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1 Introduction

The recent study of the AdS3/CFT2 correspondence [1, 2] in the large-c regime has brought

many novel insights and fruitful observations, of which the most important is that confor-

mal blocks of boundary CFT have gained an independent holographic interpretation. In

particular, large-c conformal blocks associated to light and heavy primary operators can be

independently described as lengths of particular geodesic networks in the bulk space [3–14].1

These developments highlighted the fundamental role of conformal blocks in holographic

duality that was previously poorly understood.

In general terms, the conformal blocks of two-dimensional CFT with Virasoro symme-

try are (anti)holomorphic functions on Riemannian surfaces additionally parameterized by

external and intermediate conformal dimensions ∆ and the central charge c [40]. The block

functions are unknown in a closed form, however, using various large-c approximations in

the parameter space (∆, c) their form can be essentially simplified. The most striking

example here are the global or light blocks (depending on the surface’s genus) that are

obtained as limiting case c → ∞ of the original conformal blocks with fixed dimensions

∆ = O(c0), see e.g. [29, 40–45]. The other seminal example of approximate conformal block

functions is the classical conformal block [46] that arises in the large-c regime with linearly

growing dimensions ∆ = O(c1), see e.g. [6, 8, 47]. There are also plenty of heavy-light

conformal blocks with conformal dimensions behaving like O(c0) (light operator) and/or

O(c1) (heavy operator), see e.g. [4, 6–8, 18]. It turns out that these approximate conformal

blocks are not independent and can be related to each other by different maps [7, 29, 43].

In this context, the most studied case of the semiclassical AdS3/CFT2 correspondence

is when there are two heavy primary operators in the boundary CFT that produce an angle

deficit or BTZ block hole in the bulk space [4]. Here, the classical conformal blocks can be

calculated using the so-called heavy-light perturbation theory. The dual description reveals

a number of interacting point massive particles (with masses ∼ ∆/c) propagating on the

background and the total length of their worldlines is exactly the perturbative classical

conformal block.

Explicit calculation of dual functions which are perturbative classical blocks and

lengths of the worldline networks is both conceptually and technically complicated problem.

On the boundary, one can use the monodromy method of calculating n-point conformal

blocks that relies on solving higher order polynomial equation systems [3, 4, 6, 12, 14].

Up to now, exact expressions were known only for n = 4 blocks because the n-point mon-

odromy equations reduce to (2n − 6)-th order polynomial equation. In the bulk, in order

to calculate the total length of the network one can use the worldline formalism for classi-

cal mechanics of massive particles [6, 8]. This approach is also hard to implement in the

higher point case, and, therefore, the problem of calculating network lengths remains open.

Nonetheless, one can prove the existence theorem claiming that dual functions exist and

equal to each other in the n-point case for any n [14].

1For further development see e.g. [15–22]. The study of semiclassical conformal blocks in the holographic

context can be extended in many directions including any dimensions, 1/c corrections, WN symmetry, other

topologies, Gallilean symmetry, BMS3, and supersymmetric extensions [23–39].
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In this paper we develop new techniques employing a purely geometric view of the bulk

dynamics. To this end, it is convenient to represent the original bulk space in z, z̄ and t

coordinates and then fix a constant time t = 0 slice. In what follows we focus on the bulk

space with a conical singularity. In this case, having an angle deficit in AdS3 spacetime

we obtain the Poincare disk D with the same defect. Let us recall now that geodesics

on the hyperbolic disk are represented by half-circles perpendicular to the (conformal)

boundary circle. Then, discarding any mechanical interpretation of the bulk dynamics we

can reformulate the whole problem in terms of the Poincare disk model geometry.

We observe that interacting particle worldlines we are interested in are exactly the

so-called Steiner trees in metric spaces (for review see e.g. [48, 49]). The Steiner tree

problem in graph theory is the optimization problem of finding shortest path along a

particular graph with a given number of endpoints, edges, and vertices. In the context of

the AdS3/CFT2 correspondence we deal with particular Steiner trees in two-dimensional

hyperbolic geometry that we call holographic Steiner trees. To establish correspondence

with conformal blocks we calculate the lengths of holographic Steiner trees on the Poincare

disk. Note that in this setting the problem is purely mathematical without any direct

reference to its original physical motivation.

Identifying perturbative classical blocks with holographic Steiner trees we reveal one

more interesting aspect. Recall that in the monodromy method n-point block functions are

defined via accessory parameters subject to the system of n quadratic equations. Presently,

it is not clear whether the equations are solvable or not in the sense of Galois theory. Then,

the geometrical method based on Steiner trees on the Poincare disk, and, more broadly,

the semiclassical AdS3/CFT2 correspondence, can be viewed as the associated compass-

and-straightedge construction to find roots of algebraic equations.

The paper is organized as follows. In the first part of the paper we introduce Steiner

trees and describe their geometric properties in the bulk, while in the second part we turn

to the boundary CFT analysis and discuss the monodromy method for calculating classical

conformal blocks. In both parts we focus on the structures that help to underline the

duality between two descriptions. In section 2 we describe basic geometric facts about

Steiner trees both on Euclidean and hyperbolic planes. In section 3 several examples of

holographic Steiner trees with at most two vertices are calculated. Section 4 contains

a general view of perturbative classical conformal blocks. We propose a slight technical

modification of the standard monodromy method where the coordinate of the first primary

operator z1 6= 0. Here we also discuss the correspondence formula between blocks and

lengths. In section 5 we explicitly calculate various lower point conformal blocks and

compare the resulting expressions with the Steiner tree analysis of the first part. Section 6

is central in our analysis of dual conformal blocks, it classifies identity conformal blocks

and proves their factorization properties. Technical details are given in appendices A, B, C.

2 Steiner trees on the hyperbolic disk

The Steiner tree problem in graph theory is the optimization problem of finding shortest

path along a particular graph with a given number of endpoints, edges, and vertices (for
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Figure 1. General tree.

Figure 2. N=3 and N=4

Figure 3. Trivalent vertex (Fermat-Toricelli point) of a Steiner tree on the hyperbolic plane. All

segments have di↵erent weights that is indicated by di↵erent colors.

1

Figure 1. Simplest Euclidean Steiner trees with equal weights: (a) N = 3 tree with a single vertex

known as the Fermat-Torricelli point, it is inscribed into a triangle, (b) N = 4 tree with two vertices

inscribed into a square. (This case was discussed by Courant and Robbins [49]. Curiously, the two

Steiner trees look like two OPE channels of the 4-point conformal block.)

review and mathematically rigorous treatment see, e.g., [48, 49]). In what follows we

introduce Steiner trees on the (non-)Euclidean plane and discuss their properties relevant

from the holographic duality perspective.

2.1 Steiner trees and Fermat-Torricelli points

Let N be a number of points on the (non)-Euclidean plane. The points are connected to

each other by edges so that there are N − 2 trivalent vertices. Suppose that each edge

carries a weight ε ∈ R. The resulting graph is required to have a minimum total length

shortest path : LN =
∑

a∈{edges}

εaLa , (2.1)

where εa are the edge weights and La are lengths of edges calculated using the corresponding

metric. Positions of vertices are fixed by (2.1) in terms of weights and endpoints. In this

way we obtain a weighted Steiner tree.

The most striking property of Steiner trees originally shown on the euclidean plane

is that vertices are the Fermat-Torricelli (FT) points where edges form three 120◦ angles,

see figure 1. Recall that the Fermat-Torricelli point of a triangle is defined as a point such

that the total length from the three vertices of the triangle to the point is minimal.

This observation is naturally extended to arbitrary edge weights so that the angles are

given by

cos γca =
ε2a − ε2c − ε2b

2εaεc
, cos γbc =

ε2b − ε2c − ε2a
2εbεc

, cos γab =
ε2c − ε2b − ε2a

2εaεb
. (2.2)

Here labels a, b, c enumerate three edges forming a vertex, εa,b,c are the edge weights,

and γab, γbc, γca are the angles between the respective edges (see figure 3). Obviously,

γab + γbc + γca = 2π. It follows that the edge weights necessarily satisfy the triangle

inequalities

εa + εb ≥ εc , εa + εc ≥ εb , εb + εc ≥ εa . (2.3)

Relations (2.2) and (2.3) follow from the minimum total length requirement (2.1). The

cosine formulas (2.2) and the triangle inequalities (2.3) were previously discussed in the

mathematical literature [50–52]. In the context of the block/length correspondence these

formulas were found in [14].
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2.2 Poincare disk model

A time slice of the AdS3 spacetime is given by the two-dimensional hyperbolic plane that

can be described within the Poincare disk model. Considering the AdS3 spacetime with an

angle deficit parameterized by α that we denote as AdS
(α)
3 results in cutting a wedge out

of the disk. Then, the metric reads

ds2 =
4dzdz̄

(1− zz̄)2
, (2.4)

where coordinates z = r exp[iω] with r ∈ [0, 1) and ω ∈ [0, 2πα) cover a disk D with an

angle deficit parameterized by α ∈ (0, 1]. The conformal boundary ∂D is described by (a

part of) the boundary circle zz̄ = 1. The disk with the angle deficit parameter α and its

boundary circle will be denoted as Dα and ∂Dα.

Rescaling the angular coordinate on the disk as ω → αω we reproduce the Poincare

disk model of the hyperbolic geometry. We shall use this fact to simplify our analysis of

geodesics by calculating their lengths on the Poincare disk first and then rescaling by α

all angular coordinates. This is legitimate because Steiner trees we consider depend on

endpoints w ∈ ∂D only (see below). From now on we work with the Poincare disk model

and restore the α-dependence in final expressions.

It is useful to recall that the isometry of the Poincare disk D is given by the Möbius

transformations

z → az + b

b̄z + ā
, a, b ∈ C , |a|2 − |b|2 = 1 . (2.5)

The respective 3-dimensional group is denoted by Möb(D). The conformal boundary ∂D
is invariant under transformations from Möb(D).

Geodesic lines on the Poincare disk are segments of circles orthogonal to the (confor-

mal) boundary of the disk. Circles on the complex plane are described by the equation

γ z̄z + βz + β̄z̄ + γ = 0 , γ ∈ R , β ∈ C . (2.6)

At γ = 0 we find the diameters. A geodesic segment between points z1, z2 ∈ D can be

mapped by an element of Möb(D) to an interval (0, u) on the diameter. Then, its length

can be easily calculated to be

LD(z1, z2) = log
1 + u

1− u , where u =

∣∣∣∣ z2 − z11− z̄1z2

∣∣∣∣ . (2.7)

Indeed, there always exists a transformation ∈ Möb(D) that maps a given geodesic to a

diameter such that a distinguished point on the geodesic goes to the center of D. In our

case this is (2.5) with a = 1 and b = −z1 and the distinguished point is z1.

2.3 Holographic Steiner trees

Steiner trees on D dual to conformal blocks have a particular form, see figure 2. We call

them holographic Steiner trees. For a given n-point conformal block the holographic Steiner

tree has N = n − 1 endpoints, N − 1 of which lie on the boundary ∂D and one endpoint

– 5 –
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w1

w2

w3 w4

w5

w6

Figure 1. General tree.

