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1 Introduction

BCFT is a conformal field theory defined on a manifold M with a boundary P where

suitable boundary conditions (BC) are imposed [1, 2]. It has important applications in

quantum field theory, string theory and condensed matter physics. For interesting devel-

opments of BCFT and related topics please see [3–19]. In the spirit of AdS/CFT [20],

Takayanagi [21] proposes to extend the d dimensional manifold M to a d+ 1 dimensional

asymptotically AdS space N so that ∂N = M ∪ Q, where Q is a d dimensional manifold

which satisfies ∂Q = ∂M = P . See figure 1 for the geometry. We remark that, unlike M ,

the bulk boundary Q is not the conformal boundary of the manifold N . In particular, it

is located at finite position instead of infinity. A central issue in the construction of the

AdS/BCFT is the determination of the location of Q in the bulk. [21] propose to use the

Neumann boundary condition to fix the position of Q. The holographic BCFT with Neu-

mann BC has produced many elegant results and passed several non-trivial tests [22, 23].

In particular, it obeys the universal relations between Casimir effects and Weyl anomaly [5].

In general, there are more than one consistent BCs for a theory. For example, one can

impose either Neumann (Robin) BC or Dirichlet BC for scalars [24]

Neumann (Robin) BC : (∂n + ψ)φ|∂N = 0,

Dirichlet BC : φ|∂N = 0.
(1.1)
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Figure 1. Geometry of holographic BCFT.

Similarly, both absolute BC and relative BC work well for Maxwell fields [3]

Absolute BC : Fni|∂N = 0,

Relative BC : ∗Fni|∂N = 0,
(1.2)

where n denote the normal direction, i denote the tangent direction and ∗F is the Hodge

dual of the field strength F . It is remarkable that absolute BC and relative BC correspond

to Neumann BC and Dirichlet BC, respectively [25]. Let us explain this in more details

below. Consider the variation of the action of Maxwell fields and focus on the boundary

terms, we get

δI = −
∫
∂N

√
hF i

n δAi (1.3)

For a well-defined action principle, one can impose either Neumann BC

Fni|∂N = 0, (1.4)

or Dirichlet BC such as

Ai|∂N = 0, (1.5)

up to some gauge transformations. It is clear that Neumann BC (1.4) corresponds to

absolute BC of (1.2). Now let us discuss the Dirichlet BC (1.5). Note that Ai is defined

up to some boundary gauge transformations, i.e., Ai ∼ Ai + ∂iα. Instead of using (1.5)

directly, it is more convenient to impose its gauge-invariant form

Fij |∂N = 0, (1.6)

which is equivalent to
∗Fni|∂N = λεni...jkFjk|∂N = 0. (1.7)

Here λ is an unimportant constant, n denote the normal direction and (i, . . . , j, k) denote

the tangent directions. Now it is clear that relative BC (1.7) indeed corresponds to Dirichlet

BC (1.5), (1.6).

For gravity, there are also several possible choices of BCs such as Dirichlet BC [26, 27],

Neumann BC and conformal BC [27–29]. As we have mentioned above, the Neumann

BC plays an important role in the construction of holographic BCFT [21]. As a key

characteristic, the BC for holographic BCFT should not only select the solutions to Einstein
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equations but also determine the location of bulk boundary Q. In other words, the position

of bulk boundary Q cannot be freely choosen but determined by the BC of gravity. This

is indeed the case for Neumann BC [21].

A natural question is that, “Can Dirichlet BC do the same job for holographic BCFT?”.

Recall that usually one imposes Dirichlet BC on the AdS boundary M in AdS/CFT. Thus

it is natural to impose Dirichlet BC on the bulk boundary Q too. The key problem one

needs to clarify is that, could Dirichlet BC fix the bulk boundary Q and yield consistent

results for holographic BCFT? In this paper, we give a positive answer to this question.

We find that AdS is a vacuum solution to Dirichlet BC and the g-theorem is obeyed

by this theory. What is more, Dirichlet BC can also produce the correct forms of one

point function, the boundary Weyl anomaly and the universal relations between them. It

is remarkable that the central charge for Dirichlet BC is less than or equal to that for

Neumann BC. We also study Dirichlet-like BC for gauge fields, the relative BC, and find

an exact solution in four dimensions. Interestingly, the holographic theory predicts that

there is a constant current on the boundary, when a constant magnetic field is applied in

the bulk. And the boundary current gains the maximum value at zero temperature. It

should be mentioned that we have used many methods of [5, 17] in this paper. [5, 17] have

developed interesting approach to solve solutions to Neumann BC, and we apply these

methods to discuss holographic BCFT with Dirichlet BC in this paper.

The paper is organized as follows. In section 2, to warm up, we study the BCs of gauge

fields in holographic BCFT. We show that both the absolute BC and the relative BC work

well for gauge fields. In section 3, we generalize our discussions to gravitational fields and

show that, similar to Neumann BC, Dirichlet BC can also produce the correct one point

function of stress tensor and universal relations between Casimir effects and Weyl anomaly.

In section 4, we study the properties of Casimir coefficients and central charges for different

BCs. Finally, we conclude with some open questions in section 5.

2 Boundary conditions for Maxwell fields

In this section we study the BCs of Maxwell fields in holographic BCFT. This can be

regarded as a warm-up for the gravitational case. We find that both absolute BC and

relative BC can yield the expected asymptotic behaviors of one point function of current

near the boundary. Furthermore, both BCs can reproduce the universal relations between

the current and Weyl anomaly.

2.1 Current and Weyl anomaly

For the convenience of readers, let us briefly review the Weyl anomaly induced current for

BCFT [16, 17]. In general, the renormalized current of BCFT is singular near the boundary

and takes the asymptotic form

< Ji >=
βdFin
xd−3

+O

(
1

xd−4

)
, x ∼ 0, (2.1)

where x is the distance to the boundary, d are the dimensions of spacetime, Fij is a

background field strength and ni is inward-pointing normal vector. It is remarkable that
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βd are determined by the central charges of Weyl anomaly. For example, we have

β4 = 4b1, β5 = 2b2 (2.2)

where b1, b2 are defined by the Weyl anomaly of 4d BCFT and 5d BCFT respectively,

A =

∫
M

√
g[b1FijF

ij + curvature terms], (2.3)

A =

∫
∂M

√
h[b2FanF

an + b3FabF
ab + (extrinsic) curvature terms]. (2.4)

Notice that, since b1 is the bulk central charge, it is independent of the choice of BCs. As

a result, the near-boundary current (2.1) is universal in four dimensions. One the other

hand, b2 is the boundary central charge, which implies that the current depends on BCs in

five dimensions. Finally, it should be mentioned that there are boundary contributions to

the current which can exactly cancel the apparent “divergence” in the bulk current (2.1)

at x = 0 and define a finite total current [16].

