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1 Introduction

After the success of two-dimensional conformal field theory (CFT), the construction of the

new chiral algebras and the study of their representation theory such as their minimal

models had been an essential issue in string theory during the 80s. The first examples were

the superconformal algebra (SCA) and the W-algebras [1].

In the process of proving Alday-Gaiotto-Tachikawa (AGT) duality [2], there was a

dramatical change in the analysis of the chiral algebra [3]. Instead of using the module

generated by applying the chiral algebra generators, one introduces the orthogonal basis

labeled by the Young diagrams, which also distinguish the fixed points in the instanton

moduli space of the supersymmetric Yang-Mills theory. Such basis describes a representa-

tion of affine Yangian [3–6].1 The equivalence between the Wn-algebra with U(1) current

and the affine Yangian was essential in the proof of AGT conjecture. Indeed, the affine

Yangian is equivalent to W1+∞[µ] [7, 8] which contains Wn algebra as its truncation.

Recently, Gaiotto and Rapčák [9] introduced a vertex operator algebra (VOA) through

the intersection of D5, NS5 and (−1,−1) 5-brane and putting various numbers of D3-branes

between these 5-branes. The algebra is called YL,M,N [Ψ] where L,M,N are the non-

negative integers which represent the number of D3-branes and Ψ ∈ C is the parameters

of the algebra. By the analysis of gauge theory with the interfaces, they showed that

the chiral algebra (or VOA) thus constructed can be described as the BRST reduction

of various super Lie algebras. At the same time, the use of the trivalent vertex implies

that it would be natural to connect them in the form of the Feynman diagram to generate

new VOAs.

Procházka and Rapčák [10] developed this idea further. They used a realization of

YL,M,N algebra through the affine Yangian. They used the fact that the plane partition (PP)

with three asymptotes written by Young diagrams gave a natural representation of the affine

Yangian and identified YL,M,N with a degenerate representation with the null state at (L+

1,M + 1, N + 1). Thus they obtained a natural picture of connecting two plane partitions

through the identification of one of three asymptotes in two diagrams. They refer to this

new construction of the VOA as Web of W-algebra (WoW). Through such a viewpoint

they obtained many examples of new VOAs by using the diagrammatic technique.2

In this paper, we explore graphical realizations of the minimal models of such chiral

algebras by PPs. In particular, the focus is on the examples such as Wn algebra and N = 2

superconformal algebra where the detail of the minimal models is known. To start from

such examples is nontrivial and useful since the Hilbert space of WoW is written by the

combination of the plane partition which is different from the conventional method by the

free fields and the screening currents. It is also helpful to understand the construction [10–

12] more clearly. In particular, it solves the subtlety in the treatment of the intermediate

Young diagrams when the U(1) charge is negative.

1This algebra has been studied by many mathematicians and has many other names, such as “SHc”[3],

“quantum continuous gl(∞)” [5].
2We have to mention that Gaberdiel and his collaborators [11, 12] used a similar method to define the

N = 2 super W-algebra.
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We organize this paper as follows. In section 2, we review some basic features of the

affine Yangian and the construction of the VOA in [9, 10]. In particular, we emphasize

that the relevant algebra is a truncated version of the affine Yangian where one imposes the

PPs to have a “pit” [13]. In section 3, we demonstrate the explicit construction of WoW

by the free fermion and the bosonic ghost. While it is straightforward, it is illuminative to

understand how the intermediate Young diagrams appear explicitly in the PPs. In section

4, we introduce double truncation of the affine Yangian, which happens when we impose

an additional constraint. We will relate it to the minimal models in the later sections. In

section 5, we review the PP with nonvanishing asymptotic Young diagrams, which describes

the nontrivial representations of the affine Yangian. We use the formula for the conformal

dimension and U(1) charge as a hint, and we propose a way to interpret asymptotic Young

diagram with negative rows, which will be necessary for WoW. In section 6, we give an

explicit PP realization of Wn algebra minimal models. We show that the double truncation

with appropriate asymptotes as a set of Young diagrams satisfying n-Burge condition [14–

16] which precisely characterizes the minimal model. In section 7, we describe N = 2 SCA

by two PPs and give a formula for the conformal dimension and U(1) charge [10, 11]. In

section 8, we study the minimal model by the double truncation and the modified treatment

of asymptotic Young diagrams. We show that the conformal dimension, U(1) charge, and

the character coincide with the literature [17–20]. From these examples, it is convincing

that the double truncation of the connected PPs describes of the minimal models in WoW.

2 A brief review of affine Yangian and Web of W

2.1 Affine Yangian Y (ĝl(1)): definition and plane partition representation

We start from the definition of the affine Yangian Y (ĝl(1)) by Drinfeld currents

e(u) =
∞∑
j=0

ej
uj+1

, f(u) =
∞∑
j=0

fj
uj+1

, ψ(u) = 1 + σ3

∞∑
j=0

ψj
uj+1

. (2.1)

The parameter u in the currents is the spectral parameter which appears in the integrable

model. We follow the notation in [21] where the algebra is parametrized by three parameters

h1, h2, h3 ∈ C with a constraint,

h1 + h2 + h3 = 0. (2.2)

It is convenient to introduce

σ2 = h1h2 + h2h3 + h3h1, σ3 = h1h2h3. (2.3)

The defining relations among the Drinfeld currents are

e(u)e(v) ∼ ϕ(u− v)e(v)e(u), f(u)f(v) ∼ ϕ(v − u)f(v)f(u),

ψ(u)e(v) ∼ ϕ(u− v)e(v)ψ(u), ψ(u)f(v) ∼ ϕ(v − u)f(v)ψ(u),
(2.4)

[ψi, ψj ] = 0, [ei, fj ] = ψi+j , (2.5)

– 3 –
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[ψ0, ej ] = 0, [ψ1, ej ] = 0, [ψ2, ej ] = 2ej ,

[ψ0, fj ] = 0, [ψ1, fj ] = 0, [ψ2, fj ] = −2fj
(2.6)

where ϕ(u) is the structure function,

ϕ(u) =
(u+ h1)(u+ h2)(u+ h3)

(u− h1)(u− h2)(u− h3)
. (2.7)

We note that “∼” implies both sides are equal up to regular terms at u = 0 or v = 0. ψ0

is the center of the algebra. We also impose Serre relations

Sym(j1,j2,j3)[ej1 , [ej2 , ej3+1]] = 0, Sym(j1,j2,j3)[fj1 , [fj2 , fj3+1]] = 0. (2.8)

Procházka [22] introduced new parameters λi ∈ C (i = 1, 2, 3) which is convenient to

describe the null states associated with the plane partition. They are related to hi by

λi = −ψ0σ3

hi
(2.9)

The relation (2.2) is replaced by

3∑
i=1

λ−1
i = 0. (2.10)

W1+∞-algebra [7, 8] is a Wn-algebra in n → ∞ limit with an extra decoupled U(1)

current. W1+∞ looks very different from the affine Yangian since the parameter z in the

current is a coordinate of world sheet. The algebra contains two parameters, c and x, where

c is the central charge of Virasoro algebra and x is the parameter which describes the OPE

coefficients of higher currents. While W1+∞ is described by the currents which are familiar

in string theory, it may not be so convenient to see the relation with Nekrasov instanton

partition function [23] or the topological string amplitude [24–26]. For such purpose, it

is better to use the equivalent affine Yangian. The parameters of W1+∞ and the affine

Yangian are related by [22],

c = 1 +
3∏
i=1

(λi − 1), x2 = 144(c+ 1)
3∏
i=1

(λi − 2)(λi − 3)−1 , (2.11)

where c is the central charge of Virasoro algebra and x2 =
C0

44(C4
33)2

(C0
33)2

is a parameter defined

in terms of OPE coefficients among primary fields.

In the following, we use both notations, hi and λi, depending on the context. The use

of λ has an advantage that one can represent the location of the null state smartly. For

instance, when one of the λi is a positive integer N , the W1+∞ algebra is reduced to WN

algebra with U(1) current. On the other hand, the redundancy in hi is more useful in the

definition of the representation.

– 4 –
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2.2 Representation by plane partition

There are two types of the representations of the affine Yangian. For instances, there

is a free boson realization which is natural in the viewpoint of W -algebra. The other

representation uses the basis labeled by n-tupple Young diagrams, which is useful in the

correspondence with the Nekrasov partition functions. We refer to the first (resp. second)

realization as the horizontal (resp. vertical) realization.3 Schiffmann and Vasserot [3] used

this fact to prove AGT conjecture for pure super Yang-Mills with SU(n) gauge group [2, 28].

It generalized the earlier proof [29] which applies to the SU(2) gauge group.