1

w1

w2

w3 w4

w5

w6

Figure 2. N=3 and N=4

2

Figure 2. Holographic Steiner trees: (a) non-ideal N = 7 graph, one edge ends in the center, (b)

ideal N = 6 graph, all edges end on the boundary circle. The associated hyperbolic polygons are

shown in dashed lines.

is the center of the disk. There are NF = N − 2 trivalent vertices which are the Fermat-

Torricelli points. In total, the corresponding Steiner tree has 2N − 2 points connected by

2N − 3 edges among which there are N outer edges and N − 3 inner edges (also called

bridges in graph theory).
All points of a given Steiner tree including the endpoints and vertices are not invariant

with respect to general conformal transformations from Möb(D) (2.5). For example, the

center of the disk can be shifted away from its position. On the other hand, boundary

endpoints always remain on the boundary because the boundary circle is invariant with

respect to Möb(D). Therefore, it is admissible to have a holographic Steiner tree with an

endpoint not in the center of the disk. Such a tree is conformally equivalent to that one

with an endpoint in the center.2

Any Steiner tree can be inscribed in a hyperbolic polygon with N corners. In our case,

N − 1 corners necessarily lie on the boundary circle and, therefore, the angles are zero.

In hyperbolic geometry such corners are called ideal. This property defines holographic

Steiner trees: such trees can be inscribed into an N -gon with N − 1 ideal vertices. Note

that the number of ideal vertices is a conformal invariant.

The total length formula (2.1) for the holographic Steiner tree on the Poincare disk

can be represented as the sum over inner and outer edges,

L
(N)
D (w) =

∑
i∈outer

εi LD(zi, xi+1) +
∑

j∈inner
ε̃j LD(xj , xj+1) , (2.8)

where all weights are divided into two subsets of outer weights εi, i = 0, . . . , n−2 and inner

weights ε̃j , j = 1, . . . , n − 4, the center z0 = 0, the boundary endpoints have coordinates

zj = exp[iwj ], j = 1, . . . , n − 2, the FT points have coordinates xi, i = 1, . . . , n − 3. A

length LD of each edge is given by the general formula (2.7), and, therefore, to calculate

the total length we need to know explicit positions of the FT points. Note that the FT

points are completely defined in terms of the endpoint positions and the edge weights by

virtue of the minimal length condition. In order to find the length of the same Steiner tree

2From the boundary CFT perspective this is quite natural because two heavy background fields are

coupled to the exchange channel in a point which is not specified, being instead an integration variable.

– 6 –
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Figure 1. General tree.

Figure 2. N=3 and N=4

c

a

b

�ac
�
bc

�
ab

Figure 3. Trivalent vertex (Fermat-Toricelli point) of a Steiner tree on the hyperbolic plane. All

segments have di↵erent weights that is indicated by di↵erent colors.

1

Figure 3. Steiner tree on the non-Euclidean plane with four Fermat-Torricelli points. The middle

trivalent vertex is highlighted such that the edges of different weights are shown in different colors.

The angles between edges are defined according to (2.2).

on the Poincare disk with the angle deficit we have to rescale the arguments according to

L
(N)
Dα := L

(N)
D (αw) , (2.9)

see section 2.2.

Let us describe the analytic geometry method of finding the FT points. To this end,

we note that the slope coefficient in the geodesic equation (2.6) is given by

κ = i
β + β̄ + γ(z + z̄)

β − β̄ − γ(z − z̄)
. (2.10)

Consider now two edges a and b intersecting at angle γab. Each edge is described by the

geodesic equation (2.6) so that using their slope coefficients (2.10) we can find the angle of

intersection

cos γab =
1 + κaκb√

(1 + κ2
a)(1 + κ2

b )
, (2.11)

where κa and κb are the slopes of the tangent lines of the geodesic segments with weights εa
and εb evaluated in a given FT point z = xi. On the other hand, the angles are completely

fixed by the edge weights (2.2), and, therefore, we find the relation

(1 + κaκb)2 −
(
ε2a − ε2c − ε2b

2εaεc

)2

(1 + κ2
a)(1 + κ2

b ) = 0 , (2.12)

which is the second order polynomial equation in κa and κb. Writing down the analogous

equations for b, c and c, a we obtain the equation system for all slopes at given FT point.

The system contains three equations, however, the angles sum up to 2π, and, thus, there

are just two independent equations sufficient to find the slopes as functions of weights,

κa = κa(ε, ε̃).
On the other hand, a given edge is described by the geodesic equation (2.6) where

coefficients depend on endpoints zi and/or the FT points xj . It follows that generally we

have coordinate dependent slopes κa = κa(z, x). Therefore, there are equations of the type

κa(z, x) = κa(ε, ε̃) that allows to find the FT coordinates explicitly in terms of the edge

weights and the endpoint coordinates. The complexity of calculations grows rapidly with

– 7 –
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the number of the FT points NF . Indeed, we have at least 2NF equations with radicals

which encode the slope and the cosine equations discussed above. Already in the NF = 1

case we are confronted with a 4th order equation. In section 3 we calculate all possible

holographic Steiner trees with a single FT point and a particular Steiner tree with two

FT points.

2.4 Cuts and connectivity

Let GN denote a holographic Steiner tree with N endpoints. By definition, it is a connected

graph because there is a path between any pair of vertices and/or endpoints. However,

removing an edge may render the graph disconnected. Since there are two types of edges,

inner and outer, we conclude that removing an outer edge does not disconnect the graph,

while cutting an inner edge disconnects the graph in two connected subgraphs.

Let us consider a vertex formed by three edges labelled a, b, c with weights εa,b,c, see

e.g. figure 3. Cutting an edge is tantamount to that its weight is set to zero. Let εa = 0.

Since the weights satisfy the triangle inequalities (2.3) we conclude that other two weights

become equal, εb = εc. According to (2.2) the angle between the remaining edges become

γbc = π and, therefore, they merge into a single edge of a fixed weight εb.

Suppose now that we remove an outer edge. Following the discussion above, the

corresponding vertex vanishes and we have one less outer edge. The resulting graph remains

connected but with a smaller number of endpoints, i.e.

GN ↪→ GN−1 , (2.13)

where the hooked arrow denotes an outer edge cut. On the other hand, cutting an inner

edge saves the number of endpoints, but splits the original graph into two independent

subgraphs, each with less endpoints,

GN  GN1 ∪GN2 , N1 +N2 = N , (2.14)

where the wavy arrow denotes an inner edge cut.

Holographic Steiner trees with outer edges attached to the boundary ∂D only will be

called ideal. These graphs can be inscribed into an ideal hyperbolic N -gon. Respectively,

non-ideal trees have an outer edge attached to the center of the disk. An ideal holographic

Steiner tree can be obtained from a non-ideal one by an edge cutting (2.13) or (2.14), see

figure 2. Finally, we note that for a given N there are two holographic Steiner trees, ideal

and non-ideal ones.

From the boundary CFT perspective, ideal Steiner trees correspond to identity blocks

and the edge cuts (2.13) and (2.14) are reformulated as factorization relations for conformal

blocks, see section 6.

3 Examples of lower N Steiner trees

In what follows we apply the general procedure of finding the FT points described in the

previous section to the case of holographic Steiner trees with a small number of endpoints

N = 2, 3, 4. These Steiner trees have at most two FT points and dual to particular 3, 4, 5, 6-

point conformal blocks (see section 5).

– 8 –
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Figure 10. Vacuum blocks with odd n.

w1

w2

w3 w4

. .
.

wn�3

wn�2

w1

w2

w3

w4 w5

. .
.

wn�3

wn�2

Figure 11. Disconnected Steiner trees.

4

Figure 4. Examples of disconnected holographic Steiner trees obtained from the Steiner tree GN

by a maximal number of inner edge cuts using (2.14). The resulting graphs are ideal Steiner trees.

3.1 N = 2 holographic Steiner trees

There are two N = 2 holographic Steiner trees both with just one edge, see (a) figure 5.

The total length (2.1) in this case is given by (2.7). However, we are faced here with

the general problem that if at least one of endpoints lies on the boundary circle then the

resulting length is infinite and must be regularized somehow.

Let us consider first the N = 2 holographic tree with two boundary endpoints z1 =

exp[iw1] and z2 = exp[iw2]. To regularize the length function we shift the points inside the

disk as z1 = exp[−ε+ iw1] and z2 = exp[−ε+ iw2] at ε→ +0. In appendix A we find that

the length function (2.7) can be expanded with respect to ε as

L
(2)
D (w2, w1) = log

[
4 sin2 w2 − w1

2

]
− 2 log ε+O(ε)

= 2 log sin
w2 − w1

2
+ log 4− 2 log ε+O(ε) . (3.1)

Usually, from the holographic duality perspective, only the first term is relevant because we

keep track of w-dependent terms and do not care about (in)finite constant contributions.

However, we define the regularized length as all w-dependent and ε-independent terms

modulo constants. In (3.1) this is the first term only. Such a definition gives rise to a

negative length because we discarded ε-dependent and constant terms that were making

the original (non-regularized) length function (2.7) positive. Finally, we postulate the

rescaled length (2.9) to be

L
(2)
Dα = 2 log sin

α(w2 − w1)

2
. (3.2)

The N = 2 holographic tree with one boundary endpoint can be considered along the

same lines, see appendix A. Using (A.8) we find that in this case the regularized length

is zero

L
(2)
Dα = 0 . (3.3)

Now, let us shortly discuss what happens if we add an outer edge ending in the center

of the disk, see (b) on figure 5. Choosing εa = εb ≡ ε (red) and εc ≡ ε̃ (blue) we find from

the cosine formula (2.2) that γac = γbc, and

cos γab = −1 +
ε̃2

2ε2
, cos γac = − ε̃

2ε
. (3.4)
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Figure 4. (a) general N = 3 tree with two boundary endpoints and arbitrary point on the disk (b)

the third point on the center of the disk (c) the third point on the boundary

w2

w1

w3

w4

w3

w2

w1

Figure 5. N=4 tree with four points on the boundary.

w1 w2

w3

w1 w2

Figure 6. N=2 and other

2

Figure 5. (a) Two types of N = 2 holographic Steiner trees. (b) A hyperbolic isosceles triangle

(3-gon, dashed lines) with two ideal vertices and inscribed N = 3 Steiner tree. Different colors

imply different weights. This N = 3 tree can be viewed as the deformation of the N = 2 three on

the left, see the discussion around (3.4).

We see that the ratio ε̃/ε measures the deviation from the N = 2 graph. The angles are

γab ≤ 180◦ and γac = γbc ≥ 90◦. Pictorially, it corresponds to pulling the Fermat-Torricelli

point towards the center of the disk along the outer edge (blue). When ε̃ = 0 the associated

hyperbolic triangle degenerates and the FT point lies down on the arc.

3.2 N = 3 holographic Steiner trees

Let us note that all N = 3 holographic Steiner trees can be generated from a single N = 3

tree with two boundary endpoints z1,2 ∈ ∂D and an arbitrary endpoint z0 ∈ D, see (a)

on figure 6. Edges have arbitrary weights ε1,2 and ε0. The length function L
(3)
D of the

master tree is parameterized by z0. Sending z0 either to the center of the disk (z0 = 0)

or the boundary (|z0| = 1) we find lengths of two other Steiner trees, see (b) and (c) on

figure 6. These last two graphs exhaust all possible N = 3 holographic Steiner trees (ideal

and non-ideal Steiner trees, see section 2.4).

