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1 Introduction

2-dimensional dilaton gravity is an interesting and relatively simple playground for vari-

ous physical questions, arising generically from dimensional reduction of higher dimensional

gravitational theories, as is well known. In particular the near horizon geometry of extremal

black holes and branes in these theories is of the form AdS2×X: compactifying the trans-

verse space X gives rise to effective 2-dim dilaton-gravity theories with AdS2 arising as an

attractor point with constant dilaton (which controls the size of X). In recent years, 2-dim

AdS2 dilaton-gravity theories have been under extensive investigation [1–5]. In these AdS2

dilaton-gravity theories, the varying dilaton leads to the breaking of the isometries of AdS2,

which amounts to breaking of local boundary time reparametrizations (modulo global SL(2)

symmetries). The leading effects describing such nearly AdS2 theories are captured univer-

sally by a Schwarzian derivative action governing boundary time reparametrizations mod-

ulo SL(2), from the leading nonconstant dilaton behaviour, consistent with the absence of
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finite energy excitations in AdS2 [6, 7]. There are parallels with recent investigations of the

SYK model [8–13], a quantum mechanical model of interacting fermions, which exhibits

approximate conformal symmetry at low energies, with the leading departures governed by

a Schwarzian action. See e.g. [14, 15] for a review of recent developments.

Away from the AdS2 throat region, the 2-dim theory exhibits nontrivial evolution and

it is interesting to ask if this can be interpreted as a holographic renormalization group

flow. There is a long and rich history of formulating versions of the renormalization group

in the holographic context, beginning with e.g. [16–21]. The central feature here is the

correspondence between the radial coordinate in the bulk spacetime and the energy scale

in the boundary field theory [22, 23]: evolution towards the interior in the bulk corresponds

to flowing to lower energies in the boundary theory. In [24–26], the holographic renormal-

ization group flow was formulated in terms of a radial Hamiltonian evolution, which while

not Wilsonian, provides useful insights into the structure of the RG flow and β-functions.

The striking Zamolodchikov c-theorem [27] argues that for 2-dim quantum field theories,

there exists a positive definite function of couplings that is monotonically decreasing along

RG flows, stationary at fixed points and equals the central charge of the corresponding

CFT. Holographic versions of c-theorems were discussed in [28–31]: the monotonicity of

the associated c-functions stems ultimately from the null energy conditions which in turn

encode the focussing property of null geodesic congruences. Wilsonian versions of the holo-

graphic renormalization group were formulated in [32, 33]. Various versions of c-theorems

have also been motivated by studies of entanglement entropy: a recent review is [34].

In this paper we formulate a version of holographic renormalization group flows re-

stricting attention to cases where the far infrared bulk geometry acquires an AdS2 throat,

as occurs for extremal black holes and branes. Further restricting to cases where the trans-

verse space is sufficiently symmetric, as e.g. for extremal branes that enjoy space/time

translational symmetry and spatial rotational symmetry, the transverse part of the bulk

spacetime evolves only in terms of its overall size (or warping). Then the essential flow

becomes 2-dimensional in the bulk and can be isolated by dimensional reduction to ap-

propriate 2-dim dilaton-gravity-matter theories. (The effect of the gauge fields that gave

rise to charge is mimicked by an appropriate potential for the dilaton and other scalars).

This investigation was motivated by [35] where the dimensional reduction of extremal black

branes in 4-dim (relativistic) Einstein-Maxwell and (nonrelativistic) hyperscaling violating

Lifshitz, hvLif, theories was studied to AdS2 dilaton-gravity(-scalar) theories, as well as

the leading departures from AdS2 (similar embedddings have been studied recently in [36–

45]). Since the bulk flow to the infrared AdS2 is essentially 2-dimensional, our formulation

does not really distinguish whether the higher dimensional completion is relativistic or

nonrelativistic. In the far infrared, the AdS2 fixed point is the very near horizon region

of the corresponding compactified extremal black brane and so it is reasonable to take the

central charge of the dual CFT1 to be the extremal entropy of the black brane, which is the

number of underlying microstates. The extremal entropy is given by the transverse area
VD−2Φ2

h
4GD

=
Φ2
h

4G2
where the 2-dim dilaton Φ2 = g

(D−2)/2
ii controls the size of the transverse

space. This suggests formulating a holographic c-function C(u) = Φ(u)2

4G2
away from the AdS2
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region where the bulk has a nontrivial flow. We argue that this c-function monotonically

decreases under flow towards the interior (infrared) and satisfies a c-theorem that follows

from the null energy conditions and requiring appropriate boundary conditions (that the

AdS2 throat arises in the nonrelativistic hvLif family above; this is a fairly broad family

that includes AdSD, nonconformal branes and so on, but is otherwise not “too generic”). In

addition C(u)→ SBH at the infrared AdS2 fixed point, which then fixes the precise form of

C. This dilatonic c-function has also previously been discussed in [31] in the context of non-

supersymmetric 4-dim black hole attractors [46], which we were in part motivated by: the

present context and discussion is however different in detail as will be clear in what follows.

In section 4, we study the null energy conditions and discuss this c-function, with

some explicit analysis in the phase diagram of nonconformal D2-branes (section 4.3) and

nonconformal D4-branes (section 4.4). In section 4.5, we compare this dilatonic c-function

with the entropic c-function that has been discussed in the context of entanglement. While

the entropic c-function cE scales as the number of local degrees of freedom (this is also the

scaling of the c-function in [28]), the dilatonic c-function above is extensive: it scales as

the transverse area. Loosely speaking, C ∼ cEVdiw
di where the AdS2 throat arises after

compactification from AdS2 ×Xdi .

In section 5, we adapt the holographic RG formulation of de Boer, Verlinde, Ver-

linde [24] to 2-dim dilaton-gravity-scalar theories. In particular, we obtain RG flow equa-

tions and β functions for the (scalar) couplings in the 1-dim boundary theory in a derivative

expansion. Using this, we compute β-functions for 2-dim bulk theories arising from reduc-

tions of conformal and nonconformal branes. This suggests that it is not consistent to place

the AdS2 throat in a bulk region which exhibits nontrivial RG flow (i.e. the AdS2 throat

needs to lie within the bulk region corresponding to the RG fixed point), and resolves a

concern about apparently massless perturbations found in [35]. This is not Wilsonian: it

would be interesting to adapt the holographic Wilsonian RG of [32, 33] to these 2-dim the-

ories and we leave this for future work. Section 6 contains a Discussion and the appendices

contain various technical details.

2 Reviewing AdS2 dilaton gravity from higher dimensional redux

In this section we review our discussion in [35], where we studied 2-dim AdS2 dilaton-gravity

matter theories arising from dimensional reduction of extremal charged black branes in

Einstein-Maxwell and hyperscaling violating Lifshitz theories in 4-dimensions. The AdS2

throat in the near horizon geometry of these extremal black branes manifests as the constant

dilaton, constant scalar field AdS2 background in the effective 2-dim theory. The leading de-

partures away from AdS2 are governed by the Schwarzian derivative action, arising from the

Gibbons-Hawking term linear in the dilaton perturbation, consistent with earlier results.

Einstein-Maxwell theory. Einstein-Maxwell theory with negative cosmological con-

stant in 4-dimensions admits electrically and magnetically charged black brane solutions

(which asymptote to AdS4). A review of various features of relevance here and later is [47].
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The action is

S =

∫
d4x

√
−g(4)

[
1

16πG4

(
R(4) − 2Λ

)
− 1

4
FMNF

MN

]
, Λ = − 3

R2
, (2.1)

where R is the AdS4 radius. The electric black brane metric is

ds2 = −r
2f(r)

R2
dt2+

R2

r2f(r)
dr2+

r2

R2
(dx2+dy2) , f(r) = 1−

(r0

r

)3
+
Q2
e

r4

(
1− r

r0

)
(2.2)

and the gauge field is At = µ(1− r0
r ), where r0 is the horizon, r →∞ is the boundary and

the charge parameter Qe is related to the chemical potential µ as µ = Qe
2
√
πG4 Rr0

[47].

In the extremal limit, the Hawking temperature T = 3r0
4πR2 (1 − Q2

e

3r4
0
) vanishes giving

Q4
e = r4

0 and the near horizon geometry of the black brane becomes AdS2×R2. This AdS2

throat is well defined in the regime r−r0
R � 1 and r−r0

r0
� 1 and is well separated from

the asymptotic AdS4 boundary at r ∼ rc � r0 if r−r0
rc
� 1. The Bekenstein-Hawking

entropy SBH = V2
4G4

r2
0
R2 = V2

4G4

Qe√
3R2 , with V2 =

∫
dxdy, amounts to finite entropy density

for noncompact branes.

We compactify the transverse 2-dim space as a torus T 2 with a KK-reduction ansatz

ds2 = g
(2)
µν dxµdxν + Φ2(dx2 + dy2) for the metric. Then performing a Weyl transformation

gµν = Φg
(2)
µν of the 2-dim metric to absorb the kinetic term for the dilaton Φ in the Ricci

scalar, the action (2.1) reduces to S =
∫
d2x
√
−g
[

1
16πG2

(Φ2R − 2ΛΦ) − V2Φ3

4 FµνF
µν

]
,

where G2 = G4/V2 for the electric brane solution. We solve for the gauge field in terms of

the dilaton i.e. Fµν = Qe
2
√
πG4 R3

1√
−gΦ3 ε

µν , with εtr = 1, εµν = gµαgνβε
αβ and substitute

Fµν in this dilaton-gravity-Maxwell action (with a sign change for electric branes stemming

from gtt). This gives an equivalent dilaton-gravity theory with a dilaton potential, which

now encodes the gauge field profile,

S =
1

16πG2

∫
d2x
√
−g
(

Φ2R− U(Φ)
)
, U(Φ) = 2ΛΦ +

2Q2
e

R6Φ3
. (2.3)

This equivalent dilaton-gravity theory admits an AdS2 solution with a constant dilaton,

which is just the near horizon AdS2 throat region of the 4-dim extremal black brane.

Turning on perturbations to the dilaton and the metric, we see that the quadratic part

of the bulk action gives coupled linearized equations governing these perturbations, while

the leading correction comes from the Gibbons-Hawking term. This leading term is linear

in the dilaton perturbation φ̃ and gives the Schwarzian derivative (Euclidean) action upon

expanding the extrinsic curvature around AdS2 background

S
(1)
GH = −

2Φ2
h

8πG2

∫
dτ
√
γ φ̃K −→ −

Φ2
h

4πG2

∫
duφr(u) {τ(u), u} , (2.4)

where Φh = r0
R . In evaluating the last term, we take the boundary of AdS2 as a slightly de-

formed curve (τ(u), ρ(u)) parametrized by the boundary coordinate u, and define φ̃ = φr(u)
ε ,

as discussed in [2] (reviewed in [14]). The Schwarzian derivative action is Sch(τ(u), u) =

{τ(u), u} = τ ′′′

τ ′ −
3
2( τ

′′

τ ′ )
2.
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Charged hvLif black branes. Charged hyperscaling violating Lifshitz (hvLif) black

branes in 4-dimensions arise in Einstein-Maxwell-scalar theories with an additional U(1)

gauge field, where one U(1) gauge field and the scalar source the nonrelativistic background

while the other U(1) gauge field gives charge to the black brane [48–50]. The action is

S =

∫
d4x

√
−g(4)

[
1

16πG4

(
R(4) − 1

2
∂MΨ∂MΨ + V (Ψ)− Z1

4
(F1)2

)
− Z2

4
(F2)2

]
, (2.5)

where (Fi)
2 = FiMNF

MN . The scalar dependent couplings and the scalar potential are

Z1 = eλ1Ψ, Z2 = eλ2Ψ and V (Ψ) = V0e
γΨ. The charged hvLif black brane metric is

ds2 =

(
r

rhv

)−θ[
− r2zf(r)

R2z
dt2 +

R2

r2f(r)
dr2 +

r2

R2
(dx2 + dy2)

]
,

f(r) = 1−
(r0

r

)2+z−θ
+

Q2

r2(1+z−θ)

(
1−

(
r

r0

)z−θ)
. (2.6)

These are asymptotically hvLif (see e.g. [47] on hvLif backgrounds). The scalar and gauge

fields are

eΨ = eΨ0

(
rhv r

R2

)√(2−θ)(2z−2−θ)
, F1rt =

√
2(z−1)(2+z−θ)e−

λ1Ψ0
2 r2

hvR
θ−z−4 r1+z−θ,

F2rt =
Q
√

2(2−θ)(z−θ)e−
λ2Ψ0

2

4
√
πG4

Rz−θ−2 r−z+θ+1
hv r−(1+z−θ), (2.7)

with V0 = (2+z−θ)(1+z−θ) e−γΨ0

R2−2θ r2θ
hv

, γ = θ√
(2−θ)(2z−2−θ)

, λ1 = −4+θ√
(2−θ)(2z−2−θ)

, λ2 =
√

2z−2−θ
2−θ ,

where z and θ are Lifshitz and hyperscaling violation exponents respectively. rhv is the

hyperscaling violating scale arising in the conformal factor in the metric, and the charge

parameter Q has dimensions of r1+z−θ (which is equivalent to absorbing factors of rhv, R

into Q). The null energy conditions and the regularity of A2 t as r → ∞, so that hvLif

boundary is not ruined by A2 t, give constraints on the exponents z, θ,

z ≥ 1 , 2z − 2− θ ≥ 0 , 2− θ ≥ 0 . (2.8)

In the extremal limit, the temperature T =
(2+z−θ)rz0

4πRz+1 (1 − (z−θ)Q2r
−2(1+z−θ)
0

(2+z−θ) ) vanishes

giving Q2 = (2+z−θ)
(z−θ) r

2(1+z−θ)
0 and an AdS2 ×R2 near horizon geometry. The AdS2 throat,

well defined if r−r0
R � 1, r−r0

r0
� 1, is well separated from the asymptotic hvLif boundary

taken at r ∼ rhv � r0 if r−r0
rhv
� 1.