2.2 Probe limit

In [17], we have proved that the absolute BC can produce the expected form of near-

boundary current (2.1) and the universal relations (2.2). In this section, we show that this

is also the case for relative BC. What is new for relative BC is that there are non-trivial

contributions to the current from the bulk boundary Q. Such contributions are important

in order to recover the universal relations (2.2).

We start with the gravitational action for holographic BCFT

I =

∫
N

√
G

(
R− 2Λ− 1

4
FµνFµν

)
+ 2

∫
Q

√
γ(K − T ), (2.5)

where F = dA is the bulk field strength which reduces to F = dA on the boundary M , K

is the extrinsic curvature on Q and T is a constant parameter which can be regarded as

the holographic dual of boundary conditions of BCFT [30, 31]. Takayanagi [21] proposes

to impose the Neumann BC on Q

Kαβ − (K − T )γαβ = 0, (2.6)

which can not only fix the location of boundary Q but also the bulk metrics. In other words,

not all the solutions to Einstein equations are allowed in holographic BCFT [21]. Instead,

they have to satisfy the Neumann BC. Ignoring the bulk Maxwell fields, [21] find AdS

ds2 =
dz2 + dx2 + δabdy

adyb

z2
, (2.7)

is a solution to the Neumann BC (2.6), provided that the embedding function of Q is

given by

x = − sinh ρ z, (2.8)

where we have re-parametrized T = (d− 2) tanh ρ.
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Now let us turn to discuss BCs of Maxwell fields. In general, there are two consistent

BCs on Q for Maxwell fields, i.e., the absolute (electric) BC and relative (magnetic) BC

Absolute BC : NµFµν = 0, (2.9)

Relative BC : Nµ∗Fµν = 0. (2.10)

Here Nµ is the normal vector on Q and ∗F is the Hodge dual of F . The absolute (electric)

BC is the Neumann BC, since it fixes the current on the boundary. On the other hand,

relative (magnetic) BC is the Dirichlet BC in a certain sense, since it fixes the gauge fields

on the boundary up to some trivial gauge transformations. To see this, let us recall the

fact that Nµ∗Fµν = 0 implies that γµρ γνσFµν = FQρσ = 0 (γµρ are projector operators from

N to Q), which fixes the field strength of induced gauge fields on the boundary.

For simplicity, we focus on the probe limit, i.e., AdS spacetime (2.7) with the bulk

boundary Q located at (2.8). This is sufficient for the study of the leading order of current.

That is because the leading term of current (2.1) is of order O(F ), while the back-reaction

of Maxwell fields to AdS is of order O(F 2) [17]. For plane boundary, Aµ depends on only

the coordinates z and x. And the Maxwell’s equations can be solved with Az = Az(z),

Ax = Ax(x) and

z∂2
xAa − (d− 3)∂zAa + z∂2

zAa = 0. (2.11)

Similarly, the BCs (2.9), (2.10) become

Absolute BC : (∂xAa + sinh ρ∂zAa)
∣∣∣
x=−z sinh ρ

= 0, (2.12)

Relative BC : (∂zAa − sinh ρ∂xAa)
∣∣∣
x=−z sinh ρ

= 0. (2.13)

Inspired by [5], we consider the ansatz for the gauge field

Aa = A(0)
a +A(1)

a xf(
z

x
), (2.14)

where f(0) = 1 and A
(i)
a are constants. The Maxwell’s equations (2.11) become

s(s2 + 1)f ′′(s)− (d− 3)f ′(s) = 0, (2.15)

which has the general solution

f(s) = 1 + αd
sd−2

2F1

(
d−3

2 , d−2
2 ; d2 ;−s2

)
d− 2

, (2.16)

with αd an integration constant. It should be mentioned that, in order to get regular so-

lutions at x = 0, suitable analytic continuation of the hypergeometric function should be

taken when one express the above solutions in terms of the coordinates z and x. Substi-

tuting (2.16) into (2.12), (2.13), we solve the integration constant

αAd =
(2− d)csch3ρ(− coth ρ)d

cschρ 2F1

(
d−3

2 , d−2
2 ; d2 ;−csch2ρ

)
(coth ρ cschρ)d + (d− 2) cosh ρ coth4 ρ(−cschρ)d

,

(2.17)
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for absolute BC and

αRd =
(2− d)(−cschρ)2−d

2F1

(
d−3

2 , d−2
2 ; d2 ;−csch2ρ

) , (2.18)

for relative BC. Similarly, suitable analytic continuation of the hypergeometric function

should be taken in order to get smooth function at ρ = 0. For example, we have for d = 4, 5,

αA4 = 1, αA5 =
2

π + 4 tan−1
(
tanh

(ρ
2

)) , (2.19)

αR4 =
1

1 + coth ρ
, αR5 =

2

π + 4 tan−1
(
tanh

(ρ
2

))
+ 2cschρ

. (2.20)

Now we are ready to derive the holographic current for BCFT. Consider the variation

of effective action for BCFT, in general, we have [2]

δIeff =

∫
M

√
g0J

iδAi +

∫
P

√
h
[
j(0)aδA(0)

a + j(1)aδA(1)
a + . . .

]
(2.21)

where A
(n)
a are defined in the gauge field of BCFT Aa = A

(0)
a + A

(1)
a x + . . ., J i and j(n)a

are bulk and boundary operators respectively. In general, both J i and j(n)a are divergent.

Near the boundary, there is no meaning to distinguish the divergent parts of the bulk

current Ji and boundary operators j
(n)
i . Only the combination of the bulk current and

boundary operators have physical meaning. According to [32, 33], one can always regulate

the effective action by excluding from its volume integration a small strip of geodesic

distance ε from the boundary. Then there is no explicit boundary divergences in this form

of the effective action, however there are boundary divergences implicit in the bulk effective

action which is integrated up to distance ε. Now the variation of effective action becomes

δIeff =

∫
Mε

√
g0Ĵ

iδAi (2.22)

where Mε denotes x ≥ ε. The boundary operators are absorbed into the total bulk current

Ĵ i in (2.22). One can recover the boundary operators after the integral up to x = ε. Let

us consider a simple example with g0 = h = 1 and Ĵ i = li/xm. We have

δIeff =

∫
x≥ε

dxdyd−1 li

xm
δ
[
A

(0)
i +A

(1)
i x+ . . .

]
= bulk terms +

∫
x=ε

dyd−1

[
li

(m− 1)εm−1
δA

(0)
i +

li

(m− 2)εm−2
δA

(1)
i + . . .

]
, (2.23)

which recovers the divergent parts of boundary operators.

Let us go on to consider the holographic theory. Consider the variation the on-shell

action (2.5) with respect to gauge fields, we have

δI =

∫
M

√
gNµFµνδAν +

∫
Q

√
γNµFµνδAν (2.24)

To make consistent (2.24) and (2.22), we should transform the integral on Q into the

integral on Mε. There are two ways to do so. First, one can do the integral along the
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bulk direction z on Q and get integrals on P . Then we choose a suitable renormalization

as above to transform the divergent terms on P into the integral on Mε. Second, one can

choose the same coordinates (x, ya) on Q as on M and rewrite δAi|Q in terms of δAi.