Let us find the length function of the graph (a) on 6. To this end, we explicitly write

down and solve the equation system (2.12), see appendix B for detailed calculations. We

represent coordinates of all endpoints z0,1,2 as z1,2 = exp[iw1,2] and z0 = r0 exp[iw0] and

introduce new convenient parameterization

γ =
ε1 + ε2
ε0

, β =
ε1 − ε2
ε0

, |γ| ≥ 1 , |β| ≤ 1 ; wij =
wi − wj

2
. (3.5)

Now, we introduce auxiliary functions

L0 =

√
γ2 − 1√

1− β2(γ + 1)

(√
P − 1−

√
P − β2

)
,

L1 =
(β + γ)

√
1− β2√

γ2 − 1

(√
P − β2 + β

√
P − 1

)
K2

sin2w21 ,

L2 =
(γ − β)√

γ2 − 1
√

1− β2
K2(√

P − β2 + β
√
P − 1

) ,
(3.6)
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Figure 3. Trivalent vertex (Fermat-Toricelli point) of a Steiner tree on the hyperbolic plane. All

segments have di↵erent weights that is indicated by di↵erent colors.

z0

w1 w2 w1 w2

w3

w1

w2

Figure 4. (a) general N = 3 tree with two boundary endpoints and arbitrary point on the disk (b)

the third point on the center of the disk (c) the third point on the boundary

3

Figure 6. (a) Master N = 3 Steiner tree with two boundary endpoints and an arbitrary third

endpoint z0 ∈ D, (b) z0 = 0 gives the holographic non-ideal N = 3 Steiner tree dual to the general

4-point conformal block (c) z0 ∈ ∂D gives the holographic ideal N = 3 Steiner tree dual to particular

5-point identity conformal block. The associated hyperbolic 3-gons are shown in dashed lines.

where

K1,2 =
1 + r20 − 2r0 cos(w1,2 − w0)

1− r20
, P =

K1K2

sin2w21
. (3.7)

Then, the length function of the master N = 3 Steiner tree is given by

L
(3)
D (w1, w2, z0) = ε0 logL0 + ε1 logL1 + ε2 logL2 . (3.8)

Note that arguments w1 and w2 enter the length function only through the combination

w21 = (w2 − w1)/2 which is the semiangle position of two boundary endpoints.

Let us now find the lengths of two other graphs (b) and (c) on figure 6. These are

N = 3 holographic Steiner trees of interest.

z0 = 0 case. From (3.8) we find the length function3

L
(3)
D (w1, w2) = ε0 Arctanh

cosw21√
1− β2 sin2w21

+ ε0

[
γ log sinw21 − β log

(
β cosw21 +

√
1− β2 sin2w21

)]
+ C0 , (3.9)

where we introduced the w-independent function of the weights,

C0 =
ε0
2

(
log

γ − 1

(γ + 1)(1− β2) + γ log
γ2 − β2

(γ2 − 1)(1− β2) + β log
γ + β

(1− β2)(γ − β)

)
. (3.10)

|z0| = 1 case. Evaluating the length function at z0 on the boundary is more tricky

because the length function diverges so we have to use the ε-prescription. To this end, we

shift the radial position of the third point r0 = 1− ε and denote its argument as w0 ≡ w3

and weight as ε0 ≡ ε3. Then, in the limit ε→ +0 we have K1,2 = 2ε−1 sin2 w3−w1,2

2 +O(ε),

and keeping the leading term only (see appendix A) we obtain from (3.8) the limiting

3The w-dependent part of this formula relevant for the holographic duality analysis was obtained using

the worldline formalism in a different parametrization of the bulk space [6]. For equal weights β = 0

formula (3.9) was found in [8].
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w2
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w3

w4
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Figure 5. N=4 tree with four points on the boundary.

w1 w2

w3

w1 w2

Figure 6. N=2 and other

z1, ✏1

z2, ✏2 zn�2 , ✏n�2· · · · · ·

zn, ✏n

zn�1, ✏n�1

✏̃1 ✏̃n�3✏̃n�4✏̃i = 0

Figure 7. i-th identity block: ✏̃i = 0, the zeroth channel is shown in red.

4

Figure 7. Two types of N = 4 holographic Steiner trees: (a) ideal holographic Steiner tree, this is

the hyperbolic analog of the graph (b) on figure 1, (b) non-ideal holographic Steiner tree. Cutting

the bridge (blue inner edge) yields the disconnected graph (a) on figure 5, see section 2.4. The

associated hyperbolic 4-gons are shown in dashed lines.

length function

L
(3)
D (w1, w2, w3) = ε1 log

sinw21 sinw31

sinw32
+ ε2 log

sinw21 sinw32

sinw31

+ ε3 log
sinw31 sinw32

sinw21
+ C1 , (3.11)

where, taking into account (3.10) we introduced the w-independent function (constant) of

the weights,

C1 = C0 + ε3

[
β log(1 + β)− 1

2
log(1− β2)

]
. (3.12)

3.3 N = 4 holographic Steiner trees

There are two types of N = 4 holographic Steiner trees, figure 7. In what follows we discuss

only the first graph which corresponds to the identity 6-point conformal block, see section 5.

The second graph is dual to 5-point conformal block and will be considered elsewhere.4

There are two FT points in the N = 4 case. To find the total length L
(4)
D (w1, w2, w3, w4)

we may follow the general strategy described in the end of section 2.3 and formulate the

system of equations that can be solved to fix the FT points. However, we take a different

route and view our N = 4 tree as two N = 3 trees glued together in some point. Using (3.8)

we can write down

L
(4)
D (w1, w2, w3, w4) = L

(3)
D (w1, w2, z0) + L

(3)
D (w3, w4, z0) , (3.13)

where the junction point z0 is fixed by the minimization condition (2.1). This procedure

is explicitly described in appendix B.

To simplify the calculations we consider equal weights ε1 = ε2, ε3 = ε4, and ε1 6= ε3 6= ε̃.

In this case we obtain

L
(4)
D (w1, w2, w3, w4) = 2ε1 log sinw21 + 2ε3 log sinw43 − 2ε̃ log

(√
U + 1−

√
U
)
, (3.14)

4Both the 5-point classical block and dual graph were extensively discussed using various perturbative

approximations in dimensions ε, ε̃ [8, 10, 18, 43, 53].
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Figure 13.

7

Figure 8. The holographic ideal N = 3 Steiner tree (c) on figure 6 can be obtained by the Möbius

transformation from the graph with the FT point in the center of the disk. The weights are equal

and the angles at both FT points are equal 120◦.

where U is the trigonometric ratio

U =
sinw32 sinw41

sinw43 sinw21
. (3.15)

Here, the first two terms are given by length functions (3.1), while the last term is the length

of the bridge, we also omitted the constant term C̃, see (B.13). Note that independent

variables are in fact sinwij .

3.4 Fermat-Torricelli point via Möbius transformation

As we have seen, finding positions of FT points is a complicated problem that amounts

to solving polynomial equations. In this section we give an example how to calculate FT

points using the Möbius transformations of the disk. We shall use two basic properties of

Möb(D): (a) the boundary ∂D is invariant, (b) angles are preserved.

Let us consider the N = 3 Steiner tree with three points on the boundary, see (c) on

figure 6. In this case there is only one FT point and its position is determined by boundary

endpoints wi and weights εi, where i = 1, 2, 3.

Now consider the simplest version of such N = 3 Steiner tree when the FT point is at

the center of the disk. In this case, choosing w1 = 0 we find that the endpoints are uniquely

fixed by the cosine formulas (2.2). E.g. for equal weights ε1 = ε2 = ε3 we have w1 = 0,

w2 = 2π/3, w3 = 4π/3. Then, one can use a three-parametric Möbius transformation (2.5)

that takes boundary endpoints (0, 2π/3, 4π/3) to boundary endpoints (0, w2, w3). Such

a transformation translates the simplest graph into the general N = 3 graph with three

boundary endpoints (see figure 8). The parameters of the transformation are completely

determined by specifying initial three and final three endpoints,

z → z′ =
az + b

b̄z + ā
,

a =
exp

[
iw2−iw0+iw3

2

]
− exp

[
iw2+iw0−iw3

2

]
+ exp

[
iw2+iw0+iw3

2

]
− exp

[
iw3−iw0−iw2

2

]
2
√

(sinw2 + sin(w3 − w2)− sinw3) sinw0

,

b =
exp

[
iw2−iw3−iw0

2

]
+ exp

[
iw0+iw3−iw2

2

]
− exp

[
iw2+iw3+iw0

2

]
− exp

[
iw2+iw3−iw0

2

]
2
√

(sinw2 + sin(w3 − w2)− sinw3) sinw0

,

(3.16)
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where we denoted w0 = 2π/3. The FT point flows from the center to some new point

zFT =
exp[iw2 + iw3]− exp[iw2] + exp[iw2 + iw3 + iw0]− exp[iw3 + iw0]

exp[iw2 + iw0] + exp[iw3]− exp[iw0]− 1
. (3.17)

Further, using (3.17) and (A.8) one can calculate lengths of three edges of the resulting

graph. In this way we obtain the total length of an arbitrary ideal N = 3 Steiner tree and

the final expression coincides with (3.11). One can also generalize to the case of arbitrary

weights ε1 6= ε2 6= ε3.

4 Perturbative classical conformal blocks

In this and subsequent sections we discuss perturbative large-c regime of two-dimensional

CFT. We do not consider correlation functions focusing instead on conformal blocks.

This is a crucial simplification since we completely ignore CFT data. On the other hand,

conformal blocks are still interesting to consider because these functions form a basis in the

space of correlators. In what follows we choose a particular OPE channel which generalizes

the s-channel of 4-point correlation functions to the higher-point case (this is the comb

diagram on figure 9).

Let Fn(z|∆, ∆̃, c) be a holomorphic conformal block of the n-point correlation func-

tion of n primary operators in points z = {z1, . . . , zn} on the complex plane with

(holomorphic) conformal dimensions ∆ = {∆1, . . .∆n} and exchange channel dimensions

∆̃ = {∆̃1, . . . , ∆̃n−3}, the central charge is c [40]. Suppose now that conformal dimen-

sions ∆ and ∆̃ depend linearly on the central charge, i.e. these are heavy dimensions

∆, ∆̃ = O(c1). Then, decomposing Fn(z|∆, ∆̃, c) near c = ∞ we find out that the block

function can be represented in the exponentiated form [54]

Fn(z|∆, ∆̃, c)
∣∣∣
c→∞

→ exp

[
c

6
fn(z|ε, ε̃)

]
, (4.1)

where the exponential factor fn(z|ε, ε̃) is the n-point classical conformal block which de-

pends on external and intermediate classical conformal dimensions ε = {ε1, . . . , εn} and

ε̃ = {ε̃1, . . . , ε̃n−3}

εi =
6∆i

c
, ε̃j =

6∆̃j

c
. (4.2)

In general, already 4-point classical blocks are quite complicated functions yet unknown

in the closed form. In what follows, we calculate conformal blocks using the heavy-light

perturbation theory in conformal dimensions [4] (see also [6, 8, 12, 18]).

4.1 Heavy-light approximation

Let us consider the large-c regime and all conformal dimensions are heavy. Suppose now

that two of external primary heavy operators with equal dimensions ∆n−1 = ∆n = ∆h are

much heavier than other primary operators and exchange channels, i.e.