In the following, we consider representation by a plane partition [6, 21] which is a

natural generalization of the vertical representation. We introduce a set of basis with a

label of a plane partition Λ, and it spans the Hilbert space of the algebra. The operator

ψi is diagonal with respect to |λ〉 and ei(fi) play a role of adding (removing) a box to Λ:

ψ(u) |Λ〉 = ψΛ(u) |Λ〉 , (2.12)

e(u) |Λ〉 =
∑
∈Λ+

1

u− q − h

√
− 1

σ3
resu→q+h ψΛ(u) |Λ + 〉 , (2.13)

f(u) |Λ〉 =
∑
∈Λ−

1

u− q − h

√
− 1

σ3
resu→q+h ψΛ− (u) |Λ− 〉 , (2.14)

where
ψΛ(u) = ψ0(u− q)

∏
∈Λ

ϕ(u− q − h ),

ψ0(u) =
u+ ψ0σ3

u
.

(2.15)

Here, Λ± are the places where we can add (or remove) boxes so that the shape of plane

partition is consistent. We introduce a coordinate for each box in the plane partition. We

assign (1, 1, 1) to the origin of the partition and (x1, x2, x3) ∈ (Z>0)⊗3 for a general box.

We assign

h = h1x1 + h2x2 + h3x3 (2.16)

to the box located at (x1, x2, x3). We introduce an extra parameter “q” to represent the

shift of the spectral parameter. It gives an automorphism of affine Yangian. While it does

not change the structure of representation, it represents the charge of U(1) factor. In the

following, we use the representation with q = 0 when we do not mention it explicitly.4

As we already mentioned, Procházka’s parametrization has an advantage that the

reduction of the representation becomes manifest. In the example we mentioned (one of

λi, say λ3, becomes positive integer), the basis |Λ〉 becomes null when it contains a box at

(1, 1, N + 1). With such condition, the height of the plane partition Λ for the nonvanishing

3We use the terminologies appeared in [27] for Ding-Iohara-Miki algebra which is a q-deformed version of

the affine Yangian. It has two central charges (l1, l2), (l1, l2 ∈ Z). Horizontal (resp. vertical) representation

corresponds to the central charges (n, 0) (resp. (0, n)) and is written in terms of (q-analog of) the chiral

currents such as T (z),W (z) (resp. the Drinfeld currents e(u), f(u) and ψ(u)).
4We may cancel the redundancy of h1, h2, h3 and the center ψ0 by scaling u.
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states is not greater than N . One may decompose the plane partition layer by layer into

N -tuple Young diagrams Y1, · · · , YN with the condition Y1 � · · · � YN . They give a

representation space of WN algebra with an extra U(1) factor.

In general, when λi satisfies the extra condition

L

λ1
+
M

λ2
+
N

λ3
= 1, (2.17)

the basis |Λ〉 which contains a box with a coordinate (L+ 1,M + 1, N + 1) becomes null.

Following [13], we refer to such a position as a “pit” with the implication that we cannot

place a box there. Procházka and Rapčák [10] claimed that the affine Yangian whose

parameter is constrained by this condition is equivalent to the vertex operator algebra

YL,M,N [Ψ] in [9].

We can derive these null state conditions from (2.13) and (2.14). The equation

resu→h ψΛ(u) = 0 ( ∈ Λ+). (2.18)

implies that the application of the Drinfeld current e(z) cannot generate the state |Λ + 〉
since the coefficient attached to the basis vanishes. Because ψΛ(u) contains a factor u+ψ0σ3

u−h

for any ∈ Λ+ in generic parameters, this happens if

ψ0σ3 = −h , (2.19)

or equivalently
3∑
i=1

xi
λi

= 1 . (2.20)

We may interpret it as the null state condition.

We note that the condition (2.17) has a shift symmetry,

L→ L+ k, M →M + k, N → N + k. (2.21)

for k ∈ Z due to (2.10). It allows the redefinition of the location of the pit such that the

smallest element is one and others are greater or equal to one. The character of the plane

partitions with a pit was derived in [13].

The plane partition may have non-trivial asymptotes written in the form of three

Young diagrams µ1, µ2, µ3 for each axis x1, x2, x3. The partition function for nontrivial

plane partition is related to the topological vertex [30],

χ[q] ∝ Cµ1,µ2,µ3(q)

∞∏
n=1

(1− qn)−n . (2.22)

When there is a pit at (L+1,M+1, N+1), the asymptotic Young diagrams have a similar

pit, for example, µ1 has a pit at (M + 1, N + 1).

– 6 –
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D5

NS5

L

M

N

x2

x3

Figure 1. This figure is illustrated on x2-x3 plane. D3 branes extend also along x0 and x1
directions. 5-branes extend along 01456 directions in addition to the direction described above. We

recommend the readers to see figure 1 in [9] for more detail.

2.3 Y-algebra and WoW

Gaiotto and Rapčák [9] constructed a new VOA by glueing 5-brane junction with some D3

branes set as figure 1. Here, L,M and N indicate the number of D3 branes. A twisted

N = 4 SYM with U(L), U(M) or U(N) gauge group lives on each of D3 branes and

Chern-Simons theory with U(N |L),U(M |L) or U(M |N) gauge group does on the interfaces

between two of them. The coupling Ψ of SYM is related to the level k of Chern-Simons

theory on a (1, q) interface as

Ψ− q = k + h , (2.23)

where h is the dual-Coxeter number of Chern-Simons gauge group such as U(N |L) and we

refer to the interface between an NS5 brane and D3 branes as a (1, 0) interface. In this setup,

the VOA called Y-algebra YL,M,N [Ψ] arises at the corner in the above diagram. It is defined

as follows. Let’s focus on NS5 brane and (−1,−1) brane. We can see the corner in the

above diagram as the boundary where U(N |L) and U(M |L) Chern-Simons theories meet.

As is well known, 2d chiral algebra arises there, which depends on the boundary condition.

In the setup in [9], the gauge group is partially preserved as U(N |L)→ U(M |L) if N > M .

As a consequence, Û(N |L)Ψ affine-Kac-Moody algebra is reduced to DSN−M [Û(N |L)Ψ].

Here, DSN−M means Drinfeld-Sokolov reduction with the principal su(2) embedding in

(N −M) × (N −M) part in U(N |L). Finally, we obtain the algebra by u(M |L) BRST

reduction. As explained in [9], it is considered to be equivalent to take coset as follows:

DSN−M [Û(N |L)Ψ]

Û(M |L)Ψ−1

. (2.24)

Note that the level of the subalgebra Û(M |L) in Û(N |L) is changed due to the contribution

from the triangular constituent necessary to make it BRST-closed. One can consider the

N < M case in the same way. It is true of the N = M case except for the existence of the

matter SN |L at the corner, where SN |L represents N -pairs of free bosons with the OPE5

Xi(z)Y j(w) ∼ δi,j
z − w

(i, j = 1, · · ·N), (2.25)

5It was referred to as the symplectic bosons in [9]. In string theory, it was referred to as the bosonic

ghost [31].
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and L-pairs of fermionic ghosts with the OPE

ψi(z)χj(w) ∼ δi,j
z − w

(i, j = 1, · · ·L). (2.26)

The vacuum character of YL,M,N [Ψ] is same as that of a plane partition with a pit at

(L+ 1,M + 1, N + 1), from which Procházka and Rapčák [10] claimed that it is equivalent

to the truncation of the affine Yangian. The degenerate modules of Y-algebra arise by

introducing line operators on the interfaces labeled by the weight of U(N |L),U(M |L) or

U(M |N). One may relate them to the asymptotic Young diagrams.

By gluing the plane partitions through the asymptotic Young diagram, one can obtain

the Hilbert space of an extended algebra. For example, the following diagram represents

N = 2 super Virasoro algebra ⊗ U(1) current:

0

1

2

0

One may explain it by a BRST procedure [9, 10]: the trivial DS reduction DS1 acts on

U(2) affine Kac-Moody algebra at the top corner. Then U(1) free fermion couples to it at

the bottom corner and finally one takes the coset of them. It leads to

Û(2)Ψ × FfU(1)

Û(1)Ψ

, (2.27)

where Ff implies free fermion. This is the known coset realization of N = 2 super Virasoro

algebra with an extra U(1) factor.

One may implement such a system by gluing Y0,1,2 and Y1,0,0 through a shared asymp-

totic Young diagram. Since Y -algebra is a generalization of W -algebra, we refer to the

VOA obtained by gluing them as “web of W” (WoW).

3 Plane partition realization of free WoW

Before starting to analyze the minimal models, it will be illuminative to explain a free

field realization of WoW.6 In this case, the affine Yangian reduces to undeformed W1+∞-

algebra [33–35]. The reduction was studied, for example, in [21]. The WoW extension of

the free system was explored by Gaberdiel et al. [12] in the context of the super W-algebra.

A novelty here is the explicit construction of the truncated plane partitions.

6We mention the reference [32] as the related work.
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The WoW diagram which we will study is,

0

1

1

0

We first explain Y1,1,0 and Y0,0,1
7 describe a bosonic ghost and a free fermion respectively.

We follow the free field representations of W1+∞-algebra in [36] and super W1+∞ in [37].

In these references, the authors obtained results which can be straightforwardly related to

the explicit form of the truncated plane partition realizations.

