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1 Introduction

Argyres-Douglas (AD) theories are four dimensional N = 2 superconformal field theories

which were first discovered at special points in the moduli spaces of 4d N = 2 SQCDs

where mutually non-local dyons become massless simultaneously [1, 2]. Examples include

the H0, H1, and H2 theories which are limits of SU(2) SQCDs with Nf = 1, 2 and 3

flavors respectively. Matrix model expressions for a number of AD theories have been

conjectured in [3, 4]. Recently, AD theories have been studied in connection with the

theory of Painlevé equations. It was first observed in [5] that the Seiberg-Witten (SW)

curves of four dimensional N = 2 SU(2) SQCDs theories can be extracted from Painlevé

equations. This observation was made concrete in the breakthrough works of [6, 7] which

established a precise correspondence between the tau functions of Painlevé VI, V, III and

N = 2 SU(2) SQCDs in the self-dual Ω background. This picture was recently further

generalized in [8] showing that the partition functions of the H0, H1 and H2 AD theories

compute the tau functions of the Painlevé I, II and IV equations. One of the purposes

of this paper is to combine these recent progress in the theory of Painlevé equations with

some previous works on AD theory, matrix models and resurgence.

More precisely in section 2 we show that the all order genus expansion of the H1 theory

in the magnetic frame coupled to the Ω background is identical to the all order ’t Hooft

expansion of the β deformed cubic matrix model in the two-cut phase. In view of the
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Painlevé/gauge correspondence [8], we will focus on the non-deformed case, i.e. β = 1,

which is defined as

Z(N) =
1

vol(U(N))

∫
dΦe

− 1
gs

TrW (Φ)
, (1.1)

where Φ is an N ×N Hermitian matrix, and the potential is

W (x) =
m

2
x2 +

1

3
x3 . (1.2)

In the one-cut phase of the model all the N eigenvalues of Φ condensate around the min-

imum x = 0 of the potential and it is possible to show that there exists a double scaling

limit of this model

N →∞, t = gsN → tc =
m3

12
√

3
, (1.3)

where one reproduces the solution to the Painlevé I equation. See [9] for a simple derivation

and [10] for a review and a list of references. In the two-cut phase instead one assumes

that N1 eigenvalues condensate around x = 0 and N2 eigenvalues around the other critical

point of (1.2) namely x = −m. In this case it is possible to write the model as [11]

Z(N1, N2) =
1

Vol(U(N1))×Vol(U(N2))

∫
DΦ1DΦ2e

− 1
gs

(W1(Φ1)+W2(Φ2)+Wint(Φ1,Φ2))
,

(1.4)

where W1(Φ1) and W2(Φ2) are cubic potentials while Wint(Φ1,Φ2) is an interaction term

taking into account the distribution of eigenvalues between the two critical points of the

cubic potential (see equation (2.9) for the precise definition). This matrix model was

studied in great details in [11–13], which we quickly review in section 2.1, as it describes

topological string theory on some particular Dijkgraaf-Vafa geometry. The refinement of

such topological string theory is captured by the β deformation of the matrix model (1.4)

which has been studied in detail in [14] and whose explicit expression is later given in

equation (2.37). We demonstrate in detail in sections 2.2, 2.3 that such a matrix model

also computes the partition function of the H1 theory coupled to the Ω background where

β = −ε1/ε2 (1.5)

and we note by εi the Ω background regulators.

Thanks to the relation between AD theories in the self-dual background and Painlevé

equations established in [8], we can then connect the matrix model (1.4) to the τ function

of the Painlevé II equation (PII) at long time T → ∞ without taking any double scaling

limit, and for generic values of the integration constants as we show in section 3. We

would like to note that the two-cut phase of the quartic matrix model is known to be

related to Painlevé II in a particular double scaling limit; see for instance [15, 16] and

references therein. However in this work instead we consider the two-cut case of the cubic

matrix model and we do not take any scaling limit. The τ -function of PII has the following

structure [8, 17]

τII(T ) ∝
∑
n∈Z

einρein(2
√

2/3)T 3/2G′(T, ν + n) , T →∞ , (1.6)

– 2 –
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where (ν, ρ) are integration constants and T is the time. In [8] the quantity G′ is given

as a series expansion in T−3/2 and the first few terms have been computed explicitly. As

explained in section 3 we find that the two-cut cubic matrix model is identified with the

summand G′(T, ν). This observation enables us to compute G′(T, ν) at large T up to very

high orders and then to study the convergence properties of the solution proposed in [8, 17].

For some particular choice of integration constants we can give an all order formula for

G′(T, ν) (see equations (3.12), (3.25)). We find that the long time expansion of [8, 17] is in

fact divergent and we argue in section 4 that the summation over n in (1.6) amounts to a

sum over all instanton sectors in the matrix model, and that the instantons have the correct

action as extracted from the analysis of the large order behaviour of G′(T, ν), namely

i 2
√

2/3 . (1.7)

At the end of section 4 we briefly discuss Borel summability of (1.6).

Finally in section 5 we discuss the H1 and H0 theories in the NS phase of the Ω

background and we show that these theories can be used to compute the all order WKB

periods of the QM models with the cubic and the double well potentials. This provides

a gauge theory justification for the holomorphic anomaly algorithm proposed in [18] to

determine the spectra of these QM models.

2 Matrix model and Argyres-Douglas theory

In this section, we show that perturbatively the two-cut phase of the β deformed Hermitian

cubic matrix model can be identified with the H1 Argyres-Douglas theory in the magnetic

frame coupled to the Ω background. The ’t Hooft expansion of the Hermitian cubic matrix

has been discussed for instance in [11–13, 19], while its β deformation was studied in [14],

see also [20, 21] for more details on the β deformed models. Some results for the free

energies of the H1 theory can be found for instance in [8, 22]. We quickly review these two

theories, and then demonstrate how they can be identified. Our derivation is rigorous for

the case β = 1 but it relies on some conjectural results of [14] for the case β 6= 1.

Physically, one can argue in favour of a connection between this matrix model and

the H1 theory by following [3, 4] even though the details of the connection and the precise

dictionary between these two theories was not spelled out in these references. The proposal

of [3, 4] was intended to give matrix model realisations for the irregular conformal blocks

studied in [23, 24] and it involves in general a Riemann sphere with an irregular singularity

at infinity and a regular singularity at z = 0. This gives a matrix model with potential

1

gs
V (z) = α(0) log z −

n∑
k=1

c
(∞)
k zk

k
. (2.1)

The coefficient α(0) characterises the regular singularity at z = 0. Then one can argue

that by taking the limit α(0) → 0 one removes the regular singularity, in which case one

arrives at the A2n−3 AD theories (only irregular singularity at infinity), to which the H1

theory belongs. This is how one can argue for a connection between the H1 theory and the

– 3 –
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cubic matrix model from the perspective of [3]. Notice however that strictly speaking in

the approach of [3] removing all the regular singularities may not be completely justified,1

and furthermore the details of the connection and a precise dictionary was not proposed.

On the other hand, even if the physical justification given above is not very rigorous, in

the forthcoming section, after establishing the precise dictionary, we will verify by a direct

computation that the model (1.4) computes the all order genus expansion of the H1 theory.

2.1 The two cut phase of the cubic model

We first study in some details the case β = 1 since we will need it in the forthcoming

section and we briefly illustrate the case of generic β at the end of this subsection.

We consider the hermitian matrix model

Z(N) =
1

vol(U(N))

∫
dMe

− 1
gs

TrW (M)
, (2.2)

where M is an N ×N hermitian matrix, and the potential is

W (x) =
m

2
x2 +

1

3
x3 . (2.3)

This potential has two critical points at x = 0 and x = −m respectively. Let us consider

the vacuum where N1 eigenvalues of M condensate at the critical point x = 0, while N2

eigenvalues condensate at x = −m, such that N1 +N2 = N . When expanded around this

vacuum, the matrix model can be written as

Z(N1, N2) =
1

N1!N2!

∫ N∏
k=1

dxk
2π

∆
2
(x)e

− 1
gs
W (xk)

, (2.4)

where

∆
2
(x) =

∏
1≤i1<i2≤N1

(xi1 − xi2)2
∏

N1+1≤j1<j2≤N
(xj1 − xj2)2

∏
1≤i≤N1,N1+1≤j≤N

(xi − xj +m)2 ,

(2.5)

and

W (xk) =

N1∑
i=1

(
m

2
x2
i +

1

3
x3
i

)
+

N∑
i=N1+1

(
−m

2
x2
i +

1

3
x3
i

)
+
m3

6
N2 . (2.6)

In (2.4) we have multiplied (2.2) by
N !

