sum

over different factors inside the square root in the equation (3.19) for complexity.

The complexity-entropy scaling relation that follows from (5.11) and (5.12) is

Cb =
1

2

√
m(m− 1)(2 ln 2− 1) +

m∑

i=1

1

2m

√
m

m− 1
S. (5.13)

Comparing to (4.2), one sees that the constant term now scales with the number of bound-

aries in the same O(m) fashion as the holographic expectation, at least in the large m

limit, adding support for the idea that Binding Complexity = Wormhole Volume.

6 Complexity for coherent states in perturbation theory

The Nielsen formalism also allows us to compute how much the complexity of a state

changes when it is perturbed. For example, suppose we want to compute the Nielsen

complexity of a state of the form

|ψ〉 = eit
∑
I h

IOI |ψ0〉, (6.1)

relative to the base state ψ0, where t will be treated as a small parameter in which we do

perturbation theory. In other words, we are interested in studying the complexity of the

unitary operator U = eit
∑
I h

IOI perturbatively in t. This situation can arise in several

contexts; for example if we treat t as time and H =
∑

I h
IOI as a Hamiltonian, then we

obtain the small-time behavior of the complexity of time evolution. Alternatively, we may

treat U as creating a coherent state on top of some base state ψ0, and t may be a small

parameter which controls the size of the background deformation, as in the next subsection.

As before, we will take the operators OI to form the Lie algebra

[OI ,OJ ] = i
∑

K

fIJ
KOK . (6.2)
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As discussed previously, we need to define a positive-definite, bilinear form GIJ on this

algebra, which fixes the complexity of individual gates. We will be interested in the case

of binding complexity, where operators which act within individual factors will have small

cost factors, while operators which act across multiple factors will have O(1) cost factors.

From GIJ we can then define a right-invariant metric on the entire group manifold by

pulling back this bilinear form from the identity. A geodesic takes the general form

|ψ(s)〉 = U(s)|ψ0〉, U(s) = P exp

(
i

∫ s

0
ds′
∑

I

vI(s′)OI
)
, (6.3)

where v is the local velocity and P is path-ordering. The geodesic equation in terms of the

velocity is given by the Euler-Arnold equation

∑

J

IIJ
dvJ

ds
−
∑

K,L,M

fKL
IvKILMvM = 0, (6.4)

The boundary conditions are

U(0) = 1, U(1) = exp

(
it
∑

I

hIOI
)
, (6.5)

where λ is a small parameter. For states of this form, we can solve the equations in

perturbation theory with respect to λ. So let us take

vI(s) = tvI(1)(s) + t2vI(2)(s) + t3vI(3)(s) + · · · . (6.6)

First order in t: at leading order, the equation can be solved trivially:

dvI(1)

ds
= 0 ⇒ vI(1)(s) = vI(1)(0), (6.7)

Therefore, the unitary U(1) is given by

U(1) = 1 + it
∑

I

vI(1)OI + · · · . (6.8)

Comparing this with (6.5) at first order, we deduce that

vI(1) = hI . (6.9)

We can now compute the binding complexity of this state as the geodesic distance:

Cb :=

∫ 1

0
ds

√∑

I,J

GIJvI(s)vJ(s) = t||H||+O(t2), (6.10)

where ||H|| =
√∑

I,J GIJh
IhJ is the norm of the operator H =

∑
I h

IOI with respect to

the chosen complexity metric G.

– 29 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
9

Second order in t: at the next order in t, we find the solution

vI(2)(s) = vI(2)(0) + s
∑

J,K,L,M

fKL
J(I−1)IJh

KILMhM

= vI(2)(0) + s
∑

K,M

cKM
IhKhM , (6.11)

where we have defined

cKM
I =

∑

J,L

fKL
J(I−1)IJILM . (6.12)

So, now the unitary becomes

U(1) = P exp

(
i

∫ 1

0
ds
∑

I

[
thI + t2

(
vI(2)(0) + s

∑

K,L

cKL
IhKhL

)]
OI + · · ·

)

= 1 + i
∑

I

[
thI + t2

(
vI(2)(0) +

1

2

∑

K,L

cKL
IhKhL

)]
OI (6.13)

− t
2

2

∑

I,J

hIhJOIOJ + · · · . (6.14)

Once again, comparing with equation (6.5), we find

vI(2)(0) = −
∑

K,L

cKL
IhKhL, (6.15)

and therefore to this order the velocity is then given by

vI(s) = thI − 1

2
t2 (1− 2s)

∑

K,L

cKL
IhKhL + · · · . (6.16)

We can now use this result to compute the O(t2) correction to the complexity, and we find

that the O(t2) contribution vanishes after performing the s-integral. Therefore, we obtain

Cb = t||H||+O(t3). (6.17)

We can proceed in a similar fashion to obtain higher order corrections, for instance, the

O(t3) correction is shown in appendix C. We see that for small t the binding complexity of

the unitary U = eit
∑
I h

IOI increases linearly in t, with the proportionality constant being

the norm of the Hamiltonian H =
∑

I h
IOI in the multipartite sector, that is, only the

relevant operators which act simultaneously on multiple factors are included in the norm.

