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1 Introduction

The goal of the new g−2 experiments at Fermilab in the United States and at J-PARC

in Japan is to measure the muon anomalous magnetic moment with a precision of 1.6 ×
10−10 [1, 2] — corresponding to 140 ppb — an improvement by a factor of four of the final

BNL E821 experiment’s uncertainty: δaexp
µ = 6.3 × 10−10 (540 ppb) [3]. By all means,

the theoretical prediction must keep up with the experimental precision. At present, the

Standard Model prediction of the muon g−2 is limited by the uncertainty of the Hadronic

Leading Order (HLO) and Light-By-Light (HLBL) contributions, that cannot be computed

in perturbative QCD.

The most precise determinations of aHLO
µ , the leading hadronic contribution to the

muon g−2 , are calculated employing the very well-known dispersive integral [4–6]

aHLO
µ =

(αmµ

3π

)2
∫ ∞

4m2
π

ds

s2
R(s)K̂(s), (1.1)

and the ratio R(s) = σ(e+e− → γ∗ → hadrons)/4πα2

3s that can be measured at low energies.

The kernel K̂(s) is a monotonically increasing function, with K̂(4m2
π) ' 0.63 increasing to

one at s→ +∞. The present error on aHLO
µ is about 3×10−10 [7–9] — a relative accuracy of

0.6% — and constitutes roughly 50% of the Standard Model (SM) error budget. Even if so

far with a larger uncertainty, lattice QCD provides an alternative evaluation of aHLO
µ [10–

18]. Other proposed methods exploit the hadronic vacuum polarization within dispersive

QCD approach [19], Schwinger’s sum rules [20] and Mellin-Barnes approximants [21].

Recently a new experiment, MUonE , has been proposed at CERN to determine aHLO
µ

by measuring the running fine-structure constant α,

α(q2) =
α

1 + Re Π(q2)
, (1.2)
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in the space-like region (q2 < 0) in µ-e scattering as a function of the squared momentum

transfer t [22, 23]. The function Π(q2) is the renormalized photon vacuum polarization

from which it is possible to extract the hadronic contribution Πhad(q2) by subtracting from

Π(q2) the leptonic part Πlep(q2), calculated in perturbative QED up to four loops [18].1 The

hadronic vacuum polarization Πhad(q2) in the space-like region can provide an independent

determination of aHLO
µ thanks to the formula [24]

aHLO
µ = −α

π

∫ 1

0
dx (1− x) Πhad

(
m2
µx

2

x− 1

)
, (1.3)

To determine aHLO
µ with an error of about 2×10−10 the MUonE experiment must measure

the differential cross section with statistic and systematic uncertainties of the order of

10 ppm.

To this end, a Monte Carlo event generator that includes all relevant corrections needed

to reach such level of precision must be developed. It must contain QED and QCD radia-

tive corrections up to Next-to-Next-to-Leading-Order (NNLO) in α matched to leading-

logarithmic corrections resummed to all orders. A Next-to-Leading-Order (NLO) Monte

Carlo generator based on the existing BabaYaga [25–29] framework is currently under

development. A first step towards the evaluation of NNLO corrections was presented

in [30, 31] where the QED two-loop master integrals were calculated for finite muon mass

and vanishing electron mass.

In this paper we will focus on the hadronic contributions to the µ-e scattering cross

section. These corrections are genuinely non-perturbative and cannot be calculated in

perturbative QCD since the scattering process will take place at a center-of-mass energy of

about 0.5 GeV. The hadronic contribution to the NLO cross section — order α3 — comes

from the diagram in figure 1a; it corresponds to the leading effect of the fine-structure-

constant running in an expansion of α = α(0).

The hadronic corrections to the NNLO cross sections — order α4 — can be divided

into four classes of diagrams.

I. Tree-level diagrams with double vacuum polarization insertion (figure 1b), either two

hadronic insertions or one Πhad and one Πlep. These are the second order effects of

the running of α.

II. QED one-loop diagrams in combination with one insertion of Πhad in the t-channel

photon (figure 1c). Their contribution to the cross section is linear in Πhad(t) and

can be obtained directly from the QED one-loop amplitudes.

III. Real photon emission with a dressed photon propagator in the t channel (figure 1d).

All the diagrams in class I-III are factorizable or reducible since they are given by the

product of a QED amplitude times the function Πhad(q2) evaluated at q2 = t. A fourth

class of non-factorizable or irreducible diagrams must be also considered:

1The sharp separation between Πlep(q2) and Πhad(q2) is valid only up to two loops. Starting from three

loops there are diagrams with both leptons and hadrons. Note that the vacuum polarization Π(q2) receives

contributions also from the top quark and W boson.
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(e) Class IV.

Figure 1. The hadronic contributions to µ-e scattering at NLO (a) and at NNLO (b-e). Muon

and electron lines are drawn with thick and thin lines, respectively.

IV. One-loop QED amplitudes with a dressed photon propagator inserted inside the loop.

They can be further subdivided into vertex and box corrections (figure 1e).

Note that there is no LBL contribution to the cross section up to N3LO — order α5.2

Moreover, we remind the reader that the analysis of future MUonE data will also require

the study of µ-e scattering processes with final states containing hadrons. Final states of

Bhabha scattering containing hadrons were studied in [32].

The traditional approach to calculate the amplitudes in class IV uses the dispersion

relation,

Πhad(q2)

q2
= − α

3π

∫ ∞

4m2
π

dz

z

R(z + iε)

q2 − z + iε
, (1.4)

to replace the dressed photon propagator inside the loop — now q stands for the loop

momentum — with the r.h.s. of eq. (1.4) where the momentum q appears only in the term

1/(q2− z). This allows us to interchange the integration order and calculate as a first step

2In figure 1a a virtual photon can be emitted and reabsorbed by the hadronic bubble. In the spirit of the

common nomenclature, we do not consider this kind of two-loop diagrams as a part of the hadronic NNLO

corrections. This effect is commonly included in R(s) as final state radiation, so no additional contribution

has to be taken into account.
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the one-loop integrals with the dressed photon propagator replaced by a massive gauge bo-

son of mass
√
z. Later on the z-dependent scattering amplitudes are convoluted with the

R ratio. The dispersive approach was employed for instance to calculate the hadronic cor-

rections to Bhabha scattering [33, 34]. A complete calculation of the hadronic corrections

to µ-e scattering at NNLO with the dispersive approach will be presented soon [35].

The dispersive approach requires the R ratio as an input. Therefore the MUonE’s

determination of Πhad(q2) and aHLO
µ from space-like data would still depend marginally on

time-like data if the dispersive approach were employed in the evaluation of the hadronic

NNLO corrections. The alternative is to use the very same space-like data measured

by MUonE to calculate the hadronic NNLO corrections iteratively without dispersion

relation and the R ratio. One could approximate the function Πhad(t) through successive

iterations: as a first step the hadronic NNLO corrections can be switched off in the Monte

Carlo and a first approximation for Πhad(t) extracted. Afterwards, the Monte Carlo can be

supplied with this first approximation to evaluate the hadronic NNLO corrections, a second

approximation calculated and the process further iterated. The factorizable diagrams in

class I, II and III depend on Πhad(t), so they are well suited to implement this iterative

procedure. What about the contributions of the irreducible diagrams in class IV?