N1!N2!
(2.7)

to take into account the different ways in which the eigenvalues distribute. We can

view (2.4) as a two-matrix model integral [11–13, 19]

Z(N1, N2) =
1

Vol(U(N1))×Vol(U(N2))

∫
dΦ1dΦ2 e

− 1
gs

(W1(Φ1)+W2(Φ2)+W (Φ1,Φ2))
, (2.8)

1We would like to thank Giulio Bonelli, Kazunobu Maruyoshi and Alessandro Tanzini raising this issue

as well as for clarifications and discussions on these models.
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where Φ1,Φ2 are N1 ×N1 and N2 ×N2 matrices respectively, and the potentials are

W1(Φ1) = Tr

(
1

2
mΦ2

1 +
1

3
Φ3

1

)
,

W2(Φ2) = −Tr

(
1

2
mΦ2

2 −
1

3
Φ3

2

)
,

Wint(Φ1,Φ2) = N2
m3

6
+ 2N1N2 ln (m) + 2

∞∑
k=1

1

kmk

k∑
p=0

(−1)p
(
k

p

)
tr Φp

1 tr Φk−p
2 .

(2.9)

Note that for the above two-matrix model to be perturbatively well defined we have to

choose Φ1 to be hermitian and Φ2 anti-hermitian. In other words, in the eigenvalue for-

malism (2.4), we choose

xi =

{
∈ R i ≤ N1

∈ iR otherwise
. (2.10)

In this section we are interested in the ’t Hooft expansion of the matrix model (2.4)

Ni →∞ , gs → 0 , Si = gsNi fixed , i = 1, 2 . (2.11)

We have defined the partial ’t Hooft parameters S1,2 such that

S1 + S2 = t = gsN . (2.12)

In this regime the matrix model integral can be canonically expanded as

logZ(N1, N2) =
∑
g≥0

g2g−2
s Fg(S1, S2) , (2.13)

where Fg are the genus g free energies.

The free energies of the matrix model can be computed from the spectral curve of the

Hermitian matrix model and the associated 1-differential. The spectral curve reads

Cmm : y2 = W ′(x)2 + f(x) = x2(x+m)2 + λx+ µ , (2.14)

while the associated the 1-differential is

Ωmm = y(x)dx . (2.15)

The spectral curuve (2.14) is a double cover of the x-plane with two branch cuts. On the

other hand, it can also be regarded as the deformation of the singular curve

y2 = W ′(x)2 , (2.16)

where the two singular points a1, a2 (a2 > a1 > 0) are the two critical points of the matrix

model potential. After turning on the deformation f(x) = λx+ µ, the two singular points

extend to two branch cuts on the real axis, whose endpoints we denote by a−1 , a
+
1 and

a−2 , a
+
2 respectively. Sometimes we denote the branch points also by

(a−1 , a
+
1 , a

−
2 , a

+
2 ) → (x1, x2, x3, x4) , (2.17)

– 5 –
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C1 C2

⇤
b⇤1

b⇤2

x1 x2
x3 x4

Figure 1. Path of integrals in the period calculations [13].

from leftmost to rightmost, and the spectral curve then reads

y2 =
4∏
i=1

(x− xi) . (2.18)

Let us introduce the variables

z1 =
1

4
(x2 − x1)2 , z2 =

1

4
(x4 − x3)2 , (2.19)

that measure the width of the branch cuts. Clearly the spectral curve is singular when

z1 = 0 or z2 = 0. The spectral curve can also become singular when x3 → x2 so that the

two branch cuts fuse into one. This is what is called the dual conifold point in the language

of [18].

We are interested in the limits when z1,2 are small, where the partial ’t Hooft param-

eters S1,2 are locally good coordinates on the moduli space. They can be identified with

the integrals of the canonical 1-form along the cycles C1,2 that surround the branch cuts

(see figure 1)

Si =
1

2πi

∫ a+
i

a−i

Ωmm , i = 1, 2 . (2.20)

Note that although the two cycles C1,2 are homologous on the elliptic curve, the two

integrals S1,2 are not identical as the 1-form Ωmm has an additional singularity at x→∞.

Performing the period integrals explicitly, one finds [11]

S1 =
1

4
z1 · I −

1

2I
K(z1, z2, I

2) ,

S2 = −1

4
z2 · I +

1

2I
K(z1, z2, I

2) .

(2.21)

Here I is

I2 =
1

4
((x3 + x4)− (x1 + x2))2 = m2 − 2(z1 + z2) , (2.22)

and K(z1, z2, I
2) is a transcendental function symmetric in z1, z2, whose expansion reads2

K(z1, z2, I
2) =

∞∑
n,m=0

(n+m) Γ(2n+ 2m)

22n+2m+1Γ(n+ 2)Γ(n+ 1)Γ(m+ 2)Γ(m+ 1)

zn+1
1 zm+1

2

(I2)m+n
. (2.23)

2When n+m = 0, the product (n+m) Γ(2n+ 2m) in the numerator takes the limit value which is 1/2.
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Let us introduce

t = S1 + S2 =
1

4
(z1 − z2) · I ,

s = S1 − S2 .
(2.24)

Clearly the period t is only an algebraic function of z1, z2, and borrowing the terminology of

gauge theories it can be termed a mass parameter, while s, being a transcendental function,

is the only true modulus. In terms of the parameters λ, µ of the spectral curve that control

the width of the branch cuts, since t is in fact the residue of Ωmm at infinity

t = S1 + S2 = −1

2

∮
∞

dx

2πi
y(x) =

λ

4
, (2.25)

we conclude that λ is associated to the mass parameter, while µ is associated to the true

modulus s.

In order to compute the planar free energy F0, we introduce the dual periods Πi, which

are integrals of the 1-differential along the dual cycles bΛ1,2 that extend from a+
1 , a

−
2 to the

UV regulation point Λ (see figure 1)

Πi =

∫
bΛi

Ωmm , i = 1, 2 . (2.26)

The planar free energy in the small z1,2 limit is determined by the special geometry relation,

which reads,
∂F0

∂Si
= Πi , i = 1, 2 , (2.27)

or if only the true modulus s is used

∂

∂s
F0 =

1

2
(Π1 −Π2) . (2.28)

In addition, since
∂

∂µ
Ωmm =

1

2

dx

y(x)
, (2.29)

the periods S1,2,Π1,2 can be expressed in terms of elliptic integrals

2πi
∂

∂µ
S1 = −2πi

∂

∂µ
S2 =

1

2

∫ x2

x1

dx

y(x)
= − i√

(x1 − x3)(x2 − x4)
K(k2) ,

∂

∂µ
(Π1 −Π2) =

1

2

∫ x3

x2

dx

y(x)
=

1√
(x1 − x3)(x2 − x4)

K(k′2) ,

(2.30)

with

k2 =
(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
, k′2 = 1− k2 . (2.31)

As a result, we can also write the planar free energy as

∂2
sF0 = −π

2

K(k′2)

K(k2)
. (2.32)

– 7 –
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The genus one free energy F1 can be computed using the Akemann formula for a

two-cut matrix model [13, 25]

F1 = − 1

24

4∑
i=1

logM
(1)
i −

1

2
logK(k2)− 1

12
log ∆ +

1

8
log(x1 − x3)2 +

1

8
(x2 − x4)2 + const. ,

(2.33)

where ∆ is the discriminant

∆ =
∏
i<j

(xi − xj)2 , (2.34)

and the moments M
(1)
i are all 1 in the cubic matrix model. Explicitly when s, t are small,

we have [12]

F1 = − 1

12
log(s2− t2) +

1

6m3
s+

1

12m6
(45s2− 17t2) +

1

36m9
(3101s3− 1773st2) +O(s3, t3) .

(2.35)

Note that by applying (2.30) the Akemann formula can be cast in the form (up to a

constant)

F1 = −1

2
log

(
∂s

∂µ

)
− 1

12
log ∆ . (2.36)

Finally, the free energies of higher genera can be computed by using the holomorphic

anomaly equations [26] as demonstrated in [13]. It requires as initial data the flat coordi-

nates, s and t, the planar and genus one free energies in the small z1,2 limit, as well as the

transformation of these local data to the vicinity of the conifold singularity. In turns these

quantities are determined by the spectral curve and the choice of 1-differential. The higher

genera free energies of the hermitian matrix model could also be computed by the means

of topological recursion [27], using the spectral curve (2.14) and the 1-differential (2.15).

Let us now briefly discuss the β deformation of the cubic model namely [14]

Zβ(N1, N2) =
1

N1!N2!