6.1 Double-trace deformations: towards creating wormholes

We can now how ask how the binding complexity changes if we perturb a state by acting

with an operator that locally couples degrees of freedom in two distinct parties. In the

holographic context this sort of “double-trace deformation” was shown in [50] to create

or expand a wormhole in the geometric description of disconnected but entangled CFTs.
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Once again we consider the toy model with n free, decoupled harmonic oscillators φi, with

the Hamiltonian

H0 =
1

2

∑

i

(
π̂2
i + φ̂2

i

)
. (6.18)

We can straightforwardly diagonalize H0 by introducing the creation and annihilation

operators ai = 1√
2

(
φ̂i + iπ̂i

)
and a†i = 1√

2

(
φ̂i − iπ̂i

)
, in terms of which we obtain H0 =

∑
i

(
a†iai + 1

2

)
. The vacuum state for this Hamiltonian, which satisfies

ai|ψ0〉 = 0, (6.19)

is a completely decoupled product state, and as such it will have no binding complexity.

We now deform the Hamiltonian by a small bilinear coupling

H = H0 +Hint, (6.20)

with

Hint =
g

2

∑

i,j

φ̂iCijφ̂j . (6.21)

The coupling clearly introduces some entanglement and binding complexity in the new

vacuum; our aim here is to compute this binding complexity perturbatively in g. In order

to diagonalize the new Hamiltonian H, let us introduce the orthogonal matrix Vij which

diagonalizes Mij = δij + gCij :

M = V T ·D · V, D = diag
(
ω2

1, ω
2
2, · · ·

)
. (6.22)

Here ω2
i are the eigenvalues of M . Then, we define the new operators

Φi =
∑

j

Vijφ̂j , Πi =
∑

j

Vij π̂j , (6.23)

which also satisfy the appropriate bosonic commutation relations. In terms of these new

variables the full Hamiltonian becomes

H =
1

2

∑

i

Π2
i +

1

2

∑

i

ω2
i Φ

2
i . (6.24)

Now diagonalize this Hamiltonian by introducing the new creation and annihilation

operators

Ai =
1√
2

(√
ωiΦi +

i√
ωi

Πi

)
, A†i =

1√
2

(√
ωiΦi −

i√
ωi

Πi

)
. (6.25)

We can express these new creation and annihilation operators in terms of the old creation

and annihilation operators as

Ai =
∑

j

(
cosh(gλi)Vijaj + sinh(gλi)Vija

†
j

)
,
√
ωi = egλi . (6.26)
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We can represent this Bogoliubov transformation in terms of conjugation by a unitary

operator:

Ai = U†aiU , U = e
∑
i
gλi
2

(
a†ia

†
i−aiai

)
e
∑
i,j vija

†
iaj , (6.27)

where the real, anti-symmetric matrix vij is defined as V = ev. Therefore, the new vacuum

ψ in presence of the bilinear interaction can be related to the old vacuum ψ0 as

|ψ〉 = U†|ψ0〉 = e
1
2

∑
j,k Bjk

(
a†ja

†
k−ajak

)
|ψ0〉, (6.28)

where

Bjk = g
∑

i

λiV
T
ji Vik.

We can also re-express this state in terms of the gl(n,R) generators Ôij = 1
2

(
φ̂iπ̂j + π̂jφ̂i

)
,

which were discussed in section 3.1:

|ψ〉 = e2i
∑
i,j BijÔij |ψ0〉, (6.29)

The binding complexity of the state can now be computed perturbatively in g, following

our discussion in the previous section. The leading order contribution is

Cb = 2||B||+ · · · = 2

(∑

i 6=j
BijBji

)1/2

+ · · · , (6.30)

where B =
∑

i,j BijÔij and the · · · indicate higher order corrections which enter at O(g3)

(as discussed in the previous section).