Then integral on Q becomes integral on M . These two methods give the same results for

the divergent parts of current. Below we take the second method for simplicity. The key

point is that, on-shell, both Aµ on M and Q are functions of background gauge fields Ai
of BCFT. For example, from (2.14) we have on M

Ai|M = lim
z→0
Ai = A

(0)
i +

∞∑
n=1

A
(n)
i xn = Ai. (2.25)

Similarly, from (2.8), (2.14) we have on Q

Ai|Q = A(0)
a +A(1)

a xf(−cschρ) +O(x2) = Ai + x∂xAi (f(−cschρ)− 1) +O(x2) (2.26)

Substituting (2.25) and (2.26) into (2.24), we can derive the current via the definition

J i =
1
√
g0

δI

δAi
, (2.27)

where we have ignored the hat for the bulk current, g0 is determinant of the metric of

BCFT. For our case, we have
√
g0 = 1,

√
g = 1/zd,

√
γ = cosh ρ sinhd−1 ρ/xd.

We discuss the current for absolute BC and relative BC separately. For absolute

BC (2.9), the current on Q vanishes and (2.24) is simplified as

δI =

∫
M

√
gNµFµνδAν =

∫
M

√
g0
∂zAi
zd−3

δAi, (2.28)

from which one can read off the current [17]

Ji = lim
z→0

∂zAi
zd−3

= −αAd
Fin
xd−3

+O

(
1

xd−4

)
. (2.29)

In the above derivations, we have used (2.14), (2.16) and A
(1)
i = Fni. The near-boundary

current (2.29) takes the expected form (2.1) with βd = −αAd. Furthermore, it is proved

in [17] that the coefficients αA4, αA5 (2.19) obey the universal relations (2.2).

Now let us go on to discuss the relative BC, which is one of the new results of this paper.

For relative BC, there are non-trivial contributions to the current from the near-boundary

region of Q. Substituting (2.13), (2.14), (2.26) into (2.24), we get

δI =

∫
M
dxdyd−1αRdF

i
n

xd−3
δAi

+

∫
Q
dxdyd−1 coth2 ρ(−cschρ)3−df ′(−cschρ)F i

n

xd−3
δAi|Q, (2.30)

where f(s), αRd are given by (2.16), (2.18). Following the methods for absolute BC, one

can derive the first line of (2.30). As for the second line, we need to work out δA|Q, which

can be derived from relative BC (2.10). As we have shown in the Introduction (discussions

– 7 –
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between (1.3) and (1.7)), the relative BC (2.10) is equivalent to fixing the field strength of

induced gauge fields

Fij |Q = ∂iAj |Q − ∂jAi|Q = 0, (2.31)

where xi = (x, ya) are coordinates on the bulk boundary Q. Since we focus on the solutions

depending on only z and x in the bulk, the induced gauge field A|Q depends on only x:

A|Q = A(0) + γ1x+ . . .+ γmx
m + . . . (2.32)

where γm are constant vectors to be determined. Substituting A|Q into (2.31), we solve

γi = 0 and thus

A|Q = A(0). (2.33)

From (2.25) and (2.33), we have

δAi|Q = δA
(0)
i = δ

(
Ai − x∂xAi + . . .+ (−1)m

xm

m!
∂mx Ai + . . .

)
. (2.34)

The cases for d = 4 and d > 4 are a little different. We discuss them respectively below.

For d = 4, there are non-trivial contributions from Q to the current. We have on leading

term

δI4 =

∫
M
dxdy3αR4F

i
n

x
δAi +

∫
Q
dxdy3 (1− αR4)F i

n

x
δ[Ai +O(x)]

=

∫
M
dxdy3F

i
n

x
δAi, (2.35)

which yields the current

Ji = −Fin
x

+O(1). (2.36)

Note that (2.36) is exactly the same as the current with absolute BC (2.19), (2.29). This

is consistent with the fact that the current is independent of BCs in four dimensions. As

we have mentioned above, the current with absolute BC obey the universal law (2.2) [17].

So does the current with relative BC (2.36). This is a non-trivial test of the validity of

relative BC (Dirichlet BC) in holographic BCFT.

As for d ≥ 5, it is remarkable that the contributions on Q cancel out,

δId =

∫
M
dxdyd−1αRdF

i
n

xd−3
δAi +

∫
Q
dxdyd−1αRdF

i
n

xd−3
δ

[∑
m=0

(−1)m
xm

m!
∂mx Ai

]

=

∫
M
dxdyd−1αRdF

i
n

xd−3
δAi. (2.37)

As a result only the usual terms on M contribute to the current. We thus have

Ji = −αRdFin
xd−3

+O

(
1

x

)
, (2.38)
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which takes very similar expression as the current with absolute BC (2.29). In [17], we

have proved for d = 5 that the current with absolute BC (2.29) satisfies the universal

relation (2.2). To do so, we take into account the back-reactions to AdS from the bulk

Maxwell fields up to order O(F 2) and then calculate the holographic Weyl anomaly. Finally,

we compare the central charge b2 in holographic Weyl anomaly with the current coefficient

β5 = −αR5 and verify (2.2). Following the same approach, we can prove that the current

with relative BC also obey the universal relation (2.2). Since the proof is almost the same

as that for absolute BC, we do not repeat it here. In fact, one only needs to replace α5 by

αR5 in the proof of [17].

Now we have proved that both absolute BC and relative BC can derive the correct one

point function of current and universal relations between the current and Weyl anomaly.

This is a strong support that both absolute BC (Neumann BC) and relative BC (Dirichlet

BC) are consistent in holographic BCFT.

2.3 Exact solutions

In the above subsection, we have investigated perturbation solutions in holographic BCFT.

In general, it is a non-trivial problem to find exact solutions to Einstein-Maxwell equations

after imposing BCs on Q. Here we notice that the four-dimensional Reissner-Nordström

black holes are exact solutions to holographic BCFT, provided that the bulk boundary Q

is perpendicular to the AdS boundary M .1 Interestingly, the magnetic charged Reissner-

Nordström black holes satisfy the relative (magnetic) BC and predict that there is a con-

stant boundary current on P , when a constant magnetic field is applied on M for 3d BCFT.

Now let us list the main results. We find the electric charged Reissner-Nordström black

holes satisfy the Neumann BC (2.6) and absolute BC (2.9) imposed on Q.

metric : ds2 =
dz2/f(z)− f(z)dt2 + dx2 + dy2

z2
,

gauge field : A = qzdt, (2.39)

Q : x = 0,

where f(z) = 1 −Mz3 + q2z4/4 and recall that we have T = ρ = 0. In the dual picture,

we have zero background gauge field

A = lim
z→0
A = 0, (2.40)

but non-zero charge density on M

Jt = q. (2.41)

The above picture is a little trivial, since it does not tell us new stories compared with the

case without boundary.