∫ N∏
k=1

dxk
2π

∆
2β

(x)e
− β
gs
W (xk)

. (2.37)

In the t’ Hooft regime (2.11) one has

logZβ(N1, N2) =
∑
g,n≥0

g2(g+n)−2
s (−β)1−g−2n(β − 1)2nFg,n(S1, S2) . (2.38)

When β = 1 we recover (2.13) with the identification

Fg,0 = Fg. (2.39)

It was conjectured and tested in [14] that Fg,n can be computed recursively by solving

the refined holomorphic anomaly equations [28, 29]. The latter are extension of the holo-

morphic anomaly equations [26] and their solution requires an additional piece of initial

condition, namely the knowledge of F0,1: the genus one free energy in the NS limit. For

the matrix model (2.37) it was conjectured and tested in [14] that F0,1 is given by

F0,1 = − 1

24
log ∆ , (2.40)

where ∆ is the discriminant (2.34). To our knowledge a rigorous derivation of this statement

in matrix models is missing.

– 8 –
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2.2 The H1 Argyres-Douglas theory

We quickly review the computational aspect of the Argyres-Douglas theory called H1 which

lies inside the moduli space of N = 2 SU(2) SQCD with two flavours Nf = 2 [2]. Just

like the Seiberg-Witten theory, the H1 theory is completely encoded in the spectral curve

which is given by (we follow the notation of [8])

CH1 : y2
H1

= x4 + 4cx2 + 2mH1x+ u , (2.41)

as well as the associated canonical one-form

ΩH1 = yH1(x)dx . (2.42)

The parameter mH1 is the mass parameter, c is the deformation parameter away from the

conformal point, while u is the Coulomb modulus. Let ei be the four roots of (2.41). The

spectral curve can be written as

y2
H1

=

4∏
i=1

(x− ei) , (2.43)

and we introduce the periods of the 1-form (we follow the notation of [22])

a =

∫ e3

e2

yH1(x)dx , aD =
1

2πi

∫ e3

e1

yH1(x)dx . (2.44)

On the other hand, the Coulomb branch is also parameterized by the mass parameter

mH1 , which is given by the residue of the canonical 1-form at the infinity of the x-plane.

We choose to treat mH1 in a symmetric way. For this purpose, we introduce

aD =
1

2πi

∫ e2

e4

yH1(x)dx , (2.45)

which satisfies

aD − aD = mH1/2 . (2.46)

It is then also convenient to introduce

ãD = aD + aD = 2aD −mH1/2 . (2.47)

In particular in the massless limit mH1 = 0, one finds that

aD = aD = ãD/2 . (2.48)

The singularities of the Coulomb branch are given by the zeros of the discriminant of

the spectral curve

∆ = 256u3 − 2048c2u2 + 4096c4u+ 2304m2
H1
cu− 432m4

H1
− 1024m2

H1
c3 . (2.49)

– 9 –
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One reads off three singular points (perturbatively in small mH1)

u(1) =
m2

H1

4c
+ O(m4

H1
) ,

u(2) = 4c2 + 2
√

2imH1c
1/2 −

m2
H1

8c
+

im3
H1

64
√

2c5/2
+ O(m4

H1
) ,

u(3) = 4c2 − 2
√

2imH1c
1/2 −

m2
H1

8c
−

im3
H1

64
√

2c5/2
+ O(m4

H1
) .

(2.50)

We refer to u(1) as the electric point while u(2) and u(3) correspond to the magnetic and

dyonic points.

In this section we focus on the magnetic frame, and consider the H1 theory coupled to

the Ω background [30, 31] where the two Ω regulators are

ε1, ε2 . (2.51)

In the magnetic frame, the good local coordinate is the period aD, and the partition

function enjoys the genus expansion

logZD(aD) = FD(aD) =
∑
g,n≥0

F (D)
g,n (aD)(ε1ε2)g−1(ε1 + ε2)2n . (2.52)

When ε1 = −ε2 = ε we note

F
(D)
g,0 = F (D)

g . (2.53)

The prepotential F
(D)
0 in the magnetic frame is then determined by the following special

geometry relation3

∂

∂ãD
F

(D)
0 =

a

2
. (2.54)

The genus one free energies of the gauge theory are given by [32, 33]

F
(D)
1 = −1

2
log

(
dãD
du

)
− 1

12
log ∆ , (2.55)

and

F
(D)
0,1 = − 1

24
log ∆ . (2.56)

Finally the higher genus free energies F
(D)
g,n can also be determined by using the refined

holomorphic anomaly equations [28, 29, 32, 33].

3Here we use as the symplectic basis of cycles on the spectral curve [e2, e3] and ([e1, e3] + [e4, e2])/2

with the purpose of treating mH1 in a symmetric way. The prepotential following a different choice of the

symplectic basis will differ at most by an irrelevant function of the mass parameter.
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2.3 Identifying gauge theory with matrix model

In this section we show that the all order ’t Hooft expansion of the matrix model (2.38) is

identical to the all order genus expansion of the AD theory H1 (2.52) in the Ω background.

To start with we would like to identify the spectral curves and the choices of canonical one

form. After taking the shift of variables

x 7→ x−m/2 , (2.57)

the spectral curve (2.14) of the matrix model becomes

y2 = x4 − m2

2
x2 + λx+

(
m4

16
− λm

2
+ µ

)
, (2.58)

while the associated 1-differential remains the same. It is then easy to see that both the

spectral curve and the canonical differential of the cubic matrix model can be identified

with those of the H1 theory, i.e. (2.41) and (2.42), provided we use the following dictionary

c = −m
2

8
,

mH1 =
λ

2
= 2t ,

u =
m4

16
− λm

2
+ µ .

(2.59)

In particular, the mass parameter mH1 and the Coulomb modulus u of the H1 theory are

identified correspondingly with the mass parameter λ ∝ t and the true modulus µ (up to

a shift) of the matrix model. Therefore, the Coulomb branch of the H1 theory can be

identified with the complexified moduli space of the cubic matrix model: both of them

have the same singular points and the same metric.

Let us make the identification of singularities more explicit. We first demonstrate that

the singularity of the matrix model z1 → 0 or z2 → 0 should be identified with u(2) or u(3)

singularities of the H1 theory. Indeed, the two singularities of the H1 theory are related to

each other by mapping

mH1 → −mH1 (2.60)

while keeping c and u fixed. On the matrix model side, if we send t → −t and keep the

combinations m2 and m4 − 8λm + 16µ unchanged (cf. (2.59)), the four branch points are

mapped to

(x1, x2, x3, x4) 7−→ (−x4,−x3,−x2,−x1) , (2.61)

which means that we merely exchange z1 and z2. Furthermore, let us take the simple limit

mH1 = 0, and consider the domain

c < 0 , 4c2 − u > 0 , (2.62)

where the four branch points of the spectral curve of the H1 theory lie on the real axis. It

is easy then to compute the position of the four branch points and check that the confluent
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singularity u(2) = u(3) of the H1 theory corresponds to the limit z1 = z2 = 0 of the matrix

model. In addition, a simple calculation in this limit shows that the u(1) singularity of

the H1 theory corresponds to the dual conifold point of the matrix model, where x2 = x3,

and two branch cuts fuse into one. To summarize, we have the following correspondence

of singular points
z1 = 0 ←→ u(2)

z2 = 0 ←→ u(3)

dual conifold ←→ u(1) ,

(2.63)

where we borrow the terminology of [18] to denote the u(1) singularity. In particular the

small branch cut limit S1 → 0 indeed corresponds to the magnetic point where aD is small.

Given that the spectral curve and the one form in the two theories are identified, it

follows that also the periods coincide. It is straightforward to check for instance that the

following dictionary can be established

S1 = aD (2.64)

provided we identify

(e1, e2, e3, e4)↔ (x̃1, x̃3, x̃2, x̃4) , (2.65)

where we denote the four branch points of the spectral curve after the shift (2.57) by x̃i
(i = 1, 2, 3, 4). More precisely we identify

aD = S1 , aD = −S2 ,

ãD = s ,

a = Π1 −Π2 .

(2.66)

Consequently, in the magnetic (dyon) frame of the H1 theory and the small z1, z2 limit of

the matrix model, we could identified the planar and genus one free energies of the two

theories by comparing (2.54), (2.56), (2.55) and (2.28), (2.36), (2.40). Higher genera free

energies can also be identified since they can be computed by using the refined holomorphic

anomaly equations on both sides.

In fact, at least for the case β = 1, as long as we make the conjecture that the H1

theory has an underlying hermitian matrix model so that the topological recursion [27] is

applicable, the identification of spectral curve and canonical 1-form with the cubic matrix

model through (2.59) already suffices to guarantee the all genus expansion of the partition

functions of the two theories are in agreement.