In this paper we will show that also the non-factorizable diagrams can be calculated

using the hadronic vacuum polarization in the space-like region by making use of the

hyperspherical integration method. This method was exploited for instance to evaluate

parts of the QED three-loop contributions to the electron g−2 [36–41], and more recently

to calculate the pion pole contribution to aHLBL
µ [42, 43] and in the dispersive approach to

the HLBL [44, 45].

The loop integrals containing Πhad(q2) can be calculated as follows: after analytic

continuation of internal and external momenta to the Euclidean region, one introduces

spherical coordinates for the loop momentum q. The angular dependence of the Feynman

propagators can be made explicit by an expansion in Gegenbauer polynomials. Afterwards,

the integration with respect to the angular variables can be carried out analytically by

taking advantage of the orthogonality properties of these polynomials. In this way, the

non-factorizable diagrams are left in the form of a residual radial integration,

∫ ∞

0
dQ2Q2 Πhad(−Q2) f(Q2, s, t, u) (1.5)

which is calculated numerically once provided with the hadronic vacuum polarization in

the space-like region.

One must note, however, that the integral (1.5) requires the knowledge of Πhad(q2) for

any q2 < 0, while Πhad is experimentally accessible only in a finite range of t. Therefore the

proposed iterative procedure will require in any case an extrapolation between the measured

region and the high-energy tail close to infinity. Lattice data could also come to the aid

in the intermediate region. Padé approximants could be used in this merging procedure.

They have been employed, for example, to evaluate the QED vacuum polarization function

at four loops and its contribution to the g−2 at five loops [46] knowing the first terms of

Πlep(q2) in an expansion around q2 = 0, 4m2
` ,+∞. It is beyond the scope of this paper
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to study the impact of such extrapolation and the error that it would introduce in the

evaluation of aHLO
µ .

The paper is organized as follows. In section 2 we will review the hyperspherical

integration method. The master formulae for the evaluation of the irreducible diagrams

will be presented in section 3 for the vertex corrections and section 4 for the boxes. In

section 5 we will make a comparison between the traditional dispersive method and the

hyperspherical method. Conclusion are drawn in section 6. The appendix contains an

example of a one-loop calculation with the hyperspherical method.

2 The hyperspherical integration method

In this section we will give a short review of the hyperspherical integration method. Each

of the diagrams in class IV contains an insertion of the SM vacuum polarization tensor

with four momentum q,

iΠµν(q) = iΠ(q2)(gµνq2 − qµqν) =

∫
d4x eiqx 〈0|T{jµem(x)jνem(0)} |0〉 , (2.1)

where jµem(x) =
∑

f Qf ψ̄f (x)γµψf (x) is the electromagnetic current and the sum runs

over fermions with charges Qf . The weak interactions will be ignored. Throughout this

paper we will always assume Π(q2) to be the renormalized vacuum polarization fulfilling

Π(q2 = 0) = 0. In each loop diagram we choose the routing of the loop momentum q in

such a way that the momentum flowing through the dressed photon propagator is exactly

q, so that the loop integral has the following form:

I(p1, . . . , pn) =

∫
d4q

Πhad(q2)

q2 + iε

N (q, p1, . . . , pn)

D1 · · · Dn
, (2.2)

where n = 2 (3) for the vertex (the box) corrections, Di = (q+ki)−m2
i + iε are propagator

denominators and ki are linear combination of the external momenta p1, · · · , pn. The nu-

merator N (q, p1, . . . , pn) is assumed to be a scalar function. We will work in D = 4 dimen-

sions. This choice is dictated mainly from the fact that hyperspherical integration of three

Feynman propagators, necessary for the boxes, are known only in four-dimensions [47].

More details will be given further on.

We begin with the analytic continuation of all external momenta into the Euclidean

region and with a Wick rotation of the integration contour. Do we need at this point to

add the propagator pole residues after the Wick rotation? When we compute a one-loop

integral in the traditional way, after introducing Feynman parameters and shifting the loop

momentum one is left with a denominator of the form 1/(q2 − ∆ + iε)n, that has poles

at q0 = ±
√
~q 2 + ∆ ∓ iε. Since the poles are in the top-left and bottom-right quadrants

of the complex q0 plane, integrating over the real axis is equivalent to integrating over

the imaginary axis. However in the hyperspherical approach, we cannot shift the loop

momentum and therefore we are left at the denominator with the product of propagators

of the form 1/[(q − p)2 −m2], that has two poles in the q0 complex plane at

q±0 = p0 ±
√

(~q − ~p )2 +m2 ∓ iε. (2.3)
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Re q0

Im q0

q+0

q−0

(a)

Re q0

Im q0

q−0 q+0

(b)

Figure 2. Integration contour in the complex plane q0 before (2a) and after (2b) analytic continu-

ation of the external momenta into the Euclidean region. The Feynman propagator poles q±0 move

in the complex plane and the blue and red integration paths must be deformed accordingly.

The two poles are not centered at the origin. If p0 is sufficiently large, q−0 lies in the

top-right quadrant of the q0 plane. Therefore the integration over the real axis is different

from the integration along the imaginary axis: the residue of the pole q−0 must be taken

into account also. Phrased differently, integration over the real axis (in blue in figure 2a) is

equivalent to the red path in figure 2a, which proceeds along the imaginary axis but avoid

the q−0 pole turning around it.

Analytic continuation of the external momenta into the Euclidean region moves then

the location of these poles. For example we can let the energy p0 in (2.3) to acquire a phase

eiφ which is then varied from 0 to π/2. In this way, the pole q−0 moves to the top-left quad-

rant, while the pole q+
0 to the top-right one. No pole should cross the integration contours.

Therefore the blue path along the real axis must be deformed because the pole q+
0 moves

to the upper side, as shown in figure 2b, while the path along the imaginary axis becomes

straight, in red in figure 2b, since the pole q−0 moves to the left. So after Wick rotation no

pole residue must be included if both internal and external momenta become Euclidean.

Note in addition that Πhad(q2) has a branch point at the pion threshold q2 = 4m2
π.

In the q0 complex plane it corresponds to two branch points at q0 = ±
√
~q 2 + 4m2

π ∓ iε.
They are unaffected by the analytic continuation because their position is independent on

the external momenta. So they do not interfere with the Wick rotation. Furthermore, the

vacuum polarization does not introduce any other isolated singularity since its poles in the

q2 complex plane, corresponding to unstable resonances, are hidden below the real axis in

the unphysical sheet.

Now four-dimensional hyperspherical coordinates can be introduced for the loop mo-

mentum q:

d4q = id4Q = i
Q2

2
dQ2dΩQ.