3.1 Bosonic ghost

We start from the bosonic ghost fields β(z) =
∑

n∈Z βnz
−n, γ(z) =

∑
n∈Z γnz

−n−1. The

commutation relation among the oscillators is given by [βn, γm] = δn+m,0. The generators

of W1+∞ are written as the bilinear combinations Wn,m =
∫
dζ : β(ζ)ζnDm

ζ γ(ζ) : (n ∈ Z,

m ∈ Z≥0 and D := ζ∂ζ). We note that the Hilbert space is generated from the vacuum

satisfying βn|0〉 = 0 (n ≥ 0) and γn|0〉 = 0 (n > 0) by applying such bilinear operators.

The basis takes the form

β−n1 · · ·β−ngγ−m1 · · · γ−mg |0〉 (3.1)

where n1 ≥ · · · ≥ ng ≥ 1 and m1 ≥ m2 ≥ · · · ≥ mg ≥ 0. We note that the ghost number

should vanish.

One may construct two Young diagrams (n1, · · · , ng) and (m1, · · · ,mg) and attach the

second piece to the first one perpendicularly as 2. It defines a plane partition with a pit at

(2, 2, 1) and thus describes a module of Y1,1,0. One may obtain the parameters of the affine

Yangian by imposing a condition λ−1
1 + λ−1

2 = 1 such that we have a pit at (2, 2, 1). One

may solve it with (2.10) by λ3 = −1 and λ2 = λ1
λ1−1 . The formula (2.11) implies c = −1 for

any λ1. This is the central charge for the bosonic ghost. We note that the affine Yangian

reduces to W1+∞ without the deformation parameter in the self-dual limit (one of λi is

infinite). This condition is met if we set λ1 = 1 (or λ2 = 1).

The partition function becomes,

χ(q) =

∞∑
g=0

∑
n1≥···≥ng≥1

∑
m1≥···≥mg≥0

q
∑
i(ni+mi) =

∞∑
n=0

qn

((q; q)n)2
,

(a; q)n =

n−1∏
m=0

(1− aqm) . (3.2)

7One may suspect the Y-algebras read off from the diagram are Y0,1,1 and Y1,0,0. That is true, but of

course one can rename the axes without changing the outcome. We use the trick to make figures easy to

read. In what follows, we use it without mentioning that.
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β−n1 · · ·β−ngγ−m1 · · · γ−mg |0〉 =

1 2

3

n1

n2

n3

n4

n5

n6

m1

m2

m3

m4

m5

m6

Figure 2. The relation between Hilbert space of βγ ghost and plane partition with a pit at (2,2,1).

It can be decomposed into two Young diagrams. The left (right) one corresponds to the Hilbert

space of β (γ) ghost. The number written in each row means its length.

b−n1 · · · b−ngc−m1 · · · c−mg |0〉 =

n1

n2

ng

m1
m2

mg

Figure 3. The relation between Hilbert space of bc ghost and Young diagram (plane partition with

a pit at (1,1,2)). The number written in each row or column means its length.

When there are N -pairs of bosonic ghosts, we obtain a similar plane partition where the

location of the pit moves to (N + 1, N + 1, 1) which corresponds to YN,N,0 (λ1 = −λ3 =

N,λ2 =∞, c = −N). In [35], one may find the explicit form of the partition function for

such generalized case.

3.2 Fermionic ghost

Similarly the fermionic Hilbert space described by {bn, cm} = δn+m,0 is spanned by

b−n1 · · · b−ngc−m1 · · · c−mg |0〉 (3.3)

where n1 > · · · > ng ≥ 1 and m1 > m2 > · · · > mg ≥ 0. Again the state is constructed

out of bilinear of fermionic ghosts, and the ghost number is zero. In this case, one can

associated a Young diagram by combining hooks (nl, 1
ml) in the order l = 1, 2, · · · , g as

figure 3.

The partition function becomes

χ(q) =

∞∑
g=0

∑
n1>···>ng≥1

∑
m1>···>mg≥0

q
∑
i(ni+mi) =

∞∑
n=0

qn
2/2

((q; q)n)2
=

∞∏
n=1

(1− qn)−1 . (3.4)

We note that the formula in the third term resembles that of the bosonic ghost.
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n1

n2

n3

n4

n5

n6

m1

m2

m3

⊗

n̄1
n̄2

m̄1

n̄3
n̄4

n̄g4

m̄g3

2

1

Figure 4. The figure represents the state in the form of (3.5) with g1− g2 = g4− g3 > 0. The rows

with infinite length and height g1 − g2 are inserted. The above case corresponds to g1 − g2 = 3.

In this case, the plane partition is truncated to a single Young diagram. The location

of the pit is (1, 1, 2). The condition to have a pit there implies λ3 = 1. One may solve (2.10)

by λ2 = − λ1
λ1+1 . The central charge (2.11) gives c = 1 for any λ1. This is the central charge

of free fermion. The self-duality condition is met if λ1 = −1 and λ2 = ∞. If there are N

fermions, the pit moves to (1, 1, N + 1). There is the explicit form of the character for such

a diagram [35] for the self-dual case.

3.3 WoW: N = 2 superconformal algebra

Finally, we combine bc and βγ systems. This is the classical representation of N = 2

superconformal algebra8 [31]. Besides the bilinear operator of bc and βγ, we include the

extra generators which are expressed by the bilinear form bγ and β∂c. If the algebra is

extended by these generators, the bosonic and fermionic ghost numbers do not separately

vanish. The basis of the Hilbert space becomes,

β−n1 · · ·β−ng1γ−m1 · · · γ−mg2 b−n̄1 · · · b−n̄g3 c−m̄1 · · · c−m̄g4 |0〉 (3.5)

with g1 + g3 = g2 + g4 but g1 6= g2, g3 6= g4 in general. Suppose g1 − g2 = h > 0, one

may fill the unbalanced rows by an infinite leg with hight h on the right. On the other

hand, with g4 − g3 = h, one may similarly fill the other wing of the Young diagram with

an infinite leg similarly. See figures 4 and 5.

In this combined system, it is natural to use the connected plane partitions to represent

the total Hilbert space. The shared legs have either one row or one column. Depending on

the sign of h, however, the infinite leg is attached to x1 or x2 direction. It does not fit with

the picture presented by the diagram drawn in the first paragraph of this section. We may

8We note that the same web diagram was studied in [10], where the authors obtained U(1|1) current

algebra from DS reduction. In terms of the ghost fields, U(1|1) consists of their bilinear combinations,

where the conformal dimensions of the ghost fields are adjusted so that the dimension of U(1|1) become

one. In our analysis here, we shift the dimension of bosonic (or fermionic) ghost fields by 1
2
, and that is why

we realize N = 2 SCA. We also note that our statement here does not respect the meaning of the diagram

as the local operators at the corner, so it does not mean they form N = 2 SCA. We thank M.Rapčák for

the discussion about the above point.
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⊗
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m̄g3

2

1

Figure 5. The figure represents the state in the form of (3.5) with g1− g2 = g4− g3 < 0. The rows

with infinite length and height g2 − g1 are inserted. The above case corresponds to g2 − g1 = 3.

circumvent this complication by allowing the height or width of the intermediate Young

diagram can be negative and suppose the shared asymptotic Young diagram appears in

the fixed directions.

The partition function with the summation over the infinite leg becomes

χ[q] =
∑

g1,g2,g3,g4≥0,g1+g3=g2+g4

qg1+ 1
2
g3(g3+1)+ 1

2
g4(g4−1)

4∏
i=1

(q; q)−1
gi =

∞∏
n=1

(1 + qn)2

(1− qn)2
(3.6)

which is the character for the N = 2 superconformal algebra (up to a finite factor) in the

Ramond sector. One may shift n̄i, m̄i in (3.5) to half integers to obtain the character for

the NS sector. The discrepancy disappears by noting that the fermionic generators are not

the general bilinear combination of βc and bγ but the restricted ones. Thus WoW VOA

correctly reproduces the N = 2 superconformal algebra with the proper description of the

negative h.

It is straightforward to generalize the system to an arbitrary number of quartets

(b(i), c(i), β(i), γ(i)) (i = 1, · · · ,M) [11, 37]. Such system describes the N = 2 super W -

algebra. The intermediate Young diagrams are the restricted ones whose height or width

is limited by M . As in the M = 1 example, the legs stretch over both x1 and x2 direc-

tions. The explicit analysis is, however, somehow complicated and will be the subject of

the future publication.

4 Double truncation and periodicity in plane partition

In the following, we consider the special cases where the parameters λi are subject to two

constraints9 of the form (2.17),

L1

λ1
+
M1

λ2
+
N1

λ3
= 1 ,

L2

λ1
+
M2

λ2
+
N2

λ3
= 1 . (4.1)

With such constraints, we have two pits at (L1 + 1,M1 + 1, N1 + 1) and at (L2 + 1,M2 +

1, N2 + 1) in the plane partition. We need to study carefully which plane partition will be

9Such relation is trivially satisfied if L2 = L1 + k, M2 = M1 + k, N2 = N1 + k, due to 2.10. We assume

the two sets do not satisfy such a relation.
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relevant. Such condition was proposed in the case of Lee-Yang singularity in [21]. In this

paper, we focus on the special cases (L1,M1, N1) = (p, q, 0) and (L2,M2, N2) = (0, 0, n).