∆i/∆h � 1 , ∆̃j/∆h � 1 , (4.3)

at i = 1, . . . , n− 2 , j = 1, . . . , n− 3.
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Figure 11. Disconnected Steiner trees.

z1 ,�1

z2 ,�2
zn�2 ,�n�2· · · · · ·

zn,�n

zn�1 ,�n�1

�̃1
�̃n�3�̃n�4· · · · · ·

Figure 12. The n-point conformal block with two heavy background primary operators depicted by

two bold black lines. Misha, make all z and deltas smaller pls.

6

Figure 9. The n-point conformal block with two heavy background primary operators depicted by

two bold black lines.

It means that the respective classical block function f(z|ε, ε̃) can be represented by the

Taylor series near the point εi, ε̃j = 0, i = 1, . . . , n − 2, j = 1, . . . , n − 3 in the conformal

parameter space. The leading term is obviously zero because the conformal block of 2-point

function of the background operators vanishes identically, while the next-to-leading term is

the perturbative classical block which we denote by fn(z|α, ε, ε̃), where α =
√

1− 24∆h/c.

4.2 The block/length correspondence

Here we formulate the semiclassical AdS3/CFT2 correspondence briefly discussed in Intro-

duction (for review and references see e.g. [14]). We consider CFT on the boundary plane

with two background heavy operators α =
√

1− 24∆h/c, where ∆h < c/24, and interact-

ing matter fields in the AdS3 spacetime with an angle deficit AdS
(α)
3 . The correspondence

works in the large-c regime when conformal dimensions are heavy ∆ = O(c1). Then, there

are n− 2 heavy primary operators which within the heavy-light approximation correspond

to point particles with masses ∼ ∆/c propagating on the AdS
(α)
3 background.

The spacetime AdS
(α)
3 is the rigid cylinder in which we consider a constant time slice

Dα (see section 2.2). Let (z, z̄) be coordinates on the punctured complex plane and (w, w̄)

be coordinates on the boundary cylinder mapped to each other by the conformal transfor-

mation w(z) = i ln(1 − z). Let Gn−1 be a non-ideal holographic Steiner tree on the disk

Dα (see sections 2.3 and 2.4). The correspondence between the perturbative classical block

and the holographic Steiner tree reads

fn(z(w)|α, ε, ε̃) = −L(n−1)
Dα (w|ε, ε̃) + i

n−2∑
k=1

εkwk , (4.4)

where the length function L
(n−1)
Dα of Gn−1 is given by (2.9). A few comments are in order:

(a) the weights and the classical dimensions are identified (note that we equate ε̃n−3 ≡ ε0),
(b) the classical conformal block is defined modulo constants so that all w-independent

terms in L
(n−1)
Dα are neglected, (c) here z, w ∈ S1, where the circle is realized as ∂Dα in

the bulk and the unit circle on the boundary, (zi − 1)(z̄i − 1) = 1 for i = 1, . . . , n− 2, (d)

the fusion rules for the conformal block are now encoded in the triangle inequalities of the

Steiner trees5 (2.3), (e) the real part of the block is the length function, the imaginary part

is given by εkwk terms.

5The triangle inequalities (2.3) are analogous to triangle inequalities satisfied by conformal dimensions

of primary operators in the semiclassical limit of the DOZZ three-point correlation function [55]. Together

with the Seiberg bound [56] and the Gauss-Bonnet constraint [55] they guarantee the existence of real
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4.3 Modified n-point monodromy equations

The monodromy method for calculating classical conformal blocks is interesting because

of its many conceptual and technical advantages (for review see e.g. [3, 14, 24, 57]). For

example, the monodromy method reformulated within the heavy-light perturbation theory

is equivalent to the worldline approach in the bulk [6, 10, 14]. In this section we slightly

modify the monodromy equations for the accessory parameters by relaxing the value of the

first point z1 which is usually fixed as z1 = 0 by projective conformal transformations. Re-

laxing z1 is required when considering factorization relations for identity conformal blocks

in section 6.

In order to find an n-point (perturbative) classical block one introduces n auxiliary

variables called accessory parameters ci. These are subjected to n algebraic equations,

where the first three equations are linear,

n∑
i=1

ci = 0 ,

n∑
i=1

(cizi + εi) = 0 ,

n∑
i=1

(ciz
2
i + 2εizi) = 0 . (4.5)

It follows that the accessory parameters c2, . . . , cn−2 can be chosen as independent. Indeed,

using the projective conformal invariance we can fix positions of two operators zn−1 =

1, zn = ∞, while z1 remains arbitrary. Then, fixing the heavy background dimensions as

εn−1 = εn and we find solution to (4.5) as

c1 = − 1

1− z1

[
n−2∑
i=2

[
ci(1− zi)− εi

]
− ε1

]
, (4.6)

cn−1 = − 1

1− z1

[
n−2∑
i=2

ci(zi − z1) +

n−2∑
i=1

εi

]
, cn = 0 . (4.7)

The remaining (n − 3) equations for the accessory parameters within the heavy-light ap-

proximation take the form

I
(n|k)
+− I

(n|k)
−+ +

(
I
(n|k)
++

)2
+ 4π2ε̃2k = 0 , k = 1, . . . , n− 3 , (4.8)

where

I
(n|k)
+− =

2πi

α

[
(1− z1) α

(
αε1 +

n−2∑
i=2

(ci(1− zi)− εi)
)

−
k+1∑
i=2

(1− zi)α(ci(1− zi)− εi(1 + α))

]
,

I
(n|k)
−+ = I

(n|k)
+−

∣∣
α→−α ,

I
(n|k)
++ =

2πi

α

n−2∑
i=k+2

[
ci(1− zi)− εi

]
. (4.9)

solutions in the Liouville theory. It would be interesting to derive the triangle inequalities directly within

the monodromy approach.
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In total, we have n equations for n variables and the accessory parameters are particular

roots of the form ci = ci(z|α, ε, ε̃), where z = (z1, . . . , zn−2). Then, the perturbative

classical block is defined by means of the following relations

ci =
∂

∂zi
fn(z|α, ε, ε̃) , i = 1, . . . , n− 2 . (4.10)

The system (4.10) can be solved in the standard fashion by integrating in z1 first and

isolating the integration constant which depends on z2, . . . , zn−2 only, then integrating in

z2, etc. Alternatively, noticing that the accessory parameters should satisfy the integrability

condition ∂icj−∂jci = 0 we may treat the equations (4.10) cohomologically and write down

the formal solution (modulo integration constants) for any n as

fn(z|α, ε, ε̃) =

∫ 1

0
dt zici(tz|α, ε, ε̃) . (4.11)

Since the accessory parameters typically diverge at z → 0 as 1/z while classical conformal

blocks fn(z|α, ε, ε̃)→ log z at z → 0 we conclude that the above integral is ill-defined at t =

0 and must be regularized. This can be achieved if one redefines classical conformal blocks

by neglecting logarithmic terms that simply results in the standard power-law prefactors

∼ zγ for conformal block functions (it is a matter of different normalizations of conformal

blocks). For classical blocks that are logarithms of the original block functions this means

that redefined fn(z|α, ε, ε̃) is regular near z = 0 and (4.11) is directly applicable. In fact, the

homotopy formula captures the standard expansion of the s-channel type block near z = 0.

5 Lower point perturbative blocks

In this section, using the monodromy method we explicitly calculate lower point perturba-

tive classical blocks including 4-point general block and 5,6-point identity blocks. Recall

that when comparing with the Steiner trees by means of the formula (4.4) we equate the

classical dimension of the rightmost exchange channel with the weight of the outer edge

ending in the center of the disk, ε̃n−3 ≡ ε0. Also, it is convenient to introduce the follow-

ing variables

Pi = (1− zi)α , i = 1, . . . , n− 3 . (5.1)

5.1 3-point general block

Let us consider first the simplest case of 3-point blocks. The accessory parameters here

are c1, c2, c3 and the monodromy equations are reduced to the three linear conditions (4.5)

that are solved as

c1 = ε1P
1/α
1 , c2 = −c1 , c3 = 0 , (5.2)

see (4.6), (4.7), here we used the notation (5.1). Then, according to (4.10) the block

function is given by

f3(z1|ε1) = ε1 logP
−1/α
1 . (5.3)

We note that the 3-point block does not depend on the background heavy dimension εh(α),

and, therefore, it is an exact result within the heavy-light approximation. In the bulk it
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corresponds to the N = 2 Steiner tree of the zeroth length (3.3), see (a) on figure 5. This

is in agreement with the correspondence formula (4.4).

5.2 4-point general block

In this case, the monodromy equations (4.8) take the form

I
(4|1)
+− I

(4|1)
−+ + 4π2ε̃21 = 0 . (5.4)

This quadratic equation in c2 can be directly solved6

c1 = ε1P
−1/α
1 − α(ε1 + ε2)(P1 + P2) + ε̃1

√
β2(P1 − P2)2 + 4P1P2

2(P1 − P2)
,

c2 = ε2P
−1/α
2 + α

(ε1 + ε2)(P1 + P2) + ε̃1
√
β2(P1 − P2)2 + 4P1P2

2(P1 − P2)
, (5.5)

where we have chosen just one root (in this case the conformal block has correct asymp-

totics, see the end of section 4.3), and used parameterization (3.5), c1 is obtained from (4.6).

Integrating equations (4.10) we find that up to z-independent terms the conformal block

is given by

f4(z1,2|α, ε1,2, ε̃1) = ε1(−1 + α) logP
1/α
1 + ε2(−1 + α) logP

1/α
2 − (ε1 + ε2) log[P1 − P2]

+ (ε1 − ε2) log
[
β(P1 + P2) +

√
4P1P2 + β2(P1 − P2)2

]
− ε̃1

2
log

[
P1 + P2 +

√
4P1P2 + β2(P1 − P2)2

P1 + P2 −
√

4P1P2 + β2(P1 − P2)2

]
. (5.6)

Now, using the correspondence formula (4.4) we can explicitly see that

f4(z1,2|α, ε1,2, ε̃1) = −L(3)
Dα(w1, w2|ε0,1,2) + iε1w1 + iε2w2 , (5.7)

where L
(3)
Dα is given by w-dependent part of the length function of the holographic N = 3

Steiner tree (3.9), see (b) on figure 6.

In section 6 we will need the so-called identity block obtained when the exchange chan-

nel has zero dimension, ε̃1 = 0. From the fusion conditions we get ε1 = ε2, and, therefore,

f
(1)
4 (z1,2|α, ε1) = ε1(α− 1)

(
logP

1/α
1 + logP

1/α
2

)
− 2ε1 log[P1 − P2] . (5.8)

5.3 5-point identity blocks

The accessory parameters of the 5-point block are described by two monodromy equations

read off from (4.8) at n = 5 [10](
I
(5|1)
++

)2
+ I

(5|1)
+− I

(5|1)
−+ + 4π2ε̃21 = 0 , I

(5|2)
+− I

(5|2)
−+ + 4π2ε̃22 = 0 . (5.9)

6To the best of our knowledge both the accessory parameter and 4-point conformal block for arbitrary

dimensions ε1,2 and ε0 were not given explicitly in the literature. In the ε1 = ε2 case these expressions

can be found in [4, 6], while the conformal block with ε1 6= ε2 6= ε0 was given in [6] within the bulk

parametrization as the geodesic length. Moreover, in view of the factorization theorem of section 6 we

represent the expression which depends on both points z1, z2 while usually z1 = 0 (P1 = 1).
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These are two second order equations in c2, c3 that can be reduced to a fourth-order equa-

tion for one of these variables. There are four roots and their explicit form looks very

massive at arbitrary dimensions ε1,2,3, ε̃1,2. And for that reason we simplify our analysis by

considering the case of identity blocks when one of dimensions ε̃1, ε̃2 is set to zero. Then,

the solutions can be given in a concise form. In the 5-point case there are two independent

identity blocks, ε̃1 = 0 or ε̃2 = 0. Note that ε̃1 and ε̃2 cannot be set to zero simultaneously

because the fusion rules would imply that ε3 = 0.