As in the relativistic case earlier, a T 2-redux followed by a Weyl transformation and

replacing the gauge fields Fµν1 , Fµν2 in terms of the dilaton and the scalar field Ψ gives an

equivalent dilaton-gravity-scalar action with an effective interaction potential U(Φ,Ψ) for

– 5 –
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the dilaton and the scalar field,

S =
1

16πG2

∫
d2x
√
−g

(
Φ2R− Φ2

2
(∂Ψ)2 − U(Φ,Ψ)

)
, (2.9)

U(Φ,Ψ) = −(2 + z − θ)(1 + z − θ)
R2−2θr2θ

hv

eγ(Ψ−Ψ0) Φ

+
1

Φ3

(
(z − 1)(2 + z − θ)r2θ−4

hv R2−2θ

eλ1(Ψ−Ψ0)
+

(2− θ)(z − θ)Q2r2z−2
hv R−4z−2+2θ

eλ2(Ψ−Ψ0)

)
.

This admits an AdS2 background with constant dilaton and scalar field, which is the near

horizon AdS2 throat of the 4-dim extremal hvLif black brane.

Turning on a perturbation to the dilaton Φ = Φh(1 + φ̃) (and the scalar field and

metric), we see that the quadratic part of the bulk action gives coupled linearized equations

governing these perturbations. Using conformal gauge, AdS2 is ds2 = 4L2

(x+−x−)2 (−dx+dx−),

and the (decoupled) linearized equation for the scalar field perturbation (2z−2−θ)∂+∂−ζ+

2(z−1) 2
(x+−x−)2 ζ = 0 shows that ζ is massive generically and the AdS2 background is stable

for z, θ satisfying the energy conditions (2.8). However, for z = 1, θ 6= 0, ζ is massless

and suggests that the linear stability analysis is insufficient to determine the stabilty of

the AdS2 attractor. An example where this case arises is the reduction of D2-branes on

S6 which gives a 4-dim hvLif theory with z = 1, θ = −1
3 (see appendix C).

The leading correction to AdS2 comes from the Gibbons-Hawking term linear in the

dilaton perturbation, which gives the Schwarzian derivative action as mentioned earlier.

We expand the total (Euclidean) action as I = I0 + I1 + I2 + . . . in perturbations. The

background action I0 = − Φ2
h

16πG2
(
∫
d2x
√
gR + 2

∫
bndry

√
γ K) gives the extremal entropy

SBH =
Φ2
h

4G2
where Φ2

h =
r2−θ
0

R2r−θhv
. I1 is linear in perturbations and when evaluated on the

AdS2 background with constant dilaton Φh and scalar Ψh gives

I1 = −
2Φ2

h

16πG2

∫
d2x
√
g φ̃

(
R+

2

L2

)
−

2Φ2
h

8πG2

∫
bndry

√
γ φ̃K , (2.10)

which is the Jackiw-Teitelboim [51, 52] theory. The entropy coefficients arise from the

way the perturbations have been defined. It is worth noting that the appearance of the

Schwarzian from the Gibbons-Hawking term applies to the JT model as in these cases

above. In what follows, we study more general 2-dim dilaton-gravity-matter theories: in

such cases, the appearance of the Schwarzian follows from a more general argument [37, 45],

related to a conformal anomaly arising after properly renormalizing the on-shell action.

3 The 2-dim theory and the attractor conditions

We consider a general gravity-scalar action in D dimensions

S =
1

16πGD

∫
dDx

√
−g(D)

(
R(D) − hIJ

2
∂MΨI∂MΨJ − V

)
, (3.1)

where hIJ(ΨI) is a positive definite, symmetric metric controlling the kinetic terms of

the scalars ΨI and V = V (ΨI , g) is a potential for the scalars ΨI which also contains

– 6 –
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metric data (i.e. V is not simply a scalar potential). Such an effective action arises from

theories with gravity, scalars and gauge fields after the gauge fields have been replaced with

their background profiles (and changing the signs of the F 2 terms for electric profiles): we

have seen examples of this sort arising in Einstein-Maxwell and Einstein-Maxwell-dilaton

theories in the previous section. For instance, in the Einstein-Maxwell case with no scalars,

the term
∫ √
−gF 2 gives ∂r(

√
−gF tr) = 0 for electric branes: using this F tr-profile gives

the term gttgrr
g F 2

0 thus leading to the effective potential V = −V0(ΨI) + 1
gD−2
xx

V2(ΨI), with

V = −V0(ΨI) arising from the cosmological constant term in the original theory. The

sign of the V2(ΨI)-term is fixed by requiring that the gravity-scalar equations are identical

with those of the original theory (See appendix A for details). Note that this sign is

also consistent with electric-magnetic duality (for magnetic branes, the F 2 term does not

contain a minus sign which only arises from gtt for electric branes). It is worth noting that

the gauge fields have not really been “integrated out” and so these gravity-scalar theories

are best regarded as equivalent only for certain (classical or semiclassical) purposes as will

be clear in what follows.

We now look for 2-dim theories obtained by dimensional reduction of the above theories

on a torus TD−2 with the ansatz

ds2 = g(2)
µν dx

µdxν + Φ
4

D−2

D−2∑
i=1

dx2
i , g(D)

xx ≡ Φ
4

D−2 . (3.2)

This gives the 2-dim action

S =
1

16πG2

∫
d2x

√
−g(2) Φ2

(
R(2)+

D − 3

D − 2

(∇(2)Φ
2)2

Φ4
−

2∇2
(2)Φ

2

Φ2
− hIJ

2
∂µΨI∂µΨJ− V

)
,

(3.3)

where ∇(2)µ is a covariant derivative w.r.t. g
(2)
µν . Now performing a Weyl transformation

gµν = Φ
2(D−3)
(D−2) g

(2)
µν absorbs the kinetic term1 for Φ in R. The 2-dim action then becomes

S =
1

16πG2

∫
d2x
√
−g
(

Φ2R− Φ2

2
hIJ∂µΨI∂µΨJ − U(Φ,ΨI)

)
, U(Φ,ΨI) = V Φ

2
D−2 .

(3.4)

We have suppressed a total derivative term
∫
d2x
√
−g [− (D−1)

(D−2)∇
2Φ2] which cancels with a

corresponding term arising from the reduction of the Gibbons-Hawking boundary term.

Our choice in (3.2) of the 2-dim dilaton Φ2 = g
(D−2)/2
xx implies that the area of the

transverse space is given by Φ2: also this choice leads to
∫

(Φ2R + . . .) uniformly in the

Einstein term of the 2-dim action for any higher dimensional theory.

1Using the covariant derivative ∇µ w.r.t. gµν , and

∇2
(2)Φ

2 = Φ
2(D−3)
(D−2) ∇2Φ2, (∇(2)Φ

2)2 = Φ
2(D−3)
(D−2) (∇Φ2)2, R(2) = Φ

2(D−3)
(D−2)

[
R−D−3

D−2

(
(∇Φ2)2

Φ4
−∇

2Φ2

Φ2

)]
.
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The 2-dim equations of motion then become

gµν∇2Φ2 −∇µ∇νΦ2 +
gµν
2

(
Φ2

2
hIJ∂µΨI∂µΨJ + U

)
− Φ2

2
hIJ∂µΨI∂νΨJ = 0 ,

R− hIJ
2
∂µΨI∂µΨJ − ∂U

∂(Φ2)
= 0 ,

1√
−g

∂µ(
√
−gΦ2hIJ∂

µΨJ)− ∂U

∂ΨI
= 0 . (3.5)

These equations admit an AdS2 critical point with constant scalars and dilaton: we have

Φ, ΨI = const, and R = − 2
L2 (with L the AdS2 scale) which implies

Uh = 0 ,
∂U

∂(Φ2)

∣∣∣
h

=
−2

L2
,

∂U

∂ΨI

∣∣∣
h

= 0 , (3.6)

from the first, second and third equations respectively; the subscript h denotes that the

quantity is evaluated at the AdS2 background (which is the near horizon throat region

of the higher dimensional extremal brane). While we focus in this paper on pure AdS2

backgrounds with constant dilaton and constant scalars, the field equations (3.5) admit

other solutions including a 2-dim black hole (which is locally AdS2) where the conditions

in (3.6) are modified (see e.g. [45]). Turning on perturbations,

Φ = Φh + φ , ΨI = ΨI
h + ψI , ω = ωh + Ω , (3.7)

where ds2 = e2ω(−dx+dx−) (conformal gauge), the linearized field equations for these

perturbations are

∂+∂−φ+
2φ

(x+−x−)2
= 0 ,

(hIJ |h)∂+∂−ψ
J +

L2

(x+−x−)2Φ2
h

[
φ

(
∂2U

∂Φ∂ΨI

∣∣∣∣
h

)
+ψK

(
∂2U

∂ΨK∂ΨI

∣∣∣∣
h

)]
= 0 , (3.8)

∂+∂−Ω+
1

(x+−x−)2

[
2Ω− φ

Φh

(
1+

L2

4

(
∂2U

∂Φ∂Φ

∣∣∣∣
h

))
− L2

4Φh

(
∂2U

∂Φ∂ΨK

∣∣∣∣
h

)
ψK
]

= 0 .

We define new scalar fields ζI = ψI − βIφ, where βI are constants to be determined.

Substituting in the linearized equations for ψI above, we get decoupled equations for ζI

(hIJ |h)∂+∂−ζ
J +

L2

(x+ − x−)2Φ2
h

(
∂2U

∂ΨK∂ΨI

∣∣∣∣
h

)
ζK = 0 (3.9)

provided βI satisfy[
2(hIJ |h)− L2

Φ2
h

(
∂2U

∂ΨI∂ΨJ

∣∣∣∣
h

)]
βJ =

L2

Φ2
h

(
∂2U

∂Φ∂ΨI

∣∣∣∣
h

)
. (3.10)

Defining the matrix HIJ = 2(hIJ |h)− L2

Φ2
h

(
∂2U

∂ΨI∂ΨJ

∣∣∣∣
h

)
, we can solve for βJ as

βI = HIJ

[
L2

Φ2
h

(
∂2U

∂Φ∂ΨJ

∣∣∣∣
h

)]
, (3.11)
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where HIJ is inverse of HIJ (see appendix C for an example). With hIJ the inverse of hIJ ,

the condition for a stable AdS2 critical point with no tachyonic or massless modes is that

the eigenvalues m2
I of the mass matrix (hIJ |h)

Φ2
h

( ∂2U
∂ΨJ∂ΨK

|h) satisfy the AdS2 Breitenlohner-

Freedman (BF) bound, i.e. m2
IL

2 ≥ −1
4 . Of course m2

I > 0 automatically satisfies this, as

was the generic case in [35]. For the case with simply one scalar field Ψ, the criteria for a

stable AdS2 critical point are

Uh = 0 ,
∂U

∂Ψ

∣∣∣∣
h

= 0 ,
∂U

∂(Φ2)

∣∣∣∣
h

=
−2

L2
,

∂2U

∂Ψ2

∣∣∣∣
h

> −
Φ2
h

4L2
. (3.12)

4 Null energy conditions and a c-function

We are studying 2-dim dilaton-gravity-matter theories (with a potential) that we regard

implicitly as arising from dimensional reduction of higher dimensional gravity-matter theo-

ries. Requiring time translations and that the space transverse to the two (t, r)-dimensions

is sufficiently symmetric means that the bulk space effectively evolves nontrivially only

in the bulk radial direction. For instance, extremal branes enjoy translational and rota-

tional invariance in the spatial directions: these geometries thus flow only in the radial

direction. From the dual point of view, with the radial direction taken as encoding energy

scales [22, 23], this simply means that the theory has a nontrivial RG flow encoded by the

bulk theory in terms of a holographic renormalization group. This has been the subject of

much exploration with a large literature over the years e.g. [16–21, 24–26, 28–33] (and the

recent review [34]).