This result shows that adding “double-trace deformations” to the Hamiltonian creates

binding complexity in the vacuum. If binding complexity measures the interior volume of

wormholes, our result implies that the deformation has created a wormhole where none

previously existed. This is in analogy with the holographic results of [50] where double-

trace deformations of a product of CFTs enlarged a wormhole between the corresponding

geometric asymptotic regions. We computed our results above in a toy model of oscillators,

but we expect that a similar calculation will go through in the case of generalized free

fields describing the large N limit of CFTs, which is the limit in which field theories are

holographically described by classical geometry.

7 Discussion

We have suggested an interpretation for the volume of multiboundary wormhole interiors

in AdS/CFT in terms of the binding complexity of the dual state. However, our discussion

was limited to the interior volume of the time-reflection symmetric Cauchy slice in the bulk.

If we consider a generic Cauchy surface ending at the times (t1, · · · tn) on the boundaries,

then the volume of the wormhole interior will, in general, be larger. However, the binding

complexity should be independent of the times ti because changing these times simply

corresponds to local Hamiltonian evolution in the different CFTs, and does not add any
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Figure 12. Cauchy slices of maximal volume (blue) and of minimal interior volume (red) in the

BTZ geometry, both anchored at boundary times t1 in the left CFT and t2 in the right CFT. The

volume of the interior of the maximal slice (dark blue) increases over time, but the corresponding

circuit does not minimize binding complexity.

entanglement. This observation suggests that the covariant version of the bulk dual to

binding complexity should be given by minimizing the interior volume over all the bulk

Cauchy surfaces and over the different boundary times {ti}. Note that if we consider the

maximum volume slice in the bulk ending at the times ti, then its volume is expected to be

dual to the total complexity of the boundary state, which indeed depends on the ti because

local Hamiltonian evolution adds to the total complexity. However, the corresponding

circuit is not the minimal one from the point of view of binding complexity. Figure 12

illustrates that the maximal volume Cauchy slice in the two-sided wormhole corresponding

to the BTZ black hole can have a large interior volume, but it is always possible to find a

different Cauchy slice that passes through the bifurcation surface.

The relation between binding complexity and wormhole interiors was most concrete

for certain states created by performing the Euclidean path integral on a graph with lo-

cally bipartite connections between parties, but which can nevertheless have multipartite

entanglement. This occurs if some local degrees of freedom in each party have bipartite

entanglement with local degrees of freedom in different parties. This is a structure resem-

bling the W-state on qubits (1.2). However, we know that states with holographic duals

satisfy the additional condition that mutual information is monogamous [66], implying that

it is of the perfect tensor type [62]. In the bit-thread picture of entanglement, it seems

necessary to sum over different bit-thread configurations to achieve this constraint [64, 67].

In our picture this would mean summing over multiple (perhaps all) Euclidean graphs that

produce states on a given partition of external variables. It would be interesting to consider

the binding complexity for these kinds of states — it is not obvious that the complexity

will simply be a weighted sum of the complexities of the individual graph states.
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Our notion of binding complexity has similarities to the idea of quantum communica-

tion complexity, where several independent parties attempt to collaborate on some partic-

ular computation.21 We can define the quantum communication complexity of a task to

be the minimum number of qubits that must be exchanged between all the parties in order

to complete the computation. Binding complexity measures a similar quantity, namely the

number of gates that affect more than one party’s qubits. In this way, both binding and

quantum communication complexity increase as the computation requires more coopera-

tion or interaction between the parties. In fact, we can obtain a strict relationship between

the two quantities. Suppose all the gates in an n-qubit quantum circuit U are k-qubit

gates. Then the quantum communication complexity of applying U to some distributed

set of qubits is bounded by the binding complexity, since we may always transmit qubits

across party lines in order to apply one of our gates. If the distributed parties run into

a gate that contributes to the binding complexity during the application of U , they may

simply communicate all the qubits to one of the involved parties, apply the unitary locally,

and then send the qubits back to their proper owners (the bound is improved by a factor

of 2 if we drop this last requirement). Each cross-boundary gate therefore contributes a

maximum of 2k to the quantum communication complexity, and we obtain the upper bound

CqComm(U) ≤ 2kCb(U). (7.1)

Note that if we described this in a holographically dual geometry, the required multibound-

ary wormhole need not be traversable - there is no wormhole-based “quantum FedEx” that

would allow qubit transfers between the different boundaries, which we are treating as the

distributed parties attempting to build the unitary U . However, we can obtain a bound

on the communication complexity of the problem by studying this geometry, assuming

our conjecture holds. It would be interesting to make this analogy between binding and

quantum communication complexity more precise in holography.
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A Binding complexity for more general states