Now let us consider magnetic charged Reissner-Nordström black holes, which is more

interesting. One can check that, for T = ρ = 0, the magnetic charged Reissner-Nordström

1It should mentioned that the authors of [34] also notice that Schwarzschild-AdS black holes are solutions

to holographic BCFT when the Q is perpendicular to the AdS boundary M .
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black holes satisfy the Neumann BC (2.6) for metrics and the relative BC (2.10) for

gauge fields

metric : ds2 =
dz2/f(z)− f(z)dt2 + dx2 + dy2

z2
,

gauge field : A = (ay +Bx)dy, (2.42)

Q : x = 0,

where f(z) = 1−Mz3 +B2z4/4 and the constant ay is the background gauge field on the

boundary P . In the dual picture, we have a constant magnetic field on M

B = Fxy, (2.43)

and non-zero current on P

jy = Bzh, (2.44)

where zh is the location of outer horizon, i.e., f(zh) = 1 −Mz3
h + B2z4

h/4 = 0. To derive

the boundary current (2.44), let us consider the variation of action. Substituting (2.42)

into (2.24), we have

δI =

∫
Q
dzdtdy B δay =

∫
P
dtdy Bzh δay, (2.45)

which gives the boundary current (2.44). Notice that since the boundary current is finite,

there is no need to perform the approach (2.22) of section 2.2, which is developed for the

divergent parts of current.

Let us make some comments on the boundary current (2.44). First of all, the holo-

graphic BCFTs with relative BCs predict that there is a constant boundary current on P ,

when a constant magnetic field is applied on M in three dimensions. Secondly, the current

depends on both the magnetic field and the temperature

Ttem = −f
′(rh)

4π
= z2

h(3M −B2zh), (2.46)

where we have M4 ≥ (4/27)B6 in order to avoid the naked singularity, and the temperature

vanishes when the lower bound of mass is saturated. Thirdly, the absolute value of current

decreases as the temperature increases. In particular, the current gains its maximum

absolute value at zero temperature

jy = 12
1
4

B√
|B|

, (2.47)

while vanishes in high temperature limit

jy =
3B

Ttem
+O

(
1

T 2
tem

)
. (2.48)

Fourthly, it should be mentioned that T = ρ = 0 is the dual BC preserving the maximum

(half) supersymmetry [39]. And it seems that the non-renormalization theorem holds for
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such BCs. As a result, the dual strongly-coupled BCFTs can be mimicked by free BCFTs.

Thus the above prediction would also apply to some kinds of free BCFTs with suitable

BCs. For general BCs, there would be both bulk current and boundary current. Last but

not least, it is expected that a constant magnetic field in the bulk M can induce constant

boundary current on the boundary P for general boundary quantum field theory (BQFT).

The boundary current increases as the magnetic field is enhanced, while decreases as the

temperature and the mass of charged particles increase. In the zero temperature and mass

limit, from the dimension analysis and isotropy, the boundary current takes the general form

jy = λ0 c

√
e3

~
B√
|B|

, (2.49)

where we have recoverd the units, e is the charge, c is the speed of light, ~ is the Planck

constant and λ0 is a dimensionless constant determined by the theory. It is remarkable

that this current is detectable. For B = 1T and γ0 = 1, we have

jy ≈ 0.0003A. (2.50)

It is interesting to measure such boundary current in some (1+2) dimensional systems with

boundaries, such as graphene [35–38]. To enhance this effect, one should try to decrease

the temperature and the effective mass of charged particles in materials.

To end this section, we remark that the holographic BCFT (2.5) has electromagnetic

duality in four dimensions. And the absolute BC and relative BC are dual to each other.

This is another support that both absolute BC and relative BC are well-defined. Let us

briefly discuss the electromagnetic duality in four dimensions below. By ‘electromagnetic

duality’, it means the theory is invariant under the following transformations

Fµν → ∗Fµν =
1

2
εµνρσFρσ, (2.51)

which transform electric field and magnetic field into each other, i.e., (E,B)→ (cB,−E/c)
(c is the velocity of light). Applying the formula

FµνFµν = ∗Fµν∗Fµν , (2.52)

we find that the action of holographic BCFT (2.5) is indeed invariant under the electro-

magnetic duality transformations (2.51). And it is obvious that (2.51) transform absolute

BC NµFµν = 0 (2.9) into relative BC Nµ∗Fµν = 0 (2.10). So the absolute BC and relative

BC are indeed dual to each other. Similarly, one can show that the electric charged black

hole (2.39) and magnetic charged black holes (2.42) are dual to each other, provided that we

set the parameter B = q. First, it is obvious from (2.39), (2.39) that the metrics of electric

charged black hole and magnetic charged black holes are exactly the same for B = q. Sec-

ond, one can show that the electromagnetic duality transformations (2.51) transform the

field strengths of electric charged black hole into the field strengths of magnetic charged

black hole. From (2.39), we get the non-zero components of field strength Fzt = q for
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electric charged black hole. Under the electromagnetic duality transformations (2.51), it

transforms to

Fzt → ∗Fzt = Fxy = q, (2.53)

which is exactly the field strength (2.43) of magnetic charged black hole for q = B. Now

we finish the proof of our statements. To summary, the electromagnetic duality transfor-

mations (2.51) transform electric charged black hole satisfying absolute BC into magnetic

charged black hole satisfying relative BC.

3 Holographic BCFT with Dirichlet BC

In this section, we study the Dirichlet BC for holographic BCFT. We find that, similar to

Neumann BC, Dirichlet BC can also yield the expected one point function of stress tensors

and the universal relations between stress tensors and Weyl anomaly.

Consider the variations of action (2.5) with respect to the metric, we have

δI =

∫
Q

√
γ[(K − T )γij −Kij ]δγij . (3.1)

To have a well-defined action principle, one can impose either Neumann BC (2.6) or the

Dirichlet BC

δγij |Q = 0. (3.2)

Dirichlet BC fixes the induced metric on the boundary. To proceed, we must specify

what kinds of metrics we choose. The most simple and natural one is the AdS metric,

which satisfes

RQijkl + sech2ρ(γikγjl − γilγjk) = 0, (3.3)

with ρ a free parameter of the model. The Dirichlet BC (3.3) is the central assumption

of this paper. Of course, one can choose the other metrics such as those of asymptotically

AdS, black holes and so on. For simplicity, we focus on AdS and leave the study of other

choices to future work. Another reason to choose the AdS metric is that it can be easily

written into covariant form (3.3). We remark that (3.3) is the gravitational counterpart of

the relative BC (2.10) for gauge fields, since they both fix the curvatures of induced fields

on the boundary.

The good BCs for holographic BCFT should satisfy the following requirements:

(1) It should be neither too strong nor too weak. In particular, it allows AdS to be a

solution.

If the BC allows no solutions or only a limited number of solutions, it is too strong.

On the other hand, it is too weak if all the solutions to EOM are allowed. In general,

there is a narrow window of consistent BCs. We also hope AdS is a solution so that

we can apply AdS/CFT.
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(2) It can fix the location of bulk boundary Q.