Focussing on reductions of extremal objects is equivalent to requiring that the 2-dim

theories approach an AdS2 throat in the deep infrared with the dilaton and scalars acquiring

fixed point values. The bulk radial flow to the infrared then must terminate at an AdS2

fixed point: the transverse space symmetries assumed above imply that the bulk flow is

effectively just 2-dimensional and the dual theory is effectively encoded by a flow to a one

dimensional CFT1 obtained by the dimensional reduction of the transverse space. The bulk

description of this holographic renormalization is consistent with the reduction ansatz we

have been discussing with the size of the transverse space controlled by the 2-dimensional

dilaton Φ. It is important to note that this effective 2-dimensional flow appears insensitive

to whether the higher dimensional theory is relativistic or nonrelativistic. In particular

this raises the question of proposing a c-theorem encoding the renormalization group flow

in the dual 1-dimensional theory. This is intriguing especially considering that c-theorems

and renormalization group flows are not so easily constrained for nonrelativistic theories:

if such a c-theorem and associated c-function can be identified for the present context,

one may hope that the analysis here may aid progress in understanding c-theorems for

higher dimensional nonrelativistic theories away from extremality. Previous investigations

on holographic c-theorems in Lifshitz and Schrödinger theories can be found in [53, 54].

From the bulk point of view, the gravitational theory is required to satisfy appropriate

energy conditions for being physically well-defined. In particular the null energy conditions

require that the energy momentum tensor contracted with any null vector nµ be non-

negative, i.e. Tµνn
µnν ≥ 0. From the Einstein equations governing the bulk theory (which is
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classical in the large N approximation), this imposes Rµνn
µnν ≥ 0, which can be regarded

as defining monotonicity relations for bulk metric data. For relativistic theories, there

is a single null vector that is independent: for nonrelativistic theories enjoying spatial

translation symmetry, there are two independent null vectors. The reduction ansatz we

have been discussing suggests a priori two independent null vectors, one with components

along the (t, r) directions, the other with components along (t, xi) directions.

Consider, for simplicity and concreteness, the ansatz for the D-dim metric

ds2 = −B2dt2 +
du2

B2
+ Φ

4
D−2

D−2∑
i=1

dx2
i , (4.1)

where B and Φ depend only on the radial coordinate u for the sufficiently symmetric space

we have in mind. We have chosen these coordinates since the null energy conditions then

simplify. The components of the Ricci tensor are

Rtt = B2

[
(B2)′′

2
+

2BB′Φ′

Φ

]
, Ruu =−(B2)′′

2B2
− 2

ΦB
(Φ′B′+Φ′′B)+

2(D−4)

(D−2)

(Φ′)2

Φ2
,

Rxx = − Φ
4

D−2

(D−2)

(
4BB′Φ′

Φ
+
B2(Φ2)′′

Φ2

)
, (4.2)

where prime ( ′ ) denotes derivative w.r.t. the radial coordinate u. For the two null vectors,

ζM = (
√
−gtt,

√
guu, 0, 0, . . . , 0) , ξM = (

√
−gtt, 0,

√
gxx, 0, . . . , 0) , (4.3)

the null energy conditions give

RMNζ
MζN = −2B2

[
Φ′′

Φ
− (D − 4)

(D − 2)

(Φ′)2

Φ2

]
≥ 0 ,

RMNξ
MξN =

B2

2

[
(B2)′′

B2
− 2

(D − 2)

(Φ2)′′

Φ2
+

2(D − 4)

(D − 2)

(B2)′Φ′

B2Φ

]
≥ 0 . (4.4)

Note that the first condition is independent of B in the coordinate choice (4.1).

Example. The charged finite temperature D-dim hvLif metric is

ds2 =

(
r

rhv

)− 2θ
di

[
− r2z

R2z
f(r)dt2 +

R2

r2f(r)
dr2 +

r2

R2

di∑
i=1

dx2
i

]
, di = D − 2 . (4.5)

The uncharged zero temperature case (f(r) = 1) written in the form (4.1) has

B2(u) =

(z − 2θ
di

)
2z− 2θ

diR
2θ
di

(z+1)−2z

r
2zθ
di
hv


1

z− 2θ
di

u

2z− 2θ
di

z− 2θ
di , u =

r
2θ/di
hv

(z − 2θ/di)Rz−1
r
z− 2θ

di ,

Φ2(u) =

(
(z − 2θ

di
)di−θR3θ−zθ−di

r2θ−zθ
hv

) 1

z− 2θ
di
u

di−θ
z− 2θ

di . (4.6)

Substituting these expressions for B2 and Φ2 in (4.4) recovers the familiar null energy

conditions for uncharged zero temperature hvLif theories

(di − θ)(di(z − 1)− θ) ≥ 0 , (z − 1)(di + z − θ) ≥ 0 . (4.7)
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holographic renormalization group flow

towards
intermediate

region

RG transition

AdS2

IR

throat

scales

UV
region

to lower energies (interior)

Figure 1. A cartoon of the bulk spacetime with the holographic RG flow in the radial direction

to the infrared AdS2 throat region from the far (UV) region through possible intermediate regions

(and associated RG transition scales).

4.1 A holographic c-function

The existence of a renormalization group flow in the radial direction in the effective 2-

dim bulk theory suggests the existence of a c-function that encodes the number of degrees

of freedom along the flow. Requiring that the flow terminates at an AdS2 fixed point

implies that the IR fixed point is a nontrivial CFT1. The fact that the AdS2 is the very

near horizon geometry of the extremal black brane that describes the system suggests that

the number of degrees of freedom describing the IR CFT1 is equal to the entropy of the

extremal black brane. The extremal entropy is given by the horizon area

SBH =
g

(D−2)/2
xx |h VD−2

4GD
=

Φ2
h

4G2
, G2 =

GD
VD−2

, (4.8)

with Φh the value of the dilaton (3.2) in the AdS2 region and G2 the 2-dim Newton constant.

Note that the dilaton Φ controls the transverse area of the black brane.

This suggests proposing a holographic c-function after reduction of (4.1),

C(u) =
Φ2(u)

4G2
=

Φ2(u)VD−2

4GD
, Φ2 = g(D−2)/2

xx , (4.9)

describing the number of active degrees of freedom at scale u along the renormalization

group flow to the IR AdS2 fixed point. This was proposed and discussed in [31] in the

context of 4-dim nonsupersymmetric black hole attractors: in the present case, our context

is different in part but there is overlap in the physics nonetheless.

To prove the c-theorem for C, we need to prove that C(u) decreases monotonically

as we flow to lower energies u (i.e. interior), or equivalently that C(u) is a monotonically

increasing function as u increases (outwards to the boundary). We will do this in two steps.

Step 1: first define Φ̃ = Φ2/(D−2). Then the first of the energy conditions (4.4) becomes

Φ̃ = Φ
2

D−2 ; Φ̃′′ =
2

D − 2

(
Φ′′

Φ
− D − 4

D − 2

(Φ′)2

Φ2

)
Φ

2
D−2 ⇒ −(D − 2)B2 Φ̃′′

Φ̃
≥ 0 ,

(4.10)
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so that Φ̃′ monotonically decreases as u increases towards the boundary. In other words,

Φ̃′ in the interior is larger than Φ̃′ near the boundary. If we can now argue that Φ̃′ is

positive near the boundary, this would imply that Φ̃′ > 0 everywhere in the bulk as well.

This then would imply that Φ̃(u) is a monotonically increasing function as u increases and

flows towards the boundary. A heuristic picture of the setup appears in figure 1 (see also

the discussion on nonconformal D2-branes, section 4.3, which exemplifies this).

Step 2: now we proceed to argue that Φ̃′ is positive near the boundary for suitable bound-

ary conditions, namely that the ultraviolet of the theory belongs in the hvLif family (4.5)

that we have been focussing on (which also includes AdS for exponents z = 1, θ = 0). The

extremal branes we are considering here are excited states at finite charge density in these

theories: the near boundary region corresponds to the high energy regime of the dual, well

above the characteristic scales of the excited states. So it suffices to use the asymptotic

(uncharged zero temperature) form of these backgrounds.

Using (4.6), we have di = D − 2 and Φ̃ = Φ
2
di . Then retaining only relevant factors,

we have

Φ̃ ∼
(
z − 2θ

di

) di−θ
zdi−2θ

u
di−θ
zdi−2θ , Φ̃′ ∼

(
z − 2θ

di

) di−θ
zdi−2θ (di − θ)

(zdi − 2θ)

1

u
di(z−1)−θ
zdi−2θ

,

Φ̃′′ ∼ −
(
z − 2θ

di

) di−θ
zdi−2θ (di − θ)(di(z − 1)− θ)

(zdi − 2θ)2

1

u
di(z−1)−θ
zdi−2θ

+1
. (4.11)

Then Φ̃′′

Φ̃
≤ 0 gives the null energy condition (di− θ)(di(z− 1)− θ) ≥ 0. A reasonable dual

field theory requires positivity of specific heat if the theory is excited to finite temperature.

Since the entropy for these theories scales as S ∼ VdiT
di−θ
z , the positivity of the correspond-

ing specific heat imposes di−θ
z ≥ 0. This implies di− θ ≥ 0 since z ≥ 1. Alongwith the null

energy condition, this leads to (di(z − 1)− θ) ≥ 0. These two conditions together imply

zdi − 2θ = (di(z − 1)− θ) + (di − θ) ≥ 0 . (4.12)

Then we see that Φ̃′ is positive in this near boundary region. Roughly, Φ̃ ∼ un and Φ̃′ ≥ 0

and Φ̃′′ ≤ 0 require n ≥ 0 and n(n − 1) ≤ 0, i.e. 0 ≤ n ≤ 1. We have argued that this is

true if the null energy conditions and positivity of specific heat are satisfied.

Thus finally, we have shown that for the ultraviolet data we are considering, Φ̃(u) =

Φ2/(D−2) is monotonically decreasing as u flows to the interior (lower energies). Since the

exponent 2
D−2 is positive, this implies that Φ(u) satisfies the same monotonicity property.

This proves that the holographic c-function (4.9) we propose in fact satisfies the c-theorem.

At the IR AdS2 horizon, C in (4.9) approaches the extremal black hole entropy (4.8),

which is the IR number of degrees of freedom controlling the number of black hole mi-

crostates, akin to a central charge for this subsector. In fact it is this requirement that

C → SBH at the IR AdS2 fixed point which fixes the precise scaling of C in terms of Φ (else

any positive power of Φ is monotonic, from the above arguments).

It is interesting to note that we have mainly used the first null energy condition in (4.4)

in the above arguments. The second null energy condition appears to be more a condition
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on the matter configurations: for instance, the second condition for hvLif backgrounds (4.5)

gives z ≥ 1, di + z − θ ≥ 0 in (4.7), which follow from reality of the fluxes supporting the

background, and also follows from specific heat positivity. to illustrate the condition in more

generality, let us restrict to D = 4 for simplicity: then the second condition in (4.4) gives

(Φ2)′′

Φ2
≤ (B2)′′

B2
, (4.13)

which says that the dilaton “acceleration” is not greater than that of the 2-dim metric. As

we approach the AdS2 region, we have B2 ∼ (u − u0)2 so this becomes (Φ2)′′

Φ2 . 2
(u−u0)2

which is trivially satisfied as u→ u0 since the right hand side grows large. Thus the near

AdS2 region does not provide any additional constraint from this energy condition. How-

ever the near boundary region gives nontrivial constraints on the exponents defining the

theory from this energy condition as we have seen. We will discuss this further later.

One might be concerned that the null energy conditions (and the Einstein equations)

are second order equations while renormalization group flow is first order. It is important to

note in this regard that the boundary conditions we have imposed is on the first derivative

Φ̃′, which then automatically implies monotonicity. This physical boundary condition has

effectively ruled out the other (growing) mode which would likely be singular in the interior.

In explicit examples (e.g. nonconformal branes redux, later), we can check this dilatonic

c-function in fact has the right behaviour. Consider for instance an extremal brane in an

hvLif theory where B2,Φ2 near the boundary have the form (4.6) while in the near AdS2

region, B2 ∼ (u− u0)2 and Φ ∼ uA globally, with A = di−θ
zdi−2θ . Then using the arguments

around (4.12), we see that A ≥ 0 so that Φ2(u) can be seen explicitly to monotonically

decrease through the bulk as u decreases flowing towards AdS2. We also see that A ≤ 1 so

that Φ′′ ≤ 0 in accord with the first energy condition in (4.4). The second energy condition

in the near boundary region simply imposes the constraints on the exponents that we have

seen, which are required of the theory. In the near AdS2 region, B2 ∼ (u− u0)2 and so as

described above, the second energy condition is satisfied. This family includes AdS where

z = 1, θ = 0 and Φ2 = u2.