We will denote with capital and lowercase letters the momenta in the Euclidean and in the

Minkowski space, respectively. Note that after Wick rotation the vacuum polarization’s

– 6 –
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argument becomes negative: Πhad(−Q2 < 0). The angular dependence of the propagators

Di in (2.2) can be made explicit by the expansion

1

(Q− P )2 +m2
=

ZQP
|Q||P |

∞∑

n=0

ZnQP C
(1)
n (Q̂ · P̂ ), (2.4)

where Q̂ and P̂ are unit vectors along the direction of Q and P ,

ZQP =
Q2 + P 2 +m2 − λ1/2(Q2, P 2,−m2)

2|Q||P | (2.5)

and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källén function. The Gegenbauer

polynomials C
(1)
n (x) are an orthogonal basis of functions over the interval [−1, 1] with

respect to the weight function
√

1− x2. This allows us to perform the angular integration

using the orthogonality conditions

∫
dΩQ

2π2
C(1)
n (Q̂ · P̂i)C(1)

m (Q̂ · P̂j) =
δnm
n+ 1

C(1)
n (P̂i · P̂j), (2.6)

C(1)
n (x)C(1)

m (x) =

min(n,m)∑

j=0

C
(1)
m+n−2j(x). (2.7)

Since after the angular integration the momenta are still space-like, i.e. p2
i < 0, we need

eventually to analytically continue back the results to the time-like region. An example of a

one-loop integral calculation with the hyperspherical method is presented in the appendix,

where its analytic continuation is also further discussed.

There is a caveat however: the integral of the product of three Gegenbauer polynomials

evaluated at three different Q̂ · P̂i is unknown and therefore the angular integration cannot

be performed with the method described above. This occurs when we calculate the box

diagrams: the product of three denominators — the fourth does not depend on the angles

— would become the product of three Gegenbauer polynomials if the expansion (2.4) were

employed. The angular integrals can be evaluated nevertheless by brute force integrating

directly with respect to the three hyperspherical angles,

∫
dΩQ =

∫ π

0
sin2 θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dφ3, (2.8)

avoiding the expansion (2.4). The general solution of an integral with three denominators

in D = 4 was given long time ago by Laporta in a not very-well-known article [47]. This

is the main reason why our calculation is carried out in D = 4 and not in dimensional

regularization, even if the hyperspherical method can be applied to D dimensions as well

(see e.g. [48]).

After the hyperspherical integration, the residual Q2 radial integral can be ill-defined

because of the bad behaviour of the integrand at infinity — an ultraviolet (UV) divergence

— or at some finite value of Q2, an infrared (IR) one. Vertex corrections are UV divergent

but IR finite because Πhad(0) = 0 regularizes the behaviour of the kernel at the origin.

– 7 –
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Thanks to the on-shell renormalization prescription, the radial integral can be regularized

by calculating the vertex together with its counter-term, which is the vertex itself in the

limit of zero momentum transfer t → 0. The counter term built in this way cancels the

original UV divergence pointwise in momentum space [37, 39].

Vice versa, the boxes contain soft IR divergences but are UV finite. A small photon

mass λ can be introduced to regularize the integral. It is even possible to avoid an explicit

calculation of IR divergent integrals containing Πhad(q2) by observing that in the soft limit

the box diagrams are proportional to the “tree-level” amplitude, i.e. the Born amplitude

with a dressed photon propagator in figure 1a. Indeed the soft pole arises when the mo-

mentum of the undressed photon goes to zero and the momentum of the dressed one is t.

This suggests us the possibility to extract the IR poles with the following subtraction:
∫
d4qΠhad(q2) · · · =

∫
d4q
[
Πhad(q2)−Πhad(t)

]
· · ·+ Πhad(t)

∫
d4q . . . . (2.9)

The first integral on the r.h.s. of eq. (2.9) is now free of IR divergences and can be evaluated

setting λ = 0. The soft pole appears only in the second integral of (2.9) that does not

contain anymore Πhad and can be calculated analytically with standard methods.

The last technical ingredient to discuss is how to perform the angular integration when

the loop momentum q appears also at the numerator. One occurrence of the scalar product

ki ·q can be always removed against one of the propagators Di by writing 2ki ·q = Di−q2 +

m2 − k2
i . Additional ki · q in the numerator can be further simplified using the technique

described in the appendix of ref. [39]. The one-denominator case is straightforward:

∫
dΩQ

2π2

ki · q
Dj

= −
∫
dΩQ

2π2

|Ki||Q|
Dj

K̂i · Q̂ = −
∫
dΩQ

2π2

|Ki||Q|
Dj

C
(1)
1 (K̂i · Q̂)

2
, (2.10)

given that C
(1)
1 (x) = 2x. The angular integral is performed by expanding the denominator

and using the orthogonality condition (2.6). For the two-propagator case we write
∫
dΩQ

2π2

Ki ·Q
DjDk

= Kµ
i I

µ, with Iµ =

∫
dΩQ

2π2

Qµ

DjDk
. (2.11)

The term Iµ must be a linear combination of the Euclidean vectors Kj and Kk that appear

at the denominator with scalar coefficients. Introducing two orthonormal vectors êµ1 and

êµ2 in the two-dimensional space spanned by Kj and Kk,

êµ1 =
Kµ
j

|Kj |
, êµ2 =

Kµ
k −K

µ
j (Kj ·Kk)/K

2
j√

K2
k − (Kj ·Kk)2/K2

j

, (2.12)

we can replace the loop momentum Qµ in (2.11) with its projection onto the space spanned

by Kj and Kk:

Qµ → êµ1 (ê1 ·Q) + êµ2 (ê2 ·Q). (2.13)

Now the integral Iµ contains, through the scalar product êi · Q, terms like Kj · Q/Dj or

Kk · Q/Dk, which can be simplified as before, leading to an integrand without Q in the

numerator.

– 8 –
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p1 → p2 →

k ↑

q ←

Figure 3. The leading contribution of the hadronic vacuum polarization to the QED vertex.

3 The vertex corrections

Having introduced the hyperspherical method, we can now apply it to calculate the

hadronic vacuum polarization contribution to the QED form factors which can be used

in a second stage to calculate the irreducible vertex corrections in class IV. The 1PI am-

plitude Γµ(k) describing the interaction between a photon and the initial and final states

of an on-shell lepton `, with four-momenta p1 and p2, respectively, can be written in terms

of the Dirac and Pauli form factors F1 and F2:

Γ`µ(k) = γµF
`
1(k2) + i

σµνk
ν

2m`
F `2(k2), (3.1)

where σµν = i
2 [γµ, γν ], m` is the lepton mass and k = p2 − p1 is the incoming four-

momentum of the off-shell photon. Let us call F ` had
1 (k2) and F ` had

2 (k2) the leading con-

tribution of the hadronic vacuum polarization to the form factors F `1 and F `2 given by the

two-loop diagram in figure 3. The vertex corrections in class IV can be expressed in term

of F ` had
1 (k2) and F ` had

2 (k2), with ` = e, µ. Since there the role of the off-shell photon with

momentum k is played by the photon in t-channel, we will identify k2 with the Mandelstam

variable t < 0, and we will restrict the calculation to the region t < 0.

The form factors F ` had
1 (k2) and F ` had

2 (k2) are extracted from the amplitude with the

projector technique [49] and the loop integral calculated with the hyperspherical method.