This is the central problem in the construction of AdS/BCFT.

(3) It can produce the expected one point function of stress tensor (current), Weyl

anomaly and universal relations between them.

In this section, we will show that Dirichlet BC satisfies all the above requirements.

So the holographic BCFT with Dirichlet BC is well-defined. As a quick check, we notice

that the Poincare AdS (2.7) together with the embedding function of Q (2.8) are indeed

solutions to the Dirichlet BC (3.3). As a result, holographic BCFT with Dirichlet BC

share most of the advantages of holographic BCFT with Neumann BC [21]. In particular,

it obeys the holographic g-theorem due to the fact that the two kinds of holographic BCFT

have the same g-functions To see this, let us show some details below. We require that

the Poincare AdS (2.7) is a solution to Dirichlet BC (3.3) for some suitable embedding

function of Q. For simplicity, we assume the embedding function is independent of ya

x = −F (z). (3.4)

Substituting (3.4) into (2.7), we get the induced metric on Q

ds2
Q =

(1 + F ′(z)2)dz2 + δabdy
adyb

z2
. (3.5)

Imposing the DBC (3.3), we can solve F (z). From (z, y1, z, y1) components of DBC (3.3),

we get

1 + F ′(z)2 − sech2ρ
(
1 + F ′(z)2

)2
+

1

2
z
(
F ′(z)2

)′
= 0. (3.6)

Since the curvatures of (3.3) have only one independent component in two dimensions,

there is only one independent BC (3.6) for d = 2. As for d ≥ 3, we have more independent

components of curvatures and thus we have more BCs in addition to (3.6). For example,

from (y1, y2, y1, y2) components of DBC (3.3), we derive

F ′(z)2 = sinh2 ρ. (3.7)

It is clear that there is no (y1, y2, y1, y2) component for DBC (3.3) in two dimensions.

Thus (3.6) works for both d = 2 and d ≥ 3, but (3.7) works only for d ≥ 3.

Let us firstly discuss the case for d ≥ 3. One can check that if (3.7) is satisfied, all the

components of (3.3) are automatically satisfied. As a quick check, we find this is indeed the

case for (3.6), i.e., the (z, y1, z, y1) components of DBC (3.3). Thus let us focus on (3.7).

We choose the boundary at x = 0 which fixes the integration constant F (0) = 0. We make

the choice that

F ′(z) = sinh ρ, (3.8)

in order to get same solution as Neumann BC (2.8). Note that, the trace of extrinsic cur-

vature is positive for this choice for ρ > 0. Finally we obtain the embedding function (2.8).
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Now let us turn to the case for d = 2. As we have mentioned before, there is only one

independent BC (3.6) for d = 2. Solving (3.6), we obtain

F ′(z)2 = sinh2 ρ− z2 cosh2 ρ

2ec1 cosh2 ρ + z2
, (3.9)

where c1 is a integration constant. Note that the left hand side of (3.9) is positive, while the

right hand side of (3.9) could be negative for sufficiently large z. To avoid inconsistency,

we must have c1 =∞ and (3.9) reduces to (3.7). Following the above method, we get the

embedding function (2.8) for d = 2.

Now we have shown that, holographic BCFTs with DBC and NBC have the same

solutions, i.e., Poincare AdS (2.7) together with the embedding function of Q (2.8). As

a result, they have the same boundary entropy and boundary central charges related to

Euler densities and thus both obey g-theorem. Let us show more details below.

For simplicity, we focus on the holographic g-theorem for 2d BCFTs. Since holographic

BCFTs with NBC and DBC have the same solutions, the following discussions apply to

both of them. The g-theorem claim that the boundary degree of freedom (g-function)

decrease under the RG flow. On the AdS boundary z = 0, we require that the g-function

g(z) reduce to boundary entropy, which is a natural candidate for boundary degree of

freedom. According to [21], the boundary entropy is defined by the difference between

entanglement entropy with ρ = ρ∗ and that with ρ = 0

Sbdy = SA(ρ∗)− SA(0), (3.10)

where the subregion A is defined by 0� x� l. One can use RT formula [40] to calculate

the holographic entanglement entropy above. Following exactly [21], we have

Sbdy =
ρ∗

4
. (3.11)

Without loss of generality, we can choose g-function as

g(z) = −x′(z) (3.12)

so that we have g(0) = sinh ρ∗ = sinh(4Sbdy) from (2.8).

Now imposing the null energy condition on Q [21], we get

(Kµν −Kγµν)mµmν =
x′′(z)

z[1 + x′(z)2]
3
2

≥ 0, (3.13)

where Tµν = (Kµν −Kγµν) are the Brown-York stress tensor on Q and the null vectors are

given by mµ = (mz,mt,mx) =
(
(1 + x′2)−1/2,±1,−x′(1 + x′2)−1/2

)
. From (3.12), (3.13),

we derive

∂zg(z) ≤ 0, (3.14)

which shows that the g-function (boundary degree of freedom) is a monotonically decreasing

function under the RG flow. Note that x(z) in our notation differs by a minus sign from that
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of [21]. Recall that we have choose K > 0 for the solutions. If we choose K < 0 instead,

we would get Sbdy = −ρ
4 and thus negative g-function, which disagrees with g-theorem.

As a summary, the Dirichlet BC (3.3) indeed allows AdS to be a solution. It is

remarkable that, in addition to the Dirichlet BC (3.3), we impose an extra condition that

the extrinsic curvature is positive definite K ≥ 0 for ρ ≥ 0.2 This requirement is reasonable.

That is because, according to [29], the extrinsic curvature should be either positive definite

or negative definite in order to have a well-defined quantization for Dirichlet BC. We make

the physical choice K ≥ 0 in order to satisfy the holographic g-theorem.

3.1 Casimir effects and Weyl anomaly

Let us quickly review the Casimir effects and Weyl anomaly for BCFTs. It is found in [41]

that the renormalized stress tensor of BCFT is divergent near the boundary,

〈Tij〉 = −2ᾱd
k̄ij
xd−1

, x ∼ 0, (3.15)

where x is the proper distance from the boundary, k̄ij is the traceless part of extrinsic

curvature and α is a constant which depends only on the kind of BCFT under consideration.

The coefficient α fixes the shape dependence of the leading Casimir effects of BCFT.

Interestingly, the authors of [5] observe that the Casimir coefficient is related to the

central charge of Weyl anomaly. For example, there are universal relations

ᾱ3 = b2, ᾱ4 = −b4
2
, (3.16)

where bi are boundary central charges of Weyl anomaly of 3d BCFT and 4d BCFT [3, 4, 42],

respectively

A =

∫
P

√
h(b1R+ b2Trk̄2), (3.17)

A = Bulk Weyl anomaly +

∫
P

√
h(b3Trk̄3 + b4C

ac
bck̄

b
a). (3.18)

Under some assumptions, the authors of [5] further check that the holographic BCFT with

Neumann BC [21] is consistent with the universal relations (3.16) between Casimir effects

and Weyl anomaly. In this paper, we give a solid proof of the universal relations (3.16) for

both the holographic BCFTs with Dirichlet BC (3.3) and Neumann BC [21].