First identity block ε̃1 = 0. From the fusion rules (2.3) it follows that

ε̃1 = 0 : ε̃2 = ε3 , ε1 = ε2 , (5.10)

and the monodromy equations (5.9) take the form(
I
(5|1)
++

)2
+ I

(5|1)
+− I

(5|1)
−+ = 0 , I

(5|2)
+− I

(5|2)
−+ + 4π2ε23 = 0 . (5.11)

Relevant roots of (5.11) are given by

c1 = ε1P
−1/α
1

(
1−α+

2αP1

P1−P2

)
, c2 = ε1P

−1/α
2

(
1− α− 2αP1

P1−P2

)
, c3 = ε3P

−1/α
3 ,

(5.12)

where the expression for c1 was obtained from (4.6). Integrating equations (4.10) we obtain

the identity block

f
(1)
5 (z1,2,3|ε1,3) = ε1(α− 1) logP

1/α
1 + ε1(α− 1) logP

1/α
2 − ε3 logP

1/α
3

− 2ε1 log[P1 − P2] .
(5.13)

The 5-point identity block (5.13) can be represented as

f
(1)
5 (z1,2,3|ε1,3) = f

(1)
4 (z1,2|ε1) + f3(z3|ε3) , (5.14)

where the 4-point identity block and 3-point block are given by (5.8) and (5.3), respectively.

The correspondence formula (4.4) takes the form

f
(1)
5 (z1,2,3|ε1,3) = −L(2)

Dα(w1, w2|ε1) + iε1w1 + iε1w2 + iε3w3 , (5.15)

where L
(2)
Dα(w1, w2|ε1) is given by (3.2). Let us expand on this formula. A holographic

Steiner tree dual to 5-point block is N = 4 graph (b) on figure 7. Cutting the inner edge

(ε̃1 = 0) yields the disconnected graph (a) on figure 5. On the CFT side this decomposition

is reflected in (5.14). Then, the total length of the holographic N = 4 Steiner tree L
(4)
Dα →

L
(2)
Dα because the contribution from the radial edge is zero, (3.3).

Second identity block ε̃2 = 0. The fusion rules (2.3) constrain the dimensions

as follows

ε̃2 = 0 : ε̃1 = ε3 , (5.16)

and the monodromy equations (5.9) take the form(
I
(5|1)
++

)2
+ I

(5|1)
+− I

(5|1)
−+ + 4π2ε23 = 0 , I

(5|2)
+− I

(5|2)
−+ = 0 . (5.17)
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The equations can be explicitly solved reduced as

c1 = P
−1/α
1

(
ε1(1− α) +

αP1(ε1 + ε2 − ε3)
P1 − P2

+
αP1(ε1 − ε2 + ε3)

P1 − P3

)
,

c2 = P
−1/α
2

(
ε2(1− α)− αP2(ε1 + ε2 − ε3)

P1 − P2
− αP2(ε2 + ε3 − ε1)

P3 − P2

)
,

c3 = P
−1/α
3

(
ε3(1− α)− αP3(ε1 − ε2 + ε3)

P1 − P3
− αP3(ε2 + ε3 − ε1)

P2 − P3

)
.

(5.18)

Then, the respective 5-point identity block is given by

f
(2)
5 (z1,2,3|ε1,2,3) = ε1(α− 1) logP

1/α
1 + ε2(α− 1) logP

1/α
2 + ε3(α− 1) logP

1/α
3

− (ε1 + ε2 − ε3) log(P1 − P2)− (ε1 − ε2 + ε3) log(P1 − P3)

− (ε3 + ε2 − ε1) log(P2 − P3) .

(5.19)

Using the correspondence formula (4.4) we can explicitly see that

f
(2)
5 (z1,2,3|ε1,2,3) = −L(3)

Dα(w1, w2, w3) + iε1w1 + iε2w2 + iε3w3 , (5.20)

where L
(3)
Dα(w1, w2, w3) is given by the w-independent part of the length function of the

holographic N = 3 Steiner tree (3.11), see (c) on figure 6.

5.4 6-point identity blocks

Let us consider the 6-point identity block obtained by setting ε̃3 = 0. (Other cases ε̃1 = 0

or ε̃2 = 0 are dual to disconnected Steiner trees and will be discussed below.) From the

fusion rules (2.3) it follows that

ε̃3 = 0 : ε̃2 = ε4 . (5.21)

In this case, the monodromy equations (4.8) take the form(
I
(6|2)
++

)2
+ I

(6|1)
+− I

(6|1)
−+ + 4π2ε̃21 = 0 ,(

I
(6|1)
++

)2
+ I

(6|2)
+− I

(6|2)
−+ + 4π2ε24 = 0 ,

I
(6|3)
+− I

(6|3)
−+ = 0 .

(5.22)

The second equation of the system follows from the third one, so it can be reduced to the

system of two equations. One of these equations is linear, the second one is quadratic,

and, therefore, the system can be solved exactly. These equations fix any two accessory

parameters of the three original ones. For example, these are c2 and c3, while c1 can be

obtained from (4.6).

To simplify our calculations we consider the case ε1 = ε2, ε3 = ε4. Then, the mon-

odromy system (5.22) is solved as

c1 = P
−1/α
1

[
ε1 + α

(
ε1(P1 + P2)

P1 − P2
− ε̃1P1

√
(P1 − P4)(P2 − P4)(P1 − P3)(P2 − P3)

(P1 − P2)(P1 − P3)(P1 − P4)

)]
,

c2 = P
−1/α
2

[
ε1 − α

(
ε1(P1 + P2)

P1 − P2
− ε̃1P2

√
(P1 − P4)(P2 − P4)(P1 − P3)(P2 − P3)

(P1 − P2)(P2 − P3)(P2 − P4)

)]
,
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c3 = P
−1/α
3

[
ε3 + α

(
ε3(P3 + P4)

P3 − P4
− ε̃1P3

√
(P1 − P4)(P2 − P4)(P1 − P3)(P2 − P3)

(P3 − P4)(P2 − P3)(P1 − P3)

)]
,

c4 = P
−1/α
4

[
ε3 − α

(
ε3(P3 + P4)

P3 − P4
− ε̃1P4

√
(P1 − P4)(P2 − P4)(P1 − P3)(P2 − P3)

(P3 − P4)(P2 − P4)(P1 − P4)

)]
.

(5.23)

Integrating (4.10) we obtain the 6-point identity block

f
(3)
6 (z1,2,3,4|ε1,3, ε̃1) = ε1(α− 1)(logP

1/α
1 + logP

1/α
2 ) + ε3(α− 1)(logP

1/α
3 + logP

1/α
4 )

− 2ε1 log(P1 − P2)− 2ε3 log(P3 − P4)

+ ε̃1 log

[
2(P1 − P4)(P2 − P3)

(P1 − P2)(P3 − P4)

− 2
√

(P1 − P3)(P2 − P3)(P1 − P4)(P2 − P4)

(P1 − P2)(P3 − P4)
+ 1

]
.

(5.24)

This expression satisfies the correspondence formula (4.4)

f
(3)
6 (z1,2,3,4|ε1,3, ε̃1) = −L(4)

Dα(w1,2,3,4|ε0,1,3) + iε1w1 + iε1w2 + iε3w3 + iε3w4 , (5.25)

where L
(4)
Dα(w1, w2, w3, w4) is the w-independent part of the length of the N = 4 ideal

holographic Steiner tree (3.14), see (a) on figure 7.

6 Identity blocks and factorization

Recall that an identity conformal block is obtained by choosing one of exchange channels

to be an identity operator so that its dimension is zero.7 From section 2.4 it follows that

unifying a number of connected holographic Steiner trees we obtain a Steiner tree of the

same holographic type but disconnected. However, this factorization property is far from

evident when rephrased in CFT terms. Indeed, both the original (quantum) and classical

blocks with an identity exchange channel do not in general factorize into two blocks. In this

section we explicitly show that in the zeroth exchange limit perturbative classical blocks

do factorize into a sum of other perturbative classical blocks.

6.1 Factorization relation

Let fn(z|α, ε, ε̃) denote a perturbative n-point classical block and f
(i)
n (z|α, ε, ε̃) denote a

block obtained from fn(z|α, ε, ε̃) by setting i-th intermediate dimension to zero, i.e.,

f (i)n (z|α, ε, ε̃) ≡ fn(z|α, ε, ε̃)
∣∣
ε̃i=0

. (6.1)

We call such a function f
(i)
n (z|α, ε, ε̃) an i-th identity n-point perturbative classical block, or,

i-th identity block, for short. In this notation, fn(z|α, ε, ε̃) ≡ f (0)n (z|α, ε, ε̃). Pictorially, the

7 When all possible exchange channels are unit operators we call such a block vacuum. Vacuum blocks

are operational in calculating the entanglement entropy at large central charge [3].
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Figure 9. Vacuum blocks with even n.

3

Figure 10. i-th identity block: ε̃i = 0, the identity channel is shown in red.

identity block diagram is shown on figure 10. The interesting case is when the rightmost

channel is an identity, ε̃n−3 = 0. The respective diagram looks like that of the original

n-point classical block. Therefore, we call such an n-point identity block maximal.

We will prove the following factorization relation for the perturbative classical blocks

f (s)n (z|α, ε, ε̃) = f
(s)
s+3(z

′|α, ε′, ε̃′) + f
(0)
n−s−1(z

′′|α, ε′′, ε̃′′) , (6.2)

at s = 1, 2, . . . , n− 3, where the first term on the right-hand side is (s+ 3)-point maximal

identity block, and the second term is (n − s − 1)-point block. The z-dependence splits

into two subsets as z = (z′, z′′), where z′ = {z1, . . . , zs+1} and z′′ = {zs+2, . . . , zn−2}. In

the sequel, using the projective conformal invariance we always set z1 = 0. Note that the

second subset of points starts with zs+2 6= 0 that explains why we rederived the monodromy

equation keeping the first point arbitrary. The classical dimensions in (6.2) are also split

into two subsets. Here, we have to take into account the fusion rules (2.3) that yield the

following constraints

ε̃s = 0 : ε̃s−1 = εs+1 , ε̃s+1 = εs+2 . (6.3)

Therefore, having ε = (ε1, . . . , εn−2) and ε̃ = (ε̃1, . . . , ε̃n−3) on the left-hand side of (6.2)

we obtain on the right-hand side

ε′ = (ε1, . . . , εs+1) , ε′′ = (εs+2, . . . , εn−2) ,

ε̃′ = (ε̃1 . . . , ε̃s−2) , ε̃′′ = (ε̃s+2, . . . , ε̃n−3) ,
(6.4)

with exception of ε′ = (ε1 , ε1) in the case of s = 1 identity block. A few comments are

in order. In the bulk, maximal identity blocks correspond to ideal holographic Steiner

trees (see section 2.4). Also, we note that the factorization relation is non-trivial only for

s ≤ n−4. When s = n−3 the relation (6.2) becomes the identity because f
(0)
2 (z|α, ε, ε̃) = 0,

see the end of section 4.1.