A final note is that the spectral curve of the two-cut solution to the cubic matrix

model in the S1 = −S2 slice itself can be identified with many other theories, like the pure

SU(2). But since their 1-forms are different, not all their free energies can be identified.

The case of pure SU(2) is discussed in [12, 13], where it is pointed out that one only has

the agreement of ∂2F0 and F1.

3 The two-cut model and the Painlevé/gauge correspondence

We provide here a concrete link between the two-cut matrix model (2.8) and the pro-

posal of [8] where the partition function of the H1 theory was computed in the large c

regime (2.41).
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We consider the limit

gs → 0 , N1, N2 finite , (3.1)

in which case, the matrix integral has the decomposition

Zmm(N1, N2) = Znp
mm(N1, N2)

(
1 +

∞∑
k=1

gksZ
(k)
mm(N1, N2)

)
. (3.2)

In order to see how the nonperturbative contributions Znp
mm(N1, N2) and perturbative con-

tributions Z
(k)
mm(N1, N2) are related to the free energies Fg(t) of the ’t Hooft expansion,

notice that the latter have the following asymptotic behavior

F0(t) =
t2

2
(log t− 1/2) + c

(0)
1 t+ c

(0)
2 t2 +O(t3)

F1(t) = − 1

12
log t+ c

(1)
1 t+O(t2) ,

Fg(t) =
B2g

2g(2g − 2)t2g−2
+ c

(g)
1 t+O(t2) , g ≥ 2 ,

(3.3)

where for simplicity we take a one-cut matrix model as an example. Plug in t = gsN and

take the limit (3.1), one finds

Zmm(N) = exp

 ∞∑
g=0

g2g−2
s Fg(t)


= exp

N2

2
(log(gsN)−1/2)+

c
(0)
1 N

gs
+c

(0)
2 N2− 1

12
log(gsN)+

∞∑
g=2

B2g

2g(2g−2)N2g−2


×exp

 ∞∑
g=0

∞∑′

n=1

g2g−2+n
s c(g)

n Nn

 , (3.4)

where in the last line
∑′

means n starts from 3 if g = 0 so that one always has

2g − 2 + n ≥ 1. Obviously, the second line in (3.4) is Znp
mm(N), and other than the am-

biguous contributions4 c
(0)
1 , c

(0)
2 this term is universal. The third line expands to Z

(k)
mm(N),

and they receive leading contributions of higher genera free energies Fg(t). Therefore the

limit (3.1) gives us a means to compare more directly higher genera free energies of the

two theories.

Let us come back to the two-cut solution to the cubic matrix model. The perturbative

contributions have been computed in [12]5 up to order 6. The first few orders are [12]

Z(1)
mm(N1, N2) =

1

6m3

(
2(2N3

1 − 15N2
1N2 + 15N1N

2
2 − 2N3

2 ) + (N1 −N2)
)
, (3.5)

Z(2)
mm(N1, N2) =

1

3m6

(
(8N4

1 − 91N3
1N2 + 59N2

1N
2
2 − 91N1N

3
2 + 8N4

2 )

+ (7N2
1 − 31N1N2 + 7N2

2 )
)
. (3.6)

4When one computes the planar free energy F0(t) from the special geometry relation, for instance (2.27),

the linear and quadratic terms are ambiguous.
5There is a little typo in the perturbation contributions computed in equation (4.9) of [12]. The 5th

order proportional to g10/m15 should start with (9152/5N7
1 − . . . instead of 9152/5(N7

1 − . . ..
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The nonperturbative contribution is [12]

Znp
mm(N1, N2) = Znp,norm

mm (N1, N2)Znp,relevant
mm (N1, N2) , (3.7)

with

Znp,norm
mm (N1, N2) = iN2(−1)b

N2
2
c
(gs
m

)(N2
1 +N2

2 )/2
m2N1N2 exp

(
−m

3N2

6gs

)
, (3.8)

and

Znp,relevant
mm (N1, N2) = (2π)−(N1+N2)/2G(1 +N1)G(1 +N2) . (3.9)

Here G(1 + N) is the Barnes function. It vanishes when N = −1,−2, . . ., and it has the

following asymptotic expansion if |N | is large and N 6∈ R−

log(2π)−N/2G(1+N) = ζ ′(−1)+

(
N2

2
− 1

12

)
logN− 3N2

4
+
∞∑
g=2

B2g

2g(2g−2)N2g−2
. (3.10)

In the above expression of Znp
mm(N1, N2), the factors in Znp,norm

mm contribute (up to a con-

stant) in the ’t Hooft expansion to the ambiguous linear or quadratic terms of the planar

free energy. Important are the factors in Znp,relevant
mm , which are universal, and which come

from volumes of the unitary groups U(N1),U(N2).

Let us turn to the gauge theory side. It has been proposed in [5, 8] that the H1 theory

could be related to the Painlevé II equation. To be precise it was found in [8] that the

τ -solution to the Painlevé II equation has the form

τII(T ) = S−
1
6

+ θ2

3

∑
n∈Z

einρG(S, ν + n, θ) , 8T 3 = 9S2 , (3.11)

where T is the time, θ a parameter characterising the equation (see equation (4.1)) and

ν, ρ integration constants. The summand G(S, ν, θ) has the decomposition

G(S, ν, θ) = C(S, ν, θ)

(
1 +

∞∑
k=1

Dk(ν, θ)

Sk

)
. (3.12)

The claim [8] is then that, with the dictionary

ν = −
√

2 i ãD/ε

S = −32

3
(−c)3/2/ε

θ = ±
√

2 imH1/ε ,

(3.13)

the summand G(S, ν, θ) is identified with the partition function ZH1(ãD,mH1 , c) of the H1

theory in the magnetic frame coupled to the self-dual Ω background. Note due to the

gauge-matrix-model dictionary (2.66) ãD,mH1 can identified with the ’t Hooft parameters,

and ε proportional to gs, therefore we should regard ν, θ as counterparts of the ranks N1, N2

according the dictionary (3.13), and (3.12) is to be compared with the finite N limit (3.1)

of the matrix model.
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The factor C(S, ν, θ) is given in [8]

C(S, ν, θ) = (2π)−νG

(
1 + ν +

θ

2

)
G

(
1 + ν − θ

2

)
·eiνS+πiν2/2S−(ν2+θ2/4)+1/66−ν

2
. (3.14)

From the point of view of identification with the H1 theory, the last three terms are

irrelevant since they contribute to linear or quadratic terms of the planar free energy and

constant term of the genus one free energy, which are ambiguous. Therefore as in the

matrix model we could split C(S, ν, θ) by

C(S, ν, θ) = Cnorm(S, ν, θ)Crelevant(S, ν, θ) , (3.15)

where the essential part reads

Crelevant(S, ν, θ) = (2π)−νG

(
1 + ν +

θ

2

)
G

(
1 + ν − θ

2

)
, (3.16)

while the rest is collected in Cnorm(S, ν, θ)

Cnorm(S, ν, θ) = eiνS+πiν2/2S−(ν2+θ2/4)+1/66−ν
2
. (3.17)

The coefficients Dk(ν, θ) can be in principle computed recursively. It is however hard to

compute them for higher values of k. The first two terms are given in [8] and they read

D1(ν,θ) =− i

36
ν
(
68ν2−9θ2+2

)
,

D2(ν,θ) =−289

162
ν6+

153θ2−1159

324
ν4− 81θ4−1584θ2+1084

2592
ν2−

θ2
(
11θ2−68

)
1728

.

(3.18)

Note that since very few Dk(ν, θ) were computed in [8], the convergence properties of the

large S expansion in (3.12) could not be analysed.