When the parameters take such special values where two points satisfies the condi-

tion (2.20), we need to re-examine the truncation rule. We denote two pits by 1 and

2 with coordinates (x1, y1, z1) and (x2, y2, z2) respectively and set h = h
1

= h
2

. One

cannot create a box by the action of e(u) on these pits as long as the both boxes don’t

belong to Λ+. When both 1 and 2 belong to Λ+, something new happens. ψΛ (2.15)

contains a factor

ψΛ(u) ∝ u+ ψ0σ3

(u− h)2
=

1

u− h
. (4.2)

Since the residue in (2.13) does not vanish, we can create the states containing either 1 or

2 . From the viewpoint of the coordinate map h, these two boxes cannot be distinguished

(h
1

= h
2

). More strongly (4.1) implies that we have a periodicity, hx+L1,y+M1,z+N1 =

hx+L2,y+M2,z+N2 . Because of the periodicity, once we fill one of the boxes, say 1 , one

cannot fill the other 2 since we cannot add a box twice at the identified position.10

Depending on which pit we fill, we have apparently two different plane partitions, but they

should be identical after we apply the periodicity rule. It may sound that the situation is

the same as the one-pit case. The difference is that the existence of two-pits implies that

the two diagrams obtained by the translation rule should make sense as the plane partition,

which gives an additional restriction on the plane partition with one-pit.

We explain an explicit construction of p = 1, q = 2, n = 1 degenerate plane partition

which is simple and will be important later. We have two pits at (2, 3, 1) and (1, 1, 2). The

following figure shows the two plane partitions which should be identified.

1

2

3

1

2

3

m

10One can also obtain the constraint by considering the null state condition. From (2.13) we see that

e(u) |Λ〉 contains the terms proportional to 1
u−h

1
|Λ + 1 〉 + 1

u−h
2
|Λ + 2 〉 = 1

u−h

(
|Λ + 1 〉 + |Λ + 2 〉

)
.

This shows that all modes ei of e(u) can generate only the one combination |Λ + 1 〉 + |Λ + 2 〉. Hence,

the other one |Λ + 1 〉 − |Λ + 2 〉 becomes null, or equivalently we should identify |Λ + 1 〉 with |Λ + 2 〉.
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The first figure is the case when we fill the pit at (2, 3, 1). We cannot fill the other pit at

(1, 1, 2), and we obtain a plane partition whose height is one. The periodicity constraint

implies that one can slice the diagram at (k+ 1, 2k+ 1, 1) k = 1, 2, · · · in the shape of hook

and pile the (k + 1)-th piece on the k-th piece, which gives a diagram where we identify

(2, 3, 1) as the pit. In this simple example n = 1, one may take the first diagram as the

arbitrary partition. The second diagram, obtained in this way, belongs to a restricted set

of the plane partition with the pit at (2, 3, 1). For the general n, we need restrictions on

both diagrams as we will see in the minimal model of Wn algebra.

5 CFT data associated with asymptotic Young diagrams

When the plane partition has infinite legs, the Young diagrams which appear in the asymp-

totes label the representation of the affine Yangian. In the following, we focus on the case

that the number of the directions where non-trivial asymptotes are imposed is at most two.

This situation is enough to analyze minimal models later.

5.1 Conformal dimension and U(1)-charge

We can evaluate the conformal dimension h and U(1) charge j′ for the plane partition with

non-trivial asymptotic condition by (2.15) and (5.1). We note that the zero modes of U(1)

current and Virasoro algebra are identified as follows [21]:

J0 ←→ ψ1,

L0 ←→ 1

2
ψ2,

(5.1)

where the normalization of U(1) current is

[Jn, Jm] = ψ0nδn+m,0. (5.2)

Decoupling U(1) factor, the zero mode of Virasoro algebra is given by

Ldecouple
0 =

1

2
ψ2 −

1

2ψ0
ψ2

1. (5.3)

One can compute the conformal dimension and U(1) charge for the configuration with

non-trivial asymptotes by multiplying an infinite number of ϕ(u−h ) as in (2.15). The gen-

eral formula was given in [10]. If the asymptotic Young diagram (µ1, µ2, · · ·µl) is imposed

in x2 direction, the conformal dimension and U(1) charge are11

j′(M2
µ) = − 1

h2

∑
j

µj ,

h(M2
µ) = − λ2

2λ3

∑
j

µ2
j −

λ2

2λ1

∑
j

(2j − 1)µj +
λ2

2

∑
j

µj

= − λ2

2λ3

∑
j

µ2
j −

λ2

2λ1

∑
j

(µT )2
j +

λ2

2

∑
j

µj ,

(5.4)

11In this formula, we use ψ1 as U(1) zero mode. We will change the normalization later.
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where µT is a transposition of µ and we take x1 direction as the one associated with l. The

other cases can be understood just by permuting λ1, λ2, and λ3. In the case where non-

trivial asymptotic conditions are imposed in more than one direction, U(1) charge can be

obtained just by summing each factor. For conformal dimension, we need to subtract the

number of overlapping boxes in addition to summing each factor. That can be understood

intuitively by considering that Virasoro zero mode counts the number of boxes. For later

use, we explicitly write the expression for the configuration with asymptotic Young diagram

(µ1, µ2, · · ·µl) in x1 direction and (ν1, ν2, · · · νm) in x2 direction,

j′ = j′(M1
µ) + j′(M2

ν ),

h = h(M1
µ) + h(M2

ν )−#(µ ∩ ν).
(5.5)

Here, #(µ∩ν) represents the number of the overlapping boxes appearing when two asymp-

totic condition, µ and ν, are imposed.

5.2 Analytic continuation to negative weight

For the application to WoW, we will have to include the negative weight as we have seen

even in the free case where the balance of the ghost charges h can be either positive or

negative. We need to generalize the above description to the negative weight by the analytic

continuation. We consider the case that there is a pit at (L+ 1,M + 1, 1) and asymptotic

Young diagram (µ1, · · · , µM ) in x1 direction and (ν1, · · · , νL) in x2 direction. We suppose

µM < 0 and µM < νL. To interpret these Young diagrams as ordinal ones which do not

contain negative rows, we shift the origin by µM to x3 direction. Then the asymptotic

Young diagrams are given by (µ1 − µM , · · · , µM−1 − µM , 0) and (ν1 − µM , · · · , νL − µM ).

Recalling that the number given by (2.16) is assigned to each box, we see that the effect

by shifting the origin appears in the representation theory as q = µMh3. Summarizing,

we decompose the weight (µ1, · · · , µM ) into (µ1, · · · , µ1) and (µ1− µM , · · ·µM−1− µM , 0),

the first factor corresponding to U(1) factor which plays a role of shifting the origin and

the second factor corresponding to the asymptotic Young diagram. One can intuitively see

that just as inserting rows with an infinite number of anti-boxes. We derive the formula for

h and j′ in the presence of negative weight. Due to the shift of the origin, the eigenvalue

of ψ(u) changes as follows:

ψ(u)→ ψ(u− µLh3) = 1 +
ψ0σ3

u
+

(ψ1 + ψ0µLh3)σ3

u2

+
(ψ2 + 2ψ1µLh3 −

µ2Lλ1λ2
λ3

)σ3

u3
+ · · · . (5.6)

Then the shift of h and j′ is

j′ → j′ + ψ0µLh3,

h→ h+ j′µLh3 −
µ2
Lλ1λ2

2λ3
.

(5.7)
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As a result, U(1) charge and the conformal dimension are

j′ = j′(M1
µ̃) + j′(M2

ν̃ ) + ψ0µLh3

= j′(M1
µ) + j′(M2

ν ),

h = h(M1
µ̃) + h(M2

ν̃ ) + (j′(M1
µ̃) + j′(M2

ν̃ ))µLh3 −
µ2
Lλ1λ2

2λ3
−#(µ̃ ∩ ν̃)

= h(M1
µ) + h(M2

ν )−#(µ̃ ∩ ν̃)− LMµL,

(5.8)

where µ̃ and ν̃ represent the Young diagrams (µ1 − µM , · · · , µM−1 − µM , 0) and (ν1 −
µM , · · · , νL − µM ) respectively. Note that we use the relation L

λ1
+ M

λ2
= 1 in the above.