In this appendix, we compute the binding complexity for a state with less symmetry than

that of (3.25). This will be an educational exercise that suggests a solution procedure for

21We thank Scott Aaronson for bringing quantum communication complexity to our attention.
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a totally arbitrary state. Consider a wavefunction for a four-party state taking the general

Gaussian form (5.4) with the matrix Ω taking a block structure like

Ω =




ωλ1 λ
(1)
2 λ

(2)
2 λ

(3)
2

λ
(1)
2 ωλ1 λ

(3)
2 λ

(2)
2

λ
(2)
2 λ

(3)
2 ωλ1 λ

(1)
2

λ
(3)
2 λ

(2)
2 λ

(1)
2 ωλ1



. (A.1)

As in (3.26), each entry above is an N × N matrix, where N is the number of oscillators

on each boundary. The elements λ
(i)
2 are the matrices all of whose elements are couplings

similarly labeled λ
(i)
2 (below, λ

(1)
2 refers to the coupling, not the full matrix). The elements

ωλ1 are matrices that are ω on the diagonal and λ1 on all off-diagonals. This Ω is not

completely general: in the language of section 5, it corresponds to the path integral on a

graph with Z2 × Z2 symmetry between the four parties.

The solution of the Euler-Arnold equation (3.20) is independent of the structure of

the wavefunction, so the velocity matrix V again is constant. In general, one can show

that choosing the structure of the velocity matrix V to have the same form as Ω will

allow for solution of the flow equation (3.30). Consequently, we choose V to take the same

form as (A.1) with a replacing ω, b replacing λ1, and three cross-party velocities c1, c2, c3

replacing λ
(1)
2 , λ

(2)
2 , λ

(3)
2 . Doing so, (3.30) splits into a 5× 5 matrix equation:

d~Ω

ds
= M~Ω, (A.2)

where ~Ω =
(
ω λ1 λ

(1)
2 λ

(2)
2 λ

(3)
2

)T
arranges the s-dependent couplings of the matrix Ω into a

vector and

M = 2




a (N − 1)b Nc1 Nc2 Nc3

b a+ (N − 2)b Nc1 Nc2 Nc3

c1 (N − 1)c1 a+ (N − 1)b Nc3 Nc2

c2 (N − 1)c2 Nc3 a+ (N − 1)b Nc1

c3 (N − 1)c3 Nc2 Nc1 a+ (N − 1)b



. (A.3)

For comparison, note that the equations (3.31)–(3.33) can be written as a similar 3 × 3

matrix equation. The matrix M has five distinct eigenvalues:

κ0 = 2(a− b) (A.4)

κ1 = 2(a+ b(N − 1) + (c1 − c2 − c3)N) (A.5)

κ2 = 2(a+ b(N − 1) + (−c1 + c2 − c3)N) (A.6)

κ3 = 2(a+ b(N − 1) + (−c1 − c2 + c3)N) (A.7)

κ+ = 2(a+ b(N − 1) + (c1 + c2 + c3)N). (A.8)

Solving (A.2) with the usual boundary conditions of Ω(i) = diag(ω0, ω0, . . . , ω0) at s = 0

and Ω(f) as given by (A.1) at s = 1, we find

ω =
ω0

4N
(4(N − 1)eκ0 + eκ1 + eκ2 + eκ3 + eκ+) (A.9)

λ1 = − ω0

4N
(4eκ0 − eκ1 − eκ2 − eκ3 − eκ+) (A.10)
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λ
(1)
2 =

ω0

4N
(eκ1 − eκ2 − eκ3 + eκ+) (A.11)

λ
(2)
2 = − ω0

4N
(eκ1 − eκ2 + eκ3 − eκ+) (A.12)

λ
(3)
2 = − ω0

4N
(eκ1 + eκ2 − eκ3 − eκ+). (A.13)

We remark that the five distinct eigenvalues of Ω are given by:

ρ0 = ω − λ1 (A.14)

ρ1 = ω + (N − 1)λ1 +N(λ
(1)
2 − λ

(2)
2 − λ

(3)
2 ) (A.15)

ρ2 = ω + (N − 1)λ1 +N(−λ(1)
2 + λ

(2)
2 − λ

(3)
2 ) (A.16)

ρ3 = ω + (N − 1)λ1 +N(−λ(1)
2 − λ

(2)
2 + λ

(3)
2 ) (A.17)