From the point of dual 1-dim theories which flow to the CFT1 dual to the AdS2 bulk

theory, the arguments above suggest that C in (4.9) is a candidate c-function. While spatial

coarse-graining does not make sense in 0 + 1-dim (no space!), the renormalization group

defined in terms of integrating out high energy modes does make sense, i.e. as a flow to

lower energies (IR). In the present context, we have defined the holographic c-function C
as essentially inherited from the higher dimensional theory that has been compactified: it

would be interesting to understand the c-function from the dual 1-dim point of view.

4.2 Null energy conditions from the 2-dim perspective

We have described the null energy conditions Tµνn
µnν ≥ 0 in the higher dimensional

theory and recast them in terms of 2-dim bulk variables g
(2)
µν , Φ. The two independent

null vectors give two independent null energy conditions (4.4) as we have seen. However

it is interesting to note that only one of the null vectors — ζM = (
√
−gtt,

√
guu) — has

a natural interpretation intrinsically in the 2-dimensional spacetime. This leads to the
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first of the energy conditions. The second one appears to have no intrinsic interpretation

directly in 2-dimensions: however we can reverse engineer this from the higher dimensional

theory and recast it in terms of the potential governing the dilaton and other scalars in

the context of the dilaton-gravity-scalar theory (3.4).

The tr− and ii-components, for i = 1, . . . , D−2, of Einstein equations for the gravity-

scalar action in D-dimensions (3.1) are

R(D)
µν −

g
(D)
µν

2
R(D) =

hIJ
2

(
∂µΨI∂νΨJ − g

(D)
µν

2
∂MΨI∂MΨJ

)
− g

(D)
µν

2
V , (4.14)

R(D)
ii −

g
(D)
ii

2
R(D) =

hIJ
2

(
∂iΨ

I∂iΨ
J −

g
(D)
ii

2
∂MΨI∂MΨJ

)
−
g

(D)
ii

2
V +

∂V

∂g(D) ii
, (4.15)

where we have taken the metric to be diagonal in the spatial components i.e. g
(D)
ij = 0 ∀ i 6=

j and the potential V in (3.1) to be dependent only on g
(D)
ii components. These equations

G
(D)
MN = 8πGDT

(D)
MN give the stress tensor components as

8πGDT
(D)
µν =

hIJ
2

(
∂µΨI∂νΨJ − g

(D)
µν

2
∂MΨI∂MΨJ

)
− g

(D)
µν

2
V , (4.16)

8πGDT
(D)
xx =

hIJ
2

(
∂xΨI∂xΨJ − g

(D)
xx

2
∂MΨI∂MΨJ

)
− g

(D)
xx

2
V +

∂ V

∂g(D)xx
. (4.17)

After dimensional reduction, we obtain the 2-dim action (3.4) and the above equations

become the 2-dim Einstein equations and the dilaton equation in (3.5). In particular the

higher dimensional µν-components give 2-dim Einstein equations which we write in the

form

1

Φ2
[gµν∇2Φ2 −∇µ∇νΦ2] = 8πGDT

(D)
µν ,

8πGDT
(D)
µν =

hIJ
2

(
∂µΨI∂νΨJ − gµν

2
∂MΨI∂MΨJ

)
− gµνU

2Φ2
. (4.18)

The xx-component of the higher dimensional stress tensor can likewise be expressed in

terms of the 2-dim potential and its derivative as

8πGDT
(D)
xx = −Φ

4
(D−2)

4
hIJ∂MΨI∂MΨJ − (D − 2)

2
Φ

2
D−2

+2 ∂U

∂Φ2
. (4.19)

This has no obvious 2-dim origin intrinsically: the null energy condition intrinsic to two

dimensions involves only Tµν but not Txx. Further the null vector ξM in (4.3) has no

intrinsically 2-dimensional meaning. The second null energy condition in (4.4) from the

higher dimensional theory can however be recast in 2-dimensional language in terms of

the stress tensor components above and it is then interesting to ask what 2-dimensional

constraints it leads to. This second NEC T
(D)
MNξ

MξN ≥ 0 for the null vector

ξM = (

√
−g(D) tt, 0,

√
g(D)xx, 0, . . . , 0) = (

√
−gttΦ

D−3
D−2 , 0,Φ

−2
D−2 , 0, . . . , 0) (4.20)
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becomes

8πGD(T
(D)
tt (ξt)2 +T (D)

xx (ξx)2)=−Φ
2(D−3)
(D−2)

gtthIJ
2

∂tΨ
I∂tΨ

J +
Φ
−2
D−2

2

(
U−(D−2)Φ2 ∂U

∂Φ2

)
≥0 .

(4.21)

For static backgrounds as we have here, ∂tΨ
I = 0: then this second NEC becomes a

nontrivial condition on the potential and its derivative

U − (D − 2) Φ2 ∂U

∂Φ2
≥ 0 . (4.22)

In 2-dim dilaton-gravity-matter theories that arise from some higher dimensional reduction,

this condition (4.22) is simply recognized as the second NEC in (4.4). However if we

regard (3.4) as an intrinsically 2-dim theory, then it appears reasonable to impose such a

constraint on the dilaton-matter potential.

To illustrate this, consider first a potential of a form we have seen arising from reduction

of 4-dim Einstein-Maxwell theory,

U = −V0Φ +
V2

Φ3
⇒ U − 2Φ2 dU

dΦ2
=

4V2

Φ4
≥ 0 ⇒ V2 ≥ 0 . (4.23)

Of course this can be recognized as the condition Q2 ≥ 0 in the higher dimensional theory:

from the 2-dim point of view, the condition gives positivity constraints on the coefficients

that appear in the potential.

The first NEC in D-dimensions, T
(D)
MNζ

MζN ≥ 0, or R(D)
MNζ

MζN ≥ 0 for the null vector

ζM = (
√
−g(D) tt,

√
g(D) rr, 0, 0, . . . , 0) = (

√
−gttΦ

D−3
D−2 ,

√
grrΦ

D−3
D−2 , 0, 0, . . . , 0) becomes the

2-dim NEC Rµν ζ̃µζ̃ν ≥ 0 for the 2-dim null vector ζ̃µ = (
√
−gtt,

√
grr). Using (4.18), this

NEC gives

−∇µ∇νΦ2ζ̃µζ̃ν = gtt∇t∇tΦ2 − grr∇r∇rΦ2 ≥ 0 . (4.24)

For static backgrounds, this recovers the condition on the “acceleration” of the dilaton that

we have studied earlier in the context of the c-theorem.

4.3 The c-function in the M2-D2 system

Nonconformal Dp-branes upon dimensional reduction on the transverse sphere give rise

to hvLif theories with z = 1 and nonzero θ [55]. In particular the D2-brane supergravity

phase upon S6-reduction give rise to bulk 4-dim hvLif theories with z = 1, θ = −1
3 . These

flow [56] in the infrared to M2-branes, which give rise to AdS4 upon S7-reduction (with

z = 1, θ = 0). These are all uncharged phases. Adding a U(1) gauge field to this system

— which can be taken as the dual to the U(1)R current — and tuning to extremality

gives string realizations for the extremal versions of the above 4-dim theories. We have in

mind that the AdS4 phase eventually terminates in the deep IR at an AdS2 throat: see

figure 1. Since the transition from the D2-phase to the M2-AdS4 phase occurs at energies

well above the IR scale where the AdS2 emerges, the D2-phase can be essentially regarded

as uncharged for the purposes of the discussion below. In the far UV, the D2-branes are

described by free 3-dim SYM.
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The string frame metric and the dilaton describing N D2-branes are

ds2
st =

r5/2

R
5/2
2

dx2
|| +

R
5/2
2

r5/2
dr2 +

R
5/2
2

r1/2
dΩ2

6 , eφ = gs

(
R5

2

r5

)1/4

, (4.25)

with eφ∞ = gs the asymptotic value of the dilaton, and

g2
YM =

gs√
α′
, R5

2 = α′3g2
YMN , (4.26)

where we are ignoring numerical factors (since we will be primarily interested here in

the scaling behaviour along the RG flow). The 10-dim Einstein frame metric ds2
E =

e−
1
2

(φ−φ∞)ds2
st after dimensional reduction on S6 gives the Einstein metric of the effec-

tive 4-dim hvLif theory with di = 2, z = 1, θ = −1
3 ,

ds2 =
r7/2

R
7/2
2

(−dt2 + dx2
1 + dx2

2) +
R

3/2
2

r3/2
dr2 =

(
ρ

R2

)1/3[ ρ2

R2
2

(−dt2 + dx2
i ) +

R2
2

ρ2
dρ2

]
. (4.27)

The second expression is written in coordinates where the hvLif form (4.5) is manifest. We

have

ρ =
r3/2

R
1/2
2

, w =
r3/2

R
5/2
2

, u =
r2

R2
, (4.28)

where w = r(5−p)/2

R
(7−p)/2
p

is the nonconformal Dp-brane supergravity radius/energy variable

introduced in [23]. This coordinate has also proved useful in studies of entanglement

entropy and its interpretation in the nonconformal brane system [57, 58]. The coordinate

u is chosen to cast the metric above in the form (4.1) that we found useful in analysing the

c-function in our earlier discussion: in terms of those expressions, we have

B2 =
r7/2

R
7/2
2

=
u7/4

R
7/4
2

, Φ2 =
r7/2

R
7/2
2

= w7/3R
7/3
2 . (4.29)

Then the c-function (4.9) written in terms of the energy variable w in the D2-phase is

C(w) ∼ V2Φ2

G4
= V2w

7/3N2 1

(g2
YMN)1/3

= V2w
2Neff(w) , (4.30)

after spatial compactification of the D2-branes. Here we have used

G4 ∼
G10

V ol(S6)
∼ g2

sα
′4

R6
2

, Neff(w) = N2 1

(g2
YMN/w)1/3

, (4.31)

and Neff(w) is the scale-dependent number of degrees of freedom for the D2-phase (which

also has played useful roles in entanglement studies [57, 58]), while the dimensionless gauge

coupling at scale w is geff =
g2
YMN

w3−p .

The M2-phase is given by the AdS4×S7 background (again ignoring numerical factors)

ds2 =
r2

R2
dx2
|| +

R2

r2
dr2 +R2dΩ2

7 , R6 ∼ Nl6p , G4 ∼
G11

V ol(S7)
∼

l9p
R7

, (4.32)

– 16 –



J
H
E
P
0
2
(
2
0
1
9
)
0
3
9

which after reducing on the S7 gives AdS4 (and lp is the 11-dim Planck length; note that

R6 ∼ Nl6P ∼ gsR5
2

√
α′). This is already in the form (4.1) with u = r and the energy variable

w = r
R2 and Φ2 = r2

R2 . Then the c-function in this M2-phase after spatial compactification

is

C(w) =
V2

G4

r2

R2
=
R2

G4
V2w

2 = N3/2 V2w
2 , (4.33)

using R2

G4
= R9

G11
= N3/2. It is useful to recall [56] that the D2-phase is valid in the regime

g2
YMN

1/5 � r
α′ � g2

YMN so that N3/2 � Neff(w) � N2. At the scale r
α′ ∼ g2

YM the

system transits from a smeared (arrayed) M2-phase to the M2-AdS4 phase. At this scale

which corresponds to w ∼ g2
YMN

−1/2, we haveNeff(w) ∼ N3/2 and the D2-phase c-function

can be seen to match that in the M2-phase. The present analysis cannot be applied to the

intermediate interpolating phase corresponding to smeared (arrayed) M2-branes.

We have so far discussed uncharged D2-M2 phases. With the AdS2 emerging in the

deep IR (within the AdS4 region), the transition between the D2- and M2-phase is well

approximated by the uncharged system. To see this explicitly, note that the charged hvLif

metric arising from D2-redux is

ds2 =

(
ρ

R2

)1/3[ ρ2

R2
2

(−f(ρ)dt2 + dx2
1 + dx2

2) +
R2

2

ρ2f(ρ)
dρ2

]
,

f(ρ) = 1−
(
ρ0

ρ

)10/3

+
Q2
D

ρ14/3

(
1−

(
ρ

ρ0

)4/3)
. (4.34)

with Q2
D ∼ ρ

7/3
0 at extremality. Since the transition is occurring at a scale ρtrans � ρ0, we

essentially have f(ρ) ∼ 1 in that region. In the deep IR, the extremal M2-AdS4 phase

ds2 =
r2

R2
(−f(r)dt2 + dx2

i ) +
R2

r2f(r)
dr2 , f(r) = 1−

(
r0

r

)3

+
Q2

r4

(
1− r

r0

)
, (4.35)

(after S7 reduction) with Q2 ∼ r4
0 develops an AdS2 throat, with the horizon at r = r0.