3.2 Solutions and stress tensors

To study the one point function of stress tensor, one needs to derive the perturbation

solutions around (2.7) and (2.8). Following [5], we take the following ansatz for the metric

ds2 =
1

z2

[
dz2 + dx2 +

(
δab − 2xk̄abf

( z
x

)
− 2x

k

d− 1
δab

)
dyadyb +O(k2)

]
, (3.19)

2We focus on the case ρ ≥ 0 for reasons which will be made clear in section 4.
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and the embeding function of Q

x = − sinh ρ z + λ2kz
2 +O(k2) (3.20)

where k denotes the trace of the extrinsic curvature, f(s) is a function and λ2 is a constant

to be determined. We require that

f(0) = 1 (3.21)

so that the metric of BCFT takes the form in Gauss normal coordinates

ds2 = dx2 +
(
δab − 2xkab +O(∂2)

)
dyadyb. (3.22)

Note that we expand the solutions in extrinsic curvatures, or equivalently, the derivatives

O(k) ∼ O(∂). Besides, we focus on the case without y dependent, which is sufficient to

obtain the Casimir coefficients and central charges of Weyl anomaly.

Substituting (3.19) into Einstein equations, we obtain at the order O(k) a single

equation

s
(
s2 + 1

)
f ′′(s)− (d− 1)f ′(s) = 0, (3.23)

which can be solved as

f(s) = 1 + ᾱd
sd 2F1

(
d−1

2 , d2 ; d+2
2 ;−s2

)
d

. (3.24)

Imposing either Neumann BC [21] or Dirichlet BC (3.3), we can fix the location of Q (3.20)

and derive

λ2 =
cosh2 ρ

2(d− 1)
. (3.25)

In fact, λ2 can be fixed by the symmetry of asymptotically AdS [31]. Thus it is universal

and independent of BCs. Now the BCs on Q (3.20), (3.25) become

Neumann BC : coth ρf ′(−cschρ) + sechρf(−cschρ) = 0, (3.26)

Dirichlet BC : f(−cschρ) = 0. (3.27)

Substituting (3.24) into the above BCs, we obtain the integration constant for Neumann

BC and Dirichlet BC respectively

ᾱNd =
−d coshd ρ

(− coth ρ)d 2F1

(
d−1

2 , d2 ; d+2
2 ;−csch2ρ

)
+ d cosh2 ρ coth ρ

, (3.28)

ᾱDd =
−d(−cschρ)−d

2F1

(
d−1

2 , d2 ; d+2
2 ;−csch2ρ

) . (3.29)

We remark that the gravitational solutions (3.24), (3.28), (3.29) in D = (d+ 1) dimensions

are exactly the same as the solutions of gauge fields (2.16), (2.17), (2.18) in (D+ 2) dimen-

sions. As we have mentioned before, suitable analytic continuation of the hypergeometric
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function should be taken in order to get smooth function at ρ = 0. For example, we have

for d = 4, 5,

ᾱN3 =
2

π + 4 tan−1
(
tanh

(ρ
2

)) , ᾱN4 =
1

2(1 + tanh ρ)
, (3.30)

ᾱD3 =
2

π + 4 tan−1
(
tanh

(ρ
2

))
+ 2cschρ

, ᾱD4 =
tanh ρ

(1 + tanh ρ)2
. (3.31)

Now let us go on to derive the holographic stress tensors. We firstly discuss the case

of Neumann BC. Using (3.19), (3.24), we can derive the holographic stress tensor [43]

Tij = dh
(d)
ij = −2ᾱNd

k̄ij
xd−1

+O(k2), (3.32)

which takes the expected form (3.15). Here h
(d)
ij is defined in the Fefferman-Graham ex-

pansion of the asymptotic AdS metric

ds2 =
dz2

z2
+

1

z2

(
g

(0)
ij + z2g

(1)
ij + · · ·+ zdh

(d)
ij + · · ·

)
dyidyj . (3.33)

Now let us turn to the case of Dirichlet BC. Similar to the current of gauge fields, in

general, there are potential contributions from the bulk boundary Q to the stress ten-

sors. Taking the metric variation of the action (2.5) with T = (d − 2) tanh ρ and us-

ing (3.20), (3.25), (3.24), (3.27), we have at leading order

δI =

∫
M
dxdyd−1

(
−ᾱDd

k̄ij

xd−1

)
δg

(0)
ij

+

∫
Q
dxdyd−1 coth2 ρ(− sinh ρ)d−3f ′(−cschρ)k̄ij

xd−3
δγij , (3.34)

where γij is the AdS metric due to Dirichlet BC (3.3). Recall that we focus on the case

that γij is a function of only x. Then the most general form of γij takes

ds2 = γijdx
idxj =

cosh2 ρ f2
1 (x, k, q, . . .)dx2 + sinh2 ρ f2

2 (x, k, q, . . .)habdy
adyb

x2
, (3.35)

where f1 = 1 − x
f ′2
f2

, hab = δab and (hab, kab, qab, . . .) are defined in the Gauss normal

coordinate

ds2 = g
(0)
ij dx

idxj = dx2 + (hab − 2xkab + x2qab + . . .)dyadyb. (3.36)

To derive the divergent parts of stress tensor via T ij = 2δI√
g(0)δg

(0)
ij

, we can replace

(hab, kab, qab, . . .) in γij by

hab =
∑
m=0

(−1)m
xm

m!
∂mx g

(0)
ab ,

kab = −1

2

∑
m=0

(−1)m
xm

m!
∂m+1
x g

(0)
ab , (3.37)

qab =
1

2

∑
m=0

(−1)m
xm

m!
∂m+2
x g

(0)
ab .
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In this way, we derive

δγab =
sinh2 ρ

x2

(
f2

2

∑
m=0

(−x)m

m!
∂mx δg

(0)
ab + habδf

2
2

)
. (3.38)

Note that δγxx is not important for our purpose, since the stress tensors on Q (3.34) have

no xx−components at the leading order. Substituting (3.38) into (3.34), we derive

δI =

∫
M
dxdyd−1

(
−ᾱDd

k̄ij

xd−1

)
δg

(0)
ij

+

∫
Q
dxdyd−1 f3(ρ)k̄ab

xd−1

(
f2

2

∑
m=0

(−x)m

m!
∂mx δg

(0)
ab + habδf

2
2

)

=

∫
M
dxdyd−1

(
−ᾱDd

k̄ij

xd−1

)
δg

(0)
ij (3.39)

Similar to the case of gauge fields, the contributions on Q vanish. Note that the stress

tensor with d = 2 is the counterpart of the current with d = 4 of section 2.2. Similar to

the case of current, there would be non-trivial contributions on Q to the stress tensor with

d = 2. However, due to k̄ab = 0 for d = 2, such potential contributions vanish. From (3.39)

we finally obtain the stress tensor for Dirichlet BC

Tij = −2ᾱDd
k̄ij
xd−1

+O(k2), (3.40)

which takes the same form as Neumann BC (3.32). In the next section, we shall test the

universal relations (3.16) for both Dirichlet BC and Neumann BC.