One can now easily check that using the dictionary

S = −im3/(6gs) ,

ν = (N1 −N2)/2 ,

θ = −(N1 +N2) ,

(3.19)

the perturbative contributions of the matrix model gksZ
(k)
mm(N1, N2) are identified with those

of the H1 theory S−kDk(ν, θ), at least for k = 1, 2, while the essential parts of the non-

perturbative contributions, namely (3.16) and (3.9), agree if one replace N2 with −N2

in (3.9).6 Hence we will use the notation

Zmm(N1, N2) ; G(S, ν, θ) (3.21)

6This change of sign in the volume factor is just a minor technicality due to the particular definition of

the τ function of Painlevé II in [8]. If one wishes to match the matrix model without flipping the sign of

N2, one can multiply C(S, ν + n, θ) in (3.11), (3.12) with

G(1− ν − θ/2− n)

G(1 + ν + θ/2 + n)
=
G(1− ν − θ/2)

G(1 + ν + θ/2)

(
sinπ(ν + θ/2)

π

)n
(−1)n(n+1)/2 , (3.20)

pulling the n-independent ratio of Barnes functions out of the summation, and reabsorbing sin(π(ν+θ/2))/π

into ρ in (3.11). We thank Oleg Lisovyy for a discussion on this point.
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where ; means that the equality is only up to the terms that become ambiguous in the

’t Hooft expansion (namely (3.8) and (3.17)) and provide we take into account the switch

N2 → −N2 in (3.9).7 Note that the three dictionaries (2.59), (3.13), (3.19) are consistent

if we choose the scaling

ε = −2
√

2 i gs . (3.22)

Furthermore, assuming the dictionary (3.19) is correct, we can reverse the logic and use

the matrix model calculation, which is much easier, to predict Dk(ν, θ) for higher k. For

instance

D3(ν,θ) =
i
(
3360−28504θ2+4270θ4−99θ6

)
ν

62208
+

i
(
899576−700884θ2+45648θ4−729θ6

)
ν3

279936

+
i
(
279464−47178θ2+1377θ4

)
ν5

23328
+

i17
(
2284−153θ2

)
ν7

5832
+

i4913ν9

4374
. (3.23)

We have computed the expressions of D4, D5, D6, D7 and D8. We listed some of them in

appendix A, while the others are available upon request.

Finally, since many Dk can be computed with relative ease, we can now analyse the con-

vergence property of G(S, ν, θ)∝Zmm(N1, N2). In the cases of (N1, N2)=(1, 0), (2, 0), (1, 1),

which correspond to (ν, θ) = (1/2, 1), (1, 2), (0, 2), Zmm(N1, N2) can be analytically

computed,

Z(1,0) =
1

2π

∞∑
n=0

23n+ 1
2

32n

g
n+ 1

2
s

m3n+ 1
2

Γ(3n+ 1
2)

(2n)!
,

Z(2,0) =
1

2π

g2
s

m2
+

1

(2π)2

∞∑
n=0

23n+5

32n+2

gn+3
s

m3n+5
·

(√
π

2

Γ(3n+ 7
2)

(2(n+1))!
+

n∑
k=0

Γ(3k+ 1
2)Γ(3n−3k+ 5

2)

4(2k+1)!(2n−2k+2)!

×(2k+1)(72k2−6(17+18n)k+29+66n+36n2)

)
,

Z(1,1) =
em

2/6i

2π2

(
2πmgs+

∞∑
n=2

23n+1

32n

gn+1
s

m3n−1

(
(−1)n+115

√
π(n−1)(2n−1)Γ(3n− 5

2)

8Γ(2n+1)

+

n−2∑
k=0

(−1)k9

64(2k)!(2n−2k)!
Γ

(
3k+

1

2

)
Γ

(
3n−3k− 11

2

)
(6n−6k−5)(6n−6k−11)

×(2n−2k−1)(2n−2k−3)(36k2+(12−36n)k+7−12n)

))
. (3.24)

7As an additional comment we note that, unlike the matrix models arising in quantisation of mirror

curves [34–39], the one in (2.8) is an Hermitian matrix model and it is only perturbatively well defined.

Therefore it is unlikely that it can be derived following the geometrical approach connecting quantum curves

and Painlevé equations developed in [40]. On the other hand this model seems to fit a bit more naturally

into the approach of [41, 42] even though in the latter one makes contact with the electric frame and not

with the magnetic one which is instead the correct frame for the model (2.8).
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At the level of the Dk coefficients this gives

Dn

(
1

2
,−1

)
=

(−i)n

24n33n

(6n)!

(3n)!(2n)!
,

Dn(1,−2) =
(−i)n

24n33n
·

(
(6n)!

(3n)!(2n)!
+2

n−1∑
k=0

(6k)!

(3k)!(2k)!

(6n−6k−2)!

(3n−3k−1)!(2n−2k)!

×(72k2−6(18n−1)k+36n2−6n−1)

)

Dn(0,−2) =
(−i)n

24n33n
·

(
(−1)n+1120

(6n−6)!

(2n)!(3n−3)!
(n−1)(2n−1)

+576

n−2∑
k=0

(−1)k
(6k)!

(3k)!(2k)!

(6n−6k−1)!

(3n−3k−6)!(2n−2k)!
(6n−6k−5)

×(2n−2k−1)(2n−2k−3)(36k2−(36n−12)k−12n+7)

)
. (3.25)

All three series in (3.24) are divergent. In fact the coefficients of gns /m
3n, denoted by an,

in all three series have the asymptotic behavior

|an| ∼ 6nn! , n→∞ . (3.26)

We conjecture this to be always the case for any values of N1, N2. As a result, Dn(ν, θ) for

any value of ν, θ has the asymptotic behavior

Dn(ν, θ) ∼ (−i)n n! , n→∞ . (3.27)

Hence, unlike the series expansions appearing in the short time solution of Painlevé equa-

tions [6, 7, 43], those at long time [8, 17] seems to suffer from divergence problems. This

is somehow expected since generically also the classical special functions have divergent

long-distance expansion.8 We will see in the next section that the sum over all integer

shifts in the τ function (3.11) can be interpreted as summing over all instanton sectors

and that the overall normalisation factor (3.17) leads to the correct instanton action as

extracted from the analysis of the large order behaviour namely (3.27).

4 Trans-series solution to Painlevé II equation

Eq. (3.12) is given in [8] as the τ -function solution to the Painlevé II equation. The Painlevé

II equation reads

q′′ = 2q3 + Tq +
1

2
− θ , (4.1)

where the derivatives of q are w.r.t. T while θ is a parameter. This is a second order differ-

ential equation and its solution depends on two integration constants which, by following

the notation of [8, 17], we denote by

(ν, ρ) . (4.2)

8We would like to thank Oleg Lisovyy for a discussion on this point.
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The corresponding τ function is defined by [8]

d

dT
log τ =

1

2
q′2 + θq − 1

2
q4 − 1

2
Tq2 − T 2

8
. (4.3)

In [8, 17] it was found that the τ function associated to a generic solution to the Painlevé

II equation in the large T limit along the rays arg(T ) = 0,±2π
3 can be written as

τ(T, ν, ρ, θ) =
∑
n∈Z

einρG(S, ν + n, θ) , (4.4)

where G(S, ν, θ) is given in (3.12) and we use the change of variables

8T 3 = 9S2 . (4.5)

In this section we argue that (4.4) can be reproduced by a trans-series solution to the

Painlevé II equation. We will check this explicitly along the slice9

ν = −θ/2 , (4.6)

where the trans-series solution can be easily constructed by following [16]. Let us make

the following trans-series ansatz for the function q(T ),10

q(T, σ, θ) =
∑
n≥0

σne−nA/xq(n)(T ) = x−1/3
∑
n≥0

σne−nA/xxnβ
∑
g≥0

ungx
g , (4.7)

where

x = T−3/2, β = 1− θ, A = −2
√

2

3
i . (4.8)

Here q(0)(T ) is the perturbative sector, q(n≥1)(T ) different instanton sectors, and A is

interpreted as the instanton action. By plugging this ansatz in (4.1) we can compute all

the coefficients. We find for instance for the perturbative part

u0
0 = − i√

2
, u0

1 =
1

4
− θ

2
, u0

2 = − i(12(θ − 1)θ + 5)

16
√

2
, · · · (4.9)

and the first instanton sector

u1
1 = − i(3θ(7θ − 10) + 14)

12
√

2
u1

0 ,

u1
2 =

1

576
(3θ(θ(3(222− 49θ)θ − 1045) + 844)− 799)u1

0 ,

· · ·

(4.10)

where u1
0 is a free parameter. Likewise for the second instanton sector we have

u2
0 =

i√
2

(u1
0)2

u2
1 =

1

12
(21(θ − 2)θ + 26)(u1

0)2

· · ·

(4.11)

9Note that in the matrix model perspective this slice corresponds to the one-cut phase.
10This ansatz is obtained from [16] where the case θ = 1/2 was studied.
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It is then easy to check that the trans-series solution (4.7) when plugged into the definition

of τ function (4.3) reproduce the solution (4.4), (3.12), (3.14), (3.18) in the slice (4.6), as

long as we choose

σ = einρ ,

u1
0 = −2

5θ
2
−3e−

1
2
iπθΓ(1− θ)
π

.
(4.12)

In this identification the summation appearing in (4.4) coincides with the sum over different

instanton sectors in (4.7). In particular the weight ei(ν+n)S in the sum (4.4) is in fact related

to the instanton action e−nA/x in the (4.7), from which we read off the instanton action −i,

consistent with the asymptotic behavior of Dn(ν, θ) when n → ∞ given in (3.27). In the

matrix model language this corresponds to the factor exp
(
m3(−N2 + n)/(6gs)

)
in (2.8).