A given n-point identity block (6.1) is a particular value of the original block and,

therefore, satisfies the n-point monodromy system (4.8). Here, to simplify our presentation

we identify knowing the block function with knowing its accessory parameters. A-priori,

it is not evident whether a given identity block can be represented as a sum of two other

blocks. For this to happen it is necessary that accessory parameters corresponding to those

two blocks satisfy the original n-point monodromy system (4.8) where the dimensions are

subjected to the fusion constraints (6.3). On the other hand, the accessory parameters
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3

Figure 11. The factorization relation for the identity block from figure 10.

of the two blocks satisfy their own monodromy systems with less number of equations.

Meanwhile, counting accessory parameters on both sides of the factorization relation (6.2)

we find out that their numbers are different. Therefore, the problem is to show that

equating one of intermediate dimensions to zero the original monodromy system indeed

has a solution corresponding to two independent subsystems indicated in the factorization

relation.

To prove the factorization relation (6.2) we first consider the case k = 1. We explicitly

demonstrate our technique and then generalize the proof to the case of arbitrary k in

appendix C. At s = 1 in (6.2) the factorization relation reads f
(1)
n (z|ε, ε̃) = f

(1)
4 (z′|α, ε′, ε̃′)+

f
(0)
n−2(z

′′|α, ε′′, ε̃′′) that must follow from the general monodromy equations (4.8) at ε̃1 = 0.

The fusion constraints (6.3) in this case are

ε̃1 = 0 : ε1 = ε2 , ε̃2 = ε3 . (6.5)

Let us consider the system (4.8) for the 4-point block f4(0, z2|α, ε2, ε2, 0) which is the

identity block, see section 5.2. In this case, there is a single equation

I
(4|1)
+− I

(4|1)
−+ +

(
I
(4|1)
++

)2
= 0 , (6.6)

where from (4.9) we find that I
(4|1)
++ = 0, and

I
(4|1)
+− =

2πi

α

[
αε2 + c2(1− z2)− ε2 − (1− z2)α(c2(1− z2)− ε2(1 + α))

]
,

I
(4|1)
−+ = −2πi

α

[
− αε2 + c2(1− z2)− ε2 − (1− z2)−α(c2(1− z2)− ε2(1− α))

]
.

(6.7)

Noting that I
(4|1)
−+ = (1 − z2)−αI(4|1)+− we find out that the equation (6.6) factorizes, and,

therefore, is equivalent to

I
(4|1)
+− = 0 . (6.8)

In particular, this linear equation in c2 can be directly solved to yield the 4-point identity

block function.

Now, we analyze the monodromy system (4.8) where the first point is set z1 = 0, and

the dimensions are subjected to the fusion conditions (6.5). There are n − 3 accessory

parameters c2, . . . , cn−2, and let the first parameter c2 satisfy the 4-point identity block

system (6.8). We show that of n−3 equations in (4.8) the first two are identically satisfied

while the remaining n− 5 equations are non-trivial and describe (n− 2)-point block.

– 23 –



J
H
E
P
0
2
(
2
0
1
9
)
0
2
3

1st equation. Consider the first equation k = 1 in the n-point system (4.8). Recalling

the constraints (6.5) we obtain

I
(n|1)
+− I

(n|1)
−+ +

(
I
(n|1)
++

)2
= 0 , (6.9)

where

I
(n|1)
+− =

2πi

α

[
αε2 +

n−2∑
i=2

(ci(1− zi)− εi)− (1− z2)α(c2(1− z2)− ε2(1 + α))

]
,

I
(n|1)
−+ = I

(n|1)
+−

∣∣
α→−α ,

I
(n|1)
++ =

2πi

α

n−2∑
i=3

[
ci(1− zi)− εi

]
.

(6.10)

By assumption, the parameter c2 satisfies (6.8) so that we can substitute that condition

into (6.10) and find out that

I
(n|1)
+− ≈ I(n|1)++ , I

(n|1)
−+ ≈ −I(n|1)++ , (6.11)

where the weak equality ≈ means that we used (6.8). It immediately follows that the

equation (6.9) is identically satisfied.

2nd equation. The k = 2 equation in the n-point system (4.8) is given by

I
(n|2)
+− I

(n|2)
−+ +

(
I
(n|2)
++

)2
+ 4π2ε23 = 0 , (6.12)

where I
(n|2)
+− has been evaluated using the condition (6.8),

I
(n|2)
+− ≈ 2πi

α

[ n−2∑
i=3

(ci(1− zi)− εi)− (1− z3)α(c3(1− z3)− ε3(1 + α))

]
,

I
(n|2)
−+ = I

(n|2)
+−

∣∣
α→−α ,

I
(n|2)
++ =

2πi

α

n−2∑
i=4

[
ci(1− zi)− εi

]
.

(6.13)

Let us now consider the second factor f
(0)
n−2(z

′′|α, ε′′, ε̃′′) in the factorization condition.

It depends on points z′′ = (z3, . . . , zn−2), where the first point z3 6= 0 and the associated

accessory parameters are c3, . . . , cn−2. It is known that the parameters of the (n−2)-point

monodromy system are linearly dependent

n−2∑
i=3

[
ci(1− zi)− εi

]
= 0 , (6.14)

that directly follow from (4.6) by relabelling indices. Using (6.14) and denoting x3 = ε3(1−
z3)− ε3 we can rewrite (6.13) in terms of x3 so that the monodromy equation (6.12) reads

4π2

α2
(x3 − αε3)(x3 + αε3)−

4π2

α2
x23 + 4π2ε23 = 0 , (6.15)

which is again identically satisfied.
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Other equations. The remaining equations in the n-point system (4.8) are

I
(n|k)
+− I

(n|k)
−+ +

(
I
(n|k)
++

)2
+ 4π2ε̃2k = 0 , k = 3, . . . , n− 3 , (6.16)

where using the condition (6.8) and the relation between accessory parameters (6.14) we get

I
(n|k)
+− ≈ 2πi

α

[
−

k+1∑
i=3

(1− zi)α(ci(1− zi)− εi(1 + α))

]
,

I
(n|k)
−+ = I

(n|k)
+−

∣∣
α→−α ,

I
(n|k)
++ =

2πi

α

n−2∑
i=k+2

[
ci(1− zi)− εi

]
.

(6.17)

In order for this system to describe the (n−2)-point block we have to show that I
(n|k)
+− should

take the form (4.9) where k → k + 2. That would effectively mean that the monodromy

system (4.8) describes (n − 2)-point block with points enumerated as 3, 4, . . . . At the

same time, I
(n|k)
++ is already (modulo shifting k) of the required form. We observe that

the i = 3 term in I
(n|k)
+− (6.17) can be represented as −(1− z3)α(c3(1− z3)− ε3(1 + α)) =

(1 − z3)α(αε3 +
∑n−2

i=4 (ci(1 − zi) − εi)), where we used (6.14). Substituting this relation

back into (6.17) we reproduce (4.9). We conclude that the equation system (6.16) indeed

describes accessory parameters of the general (n− 2)-point block.

Thus, we have shown that the factorization condition (6.2) is satisfied when s = 1. The

proof can be straightforwardly extended to arbitrary s, see appendix C. The general idea

is to use the monodromy equations for the maximal (s+ 3)-point identity block and then,

along with linear relation for the accessory parameters of the general (n−s−1)-point block

and the fusion constraints, to show that the original n-point monodromy equations reduce

to the (n−s−1)-point monodromy system thereby proving the factorization relation (6.2).

6.2 Multiple identity blocks

Two blocks on the right-hand side of the factorization condition (6.2) can be further fac-

torized by setting other intermediate dimensions to zero. Factorization of the second factor

f
(0)
n−2(z

′′|α, ε′′, ε̃′′) is obvious due to the same factorization relation. It is more interesting

to consider how the first factor f
(s)
s+3(z

′|α, ε′, ε̃′) (maximal identity block) factorizes.

Let us suppose now that one of intermediate dimensions of the maximal identity block

is set to zero, i.e. ε̃m = 0 for some m ∈ {1, 2, . . . , s−1}. The fusion rules, in this case, yield

ε̃m−1 = εm+1, ε̃m+1 = εm+2, cf. (6.3).

The factorization relation for the maximal identity block is given by

f
(s)
s+3(z|α, ε, ε̃) = f

(m)
m+3(z

′|α, ε′, ε̃′) + f
(s−m−1)
s−m+2 (z′′|α, ε′′, ε̃′′) , (6.18)

where on the right-hans side we have two maximal identity blocks of lower ranks, both the

coordinates and dimensions are properly split. The proof goes along the same lines as for

the original factorization relation (6.2).

– 25 –



J
H
E
P
0
2
(
2
0
1
9
)
0
2
3

It is clear that equating intermediate dimensions to zero can be continued to produce

more identity blocks that can be denoted as

f (a,b,...,c)n (z|α, ε, ε̃) ≡ fn(z|α, ε, ε̃)
∣∣
ε̃a,ε̃b,...,ε̃c=0

, (6.19)

where integers a, b, . . . , c = 1, . . . , n−3 label identity exchange channels. This process, how-

ever, is terminated at some stage because there is a finite number of exchange channels,

and, moreover, the fusion rules forbid equating intermediate dimensions to zero simultane-

ously.8 The extreme case is when maximum possible number of intermediate dimensions

is set to zero: (a) ε̃2i+1 = 0 for i = 0, 1, 2, . . ., (b) ε̃2i = 0 for i = 1, 2, . . . (see our comments

in the footnote 7). Then, the original block is factorized into a sequence of 4-point identity

blocks, and, possibly, 3-point block along with one of 5-point identity blocks.9

Let n be even. Then, using the fusion rules (6.3) we find two decompositions for

identity blocks according to the subsets (a) and (b) above,

f (1,3,...,n−3)n (z|α, ε, ε̃) =

n−2
2∑
i=1

f
(1)
4 (z2i−1, z2i|α, ε2i−1) , (6.20)

f (2,4,...,n−4)n (z|α, ε, ε̃) = f
(2)
5 (z1,2,3|α, ε1,2,3) + f3(zn−2|α, εn−2) (6.21)

+

n−4
2∑
i=2

f
(1)
4 (z2i, z2i+1|α, ε2i) , (6.22)

where 4-point identity blocks are given by (5.8), 3-point block is given by (5.3), and 5-point

identity block is given by (5.19), see figure 13.

The analogous decompositions of identity blocks hold in the odd n case,

f (1,3,...,n−4)n (z|α, ε, ε̃) = f3(zn−2|α, εn−2) +

n−3
2∑
i=1

f
(1)
4 (z2i−1, z2i|α, ε2i−1) , (6.23)

f (2,4,...,n−3)n (z|α, ε, ε̃) = f
(2)
5 (z1,2,3|α, ε1,2,3) +

n−3
2∑
i=2

f
(1)
4 (z2i, z2i+1|α, ε2i) , (6.24)

see figure 12. The expression for the 5-point identity block (5.14) is a particular example

of decomposition (6.23).