This formula shows that we don’t need to change the formula for j′, but need to add the

factor “−LMµL” to that for h. One may intuitively use the original formula (5.4) by

considering negative rows as anti-rows as follows. Let’s consider the simplest case where

µ1 = µ2 = · · · = µM < 0 and ν1 = ν2 = · · · = νL = 0. One can interpret the configuration

as the one where anti-boxes are inserted at (x1, x2, x3) satisfying x1 ≥ L+ 1, 1 ≤ x2 ≤M
and µL + 1 ≤ x3 ≤ 0. On the other hand, the anti-rows are naturally defined as rows

with anti-boxes at (x1, x2, x3) satisfying x1 ≥ 1, 1 ≤ x2 ≤ M and µL + 1 ≤ x3 ≤ 0. The

difference gives the factor “−LMµL”.

6 Description of W-algebra minimal models

WN algebra together with U(1) factor corresponds to Y0,0,N [Ψ].

0

0

N

⇔ p−N

q −N

0

In the parametrization of Procházka, it corresponds to λ3 = N which satisfies

0

λ1
+

0

λ2
+
N

λ3
= 1 , (6.1)

for arbitrary choice of λ1, λ2 as long as they satisfy (2.10). One may parameterize them as

λ1 = N(β − 1) and λ2 = N(1−β)
β with β = Ψ−1. The central charge of the algebra (2.11)

becomes,

c = (N − 1)
(
1−Q2N(N + 1)

)
+ 1 , Q =

√
β − 1/

√
β, (6.2)

which coincides with the known formula up to the second term 1 which comes the extra

U(1). In the plane partition, we have a pit at (1, 1, N + 1). The corresponding plane
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partition consists of N -tupple Young diagrams Y1, · · · , YN with the inclusion relatiosn

Yi � Yi+1 (i = 1, · · · , N − 1). The partition function is

χ(q) =
∞∑
n=1

N−1∑
i=0

1

(1− qn+i)
. (6.3)

An affine Yangian description of the minimal model was studied in [38]. Here we give

an alternative picture by PP. In addition to the first pit, we introduce the second pit to

describe the minimal model. For that purpose we set β = p/q (p, q are coprime integers

greater than N). With this choice, the central charge (6.2) is identical to those of minimal

models. At the same time, the tuned parameters satisfy

p−N
λ1

+
q −N
λ2

+
0

λ3
= 1 , (6.4)

which implies that there is the second pit at (p−N + 1, q −N + 1, 1).12

The periodicity argument in the previous section implies that it is necessary to identify

the boxes at (x, y, z+N) ∼ (x+ p−N, y+ q−N, z). We divide the set of Young diagrams

Yi into a set of hooks Y
(k)
i (k = 0, 1, 2, · · · ) which are specified by Dk \Dk+1 with Dk :=

{x, y|x > (p−N)k, y > (q −N)k}. The dual plane partition after the translation becomes,

Y
(0)

1 � Y (0)
2 � · · ·Y (0)

N � Y (1)
1 � · · · � Y (1)

N � Y (2)
1 � · · · .

Such a plane partition is sensible only if Y
(k)
N � Y (k+1)

1 , (k ≥ 0). They give extra constraints

to the original N -tupple Young diagrams.

We note that the primary fields (or the irreducible representations) are parameterized

by two set of positive integers ~n = (n1, · · · , nN−1) and ~n′ = (n′1, · · · , n′N−1), ni, n
′
i ≥ 1 with∑N−1

i=1 ni < q and
∑N−1

i=1 n′i < p. The conformal dimension of primary fields is written as,

∆(~n, ~n′) =
12(
∑N−1

i=1 (pni − qn′i)~ωi)2 −N(N2 − 1)(p− q)2

24pq
(6.5)

where ~ωi is the fundamental weight of su(N). One can describe the module specified by

~n, ~n′ by including the nonvanishing asymptotic Young diagrams µ (resp. µ′) in x1 (resp.

x2) directions.13 They are defined by,

µ = (µ1, · · · , µN−1), µj − µj+1 = nj − 1 (6.6)

µ′ = (µ′1, · · · , µ′N−1), µ′j − µ′j+1 = n′j − 1 . (6.7)

The mutual locations of the Young diagrams can be written as in figure 6.

The conditions that such configuration makes sense in the sense of plane partition

(in both pictures) coincide with the N -Burge conditions [14–16], which characterize the

degenerate module of the minimal models,

Yi,R − Yi+1,R+ni−1 ≥ −(n′i − 1) , (6.8)

12We note that not all double truncations give minimal models because p and q must be coprime.
13There is no room to include the asymptotic Young diagram in x3 direction since it can not appear in

the picture where there is a pit at (1, 1, N + 1).
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1

2

YN

YN−1

YN−2

Y2

Y1

ñN−1

ñN−2

ñ1

. . .

ñ′N−1

ñ′N−2

ñ′1

. . .

Figure 6. The Young diagrams associated with minimal model of WN (and U(1)) can be interpreted

as plane partition by stacking them as shown in the above figure.

with i = 1, · · · , N . We identify YN+1 = Y1, nN = p −
∑N−1

i=1 ni, n
′
N = q −

∑N−1
i=1 n′i. The

condition for i = N is given by the equivalence of two plane partitions obtained by the

translation. One can also check that the conformal dimension derived from affine Yangian

agrees with (6.5). See appendix A for detail.

7 N = 2 super Virasoro algebra as WoW

As claimed in [9, 10], the following diagram of WoW realizes N = 2 super Virasoro algebra

⊗ U(1) current.

0

1

2

0

In this section, we describe it by the affine Yangian with the emphasis on the shared

asymptotic Young diagram, especially the careful treatment of negative weights.

7.1 WoW set-up

The diagram implies that the system consists of Y1,2,0 and Y0,0,1 with the modules for both

of them. As explained in subsection 2.3, they arise from line operators on the interme-
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2

3

1

µ

(i) µ > 0

2

3

1

(ii) µ < 0

×

×

Figure 7. The left figure shows µ > 0 case where asymptotic Young diagram (µ) is imposed.

The right one shows µ < 0 case where the origin is shifted to the x1 direction by µ. The crosses

mean pits.

diate segment and are characterized by U(1) weight µ, which takes all integer. From the

viewpoint of the affine Yangian, we can understand them as plane partitions with a shared

asymptotic Young diagram (µ) in the gluing direction. In the following, we refer to them

as “intermediate Young diagrams”.

The parameters of two Yangians are,

λ
(1)
1 = − n

n+ 2
, λ

(1)
2 =

n

n+ 1
, λ

(1)
3 = n, (7.1)

λ
(2)
1 = − 1

n+ 2
, λ

(2)
2 =

1

n+ 1
, λ

(2)
3 = 1. (7.2)

The subscripts (1) and (2) at upper right are used to distinguish two Yangians. In this

parametrization, the gluing direction is the second one. Ψ and n are related by Ψ = n+ 2.

The parameter n can be arbitrary for the description of the general N = 2 superconformal

algebra. When n becomes positive integers, we have a second pit in Y (1) at (1, 1, n + 1).

In the next section, we will argue that the system describes the minimal models as in the

Wn-algebra.

We give a graphical representation of Y0,0,1 (resp. Y1,2,0) in figure 7 (resp. figure 8),

where we use the treatment of the negative weight in section 5.

We have to mention the different appearance between µ > 0 case and µ < 0 case. One

may feel that the figures for µ < 0 look strange because it does not match the picture

that two plane partitions share an infinite leg. In the free field case, the sign of the weight

changes only the direction in which a shared leg extends and not the shape. That reflects

the fact that the sign comes just from that of the supercurrents G±(z). From the point, it

is better to consider the above figures for µ < 0 case as “analytic continuation”. Although

it does not manifestly keep such a picture, we will see that it gives a correct description.
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(i) µ > 0

2

3

1
(ii) µ < 0

×

×

Figure 8. The left figure shows µ > 0 case where asymptotic Young diagram is (µ). The right

one shows µ < 0 case. The origin is moved to the x3 direction and asymptotic Young diagram

is (|µ|, |µ|).

7.2 Conformal dimension and U(1) charge of intermediate Young diagrams

In section 5, we derived the conformal weight and the U(1) factor for the affine Yangian.

The formula (5.4) or (5.8) gives the conformal dimension (= the eigenvalue of 1
2(ψ

(1)
2 +ψ

(2)
2 ))

of the intermediate Young diagram with the height µ as

h =
|µ|(|µ|+ 2)

2
. (7.3)

For the U(1) charge, we note that there are two U(1) charges coming from two Y algebra.

We need to specify the linear combination of the two which describes the U(1) current of

N = 2 superconformal algebra (SCA). The other U(1) current should commute with the

operators in N = 2 SCA. We will refer to the former (resp. latter) current as J (resp. j).

For the simplicity of the notation, we adjust the parameters h
(a)
i by using scaling

symmetry of the affine Yangian so that h
(1)
i = h

(2)
i for i = 1, 2, 3. In this convention,

we may and will omit the subscript in hi. The relation between ψ
(1)
0 and ψ

(2)
0 becomes

ψ
(1)
0 = nψ

(2)
0 .