Then the IR scale at the horizon is u = r0
R2 and the c-function approaches

C AdS2−−−−→ N3/2 V2Q

R4
. (4.36)

This phase is dual to a doped CFT3, with dopant density σQ ≡ Q
R4 which is essentially the

number of dopant charge carriers per unit area of the M2-branes: then CIR is essentially a

“central charge” whose N3/2 scaling reflects the underlying number of degrees of freedom

of the M2-CFT , which has been doped with an additional V2σQ number of charge carriers

distributed over the volume V2 of the M2-branes (there are some parallels with the heuristic

partonic picture of entanglement for excited AdS plane wave states in [59]). This “central

charge” corresponds to the number of microstates of the doped CFT1 obtained by spatial

compactification of the M2-branes: it is essentially dual to the AdS2 theory describing the

extremal black brane with CIR the extremal entropy. In some sense, w2 = Q(w)
R4 is a scale-

dependent dopant density with w2
IR = Q

R4 the infrared value. String/M-theory realizations

of this involve turning on an appropriate G4-flux in the M2-brane system which after the

S7 reduction gives the additional U(1) gauge field that provides charge [60].
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It is clear that the c-function (4.30) in the D2-phase gives a larger number of degrees of

freedom than that in the M2-phase (4.33) (noting the regimes for w, which flows to lower

energies), in accord with our general discussions of the c-function earlier. This dovetails

with the fact that θ is negative in the D2-phase (with z = 1). It is also worth noting that the

precise N -scalings etc arise from the precise dimensionful factors contained in the dilaton.

4.4 c-function in the M5-D4 system

The M5-D4 brane system flows from an AdS7× S4 phase (dual to the 6-dim (2, 0) theory)

through the D4-supergravity phase to finally 5-dim SYM in the IR. While this does not

admit an AdS2 region in the deep IR of the phase diagram, it is interesting to study the

c-function (4.9) in this case as well. This discussion has parallels with the D2-M2 case so

we will be succinct. For the M5-AdS7 phase, we have

ds2 =
r2

R2
dx2
|| +

R2

r2
dr2 +R2dΩ2

4 , R3 ∼ Nl3p , G7 ∼
G11

V ol(S4)
∼

l9p
R4

, (4.37)

which after reducing on the S4 gives AdS7 (lp is the 11-dim Planck length). This dovetails

with (4.1) with u = r and the energy variable w = r
R2 and Φ2 = r2

R2 . The c-function in

this M5-phase after spatial T 5-compactification then is

C(w)M5 =
V5

G7

r2

R2
=
R5

G7
V5w

5 = N3 V5w
5 , (4.38)

using R5

G7
∼ R9

G11
∼ N3 here. Now for the N D4-branes phase, the string metric and dilaton

are

ds2
st =

r3/2

R
3/2
4

dx2
|| +

R
3/2
2

r3/2
dr2 +R

3/2
2 r1/2dΩ2

4 , eφ = gs

(
r

R4

)3/4

,

g2
YM ∼ gs

√
α′, R3

4 ∼ α′g2
YMN , (4.39)

ignoring numerical factors. The 10-dim Einstein frame metric ds2
E = e−

1
2

(φ−φ∞)ds2
st after

S4-redux gives a 6-dim hvLif theory (4.5) with di = 4, z = 1, θ = −1,

ds2 =
r5/4

R
5/4
4

(
− dt2 +

4∑
i=1

dx2
i

)
+
R

7/4
4

r7/4
dr2 =

(
ρ

R4

)1/2[ ρ2

R2
4

(
− dt2 +

4∑
i=1

dx2
i

)
+
R2

4

ρ2
dρ2

]
.

(4.40)

The D4-brane supergravity radius/energy variable w [23] and the u coordinate in (4.1) are

ρ = R
1/2
4 r1/2 , w =

r1/2

R
3/2
4

, u =
r3/2

R
1/2
4

. (4.41)

With G6 ∼ G10/V ol(S
4) ∼ g2

sα
′4/R4

4, the scale-dependent number of degrees of freedom

Neff(w) for the D4-phase [57, 58], and the dilaton Φ2 = g
(D−2)/2
xx = r5/2

R
5/2
4

, the c-function (4.9)

is

C(w)D4 =
V4Φ2(w)

4G6
∼ V4w

4Neff(w) , Neff(w) = N2(g2
YMNw) , (4.42)
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after spatial T 4-compactification, and the regime of validity is 1 � g2
YMNw � N2/3 .

Noting R11 = gs
√
α′ ∼ g2

YM and V5 = V4R11, we see that the c-function continuously

transits from the M5- to the D4-phase for length scales longer than the 11th circle size

R11. This leads to the guess that the c-function in the free 5-dim SYM phase after spatial

T 4-compactification is possibly N2V4w
4.

4.5 On dilatonic and entropic c-functions

It is interesting to compare the dilatonic c-function we have defined with the entropic

c-function [61, 62] that has been studied based on studies of entanglement entropy [63–66].

Consider the bulk geometry (4.1) with asymptotics being AdS or hvLif, focussing on

D = 4 dimensions (with no compactification). For a strip subsystem with width along say

x, the induced metric on a time slice is Φ2dy2+ du2

B2 +Φ2dx2 and the area functional for holo-

graphic entanglement [67, 68] is A = L
∫
du Φ

B

√
1 +B2Φ2 (dxdu)2 which after extremization

gives

S =
2L

4G4

∫
du

B

Φ3√
Φ4 − Φ4

∗
, l =

∫
du

B

Φ2
∗

Φ
√

Φ4 − Φ4
∗
, (4.43)

where Φ∗ = Φ(u∗) is the value of the dilaton at the turning point u∗ of the minimal surface,

and L is the size of the (essentially infinitely long) strip in the longitudinal y direction. For

instance, for a strip in AdS4, the area and width integrals are S = 2L
4G4

∫ u∗
ε

Rdu
u

u3√
u4−u4

∗
∼

R4

G4
(Lε −

L
l ) and l ∼ R2

u∗
. The entropic c-function is then defined as

cE =
l2

L

dS

dl
, (4.44)

which gives cE ∼ R2

G4
. This is thus a measure of the local number of degrees of freedom, or

central charge, in the dual field theory responsible for entanglement. In theories with an RG

flow, the entropic c-function is scale dependent and satisfies dcE
dl ≤ 0, i.e. it monotonically

decreases with the width l, and thus plays the role of a c-function based on entanglement

entropy. For instance for nonconformal branes, cE(l) ∼ Neff(l).

We will now try to draw comparisons between this entropic c-function and the dilatonic

c-function (4.9). Away from the AdS2 horizon, u� u0 and we have B ∼ u−u0
R ∼ u

R . Since

the dilaton monotonically decreases flowing towards the interior, i.e. as u decreases in (4.1),

we can recast the integrals above as

S =
2L

4G4
Φ∗R

∫ 1

ϕε

du

u

ϕ3√
ϕ4 − 1

, l =
2R

Φ∗

∫ 1

ϕε

du

u

1

ϕ
√
ϕ4 − 1

, ϕ =
Φ

Φ∗
. (4.45)

Since the dilaton decreases monotonically, we can redefine the radial variable by ϕ as

du = dϕ
ϕ′ , and we note that all the information about the turning point has been scaled out

after this recasting to the factors outside the integrals. The entropic c-function receives

a nonvanishing contribution simply from the finite part for which the integrals are simply

finite numerical factors. Then we see that S ∼ R
G4

Φ∗L ∼ R2

G4

L
l which recovers cE ∼ R2

G4
.

From the discussion of the c-function for M2-branes (4.33), we see that C(w) =

N3/2V2w
2. Recalling that R2

G4
∼ N3/2, we see that the dilatonic c-function scales as the
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entropic number of degrees of freedom (i.e. cE), but is in addition extensive: it scales with

V2 and shrinks as w2 along the flow to the IR. In the 2-dim bulk theory after compactifica-

tion, cE cannot be formulated since the spatial directions are compactified but the dilatonic

c-function nevertheless encodes the number of degrees of freedom that cE encodes. Similar

comparisons can be drawn for other cases.

It is also interesting to recall the holographic c-function in [28]. For a bulk theory ds2 =

e2A(%)dx2
‖ + d%2 enjoying Lorentz invariance (i.e. z = 1), this c-function is CFGPW (w) ∼

1
GD (dA/d%)di

where di is the number of boundary spatial dimensions. For AdSD, we have

A ∼ log %
R and cFGPW ∼ Rdi

GD
which gives cFGPW ∼ N3/2 for M2-AdS4. For nonconformal

Dp-branes (g2
YM ∼ gsα′

(p−3)/2) [56]

ds2
st =

r(7−p)/2

R
(7−p)/2
p

dx2
‖+

R
(7−p)/2
p

r(7−p)/2 (dr2 +r2dΩ2
8−p), eΦ = gs

(
R7−p
p

r7−p

) 3−p
4

, R7−p
p ∼ g2

YMNα
′5−p,

(4.46)

upon S8−p-redux give the hvLif metric (4.5) with z = 1, p = di [55]: in this case, using

θ = p− 9− p
5− p

= −(p− 3)2

5− p
, ds2

p+2 =

(
%

Rp

)2
(

1− di
θ

)
dx2
‖ + d%2 ,

%

Rp
=

(
r

Rp

)− θ(5−di)
2di

,

(4.47)

we see that the dilatonic c-function (4.9) we have discussed (after redux to 2-dim) gives

C(w) ∼ Neff(w)Vdiw
di , Neff(w) = N2

(
g2
YMN

w3−p

) p−3
5−p

, w =
r(5−p)/2

R
(7−p)/2
p

, (4.48)

as we have seen earlier in the detailed discussions on the D2-M2 and M5-D4 phases (with w

the nonconformal Dp-brane supergravity radius/energy variable [23]). On the other hand,

the c-function in [28] mentioned above can be seen to be cFGPW ∼ Neff(w), with the same

scaling as the entropic c-function cE : this is a measure of the local degrees of freedom of

the higher dimensional theory, while the dilatonic c-function C has additional extensivity

arising from the compactification.

5 2-dim radial Hamiltonian formalism and β-functions

A version of the holographic renormalization group was formulated in [24]: using a radial

ADM-type split of the bulk spacetime, the radial Hamiltonian constraint gives rise to flow

equations for couplings and corresponding β-functions. This is not a Wilsonian formulation

since the effective action at the scale corresponding to some radial slice depends on data

not just at higher energy scales that have been integrated out: Wilsonian formulations

of the holographic renormalization group have been investigated in [32, 33]. Nevertheless

this dVV formulation gives useful qualitative insights into the holographic renormalization

group. In this section, we will adapt this to obtain renormalization group flow equations

and β-functions starting with the 2-dim dilaton-gravity-scalar theory. As in [24], writing

the boundary 1-dim action on some radial slice in a radial Hamilton-Jacobi formulation,
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we separate this at low scales into local and nonlocal parts and then write the local part in

a derivative expansion. Taking the leading term to arise from just a “boundary potential”

term for the couplings (scalars Φ,ΨI), i.e. no derivatives, we obtain relations between the

original potential and the boundary potential using the Hamiltonian constraint, thereby

obtaining β-functions from the flow equations. We will describe this below.