ρ+ = ω + (N − 1)λ1 +N(λ
(1)
2 + λ

(2)
2 + λ

(3)
2 ), (A.18)

closely related to the eigenvalues of M . In the permutation-symmetric limit, ρ+ corresponds

to λ+, ρ0 corresponds to λ0, and ρ1, ρ2, ρ3 all approach λ−. Solving the system (A.9)–(A.13)

for the eigenvalues κ we obtain

κi = ln(
ρi
ω0

), (A.19)

for all i = 0, 1, 2, 3,+. Finally, solving for the velocities a, b, ck,

a = 4(N − 1)κ0 + κ1 + κ2 + κ3 + κ+ (A.20)

b = −4κ0 + κ1 + κ2 + κ3 + κ+ (A.21)

c1 = κ1 − κ2 − κ3 + κ+ (A.22)

c2 = −κ1 + κ2 − κ3 + κ+ (A.23)

c3 = −κ1 − κ2 + κ3 + κ+. (A.24)

Rewriting the ck that determine the binding complexity in terms of the eigenvalues ρi,

c1 =
1

8N
ln
ρ1ρ+

ρ2ρ3
(A.25)

c2 =
1

8N
ln
ρ2ρ+

ρ1ρ3
(A.26)

c3 =
1

8N
ln
ρ3ρ+

ρ1ρ2
. (A.27)

Lastly, a short combinatorial computation determines the binding complexity

Cb = 2N |c|, (A.28)

where |c| =
√

(c1)2 + (c2)2 + (c3)2. Notice that again the prefactor of N above cancels the

N dependence of the ck so that the binding complexity is finite in the large N limit.

Unfortunately, the binding complexity does not arrange nicely in terms of a parameter

µ as in section 3, and it is prohibitively diffcult to evaluate the entanglement entropy
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associated with a single party of the state specified by (A.1) to obtain a complexity-entropy

scaling. Nevertheless, this computation is instructive to understand how to compute the

binding complexity for a (more) general Gaussian state. In general, we expect that if we

arrange the couplings in Ω into a vector ~Ω, the eigenvalues ~ρ of the matrix Ω will be some

linear combination of the couplings: ~ρ = A~Ω. In this case, choosing V to have the same

matrix structure as Ω gives rise to a lower-dimensional matrix equation for the couplings in

terms of a matrix M = 2A. The eigenvalues ~κ of M will be ~κ = M~V , and the solution for

the velocities will looks like Vi = 1
2

∑
j(A
−1)ij ln

ρj
ω0

. Note that ~V is the vector of velocities

analogous to ~Ω. Once the velocities are obtained, it is straightforward to compute the

binding complexity based on the particular combinatorics of a given setup.

B Wavefunctions of permutation-symmetric graphs

In this appendix, we compute the wavefunctions of the branched graphs presented in fig-

ure 9(a), for an arbitrary number of parties m and number of oscillators per party N ,

working in the M → 0 limit for simplicity. In this limit, the propagator (5.2) remains

Gaussian and takes the simple form

K(x1, x2, β) ∝ e−
1
2β

(x2−x1)2
. (B.1)

Starting from the definition (5.3) and reading off from figure 9(a) where each oscillator

vertex connects to internal vertices,

ψ(~x) =

∫
d~y

∏

(v1,v2,β)∈EG

K(v1, v2, β) (B.2)

= Ñ

∫
d~ydyc exp

[
− 1

2β1

(
(x1

1 − y1)2 + . . .+ (xNm − ym)2
)

− 1

2β2

(
(y1 − yc)2 + . . .+ (ym − yc)2

)]
(B.3)

= Ñ

∫
d~y exp

[
− 1

2β1

(
N
∑

i

y2
i +

∑

i,j

(xij)
2 − 2

∑

j

yj
∑

i

xij

)]

×
∫
dyc exp

[
− 1

2β2

(
my2

c − 2yc
∑

i

yi +
∑

i

y2
i

)]
, (B.4)

where Ñ is a normalization constant. Performing the Gaussian integral over yc, we obtain

ψ(~x) = Ñ ′
∫
d~y exp

[
− 1

2β1

(
N
∑

i

y2
i +

∑

i,j

(xij)
2 − 2

∑

j

yj
∑

i

xij

)

− 1

2β2

(∑

i

y2
i −

1

m

(∑

i

yi

)2)]
, (B.5)

where Ñ ′ is a new normalization constant. The remaining integral (B.5) is also Gaussian

over the internal vertices yi, although it has a linear term. That is, it takes the form

ψ(~x) = Ñ ′ exp

[
− 1

2β1

∑

i,j

(xij)
2

]∫
d~y exp

[
−1

2
~yTA~y + ~BT~y

]
, (B.6)
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where the matrix A and vector ~BT are given by:

Aij = αδij + γ(1− δij), BT
j =

1

β1

∑

i

xij . (B.7)

That is, A takes value α on the diagonal and γ on all off-diagonals. The constants α and

γ are given in terms of β1, β2, m, and N by

α =
N

β1
+

1

β2

(
1− 1

m

)
, γ = − 1

mβ2
. (B.8)

The exact solution of the general Gaussian matrix integral of the form of (B.6) is well-

known. Evaluating it gives

ψ(~x) = Ñ ′′ exp

[
− 1

2β1

∑

i,j

(xij)
2

]
exp

[
1

2
~BTA−1 ~B

]
, (B.9)

where Ñ ′′ is another new normalization constant. The inverse of A has the same symmetry

as A, with A−1
ij = Pδij +Q(1− δij) and

P =
α+ (m− 2)γ

α2 + (m− 2)αγ − (m− 1)γ2
, Q =

−γ
α2 + (m− 2)αγ − (m− 1)γ2

. (B.10)

Therefore, in terms of the oscillator variables xij , the wavefunction is

ψ(~x) = Ñ ′′ exp

[
− 1

2β1

∑

i,j

(xij)
2

]
exp

[
1

2β2
1

(
P
∑

j

(∑

i

xij

)2

+Q
∑

j 6=k

∑

i,`

xijx
`
k

)]
.

(B.11)

Despite the cumbersome sum notation for the general case, one can check that this is indeed

Gaussian and can be written in the standard Gaussian form ψ(~x) = Ñ ′′ exp(−1
2~x

TΩ~x) with

Ω in the form of (3.25). To be completely explicit, Ω has the general permutation-symmetric

form (3.25) with

ω =
1

β1
− P

β2
1

=
β1(mN − 1) + β2mN(N − 1)

β1mN(β1 +Nβ2)
(B.12)

λ1 = − P
β2

1

= − β1 +mNβ2

β1mN(β1 +Nβ2)
(B.13)

λ2 = − Q
β2

1

= − β1

β1mN(β1 +Nβ2)
. (B.14)

in agreement with the M → 0 limit of (5.5)–(5.6). This computation was entirely in the

M → 0 limit, but the trick employed herein of rewriting the product over propagators

as matrix Gaussian integrals works very generally. For any permutation-symmetric graph

the computation goes through identically with possibly different values of α and γ, even

when M 6= 0.
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C Perturbation theory to O(t3)

For completeness, we will show how to proceed at O(t3) in the small-time perturbation

theory in this appendix. At third order, we find

vJ(3)(s) = vJ(3)(0) +
s(s− 1)

2

∑

K,L,M,N

(
cKL

JcMN
L + cLK

JcMN
L
)
hKhMhN . (C.1)

So, now the unitary becomes

U(1) = P exp

(
i

∫ 1

0
ds
∑

I

[
thI − 1

2
t2 (1− 2s)

∑

K,L

cKL
IhKhL + t3vI(3)(0) (C.2)

+t3
s(s− 1)

2

∑

K,L,M,N

(
cKL

IcMN
L + cLK

IcMN
L
)
hKhMhN

]
OI + · · ·

)

= 1 + i
∑

I

[
thI + t3vI(3)(0)− t3

24

∑

K,L,M,N

(
cKL

IcMN
L + cLK

IcMN
L
)
hKhMhN

]
OI

− t
2

2

∑

I,J

hIhJOIOJ +
1

2
t3
∑

I,J,K,L

∫ 1

0
ds1

∫ 1

0
ds2

[
Θ(s1 − s2)OIOJ

(
1

2
− s2

)

+Θ(s2 − s1)OJOI
(

1

2
− s2

)]
cKL

JhIhKhL − it3

3!

∑

I,J,K

hIhJhKOIOJOK + · · ·

= 1 + i
∑

I

[
thI + t3vI(3)(0)− t3

24

∑

K,L,M,N

(
cKL

IcMN
L + cLK

IcMN
L
)
hKhMhN

]
OI

− t
2

2

∑

I,J

hIhJOIOJ +
t3

24

∑

I,J,K,L

[OIOJ −OJOI ] cKLJhIhKhL

− it
3

3!

∑

I,J,K

hIhJhKOIOJOK + · · ·

= 1 + i
∑

I

[
thI + t3vI(3)(0)− t3

24

∑

K,L,M,N

(
cKL

IcMN
L + cLK

IcMN
L

+fKL
IcMN

L
)
hKhMhN

]
OI −

t2

2

∑

I,J

hIhJOIOJ −
it3

3!