The final expression for the form factors can be cast in the form

F ` had
i (t) = −α

π

∫ 1

0
dxΠhad

(
m2
`x

2

x− 1

)
fi

(
x,

t

m2
`

)
, (3.2)

where i = 1, 2 and x is related to the radial variable Q2 by

q2 = −Q2 = −m
2
`x

2

1− x. (3.3)

The angular integration gives a well-behaved integrand f2, while we need to renormalize

F had
1 . We impose the on-shell renormalization condition F had

1 (0) = 0 by subtracting, as a

counter term, the integrand itself in the limit k2 → 0. The final expressions for the kernel

– 9 –
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functions appearing in the renormalized form factors are:

f1(x, y) =
3x3 − 4x2 + 4

4(1− x)x
+

2− x
1− x

{
6x2

(4− y)2(x− 1)
+

x2 − 6x+ 4

2(4− y)(x− 1)

+

[(
x2 + 8x− 8

)
x

(4− y)(1− x)2
− 12x3

(4− y)2(1− x)2
+

4− y
x

+
2
(
x2 + x− 1

)

(1− x)x

]

× 1√
y(y − 4)

arctanh

(
(1− x)

√
y (y − 4)

2x+ y − 4− yx

)}
, (3.4)

f2(x, y) =
2− x
1− x

{
6x2

(4− y)2(1− x)
+

2− x
4− y +

[
2x

(4− y)(1− x)
+

3x3

(4− y)2(1− x)2

]

× 4√
y(y − 4)

arctanh

(
(1− x)

√
y (y − 4)

2x+ y − 4− yx

)}
, (3.5)

valid in the scattering region t < 0. The inverse hyperbolic tangent appearing in (3.4)

and (3.5) are always real-valued if 0 < x < 1 and y < 0.

By taking the limit t → 0 in F ` had
2 , we recover the space-like formula for aHLO

µ in

eq. (1.3), which is usually derived by applying twice the dispersion relation. Our calcula-

tion shows that eq. (1.3) can be obtained directly, without making use of the dispersion

relation (it was proven already in [50]). Moreover by substituting Π(q2)→ −1 in (3.2) and

performing the integration analytically, we reproduce the Pauli form factor at one-loop [49]:

F2(k2) =
α

π

ξ log ξ

ξ2 − 1
, (3.6)

where ξ is the Landau variable t/m2
` = −(1 − ξ)2/ξ. The same check cannot be done

straightforwardly for the Dirac form factor because f1(x, y) is not integrable anymore in

x = 0 if we set Πhad(q2) = −1, while we assumed Πhad(0) = 0. To reproduce F1(k2) at one

loop, we can substitute in (3.2)

Π(q2)→ − q2

q2 − λ2
, (3.7)

which corresponds in figure 3 to the exchange of the dressed photon with an undressed one

with fictitious mass λ. The integral (3.2) is now finite and the integration can be done

analytically. Keeping terms that do not vanish in the limit λ→ 0 we correctly recover the

known result [49]:

F1(k2) =
(α
π

){
log

(
λ

m

)(
ξ2 + 1

ξ2 − 1
log(ξ)− 1

)
+

3ξ2 + 2ξ + 3

4 (ξ2 − 1)
log(ξ)− 1

+
1 + ξ2

1− ξ2

[
Li2(−ξ)− log2(ξ)

4
+
π2

12
+ log(ξ) log(ξ + 1)

]}
. (3.8)

4 The boxes

We can now turn our attention to the box diagrams. There are two topologies to take into

account: the uncrossed two photon exchange in figure 4a and the crossed one in figure 4b.
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p1

p2 − q

p1 + q

p4

p3

p2

q q + p1 − p3

(a)

p1

p4 + q

p1 + q

p4

p3

p2

q q + p1 − p3

(b)

Figure 4. Irreducible hadronic box diagrams contributing to µ-e scattering at NNLO. Muon and

electron lines are depicted with thick and thin lines. Two additional diagrams, with the vacuum

polarization in the other photon propagator, must be considered also.

They are related by the crossing s ↔ u plus an overall minus sign. Both photons can be

dressed with the hadronic vacuum polarization. The diagram with the same topology but

with dressed and undressed photon exchanged can be obtained by replacing the initial state

momenta with the final state ones and vice versa. Therefore the contribution of the two

diagrams to the unpolarized cross section is the same since no crossing of the Mandelstam

variables occurs.

Let us fix the notation for the process e−µ− → e−µ−. We choose the following set of

propagators:

D0 = q2, D1 = (q + p1)2 −m2,

D2 = (q + p1 − p3)2, D3 = (q − p2)2 −M2,

D4 = (q + p4)2 −M2, (4.1)

where m2 (M2), p1 and p3 (p2 and p4) are the mass, the initial state and the final state

momentum of the electron (the muon). The Mandelstam variables

s = (p1 + p2)2 = (p3 + p4)2, (4.2)

t = (p1 − p3)2 = (p2 − p4)2, (4.3)

u = (p1 − p4)2 = (p2 − p3)2, (4.4)

satisfy s+ t+ u = 2m2 + 2M2, with the physical requirements

(m+M)2 < s, (4.5)

−λ(s,M2,m2)

s
< t < 0, (4.6)

2m2 + 2M2 − s < u <
(M2 −m2)2

s
. (4.7)

We work at the level of interferences between the boxes and the Born amplitude which

provide us with the scalar numerators N in eq. (2.2). After algebraic manipulation, these

interferences are written as linear combinations of loop integrals that can be evaluated one
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by one via the hyperspherical method. Each of the box diagrams requires the evaluation

of 14 master integrals that have the following form:

I =
1

iπ2

∫
d4qΠhad(q2) · · · =

∫ +∞

0
dQ2Q2 Πhad(−Q2)

〈
. . .
〉
. (4.8)

The kernel functions denoted by

〈
. . .
〉

=

∫
dΩQ

2π2
. . .

∣∣∣∣∣
p2i→m2

i

, (4.9)

arise from the angular integration of their arguments followed by analytic continuation of

the external momenta back to the physical region. The solutions of the angular integration

(for Euclidean momenta) are taken from the results in refs. [42, 43, 47]. The necessary

angular integrals are the following:

〈
1

D1

〉
=

1

2m2

(
1−

√
1 +

4m2

Q2

)
, (4.10)

〈
1

D2

〉
=
θ(−Q2 − t)

t
− θ(Q2 + t)

Q2
, (4.11)

〈
1

D3

〉
=

〈
1

D4

〉
=

1

2M2

(
1−

√
1 +

4M2

Q2

)
, (4.12)

〈
1

D1D2

〉
= − 1

Q2
√
t(t− 4m2)

[
L(z1) + 2θ(Q2 + t)L

(
1

z2

)]
, (4.13)

〈
1

D2D3

〉
=

〈
1

D2D4

〉
= − 1

Q2
√
t(t− 4M2)

[
L(z3) + 2θ(Q2 + t)L

(
1

z4

)]
, (4.14)

〈
1

D1D3

〉
= +

1

Q2λ1/2(s,m2,M2)

[
L(z5) + L(z6)− L(z7)

]
, (4.15)

〈
1

D1D4

〉
= +

1

Q2λ1/2(u,m2,M2)

× Re
[
L(z8)− L(z9) + L(sgn(u+M2 −m2)z10)

]
, (4.16)