We note that the current j should give a vanishing charge for any µ since the interme-

diate Young diagrams are generated by the supercharges G+, G−, which leads to

j = ψ
(1)
1 − ψ

(2)
1 . (7.4)

To fix J , we impose the charge of the intermediate Young diagram with the weight µ

to be µ, which implies,

J = −h2

ψ
(1)
1

ψ
(1)
0

+
ψ
(2)
1

ψ
(2)
0

1

ψ
(1)
0

+ 1

ψ
(2)
0

= −h2
ψ

(1)
1 + nψ

(2)
1

n+ 1
. (7.5)
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We note that this also fits with the definition of N = 2 superconformal algebra where the

U(1) current is normalized by,

[Jn, Jm] =
c

3
nδn+m,0,

[Jn, G
±
r ] = ±G±n+r.

(7.6)

We follow the standard normalization (7.6) where the central charge is given

from (2.11) by14

c =
3n

n+ 2
. (7.7)

One can check that the first equation in (7.6) is also satisfied.

We recall that the state with conformal dimension (7.3) and U(1) charge µ can be

uniquely determined as 
∏µ
i=1G

+
−i−1/2 |0〉 (for µ > 0)∏−µ

i=1G
−
−i−1/2 |0〉 (for µ < 0).

(7.8)

As pointed out in [10], it corresponds to the primary field (∂|µ|−1G±(∂|µ|−2G±(· · ·
(∂G±G±) · · · )))(z). This gives further confirmation of our convention of U(1) current.

8 N = 2 unitary minimal models

As one can see from (7.7), the central charge is equal to that of N = 2 unitary minimal

model when we set n to a positive integer. It is known that N = 2 unitary minimal model

has the following NS primary fields parametrized by two integers l,m:

hl,m =
l(l + 2)−m2

4(n+ 2)
, Jl,m =

m

n+ 2
,

0 ≤ l ≤ n, −l ≤ m ≤ l, l −m ≡ 0 (mod2).

(8.1)

The characters χ(τ, z) := Tr qL0− c
24 yJ0 (q = e2πiτ , y = e2πiz) for these primary fields are

also known [17, 18]:

χl,m(τ, z) =
∑
r∈Z2n

c
(n)
l,m+2r(τ)Θ2m+2r(n+2),2n(n+2)

(
τ,

z

n+ 2

)
. (8.2)

See appendix C for the definition of string function c
(n)
l,m(τ) and theta function Θm,n(τ, z).

In this section, we show that the WoW correctly reproduce these charges as well as the

character of the minimal models. We note that the Ramond sector is obtained from the

NS sector by the spectral flow and we do not need a separate analysis.

14We subtract 1 to decouple U(1) factor.
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8.1 n = 1 case

We first study the simplest nontrivial example n = 1 since it is illuminating to understand

the fundamental rule. The central charge is one (c = 1), and we have three irreducible

representations, (i) l = m = 0, (h = J = 0), (ii) l = m = 1, (h = 1
6 , J = 1

3), (iii)

l = −m = 1, (h = 1
6 , J = −1

3).

The novelty appearing in the minimal model is that we have the second pit at (1, 1, 2).

we have the translational periodicity (x, y, z+1) ∼ (x+1, y+2, z). In the previous section,

we introduced an infinite leg of the shape (µ) (resp. (|µ|, |µ|)) for µ > 0 (resp. µ < 0)

which describe the action of the supercurrents to the vacuum. These legs have the dual

descriptions as in section 4, which impose further constraints on the plane partition.

For µ > 0 case, the leg (µ) is translated to the height one Young table of the follow-

ing shape,
2

1

...

µ

2

Obviously, one can not regard it as a Young diagram with asymptotes unless we fill the

vacant boxes located on the left side of the leg factors. It implies that the plane partition

with the simple leg (µ) becomes null and we have to add 2 + 4 + · · · + 2(µ − 1) boxes in

order to realize the non-vanishing states. That can also be seen by explicitly computing

the norm. See appendix B for detail.

Similarly for µ < 0, the infinite leg with the shape (|µ|, |µ|) is translated into the

following height one diagram,

2

1

. . .

|2µ|

2

1

Again the translated legs are not consistent as a Young diagram unless we fill the vacant

boxes on the top of the shaded region.
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The necessity of adding extra boxes are essential to reproduce the CFT parameters

and the characters of the irreducible representations. The distinction between the different

representation is described by the modification of the leg factor in x1 direction.15

8.1.1 l = m = 0

In this case, there is no need to introduce extra asymptotes in x1 direction. We have to fill

extra
∑|µ|

i=1 2(i − 1) = |µ|(|µ| − 1) boxes to describe the nonvanishing state. Putting this

factor and (7.3) together, we obtain the character as follows:

χ(τ, z) =

∑∞
µ=−∞ q

|µ|(|µ|+2)
2

+|µ|(|µ|−1)yµ

η(τ)2

=

∑∞
µ=−∞ q

3µ2

2 yµ

η(τ)
· 1

η(τ)

=
(Θ0,6(τ, z3) + Θ6,6(τ, z3))

η(τ)
· 1

η(τ)
,

(8.3)

where we use Dedekind Eta function defined in (C.4). We note that the character for Y0,0,1

does not depend on µ and is the common second factor (the character for free boson). If

we neglect this factor, it exactly coincides the vacuum character of N = 2 unitary minimal

model in NS sector with n = 1 [17, 18].

8.1.2 l = 1, m = −1

In addition to intermediate Young diagrams in x2 direction, we introduce an infinite leg

with Young diagram (1) in Y1,2,0 in x1 direction. When µ > 0, the infinite legs in the

picture with a pit at (1, 1, 2) appears as

2

1

...

µ

As in l = m = 0 case, we have to fill the open boxes on the right of µ infinite rows which

amounts to
∑µ−1

i=1 (2i − 1) = (µ − 1)2 boxes. When µ < 0, the state can be identified as

15One cannot add the infinite leg in x3 direction since there is a pit at (1, 1, 2). x2 direction is used to

describe the intermediate Young diagrams. The freedom exists only in x1 direction.
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follows:

2

1

. . .

−2µ 1

2

1

The number of boxes which we have to fill is µ2.

U(1) charge is computed from (5.4) and (7.5) as

J = µ− 1

3
. (8.4)

We claim that the conformal dimension after filling the boxes is

h =
3µ2

2
− µ+

1

3
. (8.5)

We demonstrate the formula in µ > 0 case. First, the contribution from the infinite leg

is 1
3 by (5.4). Second, the contribution from the intermediate Young diagram is µ2

2 + µ

as in (7.3). Third, we need to subtract the number of overlapping boxes from the sum of

each factor, which is the box at the origin in Y1,2,0 side in this case. Finally, we have to

fill (µ− 1)2 boxes. The computation for µ < 0 case is similar. From (8.5), we see that the

highest weight state is in µ = 0 whose conformal dimension and U(1) charge are h = 1
3 and

J = −1
3 respectively. To explain the discrepancy of the conformal weight in the minimal

model, we need to decouple U(1) factor. It is given by (7.4), and its Virasoro algebra is as

usual given by

L
U(1)
0 =

(ψ
(1)
1 − ψ

(2)
1 )2

2(ψ
(1)
0 + ψ

(2)
0 )

. (8.6)

In the case under consideration,

L
U(1)
0 =

1

4h2
1ψ

(1)
0

=
h2h3

4ψ
(1)
0 σ3h1

= − λ
(1)
1

4λ
(1)
2 λ

(1)
3

=
1

6
. (8.7)

After removing the contribution from U(1) factor, the conformal dimension and U(1) charge

of the highest weight state are equal to

h =
1

6
, J = −1

3
, (8.8)
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which agree with the unitary minimal model. The character can be computed in the similar

way with the vacuum case.

χ(τ, z) =

∑∞
µ=−∞ q

3
2

(µ− 1
3

)2yµ−
1
3

η(τ)
· q

1
6

η(τ)

=
(Θ−2,6(τ, z3) + Θ4,6(τ, z3))

η(τ)
· q

1
6

η(τ)

(8.9)

which agrees with literature.

8.1.3 l = m = 1

The asymptotic Young diagram becomes (1, 1) on Y1,2,0. The number of missing boxes

necessary is (µ−2)(µ−1) in µ > 0 case and µ2−µ in µ < 0 case. After short computation,

we have

J = µ− 2

3
, L

U(1)
0 =

2

3
, h =

3µ2

2
− 2µ+

4

3
. (8.10)

We see that the highest weight state corresponds to µ = 1. The conformal dimension

and U(1) charge after decoupling U(1) factor is h = 1
6 and J = 1

3 , and these results

indeed correspond to the primary field in NS sector. The character given below agrees

with the literature.

χ(τ, z) =

∑∞
µ=−∞ q

3
2

(µ− 2
3

)2yµ−
2
3

η(τ)
· q

2
3

η(τ)

=
(Θ2,6(τ, z3) + Θ−4,6(τ, z3))

η(τ)
· q

2
3

η(τ)
.