Furthermore this shows explicitly how the nth instanton sector in (4.7) is completely de-

termined by the same function as the perturbative sector, namely the term n = 0 in (4.4)

or (4.7).

It is interesting to compare more in details the above solution, which in turns is a

rewriting of [8, 17] in the trans-series language, with the solution at θ = 1/2 proposed

in [16].11 There is a subtle difference between the two which is due to a different choice of

the perturbative sector. Indeed if we plug an ansatz of type (4.7) for a generic A in (4.1)

we obtain the following equations for u0
0 and A:

−u0
0 − 2(u0

0)3 = 0,

9A2 − 24(u0
0)2 − 4 = 0.

(4.13)

Since we want to make contact with the solution of [8, 17] we chose

u0
0 = − i√

2
. (4.14)

On the contrary in [16] the perturbative sector was chosen to be

u0
0 = 0. (4.15)

This implies A = ±2/3 in which case the factor e−AT
3/2

is suppressive. For the choice (4.14)

one has insead A = ±2
√

2/3i, which makes contact with the solution of [8, 17] we previously

discussed, in which case the factor e−AT
3/2

is oscillatory.

Using the identification (3.21) with the cubic matrix model, we can write

τ(T, ν, ρ, θ) ;
∑
n∈Z

einρZmm(N1 + n,N2 − n) . (4.16)

As explained for instance in [44],

Zmm(N1 + n,N2 − n) (4.17)

can be interpreted in a multi-cut matrix model in terms of eigenvalue tunneling between

different branch cuts. Hence the sum in the τ function of Painlevé equation is interpreted

11The parameter κ in [16] is related to our parameter T as T = −21/3κ.
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as a sum over all possible tunneling of eigenvalues. From that perspective the sum over

integers appearing in (3.11) is similar to the sum over filling fractions appearing in the

matrix model literature [45–47].

If we think of the form of τ -function (3.11) as a trans-series summing over all in-

stanton sectors, it makes sense to look at the Borel resummation of the perturbative

sector with n = 0 in (3.11) as a possible means to reproduce exact solutions to the

PII equation. In particular we notice that in the three calculated examples (3.25) with

(ν, θ) = (1/2,−1), (1,−2), (0,−2), the asymptotic series in (3.12) are Borel summable. We

expect this to be the case also for generic values of (ν, θ). Let us consider the case with

(ν, θ) = (1/2,−1), the Borel resummation

B (S) =

∫ ∞
0

dze−z
∑
n≥0

Dn(1/2,−1)

n!

zn

Sn
(4.18)

can be performed exactly and it yields

B (S) = e−
iS
2

√
S

iπ
K1/3

(
− iS

2

)
, (4.19)

where K1/3(•) is the modified Bessel function of the second kind with order 1/3. Hence

the corresponding τ function is

τ(T, 1/2,−1) =
e

iS
2

+ iπ
8 B (S)

23/4 4
√

3
√
π 6
√
S

= 6−1/12 e
iπ
24 Ai

(
2−1/3e−

iπ
3 T
)
, 8T 3 = 9S2 , (4.20)

where Ai(•) is the Airy function. It is easy to verify that

d

dT
log τ(T, 1/2,−1) (4.21)

satisfies the PII equation in the σ form for θ = −1 and with asymptotic expansion

characterized by ν = 1/2. We have hence recovered the well known Airy solution to the

PII equation. By combining Borel resummation with the matrix model representation

of the coefficients Dk(ν, θ), one can in principle construct more complicated closed form

solutions for other values of (ν, θ). Note also that the Airy function can be simply obtained

by changing the integral contour in the one-cut phase of the cubic matrix model in line with

the non-perturbative matrix model formulation of [45, 47]. For the two-cut case it would

be interesting to further compare the Borel resummation of Dk(ν, θ) for generic values of

(ν, θ) with the approach of [48]. This is left for further investigations.

5 Argyres Douglas theories and quantum mechanics

In this section we focus on the Argyres-Douglas theories in the Nekrasov-Shatashvili

limit [49] where the two regulators are given by

ε1 = ~, ε2 → 0 . (5.1)
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This limit is closely connected to the self-dual limit studied in the previous sections through

the blowup equations [50]. Interestingly both these limits admit an operator theory inter-

pretation which, in case of pure SU(N) theory, was worked out in [49, 51] for the NS

background and in [34, 35] for the self-dual background.

In this section we discuss two types of AD theories: the H0 and the H1 theories.

They correspond to special limits in the moduli spaces of the four dimensional N = 2

SU(2) SQCD with Nf = 1 and Nf = 2 where mutually nonlocal dyons become massless

simultaneously [1, 2]. Let us still focus on the magnetic frame. Then the free energy F of

these theories in the NS limit display the following perturbative behaviour

FD(aD) =
∑
g≥0

ε2g−2FD
g (aD) , (5.2)

where the NS free energies FD
g (aD) can be computed recursively by using the NS limit of the

refined holomorphic anomaly equation [28, 29].12 Note that the planar free energies in the

NS and the self-dual limit are the same, and we will simply denote it by FD
0 instead of FD

0 .

We find that the NS limit of the H0 and the H1 theories captures the spectral proper-

ties of certain QM models. To be specific, the H0 theory corresponds to the QM model with

the cubic potential, while the H1 theory the QM model with the double well potential.13

In fact they are just two examples of a larger story which relates the quantization of four

dimensional SU(2) Seiberg-Witten spectral curves [49, 53]14 to the all order WKB solu-

tions [61] (see [62, 63] for a clear presentation) of QM models with polynomial potentials.

Let us take a QM model with Hamiltonian

H = −∂2
x + V (x) , (5.3)

where V (x) is a polynomial in x. Define the spectral curve

CQM : y2 + V (x) = E . (5.4)

The perturbative energy levels of the QM system are solved from the quantum period of

the cycle on CQM associated to the classically accessible region of the potential V (x), while

the nonperturbative corrections are encoded in the Voros multiplier [64–66], the quantum

period of the cycle on C associated to the classically forbidden region. It was conjectured

and verified in [18] (see also [67, 68]) through examples of cubic potential and double

well potential that the Voros multiplier together with the perturbative energy levels define

the quantum free energy as an analogue of NS free energy and it can be solved from the

NS holomorphic anomaly equations.15 This gives a relatively easy and systematic way to

12In the notation of section 2 these correspond to F0,n.
13A connection between some aspects of these two QM models and some invariants of the N = 2 SU(2)

SQCD with Nf = 1 and Nf = 2 respectively was also discussed in [52].
14Here we are only concerned with 4d theories with gauge group SU(2). The quantization of Seiberg-

Witten curves for 5d N = 1 gauge theories were discussed in [54, 55] with the WKB approximation, while

the exact answers were proposed in [39, 56], see also [50, 57–60].
15This algorithm can be justified to some extent by [69], which demonstrates that under the assumption

that the quantum periods under a symplectic transformation behave like classical periods, the quantum

free energy satisfies the NS holomorphic anomaly equations.

– 21 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
0

compute the Voros multiplier of a QM model. From this perspective, if we can find a 4d

N = 2 theory whose SW curve coincides with the spectral curve CQM of the QM model,

and whose SW differential is

ΩSW = y(x)dx , (5.5)

which coincides with the exponential of the WKB solution to the QM model in the leading

order, then naturally the periods of the QM model can be identified with those of the 4d

theory, and the quantum free energy with the NS free energy. As advertised before, we

will illustrate this idea for the QM models with the cubic potential and the double well

potential. This identification of QM models with N = 2 theories gives a gauge theory

justification for the algorithm proposed in [18].

A connection between some QM models and AD theories was also pointed out in [70],

where it was suggested that the conformal limit of the TBA equations obtained in [71]

computes the WKB periods of these QM models. Hence, given our results, this means

that such TBA should encode the magnetic NS free energy of these AD theories. More

recently the connection between QM models with monic potentials and AD theories was

also discussed in [72] in the context of ODE/IM correspondence [73, 74].