3.3 Holographic Weyl anomaly

In this section, we derive the holographic Weyl anomaly and verify the universal rela-

tions (3.16) between Casimir effects and Weyl anomaly for 3d BCFT and 4d BCFT. To

do so, we need to work out the perturbation solutions up to order O(k2) ∼ O(∂2) for

3d BCFT and O(k3, kq) ∼ O(∂3) for 4d BCFT, respectively. Since the calculations are

quite complicated, below we take 3d BCFT as an example to illustrate the key points of

derivations and only claim the final result for 4d BCFT.

Following [5], we take the following ansatz for metrics

ds2 =
1

z2

[
dz2+

(
1+x2X2

( z
x

)
+x3X3

( z
x

)
+. . .

)
dx2

+

(
δab−2xk̄abf

( z
x

)
−2x

k

d−1
δab+x

2Qab

( z
x

)
+x3Hab

( z
x

)
+. . .

)
dyadyb

]
(3.41)

where the functions X2( zx) and Qab(
z
x) are of order O(∂2), X3( zx) and Hab(

z
x) are of order

O(∂3) and . . . denotes higher orders. We set that

f(0) = 1, X2(0) = X3(0) = 0, Qab(0) = qab, Hab(0) = hab (3.42)
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so that the metric of BCFT takes the form in Gauss normal coordinates

ds2
M = dx2 +

(
δab − 2xkab + x2qab + x3hab + . . .

)
dyadyb. (3.43)

For simplicity, we focus on the solutions without ya dependence. We further set kab =

diag(k1, . . . , kd−1), qab = diag(q1, . . . , qd−1), where ka, qa are constants. Then the embed-

ding function of Q takes the form

x = − sinh ρ z +
cosh2 ρ

2(d− 1)
kz2 + c3z

3 + . . . (3.44)

where the second term is fixed by the symmetry of asymptotically AdS [31], ci are constants

of order O(∂i−1) which can be determined by BCs.

Now let us focus on the second order solutions for 3d BCFT. Substituting (3.41) into

the Einstein equations, we solve [5]

f(s) = 1− α1(s− g(s))

Q11(s) =
1

8

[
4q1

(
s2 + 2

)
− α2

1 (k1 − k2) 2
(
s2 − 3

)
g(s)2

− 2α2
1 (k1 − k2) 2 log

(
s2 + 1

)
+ s

(
5α2

1 (k1 − k2) 2s+ 4α2

)
+ s

(
2α1

(
−5k2

1 + 8k2k1 + k2
2

)
− 4s

(
k2

1 − k2k1 − k2
2 + q2

))
− 2g(s)

(
α1k

2
1

(
3α1s+ s2 − 5

)
+ 2α2

(
s2 + 1

))
− 2α1g(s)

(
k2

2 (3s (α1 + s) + 1) + 2k1k2 (4− 3α1s)
) ]
,

Q22(s) =
1

8

[
4q2

(
s2 + 2

)
− α2

1 (k1 − k2) 2
(
s2 − 3

)
g(s)2

+ s
(
5α2

1 (k1 − k2) 2s− 4α2

)
− 2α2

1 (k1 − k2) 2 log
(
s2 + 1

)
+ s

(
4s
(
k2

1 + k2k1 − k2
2 − q1

)
− 2α1

(
k2

1 − 4k2k1 + 7k2
2

))
+ 2g(s)

(
2α2

(
s2 + 1

)
− α1k

2
1

(
3α1s+ s2 − 1

))
+ 2α1g(s)

(
k2

2

(
−3α1s+ s2 + 7

)
+ 2k1k2

(
3α1s+ 2s2 − 2

)) ]
,

X2(s) =
1

4

[
− α2

1 (k1 − k2) 2s2 log
(
s2 + 1

)
− 2α1 (k1 − k2) 2s

+ α1 (k1 − k2) 2g(s)
(
α1

(
s2 + 1

)
g(s) + 2s (s− α1) + 2

)
+ s

(
α2

1 (k1 − k2) 2s− 2s
(
k2

1 + k2k1 + k2
2 − q1 − q2

)) ]
, (3.45)

where s = z/x and g(s) = π
2 − 2 tan−1

(
1/(s+

√
s2 + 1)

)
. To rewrite the above solutions

in functions of x and z, we should consider suitable analytic continuation in order to get

smooth functions at x = 0. In this way, we get smooth g(z, x) as

g(z, x) =
π

2
− 2 tan−1

(
x/(z +

√
z2 + x2)

)
. (3.46)

Imposing NBC (2.6) or DBC (3.3), we can solve the integration constants

α1 = −ᾱ3, α2 = −α1

2
k2, (3.47)
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where ᾱ3 are given by (3.30) and (3.31) for NBC and DBC, respectively. The BCs can

not only fix the bulk solutions but also the location of Q (3.44). We obtain for both NBC

and DBC

c3 =−sinhρ

24

[
7k2

1 +4k2k1+7k2
2−4(q1+q2)

+
(
5k2

1 +2k2k1+5k2
2−2(q1+q2)

)
cosh(2ρ)

+α2
1 (k1−k2)2

(
(2+cosh(2ρ)) log(coth2 ρ)−1

)]
+

(k1−k2)2

24
(α1f4(ρ)−1)

[
α1(cosh(2ρ)+3)+cosh3(ρ)coth(ρ)(α1f4(ρ)−1)

]
, (3.48)

where f4(ρ) = π
2 + 2 tan−1

(
tanh

(ρ
2

))
. It is interesting that NBC and DBC yield almost

the same solutions except a different parameter α1.

Now we are ready to derive the holographic Weyl anomaly for 3d BCFT. The following

approach applies to both NBC and DBC. By using Einstein equations, we can rewrite the

on-shell gravitational action (2.5) without gauge fields as

I = −6

∫
N

√
G+ 2

∫
Q

√
γ(K − 2 tanh ρ). (3.49)

To get the holographic Weyl anomaly, we need to do the integration along x and z, and

then select the UV logarithmic divergent terms. We divide the integration region into two

parts: region I is defined by (z ≥ 0, x ≥ 0) and region II is defined by the complement of

region I. Let us first study the integration in region I, where only the bulk action in (3.49)

contributes. Integrating along z, expanding the result in small x and selecting the 1/x

term, we obtain

I1 =

∫
ε
dx

[
πα2

1

2x
Trk̄2 + . . .

]
= log

(
1

ε

)
πα2

1

2
Trk̄2 + · · · . (3.50)

Next let us consider the integration in region II. In this case, both the bulk action and

boundary action in (3.49) contribute. For the bulk action, we first do the integral along

x, which yields a boundary term on Q. Note that since only the UV logarithmic divergent

terms are related to Weyl anomaly, we keep only the lower limit of the integral of x. Adding

the boundary term from bulk integral to the boundary action in (3.49), we obtain

I2 =

∫
ε
dz

[
−2α1 − πα2

1 − 2 sinh ρ(1 + α1
αN3

)(1 + α1
αD3

)

2z
Trk̄2 + . . .