(8.11)

8.2 General n

We first analyze the conformal weight and U(1) charge of the configuration with asymptotic

Young diagram (ν1, ν2) in x1 direction of Y1,2,0. When the weight of the intermediate Young

diagram is zero (µ = 0), (5.4) gives,

h =
ν2

1 + ν2
2 + ν1 + (2n+ 3)ν2

2(n+ 2)
, J = −ν1 + ν2

n+ 2
. (8.12)

We need to subtract the conformal weight by the U(1) part, (8.6),

L
U(1)
0 =

(ν1 + ν2)2

2(n+ 2)
(8.13)

which gives,

h =
−2ν1ν2 + ν1 + (2n+ 3)ν2

2(n+ 2)
. (8.14)

The highest weight state lies in µ = 1 if ν2 ≥ 1 and µ = 0 if ν2 = 0 which may be seen

by comparing the contribution to the conformal dimension from the intermediate Young
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2

1

...
k

n

n

n

r
ν1 ν2

Figure 9. k ≥ 0 case. We denote the height to x3 direction by the number written in each

rectangle.

diagram with the one from the overlapping boxes. To summarize, the conformal dimension

and U(1) charge of the highest weight state becomes
h =

−2ν1ν2 + ν1 + (2n+ 3)ν2

2(n+ 2)
− 1

2
, J = 1− ν1 + ν2

n+ 2
,

h =
ν1

2(n+ 2)
, J = − ν1

n+ 2
.

(8.15)

which should be compared with (8.1). We find the one-to-one correspondence between

ν1, ν2 with l,m: 
ν1 = n+ 1− l +m

2
, ν2 =

l −m
2

+ 1 (for ν2 ≥ 1),

ν1 = l = −m (for ν2 = 0).

(8.16)

It establishes the correspondence between the conformal parameters and the plane

partition.

We move to analyze the character. As in the n = 1 case, the Hilbert space in Y1,2,0

can be identified with the plane partition with an extra pit at (1, 1, n + 1) which implies

the translation rule discussed in subsection 4. If the U(1) weight of intermediate Young

diagram is given by µ = kn+ r (k ∈ Z, 0 ≤ r < n), the plane partition can be identified as

shown in figure 9, 10:

In a similar manner with the previous case, we need to add some boxes for the state

to be not null. If k > 0, the number of necessary boxes is

k−1∑
i=1

(
2n(i− 1)− (ν1 + ν2)

)
+ (2k − 2)r + (r − ν1)θ(r > ν1) + (r − ν2)θ(r > ν2), (8.17)

where θ(P ) is equal to 1 if P is true and 0 if false. The last three terms correspond to

boxes inserted in (k + 1)th row. In the following, we set for simplicity

θ = (r − ν1)θ(r > ν1) + (r − ν2)θ(r > ν2). (8.18)
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2

1

. . .

2(−k − 1)

2

1

n
n

n

n
+
ν
1
−
r

n
+
ν
2
−
r

(i) ν2 ≤ ν1 ≤ r

2

1

. . .

2(−k − 1)

2

1

n
n

n n

ν
1
−
r

n
+
ν
2
−
r

(ii) ν2 ≤ r < ν1

2

1

. . .

2(−k − 1)

2

1

n
n

n
n

ν
1
−
r

ν
2
−
r

(iii) r < ν2 ≤ ν1

Figure 10. k < 0 case. There are three types depending on ν1, ν2 and r. We denote the height to

x3 direction by the number written in each rectangle.

After adding boxes, the conformal dimension and U(1) charge (including the contribu-

tion from Y1,0,0 side and decoupling U(1) factor) are computed from (7.3) and the above

discussion as

h =
−2ν1ν2 + ν1 + (2n+ 3)ν2

2(n+ 2)
+
n(n+ 2)

2
k2 +

(
(n+ 2)r − (ν1 + ν2)

)
k +

r2

2
− r + θ,

J = kn+ r − ν1 + ν2

n+ 2
. (8.19)

Note that we need to consider the overlapping boxes in the above computation. One can

check that this expression is also true of k < 0 case. In terms of the parameters l,m

introduced in (8.1), it can be rewritten as follows:

h =
n(n+ 2)

2

(
k +

m+ (r − 1)(n+ 2)

n(n+ 2)

)2

+
l(l + 2)

4(n+ 2)
− (m+ 2(r − 1))2

4n
+ θ

J =
m

n+ 2
+ kn+ r − 1 (ν2 ≥ 1, or l 6= −m),

h =
n(n+ 2)

2

(
k +

m+ r(n+ 2)

n(n+ 2)

)2

+
l(l + 2)

4(n+ 2)
− (−l + 2r)2

4n
+ (r − l)θ(r > l)

J =
m

n+ 2
+ kn+ r (ν2 = 0, or l = −m).

(8.20)

We can obtain the character by multiplying the factor from the highest weight (8.20) by

the character of the plane partition obtained after the process of adding boxes. To do that,

we need to know the explicit expression for the plane partition’s character.16 As we have

already seen, it corresponds to the character for some degenerate module of Wn (+U(1))

minimal model up to the factor of the highest weight. In the language of section 6, it is

parametrized by p = n + 1 and q = n + 2. One can also see it as the character of para-

fermion (+U(1) factor).17 Let’s clarify which module corresponds to the given asymptotic

16We note that we need to consider the periodicity rule here.
17The relation between W algebra and para-fermion was studied in [39, 40].
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Young diagram from the viewpoint of para-fermion. We first note that we can adjust

the asymptotic Young diagram in x2 direction to trivial one; one can change the order of

Young diagrams in figure 6 cyclically so that ñ′i = 0 for i = 1, · · ·n− 1, so we only have to

consider the asymptotic condition in x1 direction. When the asymptotic Young diagram

is parametrized by (l,m) in the way of (8.16), its conformal dimension (after decoupling

U(1) factor) is,

h =

{
hPF
l,m−2 (l 6= −m)

hPF
l,m (l = −m)

(8.21)

where

hPF
l,m =

l(l + 2)

4(n+ 2)
− m2

4n
. (8.22)

The character for the product of this module and U(1) factor is given by string function

c
(n)
l,m(τ) (see appendix C for the definition). To avoid confusion, we denote the parameters

associated with SCA by (l,m)SCA and the one associated with para-fermion by (l,m)PF in

the following.

The remaining thing we have to do is to clarify to which module the plane partition

obtained after adding boxes to figure 9, 10 corresponds. If k < 0, the configuration is,

up to shift of the origin, the plane partition with the asymptotic Young diagram in x1

direction with two rows whose length are nθ(ν1 < r) + ν1 − r and nθ(ν2 < r) + ν2 − r
(see figure 10). This expression is also true of the case with k > 0 after adjusting the

asymptotic condition in x2 direction. Changing the parameter from (ν1, ν2) to (l,m)SCA,

the parameter of the corresponding module is read off from (8.16) and (8.21). The result

in the case of l 6= −m (ν2 6= 0) is as follows:


(l,m+ 2(r − 1))PF (r ≤ ν2)

(n− l,m+ 2(r − 1)− n)PF (ν2 < r ≤ ν1)

(l,m+ 2(r − 1)− 2n)PF (r > ν1).

(8.23)

Following the convention where the region of the parameter m is extended to m ∈ Z2n by

the identification

(n− l,m+ n)PF ≡ (l,m)PF, (l,m+ 2n)PF ≡ (l,m)PF, (8.24)

the result (8.23) can be unified in the single form (l,m+ 2(r − 1))PF. After short compu-

tation, one can also see that the highest weight of these modules can be represented in the

single form as

hPF
l,m+2(r−1) + θ. (8.25)
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This factor appears in (8.20) and the product with the plane partition’s character gives

the string function c
(n)
l,m+2(r−1). Given the above results, we have the character as follows:

χ(τ, z) =
∑
r∈Zn

c
(n)
l,m+2(r−1)(τ)

∞∑
k=−∞

q
n(n+2)

2

(
k+

m+(r−1)(n+2)
n(n+2)

)2
ykn+r−1+ m

n+2

=
∑
r∈Zn

c
(n)
l,m+2r(τ)

(
Θ2m+2r(n+2),2n(n+2)

(
τ,

z

n+ 2

)
+ Θ2m+2(r+n)(n+2),2n(n+2)

(
τ,

z

n+ 2

))
=
∑
r∈Z2n

c
(n)
l,m+2r(τ)Θ2m+2r(n+2),2n(n+2)

(
τ,

z

n+ 2

)
,

(8.26)

which is consistent with the literature. One can check it is also true of l = −m case in a

similar manner.

9 Conclusion

In this paper, we demonstrate that the double-truncation of the plane partition reproduces

the minimal models of W -algebra and the simplest example of WoW,N = 2 superconformal

algebra. One may conjecture that the double truncation is a universal method to describe

the minimal models of the VOA family obtained as WoW. It will be interesting to explore

the other WoW VOAs proposed in [10] whose minimal models are not well-known. To study

the higher rank N = 2 super W-algebra [11, 12] may be other direction. We suppose that

to clarify the consistency with the modular property will be essential in the further steps.