∑

I,J,K

hIhJhKOIOJOK

+ · · · .
Comparing with equation (6.5), this implies

vI(3)(0) =
1

24

∑

K,L,M,N

(
cKL

IcMN
L + cLK

IcMN
L + fKL

IcMN
L
)
hKhMhN . (C.3)

So the total velocity at this order is given by

vI(s) = thI +
1

2
t2 (1− 2s)

∑

K,L

cKL
IhKhL

+
t3

24

∑

K,L,M,N

{(
cKL

IcMN
L + cLK

IcMN
L + fKL

IcMN
L
)

+
s(s− 1)

2

(
cKL

IcMN
L + cLK

IcMN
L
)}

hKhMhN +O(t4). (C.4)

We can now compute the complexity at O(t3), if we so desire.

– 39 –
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applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319.

[33] T. Tao, The Euler-Arnold equation,

https://terrytao.wordpress.com/2010/06/07/the-euler-arnold-equation/ (2010).

[34] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61

(2013) 781 [arXiv:1306.0533] [INSPIRE].

[35] V. Balasubramanian et al., Multiboundary wormholes and holographic entanglement, Class.

Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].

[36] D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90

(2014) 126007 [arXiv:1406.2678] [INSPIRE].

[37] L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44

[arXiv:1403.5695] [INSPIRE].

[38] L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44

[arXiv:1403.5695] [INSPIRE].

– 41 –

https://arxiv.org/abs/1809.06678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.06678
https://doi.org/10.1103/PhysRevLett.120.121602
https://arxiv.org/abs/1707.08582
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08582
https://doi.org/10.1103/PhysRevLett.120.031601
https://arxiv.org/abs/1706.00965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00965
https://doi.org/10.1103/PhysRevLett.119.071602
https://arxiv.org/abs/1703.00456
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00456
https://doi.org/10.1007/JHEP11(2017)097
https://arxiv.org/abs/1706.07056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07056
https://doi.org/10.1007/JHEP07(2018)086
https://arxiv.org/abs/1804.01999
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01999
https://doi.org/10.1007/JHEP12(2018)048
https://doi.org/10.1007/JHEP12(2018)048
https://arxiv.org/abs/1808.09072
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.09072
https://doi.org/10.1007/JHEP08(2018)012
https://arxiv.org/abs/1803.02356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.02356
https://doi.org/10.1016/j.physletb.2018.10.071
https://doi.org/10.1016/j.physletb.2018.10.071
https://arxiv.org/abs/1806.10144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.10144
https://arxiv.org/abs/1811.03097
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.03097
https://doi.org/10.1007/JHEP09(2018)043
https://arxiv.org/abs/1805.05839
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.05839
https://arxiv.org/abs/1807.04422
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.04422
https://arxiv.org/abs/1810.02734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.02734
http://dx.doi.org/10.5802/aif.233
https://terrytao.wordpress.com/2010/06/07/the-euler-arnold-equation/
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1002/prop.201300020
https://arxiv.org/abs/1306.0533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0533
https://doi.org/10.1088/0264-9381/31/18/185015
https://doi.org/10.1088/0264-9381/31/18/185015
https://arxiv.org/abs/1406.2663
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2663
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2678
https://doi.org/10.1002/prop.201500093
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5674
https://doi.org/10.1002/prop.201500093
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5695


J
H
E
P
0
2
(
2
0
1
9
)
0
6
9

[39] L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823

[INSPIRE].

[40] A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018)

086015 [arXiv:1701.01107] [INSPIRE].

[41] D.R. Brill, Multi-black hole geometries in (2 + 1)-dimensional gravity, Phys. Rev. D 53

(1996) 4133 [gr-qc/9511022] [INSPIRE].

[42] D. Brill, Black holes and wormholes in (2 + 1)-dimensions, gr-qc/9904083 [INSPIRE].

[43] S. Aminneborg et al., Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav.

15 (1998) 627 [gr-qc/9707036] [INSPIRE].

[44] K. Skenderis and B.C. van Rees, Holography and wormholes in 2 + 1 dimensions, Commun.

Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].

[45] K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929

[hep-th/0005106] [INSPIRE].

[46] K. Krasnov, Black hole thermodynamics and Riemann surfaces, Class. Quant. Grav. 20

(2003) 2235 [gr-qc/0302073] [INSPIRE].

[47] D. Marolf, H. Maxfield, A. Peach and S.F. Ross, Hot multiboundary wormholes from bipartite

entanglement, Class. Quant. Grav. 32 (2015) 215006 [arXiv:1506.04128] [INSPIRE].