Consider the 2-dim gravity-scalar action (3.4) including the Gibbons-Hawking term

S =
1

16πG2

∫
d2x
√
−g
(

Φ2R− Φ2

2
hIJ∂µΨI∂µΨJ − U(Φ,ΨI)

)
+

1

16πG2

∫
dt
√
−γΦ22K ,

(5.1)

where U(Φ,ΨI) = V Φ
2

D−2 . Substituting the radial decomposition of the metric

ds2 = (N2 + γtt(N
t)2)dr2 + 2γttN

tdtdr + γttdt
2 , (5.2)

certain boundary terms cancel with the Gibbons-Hawking term: then massaging leads to a

radial Lagrangian (in appendix B, we derive this from dimensional reduction of the Hamil-

tonian formulation of a higher dimensional theory of the sort we have been considering)

L =
1

16πG2

∫
dt
√
−γ N

[
−2�tΦ

2 +
2K

N
(∂rΦ

2−N t∂tΦ
2)− Φ2

2
hIJ∂µΨI∂µΨJ −U

]
, (5.3)

where the extrinsic curvature and the covariant derivative w.r.t. γtt are

Ktt =
1

2N
(∂rγtt−2DtNt) , K = γttKtt , DtNt = ∂tNt−ΓtttNt , �t ≡ γttDtDt , (5.4)

where γtt = (γtt)
−1 and Nt = γttN

t. The conjugate momenta for the fields γtt, Φ and ΨI

are

πtt ≡ 16πG2√
−γ

δL

δγ̇tt
=
γtt

N
(∂rΦ

2 −N t∂tΦ
2) ,

πΦ ≡
16πG2√
−γ

δL

δΦ̇
= 4KΦ =

2Φγtt

N
(γ̇tt − 2DtNt) ,

πI ≡
16πG2√
−γ

δL

δΨ̇I
= −Φ2hIJ

N
(Ψ̇J −N t∂tΨ

J) , (5.5)

where dot represents the radial derivative,i.e. Φ̇ = ∂rΦ and so on. Inverting, we obtain

Φ̇ =
1

2Φ

(
Nπtt

γtt
+N t∂tΦ

2

)
,

γ̇tt =
NπΦ

2Φγtt
+ 2DtNt ,

Ψ̇I = −Nh
IJπJ

Φ2
+N t∂tΨ

I . (5.6)

The Hamiltonian is obtained by a Legendre transform of the Lagrangian (5.3) as

H =
1

16πG2

∫
dt
√
−γ(πttγ̇tt +πΦΦ̇ +πIΨ̇

I)−L =
1

16πG2

∫
dt
√
−γ(NH+N tHt) . (5.7)
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The fields N and N t being non-dynamical gives the constraints ∂H
∂N = 0 and ∂H

∂N t = 0 i.e.

H =
πttπΦ

2Φγtt
+ 2�tΦ

2 + U − πIπI
2Φ2

+
Φ2

2
hIJγ

tt∂tΨ
I∂tΨ

J = 0 , (5.8)

Ht = −2γttDtπ
tt + πΦ∂tΦ + πI∂tΨ

I = 0 . (5.9)

Now as in [24], we imagine that the boundary action on some radial slice can be evaluated

as a function of boundary field values at that scale: then thinking of this action in terms

of a radial Hamilton-Jacobi formulation allows us to relate the conjugate momenta as

derivatives of this action, which we then use in the Hamiltonian constraints in a derivative

expansion to relate the bulk and boundary expressions. Towards this, we segregate this

boundary action into a local part and a nonlocal part at a low energy scale µ� µc (with

µc the UV cut-off) in a derivative expansion,

Sbdy = Sloc + Γ . (5.10)

Here Γ contains higher derivative, nonlocal terms which encode the information

about correlation functions of the operators in the boundary theory and gives flow

equations for these correlation functions, which are the Callan-Symanzik equations

(we will not explore that here). A general form of the local action is Sloc =∫
dt
√
−γ

(
W (Φ,ΨI) + MIJ

2 ∂aΨ
I∂aΨJ + . . .

)
, with W , MIJ are local functions of the cou-

plings. Approximating the local part of the boundary action in terms of just the leading

potential term (ignoring derivatives) as

Sbdy =

∫
dt
√
−γ W (Φ,ΨI) + · · · , (5.11)

we can define the conjugate momenta in terms of the boundary potential W (Φ,ΨI) as

πtt ≡ 16πG2√
−γ

δSbdy

δγtt
= 8πG2γ

ttW ,

πΦ ≡
16πG2√
−γ

δSbdy

δΦ
= 16πG2

∂W

∂Φ
,

πI ≡
16πG2√
−γ

δSbdy

δΨI
= 16πG2

∂W

∂ΨI
. (5.12)

Substituting these momenta in the Hamiltonian constraint (5.8) and collecting the potential

terms, we get a relation between the bulk potential U and the boundary potential W as

U

(8πG2)2
=

2hIJ

Φ2

∂W

∂ΨI

∂W

∂ΨJ
− W

Φ

∂W

∂Φ
. (5.13)

Using the momenta (5.12) in terms of W , the flow equations (5.6) can be written as

Φ̇ =
1

2Φ

(
(8πG2)NW +N t∂tΦ

2
)
,

γ̇tt =
(8πG2)N

Φγtt
∂W

∂Φ
+ 2DtNt ,

Ψ̇I = −(16πG2)NhIJ

Φ2

∂W

∂ΨJ
+N t∂tΨ

I . (5.14)
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β-functions. Choosing Fefferman-Graham gauge

N = 1 , N t = 0 ; ds2 = dr2 + γttdt
2 , (5.15)

the flow equations become

Φ̇ =
(4πG2)W

Φ
, γ̇tt = (8πG2)

γtt
Φ

∂W

∂Φ
, Ψ̇I = −(16πG2)hIJ

Φ2

∂W

∂ΨJ
. (5.16)

From the above equation, we see that we can split the radial and time dependence of γtt
as γtt = a2γ̂tt, where a = a(r) and γ̂tt is independent of r (i.e. γtt simply rescales under

RG flow). Then the flow equation for γtt gives

ȧ =
(4πG2)

Φ

∂W

∂Φ
a . (5.17)

Using this relation, we can write the radial derivatives in terms of ȧ. In contrast with the

higher dimensional cases in [24], note that this brings a factor of ∂W
∂Φ in the β-functions,

which we define for the RG flow as

βI ≡ a
d

da
ΨI =

aΨ̇

ȧ
= − 4hIJ

Φ ∂W
∂Φ

∂W

∂ΨJ
, (5.18)

βΦ ≡ a
d

da
Φ =

aΦ̇

ȧ
=

W
∂W
∂Φ

. (5.19)

We can write the relation (5.13) between U and W in terms of β-functions as

U

(8πG2)2
=
W 2hIJβ

IβJ

8β2
Φ

− W 2

ΦβΦ
. (5.20)

5.1 β functions for conformal/non-conformal theories

In this subsection, we have set all the scales to unity i.e. R = 1, rhv = 1, 8πG2 = 1.

β-functions, conformal branes. The effective potential for 2-dim dilaton-gravity theo-

ries obtained from e.g. reductions of conformal branes is of the form U(Φ): then from (5.13),

the boundary potential is given by

dW 2

dΦ2
= −U =⇒ W 2 = −

∫ Φ

Φh

U dΦ2 , (5.21)

where we have imposed W 2(Φh) = 0. This boundary condition in a sense reflects the fact

that the 1-dim background corresponds to zero energy. Expanding U around the critical

point,

U =

(
dU

dΦ2

∣∣∣∣
h

)
(Φ2 − Φ2

h) + · · · , where U |h = 0 , (5.22)

the β-function becomes

βΦ =
W 2

ΦdW 2

dΦ2

=

∫ Φ
Φh
dΦ2U

ΦU
=

(
Φ4

2 − Φ2Φ2
h

)
+

(
Φ4
h

2

)
Φh(Φ2 − Φ2

h)
=

(Φ2 − Φ2
h)2

2Φh(Φ2 − Φ2
h)

=
(Φ2 − Φ2

h)

2Φh
.

(5.23)

At the critical point, Φ = Φh, we see that βΦ vanishes, consistent with the expectation

that the AdS2 critical point background arises at the fixed point of the RG flow.
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β-functions, nonconformal branes. The effective potential for 2-dim dilaton-gravity-

scalar theories obtained from reductions of non-conformal branes (the dVV formulation

was discussed for nonconformal branes in [69]) is of the form

U(Φ,Ψ) = eγΨŨ(Φ) , (5.24)

with e.g. Ũ = −V0Φ + V2
Φ3 for 4-dim theories with z = 1, θ 6= 0, as we have seen. Assuming

an ansatz for W , W = e
γΨ
2 χ(Φ) and substituting in (5.13), we get

dχ2

dΦ2
=
γ2χ2

2Φ2
− Ũ . (5.25)

Integrating this equation, the general solution is

χ2 = χ0(Φ2)
γ2

2 − (Φ2)
γ2

2

∫
dΦ2Ũ(Φ2)

−γ2

2 . (5.26)

Then βΦ can be written as

βΦ =
W 2

Φ∂W 2

∂Φ2

=
χ2

Φ dχ2

dΦ2

=
χ2

Φ(γ
2χ2

2Φ2 − Ũ)
. (5.27)

For arbitrary χ0 such that χ|h 6= 0 at the critical point, βΦ becomes βΦ

∣∣∣∣
h

= 2Φh
γ2 6= 0.

Let us consider the case when χ0 is chosen such that χ|h = 0: this makes the boundary

potential vanish at the critical point, i.e. W |h = 0, corresponding to zero energy as in the

conformal case above. To study this case, we expand Ũ around the critical point,

Ũ =

(
dŨ

dΦ2

∣∣∣∣
h

)
(Φ2 − Φ2

h) + · · · , where Ũ |h = 0 , (5.28)

and substitute the solution for χ in the above expression for β-function to get

βΦ =
2Φh

γ2

[
χ0 − (Φ2

h)1− γ
2

2

(
dŨ
dΦ2

∣∣∣∣
h

)
(Φ2

2 − Φ2
h)

]
[
χ0 − (Φ2

h)1− γ2

2

(
dŨ
dΦ2

∣∣∣∣
h

)(
Φ2

2

(
1− 4

γ2

)
− Φ2

h(1− 4
γ2

))] . (5.29)

Choosing χ0 = −(Φ2
h)1− γ

2

2

(
dŨ
dΦ2

∣∣∣∣
h

)
Φ2
h

2 , which makes χ|h = 0 (and so W |h = 0), the above

expression simplifies to

βΦ =
2Φh

γ2 − 4
. (5.30)

For W = e
γΨ
2 χ(Φ), (5.18) and (5.19) give βΨ = −2γ

Φ βΦ. We see that both β-functions βΦ

and βΨ do not vanish at the AdS2 critical point for any choice of χ0. This vindicates the

intuition that the AdS2 critical point can consistently be placed at the fixed point of an

RG flow, but not at some intermediate point along the flow.
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5.2 Examples

β-function, M2-phase. The effective 2-dim potential for 4-dim Einstein-Maxwell redux

is

U = −V0Φ +
V2

Φ3
, V0 = −2Λ(4) = 6 , V2 = 2Q2 . (5.31)

Then for W = W (Φ), (5.13) gives

W
∂W

∂Φ
− V0Φ2 +

V2

Φ2
= 0 , i.e.

∂

∂Φ

(
W 2

2

)
= V0Φ2 − V2

Φ2
. (5.32)

Integrating this equation and imposing W |h = 0, we obtain

W = −
[

2V0Φ3

3
+

2V2

Φ
+ 2χ0

] 1
2

, (5.33)

where the integration constant χ0 is fixed by our boundary condition (5.21) to be χ0 = −8r3
0

using (5.31). The β-function using (5.19) is

βΦ =

[
2V0Φ3

3 + 2V2
Φ + 2χ0

]
[
V0Φ2 − V2

Φ2

] . (5.34)

As we approach the AdS2 critical point placed in the M2 phase Φh = r0, Q
2 = 3r4

0, we see

that βΦ vanishes, elucidating the general discussion above for conformal branes (note that

βΦ diverges for arbitrary χ0 so the boundary condition on W is important).

β-function, D2-phase. D2-branes after S6-redux lead to a 4-dim hvLif theory with

exponents z = 1, θ = −1
3 . The effective potential in the 2-dim corresponding theory, again

setting dimensionful parameters to unity for convenience, is

U = eγΨ

(
− V0Φ +

V2

Φ3

)
, γ = −−1√

7
, V0 =

70

9
, V2 =

28

9
Q2 . (5.35)

Assuming an ansatz W = e
γΨ
2 χ(Φ) for W and substituting in (5.13) gives

χ
∂χ

∂Φ
− γ2χ2

2Φ
− V0Φ2 +

V2

Φ2
= 0 , (5.36)

whose solution gives

W = e
γΨ
2 χ(Φ) = −e

γΨ
2

[
49

9

(
Q2

Φ
+ Φ3

)
+ χ0Φ

1
7

] 1
2

, (5.37)

where the integration constant χ0 is again fixed by the boundary condition W |h = 0 (it

will turn out that the precise value of χ0 drops out in what follows). The β-functions

from (5.19), (5.18) become

βΦ =

2Φ

[
49
9 (Q2 +Φ4)+χ0Φ

8
7

]
[

49
9 (−Q2 +3Φ4)+ χ0

7 Φ
8
7

] h−→ 14r
7
6
0 , βΨ =

4√
7

[
49
9 (Q2 +Φ4)+χ0Φ

8
7

]
[

49
9 (−Q2 +3Φ4)+ χ0

7 Φ
8
7

] h−→ 4
√

7 ,

(5.38)
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where we have evaluated the β-functions at the AdS2 critical point placed in this D2-phase,

which has

Φh = r
7
6
0 , e

γΨh
2 = r

− 1
6

0 , Q2 =
5

2
r

14
3

0 ⇒ Φ4 +Q2 =
7

2
r

14
3

0 , 3Φ4−Q2 =
1

2
r

14
3

0 . (5.39)

These nonvanishing β-functions imply that the theory is still flowing at the AdS2 critical

point which thus is an inconsistency and shows up as the massless scalar mode found

previously: the AdS2 horizon is only consistently placed within the true fixed point region

of the RG flow which is the above M2-phase in this D2-M2 phase diagram.