As we have seen, the construction of WoW by PP remains somewhat mysterious. The

direction of the shared infinite leg and the shape of the intermediate Young diagram depend

on the U(1) charge of the intermediate channel while we may interpret it as an analytic

continuation. Such complication will be more serious when we consider more involved

diagrams. The operation of the extended generators such as proposed in [12] is necessary

while the way to include the negative charge diagrams seems different.

The construction of WoW reminds us of the computation of the topological string

amplitude written by the topological vertex [24]. The summation in the intermediate

Young diagram looks similar to the composition of topological vertices. While there seems

to be some difference in the treatment of negative charges, we hope to see some implications

in the relation between WoW and, for example, the quiver W-algebra [41] and the relation

with AFS vertex [27, 42].
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A The conformal dimension of the primary field in W-algebra minimal

models from affine Yangian

The conformal dimension h is computed in the manner explained in section 5. It is done by

four steps as follows. The first factor comes from the Young diagram µ and its contribution

can be read off from (5.4) as

h1 = − λ1

2λ2

N−1∑
i=1

µ2
i −

λ1

2λ3

N−1∑
i=1

(2i− 1)µi +
λ1

2

N−1∑
i=1

µi

=
β

2

N−1∑
i=1

µ2
i +

1− β
2

N−1∑
i=1

(2i− 1−N)µi.

(A.1)

In the same way, we have the second one coming from the Young diagram µ′ as

h2 =
1

2β

N−1∑
i=1

µ′2i −
1− β

2β

N−1∑
i=1

(2i− 1−N)µ′i. (A.2)

As we explained in section 5, summing the above two factors is not enough to get the

conformal dimension. We also need to subtract the number of overlapping boxes

#(µ ∩ µ′) =

N−1∑
i=1

µiµ
′
i (A.3)

from it. Finally, we have to decouple U(1) factor, whose Virasoro zero mode corresponds

to
ψ2
1

2ψ0
. Using (5.4), we have

hU(1) =
1

2ψ0

(
−
∑N−1

i=1 µi
h1

−
∑N−1

i=1 µ′i
h2

)2

=
β

2N

(
N−1∑
i=1

µi

)2

+
1

2Nβ

(
N−1∑
i=1

µ′i

)2

− 1

N

(
N−1∑
i=1

µi

)(
N−1∑
i=1

µ′i

)
.

(A.4)

Here, we use the relation between the parameters such as 1
ψ0h21

= h2
ψ0σ3

h3
h1

= − λ1
λ2λ3

. Com-

bining the above results, we have

h = h1 + h2 −#(µ ∩ µ′)− hU(1)

=
N − 1

2N

(
β

N−1∑
i=1

µ2
i − 2

N−1∑
i=1

µiµ
′
i +

1

β

N−1∑
i=1

µ′2i

)

− 1

2N

(
β
∑
i 6=j

µiµj − 2
∑
i 6=j

µiµ
′
j +

1

β

∑
i 6=j

µ′iµ
′
j

)

+
1− β

2

N−1∑
i=1

(2i− 1−N)

(
µi −

1

β
µ′j

)

=
1

2pq

(
N − 1

N

N−1∑
i=1

(pµi − qµ′i)2 − 1

N

∑
i 6=j

(pµi − qµ′i)(pµj − qµ′j)

+ (p− q)
N−1∑
i=1

(N + 1− 2i)(pµi − qµ′i)

)
.

(A.5)
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To compare it with (6.5), we introduce the weights for the defining representation of su(N)

and denote them by ~νi (i = 1 · · ·N). They satisfy the following property:

~νi · ~νj = − 1

N
+ δi,j , ~νi · ~ρ =

N + 1

2
− i,

ωi =

i∑
j=1

νj (i = 1 · · ·N − 1),
(A.6)

where ~ρ =
∑N−1

I=1 ~ωi is a Weyl vector. Using them, we can rewrite (A.5) as

h =
1

2pq

((
N−1∑
i=1

(pµi − qµ′i)~νi

)2

+ 2(p− q)
N−1∑
i=1

(pµi − qµ′i)~νi · ~ρ

)

=
1

2pq

((
N−1∑
i=1

(pµi − qµ′i)~νi + (p− q)~ρ

)2

− (p− q)2N(N2 − 1)

12

)

=
12(
∑N−1

i=1 (pni − qn′i)~ωi)2 −N(N2 − 1)(p− q)2

24pq
,

(A.7)

which is consistent with (6.5). Here, we use the formula ~ρ · ~ρ = N(N2−1)
12 .

B The norm of the primary state composed of supercurrent

N = 2 super Virasoro algebra is defined as follows:

[Ln, Lm] = (m− n)Ln+m +
c

12
(m3 −m)δn+m,0,

[Lm, G
±
r ] =

(
1

2
m− r

)
G±m+r,

[Ln, Jn] = −nJn+m,

[Jm, Jn] =
c

3
mδn+m,0,

[Jm, G
±
r ] = ±G±m+r,

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s,0,

{G±r , G±s } = 0.

(B.1)

Using it, we can compute the norm of the intermediate Young diagram with U(1) weight

µ which corresponds to the primary state (7.8):

〈0|G∓3/2 · · ·G
∓
|µ|−1/2G

∓
|µ|+1/2G

±
−|µ|−1/2G

±
−|µ|+1/2 · · ·G

±
−3/2 |0〉

= 〈0|G∓3/2 · · ·G
∓
|µ|−1/2{G

∓
|µ|+1/2, G

±
−|µ|−1/2}G

±
−|µ|+1/2 · · ·G

±
−3/2 |0〉

= 〈0|G∓3/2 · · ·G
∓
|µ|−1/2

(
2L0 ∓ 2

(
|µ|+ 1

2

)
J0 +

c

3

((
|µ|+ 1

2

)2

− 1

4

))
×G±−|µ|+1/2 · · ·G

±
−3/2 |0〉
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=
|µ|2 + |µ|

3

(
c− 3(|µ| − 1)

|µ|+ 1

)
〈0|G∓3/2 · · ·G

∓
|µ|−1/2G

±
−|µ|+1/2 · · ·G

±
−3/2 |0〉

= · · ·

=

|µ|∏
i=1

i(i+ 1)

3

(
c− 3(i− 1)

i+ 1

)
(B.2)

Note that the other terms with anti-commutator which should appear in the second line

vanish. The result shows that if c = 3n
n+2 (n ∈ N), the above states with |µ| > n become null.

C The character of parafermion

Zn parafermion is defined by the coset ŜU(2)n

Û(1)
. Here, we denote SU(2) affine Kac-Moody

algebra with level n by ŜU(2)n. We use the following normalization:

Ja(z)Jb(w) ∼
n
2 δab

(z − w)2
+
iεabcJc(w)

z − w
. (C.1)

The integrable representation of ŜU(2)n is parametrized by the eigenvalue of J3
0 as

Jam |l〉 = 0 (m > 0), J+
0 |l〉 = 0, J3

0 |l〉 =
l

2
|l〉 . (C.2)

The parameter l can take the integer value satisfying 0 ≤ l ≤ n. In each value of l, there

are several primary fields |l,m〉 ∝ (J−0 )
l−m
2 |l〉 for −l ≤ m ≤ l and l − m ≡ 0 (mod2).

It is decomposed into the primary field of parafermion and that of Û(1). The conformal

dimension of the primary field for parafermion parametrized by (l,m) can be computed by

Sugawara construction and then obtain (8.22). There are highest weight states for Û(1) also

in the descendant of ŜU(2)n. If the state has Û(1) charge j
2 satisfying j ≡ m (mod n), the

parafermion parametrized by (l,m) acts on it. This should be interpreted in the meaning

of (8.24) if m takes the value out of the region −l ≤ m ≤ l. The character can be computed

by decomposing ŜU(2)n character χ
SU(2)
l,n (τ, z) := Tr qL0− c

24 yJ
3
0 (q = e2πiτ , y = e2πiz) into

the parafermion character χPF
l,m(τ) and U(1) character as follows:

χ
SU(2)
l,n (τ, z) =

∑
m∈Zn

χPF
l,m(τ)

Θm,n(τ, z)

η(τ)
, (C.3)

where

η(τ) = q
1
24

∞∏
i=1

(1− qi), Θm,n(τ, z) =
∞∑

k=−∞
qn(k+ m

2n
)2yn(k+ m

2n
). (C.4)

String function is defined by

χ
SU(2)
l,n (τ, z) =

∑
m∈Zn

c
(n)
l,m(τ)Θm,n(τ, z). (C.5)
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It corresponds to the character for the product of parafermion and U(1) factor. As is

expected from (8.24), it satisfies

c
(n)
l,m+2n(τ) = c

(n)
n−l,m+n(τ) = c

(n)
l,m(τ). (C.6)

Ww note that string function is equal to 1
η(τ) when n = 1.
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