[48] Z. Fu et al., Holographic complexity is nonlocal, JHEP 02 (2018) 072 [arXiv:1801.01137]

[INSPIRE].

[49] A. Peach and S.F. Ross, Tensor network models of multiboundary wormholes, Class. Quant.

Grav. 34 (2017) 105011 [arXiv:1702.05984] [INSPIRE].

[50] P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation,

JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

[51] M.A. Nielsen et al., Quantum dynamics as a physical resource, Phys. Rev. A 67 (2003)

052301 [quant-ph/0208077].

[52] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996) 1413

[quant-ph/9604005].

[53] M. Horodecki, P. Horodecki and R. Horodecki, Separability of mixed states: necessary and

sufficient conditions, Phys. Lett. A 223 (1996) 1 [quant-ph/9605038].

[54] G. Vidal and R.F. Werner, Computable measure of entanglement, Phys. Rev. A 65 (2002)

032314 [quant-ph/0102117].

[55] S. Rana, Negative eigenvalues of partial transposition of arbitrary bipartite states, Phys. Rev.

A 87 (2013) 054301 [arXiv:1304.6775].

[56] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

[57] R. Simon, Peres-horodecki separability criterion for continuous variable systems, Phys. Rev.

Lett. 84 (2000) 2726 [quant-ph/9909044].

[58] R.F. Werner and M.M. Wolf, Bound entangled gaussian states, Phys. Rev. Lett. 86 (2001)

3658 [quant-ph/0009118].

[59] E. Shchukin and W. Vogel, Inseparability criteria for continuous bipartite quantum states,

Phys. Rev. Lett. 95 (2005) 230502 [quant-ph/0508132].

– 42 –

https://arxiv.org/abs/1408.2823
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2823
https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.1103/PhysRevD.97.086015
https://arxiv.org/abs/1701.01107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.01107
https://doi.org/10.1103/PhysRevD.53.R4133
https://doi.org/10.1103/PhysRevD.53.R4133
https://arxiv.org/abs/gr-qc/9511022
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9511022
https://arxiv.org/abs/gr-qc/9904083
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9904083
https://doi.org/10.1088/0264-9381/15/3/013
https://doi.org/10.1088/0264-9381/15/3/013
https://arxiv.org/abs/gr-qc/9707036
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9707036
https://doi.org/10.1007/s00220-010-1163-z
https://doi.org/10.1007/s00220-010-1163-z
https://arxiv.org/abs/0912.2090
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.2090
https://doi.org/10.4310/ATMP.2000.v4.n4.a5
https://arxiv.org/abs/hep-th/0005106
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005106
https://doi.org/10.1088/0264-9381/20/11/319
https://doi.org/10.1088/0264-9381/20/11/319
https://arxiv.org/abs/gr-qc/0302073
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0302073
https://doi.org/10.1088/0264-9381/32/21/215006
https://arxiv.org/abs/1506.04128
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04128
https://doi.org/10.1007/JHEP02(2018)072
https://arxiv.org/abs/1801.01137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01137
https://doi.org/10.1088/1361-6382/aa6b0f
https://doi.org/10.1088/1361-6382/aa6b0f
https://arxiv.org/abs/1702.05984
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.05984
https://doi.org/10.1007/JHEP12(2017)151
https://arxiv.org/abs/1608.05687
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05687
http://dx.doi.org/10.1103/PhysRevA.67.052301
http://dx.doi.org/10.1103/PhysRevA.67.052301
https://arxiv.org/abs/quant-ph/0208077
http://dx.doi.org/10.1103/PhysRevLett.77.1413
https://arxiv.org/abs/quant-ph/9604005
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
https://arxiv.org/abs/quant-ph/9605038
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/quant-ph/0102117
https://doi.org/10.1103/PhysRevA.87.054301
https://doi.org/10.1103/PhysRevA.87.054301
https://arxiv.org/abs/1304.6775
https://doi.org/10.1103/PhysRevLett.71.666
https://arxiv.org/abs/hep-th/9303048
https://inspirehep.net/search?p=find+EPRINT+hep-th/9303048
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2726
https://arxiv.org/abs/quant-ph/9909044
http://dx.doi.org/10.1103/PhysRevLett.86.3658
http://dx.doi.org/10.1103/PhysRevLett.86.3658
https://arxiv.org/abs/quant-ph/0009118
http://dx.doi.org/10.1103/PhysRevLett.95.230502
https://arxiv.org/abs/quant-ph/0508132


J
H
E
P
0
2
(
2
0
1
9
)
0
6
9
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