]

= log

(
1

ε

)
−2α1 − πα2

1

2z
Trk̄2 + · · · , (3.51)

where we have used α1 = −αN3 (3.30) for NBC and α1 = −αD3 (3.31) for DBC above.

Combining together (3.50) and (3.51) and noting that α1 = −ᾱ3, we finally obtain the

Weyl anomaly (3.17)

A =

∫
P

√
h ᾱ3Trk̄2, (3.52)
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with the boundary central charge b1 = ᾱ3. Hence we obtain the universal relation (3.16) for

3d BCFT. It should be mentioned that since we focus on solutions without ya dependence,

the first term R of Weyl anomaly (3.17) vanishes. Actually, it is easy to recover this term.

Applying the conformal map [21], we can obtain the holographic dual of BCFT on a round

disk from the one on half space (2.7), (2.8). Following the above approach, we can derive

the R term in Weyl anomaly and read off the central charge b1 = sinh ρ. We remark that

holographic BCFT with NBC and DBC have the same boundary central charges related

to Euler densities but different boundary central charges related to extrinsic curvatures.

Since g-theorem in higher dimensions apply to the central charges related to Euler densities

on the boundary. The holographic BCFT with NBC and DBC both obey the g-theorem.

Following the same approach, we can derive the holographic Weyl anomaly for 4d BCFT

and verify the universal relation (3.16). Since the calculations are similar to the 3d case

but quite complicated, we do not repeat it here.

4 Casimir coefficients and central charges

In the above sections, we have obtained the Casimir coefficients and central charges for

holographic BCFT with NBC and DBC, respectively. In this section we study the interest-

ing characteristics of these charges. For simplicity we only list the main results and discuss

them briefly.

(1) The Casimir coefficients for NBC are greater than or equal to those for DBC.

By“Casimir coefficients”, we mean the coefficients αd defined in the renormalized

stress tensor (3.15) near the boundary. We use αNd and αDd to denote Casimir

coefficients with respect to NBC and DBC, respectively. From (3.28) and (3.29), it

is easy to check that

ᾱNd ≥ ᾱDd, (4.1)

where the equality is saturated when the bulk boundary Q is pulled back into the

AdS boundary, i.e., ρ→∞. Interestingly, ᾱNd gains its lower bound while ᾱDd gets

its upper bound at ρ→∞.

(2) The Casimir coefficients are non-negative.

According to [18], we have ᾱd = λdcnn, where λd is a positive factor and cnn is the

central charge defined by the two point funciton of the displacement operator

< Dn(x)Dn(0) >=
cnn
x2d

. (4.2)

From (4.2), we have cnn ≥ 0 and thus

ᾱNd ≥ ᾱDd ≥ 0. (4.3)

It should be mentioned that [6] find that b2 = π2

8 cnn for 3d BCFT and b4 = 2π2

15 cnn
for 4d BCFT. Using the universal relation (3.16), we get ᾱd ≥ 0 for d = 3, 4. This

can be regarded as an independent test of our claim above.
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Interestingly, the positive bound is automatically satisfied by NBC. As for DBC, the

bound yields T = (d− 1) tanh ρ ≥ 0, which is reasonable if we take T as the tension

of the brane Q [21].

(3) The Casimir coefficients for NBC reduce to the ones of free BCFT, while the Casimir

coefficients for DBC vanish, when bulk boundary Q is perpendicular to the AdS bound-

ary M , i.e., ρ = 0.

From (3.28) and (3.29), we have for holographic Casimir coefficients

lim
ρ→0

ᾱNd =
2−dπd/2

(d+ 1)Γ
(
d
2 + 1

)CHT , (4.4)

lim
ρ→0

ᾱDd = 0, (4.5)

where CHT is the holographic central charge [44]

CHT =
2(d+ 1)

d− 1

Γ[d+ 1]

πd/2Γ[d/2]
. (4.6)

In general the central charge CT is defined by the two point functions of stress tensor

far away from the boundary

< Tµν(x)Tλρ(0) >=
CT
|x|2d

Iµν,λρ(x) (4.7)

with Iµν,λρ a dimensionless tensor fixed by symmetry.

It is remarkable that free BCFTs seem to obey the same relation as (4.4),

ᾱFd =
2−dπd/2

(d+ 1)Γ
(
d
2 + 1

)CFT (4.8)

where ᾱFd and CFT are the Casimir coefficients defined by (3.15) and the central

charge defined by (4.7) for free BCFTs, respectively. One can verify (4.8) by free

BCFTs in three and four dimensions [3, 41, 42] and by free scalars in general di-

mensions [18]. It is expected that (4.8) applies to general free BCFTs in general

dimensions.

To end this section, let us draw the figures of Casimir coefficients for NBC and DBC

in three and four dimensions, respectively. See figure 2 and figure 3. From these

figures, we learn that Casimir coefficients for NBC are indeed greater than or equal

to those for DBC. And the Casimir coefficients are indeed non-negative for physical

tension T = (d− 1) tanh ρ ≥ 0.

5 Conclusions and discussions

In this paper, we have investigated the holographic BCFT with Dirichlet BC and find it

works as well as the one with Neumann BC. For example, AdS is a vacuum solution to
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Figure 2. 3d Casimir coefficients for NBC (blue line) and DBC (yellow line).
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ρ
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0.2

0.3

0.4

0.5

α4

Figure 3. 4d Casimir coefficients for NBC (blue line) and DBC (yellow line).

Dirichlet BC and the g-theorem is obeyed by this theory. Furthermore, it gives the expected

one point function of the stress tensor (current) and the universal relations between the

stress tensor (current) and Weyl anomaly. It is remarkable that the boundary central charge

related to B-type Weyl anomaly, or equivalently, the Casimir coefficient for Dirichlet BC

is less than or equal to the one for Neumann BC. We have also studied the relative BC

for gauge fields, which is the counterpart of Dirichlet BC for gravitational fields. We find

an exact solution to this BC, which implies that a constant magnetic field in the bulk can

induce a constant current on the boundary in three dimensions. And the boundary current

gets the maximum value at zero temperature. It is interesting to measure this boundary

effect in laboratory. In this paper, we discuss only the tip of the iceberg for Dirichlet BC,

i.e., we fix the boundary metric to be that of AdS. It is natural to study more general

metrics on Q, such as the ones describing gravitational waves and black holes. Besides, one

can generalize the discussions of this paper to other fields, such as scalars and higher spin

fields. Finally, it is also interesting to study other kinds of BCs for holographic BCFT,

such as the conformal BC or mixed BC. We notice that the conformal BC is more subtle,

which is less restrictive than Dirichlet BC and Neumann BC. We leave a careful study of

this problem to future work.
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