To conclude this section let us note that the logic of the block/length correspondence

can be inverted in the sense that having established the factorization relation for perturba-

tive classical blocks on the CFT side we immediately conclude that in the bulk the graph

theory realization should give rise to graphs of particular type where cutting one inner

edge yields a disconnected graph. On the other hand, since the full classical block (already

the second order correction) has no such a factorization property it means that the dual

8If ε̃i = ε̃i+1 = 0 then εi+2 = 0 meaning that the original n-point block is reduced to the (n − 1)-point

block. This corresponds to the cut rule (2.13) of section 2.4. The factorization we discuss here keeps the

number of points n intact.
9Similar but different factorization in other OPE channels were discussed in [12, 58].
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· · · · · ·
z1 z2 z3 z4 zn�4 zn�3 zn�2

zn

zn�1

· · · · · ·

z2

z1

z3 z4 z5 zn�3 zn�2

zn

zn�1

Figure 10. Vacuum blocks with odd n.

4

Figure 12. Vacuum blocks with odd n. The bottom diagram corresponds to the disconnected

Steiner tree (b) on figure 4.

z1, ✏1

z2, ✏2 zn�2 , ✏n�2· · · · · ·

zn, ✏n

zn�1, ✏n�1

✏̃1 ✏̃n�3✏̃n�4✏̃i = 0

Figure 7. i-th identity block: ✏̃i = 0, the zeroth channel is shown in red.

0, ✏1

z2, ✏2 zn�2, ✏n�2

zn, ✏n

zn�1, ✏n�1

z3 , ✏3 ✏̃n�3zn�3, ✏n�3

Figure 8. Factorized 7-point block.

· · · · · ·
z1 z2 z3 z4 zn�3 zn�2

zn

zn�1

· · · · · ·

z2

z1

z3 z4 z5 zn�4 zn�3 zn�2

zn

zn�1

Figure 9. Vacuum blocks with even n.

3

Figure 13. Vacuum blocks with even n. The upper diagram corresponds to the disconnected

Steiner tree (a) on figure 4.

graphs have loops. It is natural, because exchange channels in the leading heavy-light

approximation are given by one (primary) state and considering sub-leading terms yields

more (secondary) states, and, therefore, more complicated dual graphs.

7 Conclusion

In this paper we reformulated the heavy-light regime of the semiclassical AdS3/CFT2
correspondence as the correspondence between weighted Steiner trees in the hyperbolic

geometry and perturbative classical blocks. The novel part here is a geometric view on

the geodesic networks in the bulk space. This approach allows us to find the total lengths

more effectively because we use the standard (z, z̄) parameterization of the hyperbolic

spaces and interaction vertices of the particle’s worldlines are described as the generalized

Fermat-Torricelli points. In the general case of n-point blocks these two observations help

to explicitly integrate a part of complicated algebraic equations of motion arising within the

worldline formulation [8]. To demonstrate our technique we have explicitly found lengths

of particular Steiner trees dual to different n-point perturbative blocks with n = 3, 4, 5, 6.

Formalizing the bulk description of conformal blocks in the heavy-light approximation

as holographic Steiner trees helps to establish the factorization property of the conformal

– 27 –



J
H
E
P
0
2
(
2
0
1
9
)
0
2
3

blocks. Indeed, having the special graph theory in the bulk space we can discuss its various

geometric properties including cuts and connectivity. In this way, we immediately obtain

a simple description of (dis)connected Steiner trees. On the CFT side, connectivity and

cuts are directly translated into factorization and identity blocks. However, the factor-

ization property is far from evident because block functions are obtained by integrating

the accessory parameters which in their turn satisfy complicated monodromy equations.

Nonetheless, we were able to prove the factorization relations purely in CFT terms without

referring to the bulk formulation. As a by-product, we classify all identity blocks associated

to a given n-point perturbative classical block and discuss their realization in terms of the

Steiner trees. By way of illustration, we have explicitly found the accessory parameters and

the corresponding block functions in the n = 3, 4, 5, 6 cases that supplement our analysis

of the holographic Steiner trees in the bulk.

As a concluding comment let us note that from the bulk/boundary perspective the

perturbative classical blocks can be thought of as emergent objects. Indeed, one can view

conformal blocks as physical quantities because these form a basis in the space of n-point

correlation functions. On the other hand, we see that it is the factorization properties of

the conformal blocks that ensure their identification with purely abstract objects like trees

and forests in the graph theory.

It would be interesting to extend our analysis of the Steiner trees in the hyperbolic

geometry in several directions. For example, one can consider the inverse Steiner problem:

given FT points and endpoints, to characterize the weights which minimize the total length.

For N = 3 graph the answer is positive [50]. For N ≥ 4 Steiner trees the inverse problem

has not been analyzed. Moreover, we hope that having defined holographic Steiner trees as

those inscribed into N -gons with N − 1 ideal vertices we might use many relevant results

from two-dimensional hyperbolic geometry and, thus, to make progress in calculating total

lengths of general trees. Also, it would be interesting to consider other OPE channels in

this context, see e.g. [12, 16]. Hopefully, explicit expressions for the total length of the

Steiner trees like (c) on figure 6 or (a) on figure 7 could be interesting in the context of

studying the entanglement entropy phenomena, see e.g. [12, 58–60].
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A Boundary regularization

We can approach the boundary in different ways. The most natural is when a given point

flows along the geodesic intersecting the boundary somewhere. This is the shorts path and

the regulator can be introduced as the inverse geodesic length. However, we use a different

regularization, when the angle coordinate of a given point remain fixed, while the radius

tends to 1 as r ∼ e−ε, where ε is the boundary cut-off parameter. We use this prescription

because the boundary attachments of outer edges of holographic Steiner trees depend only

on angles which are convenient to be kept fixed.
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An edge between two boundary points z1 = exp[iw1] and z2 = exp[iw2] has an infinite

length as most evident from the general formula (2.7) represented as

LD(w1, w2) = log
1 + u

1− u , where u = 1 . (A.1)

In order to regularize the logarithm we introduce the boundary cut-off as z1 = exp[−ε+iw1]

and z2 = exp[−ε+ iw2] at ε→ +0. Let w2 − w1 ≥ 0. Then, defining u = A/B, where

A = 2 exp[−ε] sin
w2 − w1

2
,

B =

√
(1− exp[−2ε] cos(w2 − w1))2 + exp[−4ε] sin2(w2 − w1) , (A.2)

we find that the length function can be represented as

LD(w1, w2) = log
(B +A)2

B2 −A2
. (A.3)

It is remarkable that in this form the denominator depends only on ε that allows us to

isolate the divergence. Indeed, using (A.2) we find

(B +A)2 = 16 sin2 w2 − w1

2
− 32 sin2 w2 − w1

2
ε+O(ε2) ,

B2 −A2 = (1− exp[−2ε])2 = 4ε2 +O(ε2) .

(A.4)

The length function represented as a finite part plus logarithmic divergence is given by

LD(w1, w2) = log

[
4 sin2 w2 − w1

2

]
− 2 log ε+O(ε) . (A.5)

Thus, we find that a regularized length is defined to be the leading term in the decompo-

sition (A.5).

Now, consider an edge between a boundary point z1 = exp[−ε + iw] where ε → +0

and a point inside the disk, z2 = r exp[iϕ]. Similarly to the previous case we define

u = A/B, where

A =
√
r2 + exp[−2ε]− 2r exp[−ε] cos(w − ϕ) ,

B =
√

1 + r2 exp[−2ε]− 2r exp[−ε] cos(w − ϕ) .
(A.6)

Representing the length function as in (A.3) we find

(B +A)2 = 4
(
r2 − 2r cos(ϕ− w) + 1

)
+O(ε) ,

B2 −A2 = 2
(
1− r2

)
ε− 2

(
1− r2

)
ε2 +O(ε3) .

(A.7)

Isolating the logarithmic divergence we obtain

LD(w, r, ϕ) = log

(
r2 − 2r cos(ϕ− w) + 1

)
1− r2 + log 2− log ε+O(ε) . (A.8)
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B Details of calculations

N = 3 trees in section 3.2. In what follows we calculate the length of the Steiner tree

(a) on figure 6. The boundary points z1,2, the point inside the disk z0, and the FT point

zFT are given in polar coordinates,

z1 = exp[iw1 − ε] , z2 = exp[iw2 − ε] , z0 = r0 exp[iw0] , zFT = r exp[iϕ] . (B.1)

From the general circle equation (2.6) we find that the edge connecting points z0 and zFT
is described by the equation

zz̄ − z
((

r0
(
r2 + 1

)
sinw0 −

(
r20 + 1

)
r sinφ

)
2r0r sin(φ− w0)

+ i
(
r0
(
r2 + 1

)
cosw0 −

(
r20 + 1

)
r cosφ

)
2r0r cos(φ− w0)

)
− z̄

((
r0
(
r2 + 1

)
sinψ −

(
r20 + 1

)
r sinφ

)
2r0r sin(φ− w0)

− i
(
r0
(
r2 + 1

)
cosψ −

(
r20 + 1

)
r cosφ

)
2r0r cos(φ− w0)

)
+ 1 = 0 ,

(B.2)

while the edges connecting points z1,2 and zFT are described by the equations

zz̄ −
((

r2 + 1
)

sinw1,2 − 2r sinφ

2r sin(w1,2 − φ)
+ i

(
r2 + 1

)
cosw1,2 − 2r cosφ

2r sin(w1,2 − φ)

)
z

−
((

r2 + 1
)

sinw1,2 − 2r sinφ

2r sin(w1,2 − φ)
− i

(
r2 + 1

)
cosw1,2 − 2r cosφ

2r sin(w1,2 − φ)

)
z̄ + 1 = 0 .

(B.3)

The corresponding slope coefficients (2.10) can be directly read off from these formulas,

κ1 =
sinw1 − r(r sin(w1 − 2φ) + 2 sinφ)

r(r cos(w1 − 2φ)− 2 cosφ) + cosw1
,

κ2 =
sinw2 − r(r sin(w2 − 2φ) + 2 sinφ)

r(r cos(w2 − 2φ)− 2 cosφ) + cosw2
,

κ3 =

(
r20 + 1

)
r sinφ− r0

(
r2 sin(2φ− w0) + sinw0

)(
r20 + 1

)
r cosφ− r0 (r2 cos(2φ− w0) + cosw0)

.

(B.4)

Now, we substitute the slopes into the equation system (2.12). To this end, using the (2.11)

we write down cosines of the angles γ21, γ10, γ20 as follows(
r4 + 1

)
cos(w1 − w2) + 2r

(
r cos(w2 − w1 − 2φ)−

(
r2 + 1

)
(cos(w1 − φ) + cos(w2 − φ))

)
+ 4r2

(r2 − 2r cos(w1 − φ) + 1) (r2 − 2r cos(w2 − φ) + 1)
= cos γ21

(B.5)

2r
(
r
(
r20 + r0 cos(w1 + w0 − 2φ) + 1

)
− r0

(
r2 + 1

)
cos(φ− w0)

)
cos(w1 − φ)

(r2 − 2r cos(w1 − φ) + 1)
√(

r20 − 2r0r cos(φ− w0) + r2
) (
r20r

2 − 2r0r cos(φ− w0) + 1
)

− −
(
r20 + 1

)
r
(
r2 + 1

)
− r0

(
r4 + 1

)
cos(w1 − w0)

(r2 − 2r cos(w1 − φ) + 1)
√(

r20 − 2r0r cos(φ− w0) + r2
) (
r20r

2 − 2r0r cos(φ− w0) + 1
) = cos γ10

(B.6)

2r
(
r
(
r20 + r0 cos(w2 + w0 − 2φ) + 1

)
− r0

(
r2 + 1

)
cos(φ− w0)

)
cos(w2 − φ)

(r2 − 2r cos(w2 − φ) + 1)
√(

r20 − 2r0r cos(φ− w0) + r2
) (
r20r

2 − 2r0r cos(φ− w0) + 1
)

− −
(
r20 + 1

)
r
(
r2 + 1

)
− r0

(
r4 + 1

)
cos(w2 − w0)

(r2 − 2r cos(w2 − φ) + 1)
√(

r20 − 2r0r cos(φ− w0) + r2
) (
r20r

2 − 2r0r cos(φ− w0) + 1
) = cos γ20

(B.7)
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where the right-hand sides are given by (2.2). The resulting equation system is very compli-

cated but it can be drastically simplified using the regularized exponentiated lengths (A.8).