5.1 The NS limit of H0 theory and the cubic oscillator

The cubic oscillator is a one-dimensional quantum mechanical system characterised by the

following potential

V (x) =
x2

2
− gx3 . (5.6)

The spectral curve CQM used to compute quantum periods and quantum free energy is [18]

CQM : y2 = 2ξ − x2 + 2gx3 , (5.7)

where ξ is identified with the energy of the QM model. We perform the following linear

change of variables

x→ (2g)−1/3x+ 1/(6g) , (5.8)

then CQM becomes

y2 = x3 − 3cx+ u , (5.9)

where

u = 2ξ − 1

54g2
, c =

1

32(2g)4/3
, (5.10)

which is precisely the SW curve for the H0 theory (see eq. (4.6) of [1], or (4.10) of [8]).

u is the Coulomb modulus, while c is the scale parameter that controls the deformation

away from the conformal point. In addition the SW differential of the H0 theory is indeed

of the form (5.5).

The QM model is studied in the semi-classical limit ~→ 0, in which case the period of

the SW differential integrated around the classically accessible region (see figure 2) should

shrink to zero [18]. In the AD theory, this corresponds to a conifold point of the moduli

space. The discriminant of the SW curve (5.9) is

∆ = 27(u2 − 4c3) , (5.11)

– 22 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
0

e1 e2 e3

classically accessible classically forbidden

ξ

Figure 2. The classically accessible and forbidden regions of a cubic potential.

and thus two conifold points exist

u± = ±2c3/2 . (5.12)

They correspond to the vanishing of the cycles around either the classically accessible region

or the forbidden region. Since these two regions are exchanged to each other by x → −x,

the two conifold points are on equal footing, and we can choose either one. In the magnetic

frame around the conifold point, say, u+, the period aD is the good local coordinate and

it has in general the form (up to a normalization constant)

daD
du

∝ 1

2π

∫ e2

e1

dx

y
, (5.13)

where we have assumed e1, e2, e3 to be the three branch points of (5.9) from left to right,

as shown in figure 2. The integral above can be written as a hypergeometric function

daD
du

∝ 1

2
(e3 − e1)−1/2

2F1

(
1

2
,

1

2
; 1; z

)
, (5.14)

with

z =
e2 − e1

e3 − e1
. (5.15)

Then following the same technique in [22], we can transform the hypergeometric function

to a form symmetric in e1,2,3. The result is

daD

du
∝ 1

2
(−D)−1/4

2F1

(
1

12
,

5

12
; 1;−27∆

4D3

)
, (5.16)

where ∆ is the discriminant, while

D = −1

2

∑
i<j

(ei − ej)2 , (5.17)

which is −9c in the case of (5.9). Therefore, we find

daD

du
=

2F1

(
1
12 ,

5
12 ; 1;− u2

4c3
+ 1
)

21/3 · 31/2c1/4
. (5.18)
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Likewise the prepotential FD
0 (aD) is computed in [8, 22] and it reads (up to a normalization

constant)

FD
0 =

a2
D

4

(
log

aD
48 22/333/2c5/4

− 3
)

+
4

5
22/333/2c5/4aD +

47a3
D

48 22/333/2c5/4

+
7717a4

D

248832 · 21/3c5/2
+O(a5

D) .

(5.19)

By using the dictionary (5.10) with g = 1 we find (after normalization)

aD = ξ +
15ξ2

4
+

1155ξ3

16
+

255255ξ4

128
+ · · · , (5.20)

and

FD
0 =

a2
D

2

(
log

aD
8
− 3

2

)
+

2aD
15

+
47a3

D

8
+

7717a4
D

128
+O(a5

D) . (5.21)

They are precisely the period associated to the classically accessible region and the planar

component of the quantum free energy of the cubic oscillator given in [18] (eq. (3.22) and

eq. (3.23) respectively). Next the genus one quantum free energy is computed by [18]

FD
1 (aD) = − 1

24
log ∆ , (5.22)

which is exactly how one would compute the genus one NS free energy for the gauge theory.

In fact, both the quantum free energies of the cubic oscillator and the NS free energies of

the H0 theory are computed by the NS holomorphic anomaly equations, and they share

the same initial conditions. Therefore the all order WKB solutions to the cubic oscillator

are captured by the H0 theory coupled to the Ω background in the NS limit.

Finally, we comment on the symmetry between the classically accessible region and

forbidden region, which leads to that the quantum free energies are invariant under an S-

transformation (see [18] for more details). When translated to the gauge theory, it means

the two conifold points u± are completely dual to each other, and the NS free energies

expanded around these two singular points are identical.

5.2 The NS limit of H1 theory and the double well potential

Let us consider the QM model with the double well potential

V (x) =
x2

2
(1 + gx)2 . (5.23)

The associated spectral curve is, after scaling and shifting to put it in a symmetric form [18]

CQM : y2 = (x2 − a2
+)(a2

− − x2) , (5.24)

where

a2
± =

1

4

(
±
√

32ξ + g−1
)
. (5.25)
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Figure 3. The classically accessible and forbidden regions of a double-well potential.

Through the scaling

x→ e
iπ
4 x
√
g
, (5.26)

we can write (5.24) as

y2 = x4 + 4cx2 + 2mx+ u , (5.27)

where

u =
1

16

(
32ξ − g−2

)
, c =

i

8
g−1, m = 0 , (5.28)

and this is precisely the SW curve (2.41) for theH1 theory, and as we have seen in section 2.2

the SW differential ΩH1 of this theory is of the form (5.5).

In the QM model, the classically accessible regions are indicated in figure 3. In the

semi-classical limit, the period of ΩH1 around this region vanishes, corresponding to a

conifold point of the moduli space of the SW curve. We have seen in section 2.2 that there

are three conifold points u = u(i), i = 1, 2, 3. Among them, u(2,3) are due to the vanishing

of either of the two branch cuts, and they correspond to the two classically accessible

regions of the double-well potential, while u(1) which is due to the merger of the two

branch cuts, corresponds to the classically forbidden region. Therefore, the semi-classical

limit corresponds to either u(2) or u(3).

In the magnetic frame in the vicinity of the singular point u(2), the period aD is the

locally good coordinate, and it can be computed by using the generic formula in [22] (up

to a normalization constant)

daD
du

=
1

2
(−D)−1/4

2F1

(
1

12
,

5

12
; 1;−27∆

4D3

)
, (5.29)

where ∆ is the discriminant, and D is given by16

D = −1

2

(
(e1 − e2)2(e3 − e4)2 + (e1 − e3)2(e2 − e4)2 + (e1 − e4)2(e2 − e3)2

)
, (5.30)

16Note this is different from the expression of D for the cubic form. Besides, the expression for D in

terms of roots in [22] is incorrect, while the expression in terms of equation coefficients is correct.
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with ei, i=1, 2, 3, 4 being the four branch points (see figure 3). In the case of (5.27), we have

daD
du

=
2F1

(
1
12 ,

5
12 ; 1;

27u(4c2−u)
2

(4c2+3u)3

)
2
√

2(3u+ 4c2)1/4
. (5.31)

After applying the dictionary (5.28) (g is set to 1) and expanding w.r.t. ξ, we get (after

normalization)

aD = ξ + 3ξ2 + 35ξ3 +
1155ξ4

2
+

45045ξ5

4
+

969969ξ6

4
+O(ξ7) . (5.32)

The prepotential FD
0 (aD) can be found in [8, 22], and when m = 0 it reads

FD0 = a2
D log

(aD
2

)
+
aD
3
−

3a2
D

2
+

17a3
D

3
+

125a4
D

4
+O(a5

D) . (5.33)

They indeed agree with the period and genus zero quantum free energy given in [18]. Fur-

thermore, the genus one quantum free energy is computed by (5.22) [18], and this is how

one would compute the genus one NS free energy for the gauge theory. Higher genus free

energies would also agree, since they are computed both in the QM model with double

well potential and in the H1 theory from the NS holomorphic anomaly equations and they

share the same initial data. As a result, the all order WKB solutions to the double well

QM model are captured by the H1 theory coupled to the Ω background in the NS limit.

6 Summary and open questions

It is an interesting problem to look for matrix model representations of supersymmetric

gauge theories. It has been proposed in [3, 4] that many Argyres-Douglas (AD) theories

can be represented by hermitian matrix models with rational/logarithmic potentials. In

this paper we show in detail that the well-studied β-deformed cubic matrix model in the

generic two-cut phase computes the partition function of the H1 AD theory coupled to the Ω

background in the magnetic frame. Then we further extend this relation to integrable non-

linear ODEs. According to the Painlevé/gauge correspondence [8], the H1 AD theory in the

self-dual Ω background is expected to compute the τ function of the Painlevé II equation.