〈
1

D1D2D3

〉
= − 1

Q2 |Q2 + t|λ1/2(s,m2,M2)

×
[
L
(

sgn(Q2 + t) z5

)
+ L

(
sgn(Q2 + t) z6

)
− L(z7)

]
, (4.17)

〈
1

D1D2D4

〉
= − 1

Q2 |Q2 + t|λ1/2(u,m2,M2)
Re

[
− L

(
sgn(Q2 + t) z9

)

+ L
(

sgn(Q2 + t) sgn(u+M2 −m2) z10

)
+ L

(
z8

)]
, (4.18)
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where

z1 =

√
Q2(Q2 +4m2)

√
t(t−4m2)

2m2t−2m2Q2 +Q2t
, z2 =

√
1− 4m2

t
, (4.19)

z3 =

√
Q2(Q2 +4M2)

√
t(t−4M2)

2M2t−2M2Q2 +Q2t
, z4 =

√
1− 4M2

t
, (4.20)

z5 =

√
1+

4m2

Q2

√
1− 4sm2

(s−M2 +m2)2
, z6 =

√
1+

4M2

Q2

√
1− 4sM2

(s−m2 +M2)2
, (4.21)

z7 =

√
1− 4m2M2

(s−M2−m2)2
, z8 =

√
1− 4m2M2

(u−M2−m2)2
, (4.22)

z9 =

√
1+

4m2

Q2

√
1− 4um2

(u−M2 +m2)2
, z10 =

√
1+

4M2

Q2

√
1− 4uM2

(u−m2 +M2)2
, (4.23)

and

L(z) ≡ 1

2
log

(
1 + z

1− z

)
. (4.24)

The function L(z) has branch cuts on the real axis in ]−∞,−1] and [1,+∞[, with ImL(x) =

iπ/2 if x is real and |x| > 1. The formula (4.24) is often used to define the inverse hyperbolic

tangent via arctanh(x) ≡ L(x). However such identity must be taken with care since some

program languages, like for example Mathematica or the GNU Scientific Library, define

arctanh(z) ≡ 1
2 log(1 + z) − 1

2 log(1 − z), that assigns a negative imaginary part to the

function if x > 1: Im arctanh(x) = −iπ/2.

At this point we would like to comment on the analytic continuation that we performed

in eqs. (4.10)–(4.18). The general expressions for the angular integrals in [42, 43, 47] are

written in terms of squared Euclidean momenta fulfilling P 2
i > 0 and |P̂i · P̂j | < 1. They

must be continued to the on-shell conditions P 2
i = −m2

i and (P1 −P2)2 = −(s+ iε), (P1 −
P3)2 = −t, (P1 − P4)2 = −u. Analytic continuation affects the whole radial integral (4.8),

not only the angular integration result. Indeed it is necessary to check if any singularity

crosses, in the Q2 complex plane, the integration path along the positive real axis when

the P 2
i are continued from positive to negative values. This check is carried out explicitly

for the one-loop example in the appendix.

Note that when making use of the results in refs. [42, 43, 47] one just need to identify

the correct side of the branch cut of the functions L(z) after setting P 2
i = −m2

i . This can

be achieved by imposing the correct analyticity structure dictated by unitarity. Indeed

after substitution of P 2
i = −m2

i and (P1 − P2)2 = −s etc., all the square roots in front

of (4.13)–(4.18) become real and positive and all arguments zi are real too. The vacuum

polarization function is real in the space-like region, therefore the imaginary part of L(zi) is

the only one that must be fixed. Let us consider for example the integrals (4.13) and (4.14)

which are obtained by pinching the denominators D3 or D1 in the box. These integrals

depend on t < 0 and therefore, since they are evaluated below the lepton-pair threshold,
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their imaginary part must be equal to zero. The imaginary parts of the L(zi) can be chosen

accordingly with this constraint. Similar arguments apply to the integrals for the crossed

box diagrams that depend on the Mandelstam variable u.

In addition to the formulae in (4.10)–(4.18), angular integrals with scalar product q ·pi
at the numerator are necessary. Thanks to the reduction technique outlined at the end of

section 2, they can be written as a linear combination of the integrals (4.10)–(4.16):

〈
q ·p1

D0D2D3

〉
=− 1

2(4M2− t)

{
s+M2−m2

Q2

〈
1

D3

〉
+

2m2 +2M2−2s− t
Q2

〈
1

D2

〉

−
[
s+ t−m2−3M2 +

t(s+M2−m2)

Q2

]〈
1

D2D3

〉}
, (4.25)

〈
q ·p1

D0D2D4

〉
=− 1

2(4M2− t)

{
u+M2−m2

Q2

〈
1

D4

〉
+

2m2 +2M2−2u− t
Q2

〈
1

D2

〉

−
[
u+ t−m2−3M2 +

t(u+M2−m2)

Q2

]〈
1

D2D4

〉}
, (4.26)

〈
q ·p2

D0D1D2

〉
= +

1

2(4m2− t)

{
s+m2−M2

Q2

〈
1

D1

〉
+

2m2 +2M2−2s− t
Q2

〈
1

D2

〉

−
[
s+ t−M2−3m2 +

t(s+m2−M2)

Q2

]〈
1

D1D2

〉}
, (4.27)

〈
q ·p4

D0D1D2

〉
=− 1

2(4m2− t)

{
u+m2−M2

Q2

〈
1

D1

〉
+

2m2 +2M2−2u− t
Q2

〈
1

D2

〉

−
[
u+ t−M2−3m2 +

t(u+m2−M2)

Q2

]〈
1

D1D2

〉}
, (4.28)

〈
q ·(p1−p3)

D0D1D3

〉
=

t

2λ(s,M2,m2)

×
[

2s

〈
1

D1D3

〉
+
s+m2−M2

Q2

〈
1

D1

〉
+
s+M2−m2

Q2

〈
1

D3

〉]
, (4.29)

〈
q ·(p1−p3)

D0D1D4

〉
=

t

2λ(u,M2,m2)

×
[

2u

〈
1

D1D4

〉
+
u+m2−M2

Q2

〈
1

D1

〉
+
u+M2−m2

Q2

〈
1

D4

〉]
. (4.30)

Up to this point, we have given an account of the angular integration solutions. We

can now introduce the explicit expressions of the radial master integrals that must be

evaluated numerically once provided with the hadronic vacuum polarization at negative
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q2. The integrals are the following:

I0ij =

∫
dQ2Q2 Πhad(−Q2)

〈
1

D0DiDj

〉
, (4.31)

Iijk =

∫
dQ2Q2 Πhad(−Q2)

〈
q · pi
D0DjDk

〉
, (4.32)

Iijk =

∫
dQ2Q2 Πhad(−Q2)

〈
1

DiDjDk

〉
, (4.33)

I0ijk =

∫
dQ2Q2 Πhad(−Q2)

〈
1

D0DiDjDk

〉
, (4.34)

with i, j, k = 1, 2, 3 (i, j, k = 1, 2, 4) for the uncrossed box in figure 4a (the crossed box in

figure 4b) and i 6= j 6= k. The denominator D0 = q2 = −Q2 does not depend on the angles,

so we can assemble the kernel functions from the results in (4.10)–(4.18) straightforwardly.