β-function, M5-D4 phases. We can likewise analyse the flow for the M5-D4 system:

here the M5-AdS7 phase (after reducing on the S4) flows to the D4-supergravity phase

obtained by dimensional reduction on the M-theory 11th circle. The AdS7 phase has

z = 1, θ = 0 while the D4-phase is a 6-dim hvLif theory with z = 1, θ = −1 and again

the scalar leads to a massless mode if the AdS2 horizon is placed within this region. Here

again, the β-functions can be shown to vanish in the conformal M5-phase but not in the

D4-phase. To obtain extremal branes, we add an additional U(1) gauge field which provides

charge: this gives an Einstein-Maxwell or Einstein-Maxwell-scalar theory in the M5- and

D4-phases respectively.

The effective 2-dim potential for 7-dim Einstein-Maxwell redux is

U = −V0Φ
2
5 +

V2

Φ
18
5

=
1

Φ
3
5

(
− V0Φ +

V2

Φ3

)
, V0 = −2Λ(7) = 30 , V2 = 20Q2 . (5.40)

Then (5.13) as for M2-branes gives

W = −
[

5V0Φ
12
5

6
+

5V2

4Φ
8
5

− 125

2
r6

0

] 1
2

, (5.41)

where an integration constant has again been fixed by the boundary condition W |h = 0.

Then the β-function using (5.19) is

βΦ =

[
5V0Φ

12
5

6 + 5V2

4Φ
8
5
− 125

2 r6
0

]
Φ

[
V0Φ

2
5 − V2

Φ
13
5

] , (5.42)

which vanishes at the AdS2 horizon Φh = r
5
2
0 , Q

2 = 3
2r

10
0 , if placed in the M5 phase.

Now, for the 6-dim hvLif theory with z = 1, θ = −1 from D4-redux, the 2-dim effective

potential is

U = eγΨ

(
−V0Φ

1
2 +

V2

Φ
7
2

)
= eγΨ

(
−V0Φ+

V2

Φ3

)
1

Φ
1
2

, γ=− −1√
10
, V0 = 30 , V2 = 20Q2 .

(5.43)

As for the D2-case, taking an ansatz W = e
γΨ
2 χ(Φ) and using (5.13) gives

W = e
γΨ
2 χ(Φ) = −e

γΨ
2

[
25Q2

Φ
3
2

+ 25Φ
5
2 + χ0Φ

1
10

] 1
2

, (5.44)
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where the precise value of the integration constant χ0 will again not play any role. The

β-functions using (5.19), (5.18) are

βΦ = 2Φ

[
25Q2

Φ
3
2

+ 25Φ
5
2 + χ0Φ

1
10

] 1
2

[
−75Q2

2Φ
3
2

+ 125
2 Φ

5
2 + χ0

10 Φ
1
10

] , βΨ =
4√
10

[
25Q2

Φ
3
2

+ 25Φ
5
2 + χ0Φ

1
10

] 1
2

[
−75Q2

2Φ
3
2

+ 125
2 Φ

5
2 + χ0

10 Φ
1
10

] . (5.45)

If the AdS2 critical point is placed in the D4 phase, we require

Φh = r
5
2
0 , Q2 =

3

2
r10

0 ⇒ 25Q2

Φ
3
2

+25Φ
5
2 =

125

2
r

25
4

0 ,
−75Q2

2Φ
3
2

+
125

2
Φ

5
2 =

25

4
r

25
4

0 , (5.46)

giving βΦ|h → 20 r
5
2
0 and βΨ|h → 4

√
10 . As in the D2-case (5.38), these nonvanishing

β-functions imply that it is inconsistent to place the AdS2 critical point in the D4-phase

where the theory has a nontrivial RG flow.

It appears nontrivial to carry out this analysis of the flow equations and β-functions for

general potential U(Φ,ΨI) as e.g. for more general hvLif theories. Since the perturbation

analysis in [35] revealed a disconcerting massless mode only for z = 1 (which dovetails with

our analysis here), it would appear that there would be no problem for the AdS2 throat to

emerge in general hvLifz,θ theories. It would be interesting to explore this further.

6 Discussion

We have formulated a version of the holographic renormalization group flow for 2-dim

dilaton-gravity-scalar theories arising from reductions of higher dimensional extremal black

branes, as in [35], thereby restricting to 2-dim flows that end at an AdS2 throat. We have

assumed that the transverse space is sufficiently symmetric which then allows this formula-

tion to be insensitive to the higher dimensional branes being relativistic or nonrelativistic.

Based on the null energy conditions, we have proposed a holographic c-function in terms

of the 2-dim dilaton and given arguments for the corresponding c-theorem (subject to ap-

propriate boundary conditions on the ultraviolet theory): at the IR AdS2, this becomes

the extremal black brane entropy. We have discussed this c-function (essentially inherited

from higher dimensions) in detail for nonconformal branes compactified, and compared

with other c-functions. Finally, we have adapted the radial Hamiltonian flow formulation

of [24] to these 2-dim theories: while this is not Wilsonian, it gives qualitative insight into

the flow equations and β-functions.

It would be interesting to understand how general such a holographic RG flow is.

For instance, since our formulation has crucially used the sufficiently high symmetry of

the transverse space, it is unclear if this directly applies to other situations, involving

e.g. rotation (see e.g. [45]). It is also important to note that unlike a black hole which

exhibits a gap, the branes we have considered would contain additional low-lying modes:

from our analysis, it would seem that these do not change the essential flow pattern, i.e.

the c-function does capture the relevant degrees of freedom describing the effective 2-dim
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physics. This is additionally corroborated by the fact that in the infrared it equals the

extremal entropy which is the number of available microstates.

The analysis adapting [24] was motivated by the fact that the scalar perturbation mode

in [35] about the AdS2 background was found to be massless for z = 1 hvLif theories: this

includes the hvLif family arising from reductions of nonconformal branes. We have seen

however that in this case the β-functions do not vanish, whereas they do for reductions of

the M2-AdS4 phase to AdS2. This suggests that it is consistent for the AdS2 throat to

emerge in a conformal phase of the higher dimensional theory (with AdSD dual) but not

consistent to have the AdS2 critical point lie within a region encoding nontrivial RG flow.

This is exemplified in the D2-M2 phase diagram and is consistent with our discussion of

the c-function in section 4.3. This dVV formulation is not Wilsonian, as discussed in the

literature: it would be interesting to adapt the Wilsonian formulations of [32, 33] to the

2-dim context: we hope to report on this in the future. Relatedly it would be interesting

to explore holographic renormalization [70–72] ([73] for uncharged nonconformal branes)

in this 2-dim context, perhaps building on [37].

For the 2-dim theories in [35] arising from compactification, the leading departures

away from the IR AdS2 critical point, described by Jackiw-Teitelboim theory, arise from

the leading linear term in the dilaton perturbation and are thus governed by the Schwarzian

derivative effective action. The dilaton fluctuation in (3.8) has m2L2 = 2 and so corre-

sponds to an irrelevant operator with dimension ∆ = 2 (using ∆ = 1
2 +

√
1
4 +m2L2

for a scalar mode ϕ of mass m with equation of motion ∂+∂−ϕ + m2L2

(x+−x−)2ϕ = 0). In

light of the present work we note that some of the more general 2-dim dilaton-gravity-

matter theories (3.4) in the IR AdS2 region may contain fluctuation modes with masses

−1
4 ≤ m

2
IL

2 < 2 corresponding to dual operators with dimension ∆ < 2. In such cases, the

leading departures from the IR AdS2 will presumably not be governed by the Schwarzian

but some distinct effective theory. It would be interesting to explore this further.

Our analysis here raises the question of understanding renormalization group flow in

boundary quantum mechanical theories, which could be interpreted as flowing to lower en-

ergies (although not as spatial coarse-graining). The discussions here on e.g. nonconformal

branes all pertain to large N (highly) supersymmetric theories (although fairly compli-

cated, since in the IR they are dual to the compactified extremal black branes). Although

we have not used this, it would seem that the constraints from supersymmetry will be pow-

erful in 1-dimension, just as in higher dimensions as is well-known. It would be interesting

to explore this.

Finally it is interesting to ask if the 2-dim dilaton-gravity-scalar theories of the general

form (3.4) we have considered admit 2-dim de Sitter space dS2 as solutions. For simplicity,

taking ΨI = 0 and constant dilaton Φ, the Einstein equations and dilaton equation (3.5)

require U = 0 and ∂U
∂Φ2 = R > 0 at the dS2 critical point. However this violates the

condition (4.22) which we expect must hold if we take the potential U as arising from

some higher dimensional reduction as we have discussed (implicitly taking U to have a

leading term arising from a negative cosmological constant as in known brane realizations

followed by positive flux contributions). Of course there are rolling (time-dependent) scalar
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solutions, as e.g. arises from reductions of dS4 (say with Poincare metric ds2 =
R2
dS
τ2 (−dτ2 +

dw2 + dx2
i )) . In 4-dim Einstein gravity with a positive cosmological constant Λ > 0, the

2-dim potential simply becomes U = 2ΛΦ > 0, and the 2-dim dilaton is Φ2 ∼ 1
τ2 . The

nature of such solutions (even in this simple classical sense) might be different from our

AdS2 discussions here and might be worth exploring (see e.g. [74]).
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A Effective potential in D-dim gravity-scalar theory

We derive a formula for the effective potential V in gravity scalar action (3.1) starting from

gravity-scalar action coupled to U(1) gauge fields. Consider the action

S =
1

16πGD

∫
dDx

√
−g(D)

(
R(D) − hIJ

2
∂MΨI∂MΨJ + V0(Ψ)−

n∑
i=1

Zi(Ψ)

4
F 2
i

)
, (A.1)

where V0(Ψ) is the scalar potential, Zi(Ψ) are Ψ dependent couplings and F 2
i = FiMNF

MN
i .

The Einstein’s equations are

R(D)
MN −

g
(D)
MN

2
R(D) =

hIJ
2

(
∂MΨI∂NΨJ −

g
(D)
MN

2
∂PΨI∂PΨJ

)
+
g

(D)
MN

2
V0

+

n∑
i

Zi
2

(
FiMPF

P
iN −

g
(D)
MNF

2
i

4

)
. (A.2)

Taking electric ansatz for all gauge fields and solving the Maxwell’s equations

∂M (

√
−g(D)ZiF

MN
i ) = 0 =⇒ F tri =

c̃i√
−g(D)Zi

, F 2
i = − 2 c̃2

i

(g
(D)
xx )D−2Z2

i

,

(A.3)

where c̃i is constant and we have restricted to a class of metrics with g
(D)
ij = δijg

(D)
xx ,

consistent with the reduction ansatz (3.2). Substituting F tri in (A.2), the t − r and xx
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components become

G(D)
µν =

hIJ
2

(
∂µΨI∂νΨJ − g

(D)
µν

2
∂PΨI∂PΨJ

)
+
g

(D)
µν

2

(
V0 −

n∑
i=1

c̃2
i

2(g
(D)
xx )D−2Zi

)
, (A.4)

G(D)
xx =

hIJ
2

(
∂xΨI∂xΨJ − g

(D)
xx

2
∂PΨI∂PΨJ

)
+
g

(D)
xx

2
V0 +

g
(D)
xx

4

c̃2
i

(g
(D)
xx )D−2Zi

, (A.5)

where G
(D)
MN = R(D)

MN −
g

(D)
MN
2 R

(D) is the Einstein tensor. These Einstein equations can be

derived from an equivalent gravity-scalar action (3.1), with the effective potential defined as

V (ΨI , g(D)
xx ) = −V0(Φ) +

n∑
i=1

Vi(Φ)

(g
(D)
xx )D−2

, (A.6)

where Vi(Ψ) ≡ c̃2i
2Zi(Ψ) .