By combining these two observations we showed that, in the non-deformed β = 1 case, the

two-cut cubic matrix model computes the τ function of the Painlevé II equation. Using this

connection with matrix model, we studied in detail the τ function solution to Painlevé II

proposed in [8, 17], and we found that the summand (3.12) appearing in this solution is in

fact an asymptotic series with zero radius of convergence. Relatedly, when considering the

τ function one has to sum over all integer shifts as illustrated in equation (3.11). We found

that, from the resurgence perspective, this summation corresponds to a sum over trans-

series which, in the matrix model language, amounts to a sum over all possible eigenvalues

tunnellings or a sum over all filling fractions similar to [45–47]. Furthermore our analysis

also shows explicitly how the nth instanton sector of the PII solution in (4.7) is completely

determined by the same function as the perturbative sector, namely the term n = 0 in (4.4)

which is computed by the two-cut cubic model via (3.21) and (3.19).
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We note that the connection between Painlevé equations and hermitian matrix models

has been explored before in the literature in particular in connection with 2d gravity [75–78].

See [10] for a more exhaustive list of references. For instance in [79, 80] it was found that the

quartic matrix model in the double scaling limit is related to the Painlevé II equation (4.1)

at θ = 1/2. Likewise the Gross-Witten-Wadia model also makes contact with Painlevé

II in a particular double scaling limit. See for instance [16] and reference therein. Other

models with external fields were also introduced in this context; see for instance [81] and

reference therein. From that viewpoint what distinguishes our matrix model representation

for Painlevé II from the previous ones is that, after summing over all possible eigenvalues

tunneling, it computes the τ function of the Painlevé II without taking the double scaling

limit nor adding any external fields and that it is valid for generic values of θ and integration

constants (ν, ρ).

Finally we explored the Nekrasov-Shatashvili phase of the H0 and H1 AD theories

and we showed that they determine the spectral properties of corresponding quantum

mechanical systems with cubic and double well potentials respectively. This provides a

gauge theory justification for the all order WKB solutions from holomorphic anomaly

equations proposed in [18] for these two quantum mechanical models.

There are still many open questions that remain to be addressed. One of the obvious

questions is whether one can find a similar matrix model representation for the solutions

to PI and PIV presented in [8, 82]. Besides, the matrix model for the H1 theory is studied

in the weak coupling limit, very far away from the conformal point. It would be interesting

to explore the strong coupling limit gs/m→ 0, probably following [83], and see if one can

continue in this way our solution of Painlevé II to small times. Furthermore it would be

interesting to study in more detail the Borel resummation of the perturbative sector of

the τ -function, whose coefficients can be computed from the two-cut cubic matrix model,

similar to what we have done at the end of section 4.

Finally, concerning the relation between the AD theories and the WKB solutions in

terms of holomorphic equations [18]. Although in the case of cubic and double well po-

tentials we provide the existence of dual AD theories as a justification for the latter, the

connection between WKB solutions and holomorphic anomaly equations is expected to

be more basic and holds beyond the existence of a dual supersymmetric gauge theory as

explained in [18]. In that perspective it would be interesting to further investigate the al-

gorithm presented in [18, 67] for more generic quantum mechanical systems with no gauge

theory connection.
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A The Dk coefficients

We list here some of the Dk coefficients as computed from the matrix model17

D4(ν,θ) =

(
1008845824−45278208θ2

)
ν10

161243136
+

(
8989056θ4−440169984θ2+4500384000

)
ν8

161243136

+

(
−793152θ6+65329920θ4−1536680448θ2+8573056768

)
ν6

161243136

+

(
26244θ8−3517344θ6+149049216θ4−2119879296θ2+4076024896

)
ν4

161243136

+

(
32076θ8−3181680θ6+97473744θ4−731835072θ2+287635968

)
ν2

161243136

+
3267θ8−338472θ6+7102512θ4−29735424θ2

161243136
+

83521ν12

157464
. (A.1)

D5(ν,θ) =− i
(
114050775040−3848647680θ2

)
ν13

29023764480

− i
(
1018759680θ4−64867691520θ2+923488394240

)
ν11

29023764480

− i
(
−134835840θ6+13976643840θ4−437858730240θ2+3866409244160

)
ν9

29023764480

− i
(
8922960θ8−1375937280θ6+72318366720θ4−1463686214400θ2+8148525547264

)
ν7

29023764480

− i
(
−236196θ10+56307960θ8−4676382720θ6

)
ν5

29023764480

− i
(
167309213760θ4−2324529313344θ2+5918924547200

)
ν5

29023764480

− i
(
−481140θ10+85004100θ8−5528478960θ6

)
ν3

29023764480

− i
(
150410948640θ4−1265133321600θ2+1004626036224

)
ν3

29023764480

− i
(
−147015θ10+26062830θ8−1548868608θ6

)
ν

29023764480

− i
(
30819065760θ4−151899224832θ2+12454041600

)
ν

29023764480
− 1419857iν15

7085880
. (A.2)

D6(ν,θ) =

(
628099301376θ2−23231463702528

)
ν16

12538266255360

+

(
−207826974720θ4+16289288110080θ2−295207026769920

)
ν14

12538266255360

+

(
36675348480θ6−4596550456320θ4+179123561349120θ2−2098472385310720

)
ν12

12538266255360

+

(
−3640567680θ8+657251573760θ6−41664329740800θ4

)
ν10

12538266255360

+

(
1072630221373440θ2−8861527274778624

)
ν10

12538266255360

+

(
192735936θ10−48583592640θ8+4552446758400θ6

)
ν8

12538266255360

+

(
−195592116614400θ4+3680491078803456θ2−20941693135389696

)
ν8

12538266255360

+

(
−4251528θ12+1617050304θ10−224210592000θ8+14857834717440θ6

)
ν6

12538266255360

17We would like to thank Oleg Lisovyy for sharing with us the unpublished results for D4 and D5 as

computed from the Painlevé II equation. We checked that the latters match the ones computed from the

matrix model.
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+

(
−486010693602432θ4+6759704932125696θ2−21152656059375104

)
ν6

12538266255360

+

(
−12990780θ12+3609891360θ10−399130422480θ8+21707906542848θ6

)
ν4

12538266255360

+

(
−563405245951680θ4+5235646863930624θ2−6692702742982656

)
ν4

12538266255360

+

(
−7938810θ12+2144018160θ10−224279061624θ8+10830074974272θ6

)
ν2

12538266255360

+

(
−215197143901056θ4+1245163592706048θ2−361928925941760

)
ν2

12538266255360

+
−539055θ12+157546620θ10−17570163600θ8+746102664000θ6

12538266255360

+
−11086283013120θ4+40217382420480θ2

12538266255360
− 24137569ν18

382637520
(A.3)

D7(ν,θ) =
i
(
2209420712869888−49829211242496θ2

)
ν19

3159643096350720
+

410338673iν21

24106163760

+
i
(
19785127993344θ4−1841697992687616θ2+40411929818136576

)
ν17

3159643096350720

+
i
(
−4364366469120θ6+642254718099456θ4−29878724974952448θ2+431294717560340480

)
ν15

3159643096350720

+
i
(
−277714792149258240θ2+2935883132605079552

)
ν13

3159643096350720

+
i
(
577636738560θ8−120384194595840θ6+8952988529479680θ4

)
ν13

3159643096350720

+
i
(
+69401564740730880θ4−1607864190545055744θ2+12896647995981582336

)
ν11

3159643096350720

+
i
(
−45871152768θ10+12896334259200θ8−1378404422115840θ6

)
ν11

3159643096350720

+
i
(
+321246107010984960θ4−5827275251745389568θ2+34254091748212793344

)
ν9

3159643096350720

+
i
(
2023727328θ12−765556795584θ10+113105000211840θ8−8358622716568320θ6

)
ν9

3159643096350720

+
i
(
1707034285647117θ4−24071708860929693θ2+88226082084596078

)
ν7

6171177922560

− i
(
59049θ8−33332796θ6+7014457296θ4−744878628760θ2+43365988680784

)
θ6ν7

4875992432640

+
i
(
155714834383535θ4−1576621725969740θ2+2849012960896848

)
ν5

391820820480

− i
(
72171θ8−29238408θ6+4915342260θ4−438283228448θ2+21688585670448

)
θ6ν5

1393140695040

+
i
(
107917467861539θ4−723209858672616θ2+440213751859680

)
ν3

457124290560

− i
(
441045θ8−169143420θ6+26848410372θ4−2222362258648θ2+97346044324736

)
θ6ν3

8358844170240

+
i
(
300249586861θ4−1289393108560θ2+81477396000

)
ν

8465264640

− i
(
419265θ8−168824810θ6+28035354984θ4−2301504916992θ2+88873063642496

)
θ6ν

39007939461120
(A.4)

Likewise it is very easy to obtain higher Dk, nevertheless the expressions are quite cum-

bersome and we decided not to write them down explicitly.
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