The following integrals must be considered as well:

I∆0ik =

∫
dQ2Q2 Πhad(−Q2)

〈
1

D0Di
− D0

D1D2Dk

〉
, (4.35)

I∆ijk =

∫
dQ2Q2 Πhad(−Q2)

〈
1

DiDj
− D0

D1D2Dk

〉
. (4.36)

with i 6= j, i, j = 1, 2, 3 (1, 2, 4) and k = 3 (4) for the uncrossed box (the crossed box).

In eq. (4.35) and (4.36) the kernel functions contain two terms, each of them gives a UV

divergent integral if taken alone. To avoid the introduction of an explicit UV regulator,

which eventually cancels out in the final result, we take their difference to obtain a UV

finite integral.

In eqs. (4.33)–(4.36), the 1/|Q2 + t| pole in the functions (4.17) and (4.18) yields a

singular integral that corresponds to the soft IR divergence arising when the undressed

photon becomes soft. Note on the contrary that the 1/Q2 pole does not lead to a singular

integral since the kernel behaviour is smoothed at Q2 → 0 by the renormalized vacuum

polarization. The IR singularity can be regularized by introducing a photon mass λ for the

undressed photon. However if we perform the subtraction (2.9) for each integral,

Iijk =

∫
dQ2Q2

[
Πhad(−Q2)−Πhad(t)

]〈 1

DiDjDk

〉

+ Πhad(t)

∫
d4q

iπ2

1

DiDjDk
, (4.37)

I0ijk =

∫
dQ2Q2

[
Πhad(−Q2)− 2Q2

Q2 + |t|Π
had(t)

]〈
1

D0DiDjDk

〉

+ 2 Πhad(t)

∫
d4q

iπ2

1

(q2 − |t|)DiDjDk
, (4.38)

I∆0ik =

∫
dQ2Q2

[
Πhad(−Q2)−Πhad(t)

]〈 1

D0Di
− D0

D1D2Dk

〉

+ Πhad(t)

∫
d4q

iπ2

(
1

D0Di
− D0

D1D2Dk

)
, (4.39)
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I∆ijk =

∫
dQ2Q2

[
Πhad(−Q2)−Πhad(t)

]〈 1

DiDj
− D0

D1D2Dk

〉

+ Πhad(t)

∫
d4q

iπ2

(
1

DiDj
− D0

D1D2Dk

)
, (4.40)

we can still employ the formulae presented before to build the kernel functions. Indeed,

in eqs. (4.37)–(4.40) the first integral is now free of IR divergences because the factor

Πhad(−Q2) − Πhad(t) compensates the |Q2 + t| at the denominator. Therefore we can set

λ = 0 in this first term and use our results for the angular integrals. The soft pole appears

only in the second terms where standard techniques can be employed for the evaluation of

the integrals since Πhad does not depend anymore on the loop momentum q.

Note that the simple subtraction (2.9) does not work for I0ijk in (4.34). The kernel

has a 1/Q2 pole compensated at Q2 = 0 by Πhad(−Q2) but not by a constant term like

Πhad(t), whereas the factor 2Q2/(Q2 + |t|) vanishes in the Q2 → 0 limit while it gives one

when Q2 → |t|.

5 Dispersive vs hyperspherical method

With the formulae for the QED form factors and the boxes in our hand, we can now make

a numerical comparison between the standard dispersive approach and the hyperspherical

method. The comparison can be done not only with the hadronic vacuum polarization

Πhad(q2), but also with the well-known analytic expression for Πlep(q2) at one loop, which

is a smooth function both for time-like and space-like q2.

Numerical integrations, either space-like or time-like, are performed with a

Mathematica code employing machine precision numbers and without any symbolic ma-

nipulation of the integrand. This ensures that we can compare the two cases and use the

same code for Πlep(q2) as well as for Πhad(q2). The numerical values of Πhad(q2) and the R

ratio are provided by the Fortran library alphaQED [51–53], and Rhad [54] for the regions

where perturbative QCD applies, via a mathlink interface.

We make a comparison with the irreducible diagrams calculated with the dispersive

method in [35]. The dispersion relation (1.4) effectively replaces the dressed photon prop-

agator with the propagator of a massive gauge boson. These amplitudes are generated by

FeynArts [55] with a modified version of the QED model that contains, besides leptons and

photon fields, a massive gauge boson with squared mass equal to z. Later on, the ampli-

tudes are reduced by FormCalc [56, 57] to one-loop tensor coefficients which are calculated

by the Fortran library Collier [58] via the CollierLink interface [59]. Collier features

dedicated expansions in numerically dangerous regions (small Gram or other kinematical

determinants). We particularly benefited from the use of this library because in the numer-

ical evaluation of the dispersive integral (1.4) the photon mass z appearing inside the loop

can acquire values a few orders of magnitude larger than the typical energy scales of the

scattering process. The numerically stable results provided by Collier in this treacherous

region speeded up the convergence of the dispersive integrals.

We begin by comparing the form factors in eq. (3.2). By employing Πlep(q2) instead

of Πhad(q2), i.e. substituting the hadronic bubble in figure 3 with an electron or a muon
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(a) Electron vacuum polarization contribution to the electron’s form factors.
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(b) Muon vacuum polarization contribution to the muon’s form factors.

Figure 5. Leptonic vacuum polarization contribution to the form factors for
√
s = 0.405 GeV and

−0.142 Gev2 ≤ t ≤ 0 GeV2. Relative difference between the numerical values F num
i obtained by the

hyperspherical or the dispersive method and the exact two-loop result Fi in [60]. The error bars

show the uncertainty due to numerical integration.

loop, we can compare our numerical integration with the analytic results of ref. [60], where

the QED form factors at two loops were presented. In [60] the vacuum polarization con-

tribution was calculated with the lepton inside the bubble equal to the external one. The

relative difference (F num
i /Fi)− 1 between the form factors calculated numerically with the

hyperspherical method, F num
i = F hyp

i , and the exact two-loop result Fi is shown in figure 5a

and 5b for the electron and the muon case, respectively. The comparison is done for values

of the Mandelstam variable t accessible by the MUonE experiment at
√
s = 0.405 GeV:

−0.142 GeV2 ≤ t ≤ 0 GeV2. The error bars are the uncertainty due to the numerical inte-

gration. Harmonic polylogarithms are evaluated with the HPL package [61, 62]. In addition

to that, we calculated the QED form factors by employing the dispersion relation (1.4)

and the analytic expression of Im Πlep(q2). The relative difference with F num
i = F disp

i is

shown as well in figure 5a and 5b. Both methods are in very good agreement with the

exact two-loop results, at the level of one part in 10−8.

The comparison with Πhad(q2) is shown in figure 6a and 6b for the electron and muon

form factors, respectively. In this case lacking an “exact” two-loop expression, we choose as

normalization Fi the dispersive method’s result. The values shown in figure 6 are obtained

with the same code employed for Πlep(q2), except for the use of Πhad(q2) and Im Πhad(q2)
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(a) Hadronic vacuum polarization contribution to the electron’s form factors.
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(b) Hadronic vacuum polarization contribution to the muon’s form factors.