B Radial Lagrangian (5.3) from dimensional reduction

Consider the gravity scalar action in D-dimensions

S=
1

16πGD

[∫
dDx

√
−g(D)

(
R(D) − hIJ

2
∂MΨI∂MΨJ − V

)
+

∫
dD−1x

√
−γ(D−1)2K(D−1)

]
,

(B.1)

where γ
(D−1)
ab is the induced metric and K(D−1) is the extrinsic curvature on the (D − 1)-

dimensional boundary. Foliating the spacetime into surfaces of constant r,

ds2 = g
(D)
MNdx

MdxN = (Ñ2 + γ
(D−1)
ab NaN b)dr2 + 2γ

(D−1)
ab Nadxbdr+ γ

(D−1)
ab dxadxb , (B.2)

the D-dim Ricci scalar decomposes as

R(D) = (D−1)R+ (K(D−1))2 −K(D−1)
ab K(D−1) ab − 2∇A(ñAK(D−1)) + 2∇A(ñB∇BñA) ,

(B.3)

where the indices M,N take values (t, r, xi) and a, b take values (t, xi) for i = 1, . . . , D− 2.
(D−1)R is the Ricci scalar of the (D − 1)-dim boundary and ñA is the unit normal to the

boundary. The total derivative terms above can be written as∫
dDx

√
−g(D)[−2∇A(ñAK(D−1)) + 2∇A(ñB∇BñA)]

=

∫
dD−1x

√
−γ(D−1)[−2K(D−1)ñAñA + ñAñ

B∇BñA] = −
∫
dD−1x

√
−γ(D−1)2K(D−1),

where we have used ñAñA = 1 and ñA∇BñA = 0. This boundary term coming from the

total derivative terms in (B.3) cancels the Gibbons-Hawking term in (B.1). Then the radial

Lagrangian on the r = constant boundary can be written as

L =
1

16πGD

∫
dD−1x

√
−γ(D−1)Ñ

(
(D−1)R+ (K(D−1))2 −K(D−1)

ab K(D−1) ab

−hIJ
2
∂MΨI∂MΨJ − V

)
, (B.4)
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where the extrinsic curvature is

K
(D−1)
ab =

1

2Ñ

(
∂rγ

(D−1)
ab −D(D−1)

a N
(D−1)
b −D(D−1)

b N (D−1)
a

)
, N (D−1)

a ≡ γ(D−1)
ab N b ,

D(D−1)
a N

(D−1)
b = ∂aN

(D−1)
b −Γ

(D−1)c
ab N (D−1)

c . (B.5)

Radial decomposition of D-dim metric in the KK reduction form. Expanding

the D-dim metric (B.2), into 2-dim (t, r) and transverse components

ds2 = [(Ñ2 + γ
(D−1)
ab NaN b)dr2 + 2γ

(D−1)
tt N tdtdr + 2γ

(D−1)
ti N idtdr + γ

(D−1)
tt dt2]

+γ
(D−1)
ij dxidxj + [2γ

(D−1)
ti N tdxidr + 2γ

(D−1)
ij N idxjdr + 2γ

(D−1)
ti dxidt] . (B.6)

Imposing the Kaluza-Klein ansatz for the dimensional reduction on TD−2, i.e.,

ds2 = g(2)
µν dx

µdxν + Φ
4

D−2

D−2∑
i=1

dx2
i , g(D)

xx ≡ Φ
4

D−2 . (B.7)

where g
(2)
µν , Φ depend only on the 2-dim coordinates (t, r), we get

γ
(D−1)
ij = Φ

4
D−2 δij , γ

(D−1)
ti = 0 , N i = 0 , N

(D−1)
i = 0 , ∀ i, j = 1, . . . , D − 1 (B.8)

and the components of the 2-dim metric and its inverse are

g(2)
rr = g(D)

rr = Ñ2 + γ
(D−1)
tt (N t)2 , g

(2)
tr = g

(D)
tr = γ

(D−1)
tt N t , g

(2)
tt = g

(D)
tt = γ

(D−1)
tt ,

g(2) rr =
1

Ñ2
, g(2) tr = −N

t

Ñ2
, g(2) tt =

1

γ
(D−1)
tt

+
(N t)2

Ñ2
. (B.9)

Reduction of the radial Lagrangian (B.4). The induced metric on the (D − 1)-dim

boundary can be written as

ds2
(D−1) = γ

(D−1)
ab dxadxb = γ

(D−1)
tt dt2+γ

(D−1)
ij dxidxj = γ

(D−1)
tt dt2+Φ

4
D−2

D−2∑
i=1

dx2
i . (B.10)

The Ricci scalar becomes

(D−1)R =
∂tγ

(D−1)
tt ∂tΦ

2

(γ
(D−1)
tt )2 Φ2

+
(D − 3)

(D − 2)

(∂tΦ
2)2

γ
(D−1)
tt Φ4

− 2 ∂2
t Φ2

γ
(D−1)
tt Φ2

. (B.11)

The components of the extrinsic curvature are

K
(D−1)
tt =

1

2Ñ

(
∂rγ

(D−1)
tt − 2D

(D−1)
t N

(D−1)
t

)
=

1

2Ñ

(
∂rγ

(1)
tt − 2D

(1)
t N

(1)
t

)
= K

(1)
tt ,

K
(D−1)
ti =

1

2Ñ

(
∂rγ

(D−1)
ti −D(D−1)

t N
(D−1)
i −D(D−1)

i N
(D−1)
t

)
= 0 , (B.12)

K
(D−1)
ij =

1

2Ñ

(
∂rγ

(D−1)
ij −D(D−1)

i N
(D−1)
j −D(D−1)

j N
(D−1)
i

)
= δij

Φ
4

D−2
−2

(D − 2)
ñµ∂µΦ2 ,
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where we have used

γ
(1)
tt = γ

(D−1)
tt , N

(1)
t = γ

(1)
tt N

t = γ
(D−1)
tt N t = N

(D−1)
t , Γ

(D−1) t
it = 0 ,

Γ
(1) t
tt = Γ

(D−1) t
tt , ñr = Ñ , ñt = 0 , ñµ = g(2)µν ñν , (B.13)

D
(D−1)
t N

(D−1)
t = ∂tN

(D−1)
t − Γ

(D−1) t
tt N

(D−1)
t = ∂tN

(1)
t − Γ

(1) t
tt N

(1)
t = D

(1)
t N

(1)
t ,

where γ
(1)
tt is the induced metric and K

(1)
tt is the extrinsic curvature on the 1-dim boundary

and ñµ is the outward unit normal to the 1-dim boundary. Then we can compute

K(D−1) abK
(D−1)
ab = γ(D−1) acγ(D−1) bdK

(D−1)
ab K

(D−1)
cd

= (γ(D−1) tt)2(K
(D−1)
tt )2 + γ(D−1) ikγ(D−1) jlK

(D−1)
ij K

(D−1)
kl

= K(1) ttK
(1)
tt +

(ñµ∂µΦ2)2

(D − 2)Φ4
(B.14)

and

K(D−1) = γ(D−1) abK
(D−1)
ab = γ(D−1) ttK

(D−1)
tt +γ(D−1) ijK

(D−1)
ij = K(1)+

ñµ∂µΦ2

Φ2
, (B.15)

where K(1) = γ(1) ttK
(1)
tt . Substituting these in (B.4), the radial Lagrangian becomes

L =
1

16πG2

∫
dt

√
−γ(1)

tt Φ2Ñ

[
(D−1)R+

(
K(1) +

ñµ∂µΦ2

Φ2

)2

−K(1) ttK
(1)
tt

−(ñµ∂µΦ2)2

(D − 2)Φ4
− hIJ

2
g(2)µν∂µΨI∂νΨJ − V

]
=

1

16πG2

∫
dt

√
−γ(1)

tt Φ2Ñ

[
(D−1)R+ 2K(1) ñ

µ∂µΦ2

Φ2
+

(D − 3)

(D − 2)

(ñµ∂µΦ2)2

Φ4

−hIJ
2
g(2)µν∂µΨI∂νΨJ − V

]
, (B.16)

where we have used K(1) ttK
(1)
tt = (K(1))2.

Weyl transformation. Performing a Weyl transformation on the 2-dim bulk metric,

gµν = Φ
2(D−3)
(D−2) g

(2)
µν which induces a Weyl transformation on the 1-dim boundary metric

γtt = Φ
2(D−3)
(D−2) γ

(1)
tt , we get

ds2 = gµνdx
µdxν =

(
Φ

2(D−3)
(D−2) Ñ2 + γtt(N

t)2
)
dr2 + 2γttN

tdtdr + γttdt
2

≡ (N2 + γtt(N
t)2)dr2 + 2γttN

tdtdr + γttdt
2 , (B.17)

which is same as (5.2) with N ≡ Φ
D−3
D−2 Ñ . Under the Weyl transformation, we have

Γ
(1) t
tt = Γttt −

(D − 3)

(D − 2)

∂tΦ

Φ
, Γttt =

∂tγtt
2γtt

, Nt = γttN
t , (B.18)

D
(1)
t N

(1)
t = ∂t(γ

(1)
tt N

t)− Γ
(1) t
tt γ

(1)
tt N

t = Φ
−2(D−3)

(D−2)

(
DtNt −

(D − 3)

(D − 2)

Nt∂tΦ

Φ2

)
.
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The Ricci scalar (B.11) can be written covariantly as

(D−1)R = −2Φ
2(D−3)
(D−2)

−2�tΦ
2 ;

�tΦ
2 = γttDtDtΦ

2 =
∂t(
√
−γttγtt∂tΦ2)√
−γtt

=

[
∂2
t Φ2

γtt
− ∂tγtt∂tΦ

2

2γ2
tt

]
. (B.19)

The extrinsic curvature becomes

K
(1)
tt =

1

2Ñ

(
∂rγ

(1)
tt − 2D

(1)
t N

(1)
t

)
= Φ

− (D−3)
(D−2)

(
Ktt −

(D − 3)

2(D − 2)

γtt
Φ2
nµ∂µΦ2

)
, (B.20)

K(1) = γ(1) ttK
(1)
tt = Φ

2(D−3)
(D−2) γttK

(1)
tt = Φ

(D−3)
(D−2)

(
K − (D − 3)

2(D − 2)

nµ∂µΦ2

Φ2

)
, (B.21)

where Ktt = 1
2N (∂rγtt − 2DtNt), K = γttKtt, nr = N = Φ

D−3
D−2 Ñ = Φ

D−3
D−2 ñr and nµ∂µΦ2 =

gµνnµ∂νΦ2 = Φ
D−3
D−2 ñµ∂µΦ2. Substituting these expressions in (B.16), we get

L =
1

16πG2

∫
dt
√
−γN

[
− 2�tΦ

2 + 2K nµ∂µΦ2 − Φ2hIJ
2

∂µΨI∂µΨJ − V Φ
2

D−2

]
. (B.22)

Simplifying further using nµ∂µΦ2 = 1
N (∂rΦ

2 − N t∂tΦ
2) and defining U ≡ Φ

2
D−2V , we

obtain (5.3).

C The z = 1, θ 6= 0 hvLif family

Setting z = 1, θ 6= 0 in the 4-dim Einstein-Maxwell-scalar action (2.5) and the charged

hvLif solution (2.6), (2.7) gives F1MN = 0 and we get Einstein-scalar theory coupled to an

U(1) gauge field A2M , with

V0 =
(3− θ)(2− θ) e−γΨ0

R2−2θ r2θ
hv

, γ =
θ√

(2− θ)(−θ)
, λ2 =

√
−θ

2− θ
. (C.1)

Note that the energy conditions (2.8) simplify in this case to give

(2− θ) ≥ 0 , −θ ≥ 0 ⇒ γ = −λ2 . (C.2)

Substituting the gauge field solution in terms of the scalar field and the metric component

g
(4)
xx , gives an effective gravity-scalar theory (3.1) (in 4-dim with one scalar field) with an

effective potential

Veff = −(3− θ)(2− θ)
R2−2θr2θ

hv

eγ(Ψ−Ψ0) +
1

(g
(4)
xx )2

(2− θ)(1− θ)Q2R−6+2θ

eλ2(Ψ−Ψ0)
. (C.3)

Using the extremality condition Q2 = (3−θ
1−θ ) r

2(2−θ)
0 and γ = −λ2 simplifies the effective

potential (2.9) which is of the form (5.35) with U = ΦVeff and Φ = g
(4)
xx . The factors

of Φ arise, as reviewed in section 2, from the T 2-compactification followed by a Weyl

transformation of the 2-dim metric. Thus the potential U(Φ,Ψ) has factorized in this case:
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the piece inside the brackets is structurally similar to that for the reduction of the M2-AdS4

case, with an overall Ψ factor dressing outside.

The linear fluctuations φ, ψ, Ω to the dilaton, scalar field and the metric respectively

are governed by the quadratic action (section 3.2.1 in [35]), which gives the linearized

equation ∂+∂−ζ = 0 for the fluctuation, ζ = ψ − 2√
2−θ

L2(3−θ)(2−θ)
r2−2θ
0 r2θ

hv

φ. Thus the ζ scalar is

massless at linear order.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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