Let us introduce the following variables

L1 =
1 + r2 − 2r cos(w1 − φ)

1− r2 , L2 =
1 + r2 − 2r cos(w2 − φ)

1− r2 , L0 =
1 + U

1− U , (B.8)

where

U =

√
r20 − 2r0r cos(φ− w0) + r2

r20r
2 − 2r0r cos(φ− w0) + 1

. (B.9)

The first and second expressions are exponentiated lengths of the edges connecting z1,2 and

zFT , the third one is the exponentiated length of the edge connecting zFT and z0. Then,

equations (B.5)–(B.7) take the form

1− 2 sin2w21

L1L2
= cos γ12 ,

K2 − L2(1 + L2
0)

L2(L2
0 − 1)

= cos γ20 ,
K1 − L1(1 + L2

0)

L1(L2
0 − 1)

= cos γ10 ,

(B.10)

where K1,2 are functions of initial coordinates,

K1,2 =
1 + r20 − 2r0 cos(w1,2 − w0)

1− r20
. (B.11)

Remarkably, equations (B.10) are linear in L1,2 and quadratic with respect to (L0)
2, and,

therefore, can be explicitly solved. Recalling the notation (3.5) we represent the solution

as (3.6). Thus, the final answer is (3.8).

N = 4 tree in section 3.3. Let ε1 = ε2, ε3 = ε4 and ε̃ 6= ε1,3. We claim that (3.13)

is minimized with respect to the junction point z0 = (r0, w0). Making use of (3.8) we can

find the length function

L
(4)
D (w1, w2, w3, w4) = 2ε1 log sinw21 + 2ε3 log sinw43

− ε̃ log
(√

P12 −
√
P12 − 1

)(√
P34 −

√
P34 − 1

)
+ C̃ ,

(B.12)

where

Pij =
KiKj

sin2wij
, Ki =

1 + r20 − 2r0 cos[wi − w0]

1− r20
,

C̃ =
ε̃

2

(
log

(γ1−1)(γ3−1)

(γ1+1)(γ3+1)
+ γ1 log

γ21
γ21−1

+ γ3 log
γ23

γ23−1

)
, γ1 =

2ε1
ε̃
, γ3 =

2ε3
ε̃
.

(B.13)

Let us extremize the function (B.12). Evaluating first derivatives in z0 we obtain the

following two relations

sin(w̃21 − w0)√
r20 − 2r0 cos(w1 − w0) + 1

√
r20 − 2r0 cos(w2 − w0) + 1

=
sin(−w̃43 + w0)√

r20 − 2r0 cos(w4 − w0) + 1
√
r20 − 2r0 cos(w3 − w0) + 1

, (B.14)
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2r0 cosw21 − (1 + r20) cos(w̃21 − w0)√
r20 − 2r0 cos(w1 − w0) + 1

√
r20 − 2r0 cos(w2 − w0) + 1

=
−2r0 cosw43 + (1 + r20) cos(w̃43 − w0)√

r20 − 2r0 cos(w4 − w0) + 1
√
r20 − 2r0 cos(w3 − w0) + 1

, (B.15)

where we denoted w̃ij = (wi + wj)/2. Solving this system of two equations one can fix

coordinates of the junction point z0 = (r0, w0). After that, substituting z0 into the initial

function (B.12) we will find a sought minimal total length. However, the equations are

hard to integrate. Moreover, it turns out that there is a continuous family of roots.

Let us discuss a similar problem on the Euclidean plane R2. Suppose that we want

to find a point z0 ∈ R2 that minimizes the sum of distances from z0 to the points (0, 0)

and (1, 0) on the x-axis. The total length function is given by f(x0, y0) =
√
x20 + y20 +√

(x0 − 1)2 + (y0 − 1)2 and the minimization condition is df = 0. One can explicitly show

that a general solution is given by z0 = (x0, 0) for ∀x0 ∈ [0, 1]. Therefore, in order to fix x0
one is free to impose an additional condition consistent with the minimization conditions.

The analysis on D is essentially the same and the junction point cannot be fixed

unambiguously by two minimization equations (B.14) and (B.15). We choose an additional

condition as

K1K2 = K3K4 . (B.16)

It is consistent with (B.14) and (B.15). Then, the solution to (B.14)–(B.16) is given by

r0 =
1

2

[
cosw21 + cosw43 −

√
(cosw21 + cosw43)2 − 4 cos2

w̃21 − w̃43

2

]
sec

w̃21 − w̃43

2
,

w0 =
w̃43 + w̃21

2
. (B.17)

Substituting (B.17) into (B.12) we obtain the final length function (3.14), (3.15).

C Proving the factorization relation

Here, we prove the factorization relation (6.2) for any s. To simplify our presentation we

introduce the notation xi = ci(1− zi)− εi. Then, the relation (4.6) is rewritten as

n−2∑
i=1

xi = 0 . (C.1)

The fusion rules around the identity exchange channel are given by (6.3) (see figure 11).

Our strategy below is to write down the monodromy system for the maximal (s+ 3)-point

block and then use it in the monodromy system for the s-th identity n-point block. We

will see that the n-point system decouples into two subsystems according to the factoriza-

tion relation.
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Maximal identity block. Let us consider the maximal identity block f
(s)
s+3(z

′|ε′, ε̃′),
where z′ = {0, z2, . . . , zs+1}. By definition of the maximal identity block we have to

consider first the monodromy equations for the general (s + 3)-point block and then to

impose the fusion condition (6.3). The (s+3)-point monodromy equations (4.8)–(4.9) take

the form

I
(s+3|k)
+− I

(s+3|k)
−+ +

(
I
(s+3|k)
++

)2
+ 4π2ε̃2k = 0 , k = 1, . . . , s , (C.2)

where

I
(s+3|k)
+− =

2πi

α

[
αε1 +

s+1∑
i=2

xi −
k+1∑
i=2

(1− zi)α(xi − αεi)
]
,

I
(s+3|k)
−+ = I

(s+3|k)
+−

∣∣
α→−α ,

I
(s+3|k)
++ =

2πi

α

s+1∑
i=k+2

xi .

(C.3)

The accessory parameters c1, c2, . . . , cs+1 satisfy the relation of the type (4.6) (see

also (C.2)),

s+1∑
i=1

xi = 0 . (C.4)

Note that since ε̃s = 0 and I
(s+3|s)
++ = 0, then the k = s equation in (C.2) factorizes as

I
(s+3|s)
+− I

(s+3|s)
−+ = 0. The two factors read

αε1 +

s+1∑
i=2

xi −
s+1∑
i=2

(1− zi)α(xi − αεi) = 0 ,

−αε1 +

s+1∑
i=2

xi −
s+1∑
i=2

(1− zi)−α(xi + αεi) = 0 .

(C.5)

These relations can be substituted into I
(s+3|s−1)
+− and I

(s+3|s−1)
−+ . In particular, it follows

that the k = s− 1 equation in (C.2) is satisfied identically because all terms are collected

into two (±) identical groups of differences of the squares. One concludes that two of the

quadratic equations in (C.2) are now replaced by two linear relations (C.5).

Non-identity block. Let us consider the second factor in (6.2) which is (n − s − 1)-

point block f
(0)
n−s−1(z

′′|ε′′, ε̃′′), where z′′ = {zs+2, . . . , zn−2}. Note that here the first point

zs+2 6= 0 and, therefore, the respective monodromy equations take the properly relabeled

form (4.8), (4.9), namely

I
(n−s−1|k)
+− I

(n−s−1|k)
−+ +

(
I
(n−s−1|k)
++

)2
+ 4π2ε̃2k = 0 , k = s+ 2, . . . , n− 3 , (C.6)
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where

I
(n−s−1|k)
+− =

2πi

α

[
(1− zs+2)

α

(
αεs+2 +

n−s−3∑
i=s+3

xi

)
−

k+1∑
i=s+3

(1− zi)α(xi − αεi)
]
,

I
(n−s−1|k)
−+ = I

(n−s−1|k)
+−

∣∣
α→−α ,

I
(n−s−1|k)
++ =

2πi

α

n−2∑
i=k+2

xi .

(C.7)

s-th identity block. Now we consider the identity block f
(s)
n (z|ε, ε̃) on the left-hand

side of the factorization relation (6.2). It is described by the n-point monodromy sys-

tem (4.8), (4.9) with z1 = 1 and the fusion constraints (6.3) imposed.

It is obvious that the first s equations of the system are given by the maximal identity

block equations (C.2) with accessory parameters c2, . . . , cs+1. Then, from (C.1) and (C.4)

it follows that the remaining accessory parameters cs+2, . . . , cn−2 satisfy the relation

n−2∑
i=s+2

xi = 0 . (C.8)

Let us consider now the k = s+ 1 equation of the n-point monodromy system (4.8)

I
(n|s+1)
+− I

(n|s+1)
−+ +

(
I
(n|s+1)
++

)2
+ 4π2ε2s+2 = 0 , (C.9)

where we used the fusion rule (6.3). Substituting (C.5) into I
(n|s+1)
±∓ we can show that this

equation is identically satisfied.

The other equations with k = s+ 2, . . . of the system (4.8) are given by

I
(n|k)
+− I

(n|k)
−+ +

(
I
(n|k)
++

)2
+ 4π2ε̃2k = 0 , k = s+ 2, . . . , n− 3 . (C.10)

These equations are non-trivial and identical to (C.6) and (C.7). Indeed, taking account

of (C.8) and then (C.5) we obtain

I
(n|k)
+− =

2πi

α

[
αε1 +

n−2∑
i=2

xi −
k+1∑
i=2

(1− zi)α(xi − αεi)
]

≈ 2πi

α

[
αε1 +

s+1∑
i=2

xi −
k+1∑
i=2

(1− zi)α(xi − αεi)
]

≈ 2πi

α

[
−(1− zs+2)

α(xs+2 − αεs+2)−
k+1∑
i=s+3

(1− zi)α(xi − αεi)
]

≈ 2πi

α

[
(1− zs+2)

α

(
αεs+2 +

n−2∑
i=s+2

xi

)
−

k+1∑
i=s+3

(1− zi)α(xi − αεi)
]
.

(C.11)

The last expression is exactly I
(n−s−1|k)
+− from (C.7). On the other hand, I

(n|k)
++ is of the

required form as well. Therefore, we conclude that the equations (C.10) do describe an

(n− s− 1)-point block and the factorization condition (6.2) is satisfied.
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