Figure 6. Hadronic vacuum polarization contribution to the form factors for
√
s = 0.405 GeV and

−0.142 Gev2 ≤ t ≤ 0 GeV2. Relative difference between the values obtained with the hyperspherical

and the dispersive method. The result given by the dispersive method is used as normalization

factor. The error bars show the uncertainty due to the numerical integration.

instead of the leptonic ones. We note that with the hadronic vacuum polarization there

is a small systematic shift between the numerical values obtained with the two methods,

a relative difference of about 10−3 − 10−4. An improvement of the numerical integration

error does not change the picture.

The source of this shift is the following. The function Πhad(q2) provided by the library

alphaQED is not obtained from a direct integration of the R ratio via (1.4). It is actually

calculated in a different way: first different experiments are integrated separately and then

weighted averages of the integrals are taken. This procedure appears to be more reliable

for error estimate, especially in the ππ channel. The imaginary part provided by alphaQED,

i.e. the time-like R, is obtained by averaging data energy-bin-wise. Therefore the numerical

integration of this “unified” R can slightly differ from the first procedure since integration

and averaging do not commute in general [63]. This effect is shown in figure 7 where we

compare, at space-like t, the difference between the hadronic vacuum polarization provided

by alphaQED, denoted by ΠFJ(q2), and the values obtained by direct integration of the

dispersion relation with R from the same library, denoted by ΠDR(q2). We note a small

difference of the order of 10−3, compatible with the systematic shift appearing in figure 6.
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Figure 7. Blue dots are the difference between the hadronic vacuum polarization provided by

alphaQED, ΠFJ(t), and the value obtained by direct integration of the dispersion relation with R(s)

from the same library, ΠDR(t). The orange band shows the experimental uncertainty on ΠFJ(t).

The two determinations of Πhad(q2) are nevertheless in very good agreement within the

experimental uncertainty on ΠFJ(q2), which is also provided by alphaQED (shown by the

orange band in figure 7).

Also the results of the dispersive and hyperspherical methods are in good agreement

taking into account the experimental error from the R ratio. The muon and the electron

form factor F2 at t = 0 corresponds to aHLO
µ and aHLO

e . Their relative uncertainties are

about 0.6% [7–9], much larger than the discrepancy appearing in figure 6. One should

remind however that the kernel functions employed in the dispersive evaluation of F1 and

F2 at t 6= 0 are different from K̂(s) in the g−2 formula (1.1), so the integration procedure

would give in principle a different relative error because the experimental data are weighted

differently. The uncertainty on aHLO
µ and aHLO

e (0.6%) must be understood as an order of

magnitude of the error at t 6= 0 and not as a precise estimate. A explicit calculation of the

uncertainty for all t is beyond the scope this analysis: it would require the combination

of systematic and statistical errors of the data together with their correlation matrices.

However, even assuming in figure 6 that the relative error due to R is 0.1%, which is

a factor of six smaller than the uncertainty on aHLO
µ and aHLO

e , the dispersive and the

hyperspherical method would be still in agreement.

Let us move on to the box diagrams. Figure 8 shows for
√
s = 0.405 GeV and

−0.142 Gev2 ≤ t ≤ 0 GeV2 the relative difference

∆ =
|Ihyp − Idisp|
|Idisp| (5.1)

between the Born-virtual interferences I = MboxM†Born calculated by means of the hy-

perspherical and the dispersive methods. The result given by the dispersive method is

chosen as normalization factor in the plots. The leptonic (hadronic) corrections to the

uncrossed and crossed diagram are compared in figure 8a and 8b (8c and 8d), respectively.

Good agreement is found between the hyperspherical and the dispersive method when the

leptonic vacuum polarization function is employed, at the level of one part in 10−5. The

boxes with the hadronic vacuum polarization show also in this case a systematic shift of
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(a) Leptonic correction to the uncrossed box.
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(b) Leptonic correction to the crossed box.
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(c) Hadronic correction to the uncrossed box.
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(d) Hadronic correction to the crossed box.

Figure 8. The relative difference ∆ between the box-Born interferences (with leptonic or

hadronic vacuum polarization) calculated by the hyperspherical and the dispersive method for√
s = 0.405 GeV and −0.142 Gev2 ≤ t ≤ 0 GeV2. The result given by the dispersive method is used

as normalization factor. The error bars show the uncertainty due to the numerical integration.

about 10−3 or smaller between the two different calculation, similarly to what we have

already observed in the calculation of the form factors.

For each value of t, the dispersive method’s result is obtained by performing only one

numerical integration: the convolution between the z-dependent virtual-Born interference

and the imaginary part of the vacuum polarization. On the contrary, to achieve good

numerical stability with the hyperspherical method we had to evaluate separately for each

box topology the 14 radial integrals I. Some of the kernel functions are very unstable

aroundQ2 = |t| andQ2 = +∞ and therefore a dedicated series expansion must be employed

in these regions. The IR divergent integrals in eq. (4.37)–(4.40) with the constant term Π(t)

in front of it were written in term of one-loop scalar functions and calculated with Collier.

6 Conclusions

The present error on the hadronic leading order contribution to the muon g−2 constitutes

roughly 50% of the error budget in the SM prediction. The MUonE experiment proposed

at CERN aims at measuring the running of the fine-structure-constant in the space-like

region in µ-e scattering and to determine from it aHLO
µ with an error of about 2 × 10−10.
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To reach such level of precision it will be necessary to measure the differential cross section

with an uncertainty of the order of 10 ppm. To this end, a Monte Carlo generator with

QED and QCD radiative corrections up to NNLO in α must be developed.

In this article we studied the hadronic contributions to the NNLO cross section and

we presented a method to evaluate numerically the non-factorizable two-loop diagrams

with space-like data for the hadronic vacuum polarization, without making use of the R

ratio. In this way the same space-like data measured by MUonE, together perhaps with

lattice data and QCD perturbative results, could be exploited to calculate these hadronic

corrections. This would allow us to decouple the space-like determination of aHLO
µ from

any time-like input.

This work took advantage of the hyperspherical integration method, that was described

in section 2, to express the irreducible vertex and box corrections as a convolution between

the vacuum polarization evaluated at negative q2 together with a kernel function obtained

by analytic integration of the loop diagrams with respect to the hyperspherical angular

variables. The vertex corrections were presented in section 3 in terms of QED form factors.

In section 4 we showed that each of box contributions can be reduced to a linear combination

of 14 integrals which are calculable with the hyperspherical method. Some of these integrals

are IR divergent. By making a dedicated subtraction, we managed to remove the IR poles

from the integrals explicitly containing the hadronic vacuum polarization and to isolate

them in terms that are calculable analytically with standard methods.

Finally, in section 5 we showed that the numerical evaluation of these irreducible

diagrams gives results in agreement with the standard dispersive approach and — when

the analytic expression of Πlep(q2) is employed — in agreement with analytic two-loop

vertex results in QED. A complete calculation of the hadronic corrections to µ-e scattering

at NNLO with the dispersive approach will be presented soon [35].
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A One-loop integral with the hyperspherical method: an example

In this appendix we present an example of a one-loop calculation with the hyperspherical

method and we discuss how to perform the analytic continuation between the Euclidean
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and the physical region. We consider, as an example, the loop integral in eq. (4.15):

I013 =
1

iπ2

∫
d4q

Πhad(q2)

(q2 + iε)[(q + p1)2 −m2 + iε][(q − p2)2 −M2 + iε]
. (A.1)

After continuation of external and internal momenta to the Euclidean region, Wick rotation

and the introduction of hyperspherical coordinates, the loop integral is cast in the following

form: ∫
dQ2Q2 Πhad(−Q2)

∫
dΩQ

2π2

(−1)3

Q2[(Q+ P1)2 +m2][(Q− P2)2 +M2]
. (A.2)

We expand the propagators as series in Gegenbauer polynomials:

1

(Q+ P1)2 +m2
=

Z1

|Q||P1|
∞∑

n=0

(−Z1)nC(1)
n (Q̂ · P̂1), (A.3)

1

(Q− P2)2 +m2
=

Z2

|Q||P2|
∞∑

n=0

Zn2C
(1)
n (Q̂ · P̂2), (A.4)

where

Z1 =
Q2 + P 2

1 +m2 − λ1/2(Q2, P 2
1 ,−m2)

2|Q||P1|
, (A.5)

Z2 =
Q2 + P 2

2 +M2 − λ1/2(Q2, P 2
2 ,−M2)

2|Q||P2|
. (A.6)

We perform the angular integration by making use of the orthogonality property (2.6):

∫
dΩQ

2π2

1

[(Q+ P1)2 +m2][(Q− P2)2 +M2]
=

−1

Q2|P1||P2|
∞∑

n=0

(−Z1Z2)n+1

n+ 1
C(1)
n (P̂1 · P̂2).

(A.7)

The series in the expression above can be calculated by defining z = (−Z1Z2) and by taking

the derivative w.r.t. z, that yields:

d

dz

∞∑

n=0

zn+1

n+ 1
C(1)
n (P̂1 · P̂2) =

∞∑

n=0

znC(1)
n (P̂1 · P̂2) =

1

1− 2τz + z2
, (A.8)

where τ = P̂1 · P̂2. We then take the primitive and we impose the boundary condition∑
n
zn+1

n+1 C
(1)
n = 0 at z = 0. So the series is:

∞∑

n=0

zn+1

n+ 1
C(1)
n (P̂1 · P̂2) =

1√
1− τ2

[
arctan

(
z − τ√
1− τ2

)
− arctan

( −τ√
1− τ2

)]

=
1√

1− τ2
arctan

(
z
√

1− τ2

1− zτ

)
, (A.9)

where we used the addition formula arctan(x)− arctan(y) = arctan( x−y1+xy ).

Having performed the angular integrations, the loop integral takes the form:

I013 = −
∫ +∞

0
dQ2 Πhad(−Q2) f(Q2, P 2

1 , P
2
2 , τ) . (A.10)
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Figure 9. Location of the branch points of Z1, in the Q2 plane. The path shows how these branch

points moves as P 2
1 is varied from a positive value to −m2.

Since ultimately we are interested in the answer for time-like P 2
1 and P 2

2 we have to perform

the analytic continuation before the Q2-integration. The most important point one has to

check is whether any singularity crosses the integration path in the Q2 complex plane

when P 2
1 and P 2

2 are continued to negative values. Barring the poles coming from the

divergences in the infinite sums in (A.3) and (A.4), which does not affect this analysis, the

integrand is meromorphic in the variables Q2, P 2
1 and P 2

2 except for the square roots in the

Z variables (A.5) and (A.6). Let’s now study the behaviour of Z1,2 when P 2
1,2 is continued

from positive quantities to negative on-shell values P 2
1 = −m2 and P 2

2 = −M2. In the Q2

complex plane, Z1 (Z2) has branch points at Q2 = (P1 ± im)2 (Q2 = (P2 ± iM)2). At the

beginning P1 and P2 are real and positive and the integration is performed from 0 up to

∞. Figure 9 shows the path of the branch points as P 2
1 is varied to −m2.3 When P 2

1 = 0

they are located at Q2 = −m2. When P 2
1 is continued to negative values, one of the branch

point moves to the left and the other one reaches the origin at P 2
1 = −m2. The branch

points of Z2 behave in the same way. None of the singularities crosses the integration path

and therefore we can continue P 2
1 (P 2

2 ) to −m2 (−M2) without distorting the Q2 contour.

Note however, if we had to continue P 2
1 to a value larger than m2, one of the branch point

would have crossed the positive real axis and we would have needed to distort the contour

to get the correct continuation of the integral (see also the discussion in ref. [39]).

The Euclidean result of the angular integration can be then continued to the on-shell

configuration by setting P 2
1 = −m2, P 2

2 = −M2 and (P1+P2)2 = P 2
1 +P 2

2 +2|P1||P2|τ = −s,
keeping in a first step (M−m)2 < s < (M+m)2 in order to leave the square roots in (A.9)

real valued. In a second step, we continue s to the physical region s + iε > (M + m)2,

giving to it a small (positive) imaginary part. As in (A.9) the square root
√

1− τ2 becomes

i
√
τ2 − 1, we can rewrite the arctangent in terms of L(z) (the hyperbolic inverse tangent)

via the identity: arctan(iz) = iL(z). Eventually the kernel function appearing in the

3In the original continuation to the Euclidean region we let the energy p0 to acquire a phase eiφ, which

is then varied from 0 to π/2. Therefore P 2 moves from positive values to the negative ones passing, in the

P 2 complex plane, below the real axis.
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integral (A.10) can be cast in the following form:

f(Q2,−m2,−M2, s) =
−2

Q2λ1/2(s,M2,m2)
(A.11)

× L


 λ1/2(s,M2,m2)

s−M2 −m2 − 8M2m2
/[

Q2
(

1−
√

1 + 4m2

Q2

)(
1−

√
1 + 4M2

Q2

)] − iε


 .

Let’s analyze this formula. As expected, the function L has an imaginary part for s >

(M +m)2 since s is continued above the physical threshold. For real z, the function L(z)

acquires an imaginary part when |z| > 1, which happens in the bounded region 0 < Q2 <

λ(s,M2,m2)/s. Eq. (A.11) provides also the result for s < (M−m)2, which corresponds to

a u-channel configuration with s substituted by u. In this case it gives the formula (4.16)

for the crossed box. One can verify that no imaginary part is developed if s = u <

(M−m)2, since s is below the physical threshold. Indeed the argument of L is monotonically

increasing for Q2 → +∞ and it is bounded between −
√

(s− (M −m)2)/(s− (M +m)2)

(at Q2 = 0) and zero (at Q2 → +∞).

Finally one can show that eq. (A.11) is equivalent to the expression in (4.15) and (4.16),

that were derived from eq. 10 in ref. [47], by making use of the identities L(u) + L(w) =

L( u+w
1+uw ) and L(z) = L(1/z)+iπ/2 (for |z| > 1). The formula (A.11) in the equal mass case,

i.e.m2 = M2, appears also in the calculation of the vertex form factors in eq. (3.4) and (3.5).

Open Access. This article is distributed under the terms of the Creative Commons
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