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1 Introduction

The dynamics of quantum field theory at finite temperature is of fundamental interest in

fields ranging from dynamical critical phenomena to cosmology, in blackhole physics/quan-

tum gravity. Until recently, it had been conventional to assume that, in principle all

the observables of real time, finite temperature quantum field theory are encoded in its

Schwinger Keldysh correlators [1–10]. This statement has been upended by the advent of

out of time ordered correlators (OTOCs) [11] which fall beyond the conventional Schwinger-

Keldysh formalism and the usual edifice of intuitions, approximations and computations
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built around it. These OTOCs require that we extend the standard Schwinger-Keldysh

formalism to path integrals with many time-fold contours [12, 13].

From the viewpoint of a non-equilibrium field theorist, three crucial questions could

be asked regarding OTOCs:

• What new physics do these OTOCs encode? A growing literature has shown rela-

tions to notions of chaos vs. ergodicity say in blackholes [14, 15] via its relation to

Lodschmidt echo,1 thermalisation vs. localisation [16–19], quantum information mea-

sures related to joint quasi-probablibilities weak measurements [20–24], generalised

discontinuities of the correlators [25–27] which encode useful spectral information in

CFTs. The analytic structure of OTOCs in quantum thermal systems has led to

bounds on chaos [15, 28–31], generalised FDTs [32] and in generalising Eigenstate

hypothesis [33]. This fast growing array of ideas show the usefulness of studying

OTOCs.

• Secondly, how are they to be measured in experiments? The dogma that only time-

ordered correlators can be measured in an experiment has yielded ground to an

ingenious set of experiments/experimental proposals aimed at reverse time evolu-

tion/weak measurements [34, 35]. Despite, this, we are far from having experimental

protocols to measure OTOCs in complex systems.

• Thirdly, What are the most efficient ways to compute these correlators? Any attempt

at setting up a naive diagrammatic perturbation theory, even in the simplest of

quantum field theories, runs aground with a proliferation of fields and their Feynman

vertices. This definitely calls for new computational frameworks to systematise such

calculations.

In this work, we will primarily address the last issue by constructing a practical framework

to compute and classify OTOCs of a system at thermal equilibrium. Stated briefly, this can

be done by recognising that the core physics of the system can be encoded in certain spectral

functions and the structure of thermal correlators naturally admit spectral representations

in terms of them. This statement is a finite-temperature generalisation of the Kallen-

Lehmann spectral representations in the zero temperature quantum field theory (see, for

example, subsection 10.7 of [36] for a textbook discussion).

The idea of spectral representation for Schwinger-Keldysh real time correlators has a

long history [37–44] (for a discussion in terms of discontinuities see [45, 46]). Such spectral

representations have been found useful in developing efficient perturbative formalisms [47–

50]. They have found applications in transport computations at finite temperature and

in developing effective methods to truncate to kinetic theory descriptions (including ef-

fective actions encoding hard thermal loops of gluons at high temperature ala Braaten-

Pisarski [51]). Our aim in this work is to develop a similarly useful formalism for out of

time ordered thermal perturbation theory.

We will now describe in slightly more detail, the idea of spectral functions/representa-

tions. For example, in the above mentioned works, it was recognised that the 2-pt and

1See http://www.scholarpedia.org/article/Loschmidt echo for a description.
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3-pt SK correlators in the thermal state can be written down in terms of thermal expec-

tation values of fully nested time-ordered commutators (also termed fully retarded Green

functions [39]) of the form:

〈Θ12[O(t1), O(t2)]+Θ21[O(t2), O(t1)]〉β , 〈Θ123[[O(t1), O(t2)], O(t3)]+permutations〉β .

Here Θij... are step functions enforcing time-ordering ti > tj > . . . . These are the afore-

mentioned spectral functions which are nicer objects to compute than the full real-time

correlators and they are also easiest to obtain by analytic continuation from Euclidean

correlators [39, 52]. Commutators have nice causality properties in time domain which, via

Kramers-Kronig type arguments, enforce good analytic behaviour in appropriate regions

of the frequency domain.

Another key insight relevant to this work is the following: there is a natural formalism

in terms of arrays of certain column vectors which provides a convenient way to organise

and use such spectral representations [42, 43, 47–49]. This column vector basis is also

naturally related to what is termed retarded-advanced (RA) basis [52–55] in the thermal

SK formalism.

When we move to 4-pt correlators, the time-ordered commutators are no more suffi-

cient to capture all thermal correlations [32], and OTO commutators/spectral functions

should be added to the set of spectral functions. The addition of OTO spectral functions

into the analysis, clears up the complexity visible in older analysis of thermal SK correla-

tors. The authors of [32] showed that, by adding in the OTO spectral functions, one can

indeed reconstruct all n-point Wightman correlators. In fact, the constraints imposed by

thermal periodicity can be completely solved for an arbitrary n-pt function, and a sim-

ple formula can be written down expressing arbitrary Wightman correlators in terms of

spectral functions [32].

Wightman correlators, however, are not natural objects to formulate perturbation

theory or to set up diagrammatics. Diagrammatics and path integral formalism naturally

work with contour-ordered correlators on the multi-time-fold contours. In principle, this

is a simple matter of expressing contour correlators in terms of Wightman functions and

using the relations derived in [32]. In practice, however, combinatorics overwhelm this

exercise, resulting in complicated looking expressions which hide much of the structure.

Inspired by the previous work on SK correlators, in this work, we will extend the column

vector/retarded-advanced formalism to generalised SK correlators. Our basis is chosen

such that, on a time contour with k timefolds, we have k ‘retarded’ combinations which

can occur within a correlator only in the causal past of some other operators and k advanced

combinations which can occur only in the causal future. This is a natural generalisation of

the usual retarded-advanced formalism with a single retarded and a single advanced field.

Our primary aim here is to express the contour correlators in terms of spectral functions

within such a formalism.

The paper is organised as follows: we will begin in section 2 by reviewing spectral

representation of Schwinger-Keldysh two point functions in terms of column vectors. The

material here is well-known and is discussed in a variety of reviews and textbooks (see, for

example [4]). We write down many equivalent expressions for the two point functions and
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note their underlying structure. Our notation and emphasis here are aimed towards further

generalisation. The reader familiar with this material may wish to skim these sections

and move ahead to section 3 where we extend this spectral representation to two point

functions in the generalised SK contour. This section brings out the main ideas behind

the construction of these representations which is then applied to higher point functions.

This is followed by section 4 where we quote the results for higher point functions within

generalised Schwinger-Keldysh formalism. We end with a discussion of future directions in

section 5.

For the convenience of the reader, many of the technical details are relegated to the

appendices: in appendix A, we summarise the basis of column vectors on which our spectral

representations are based. The appendix B details the structure of arguments used to

constrain the structure of the contour-ordered thermal correlators. In appendices C.1, C.2

and C.3, we present the analyses of 2 point, 3 point and 4 point functions respectively.

2 Spectral representation of SK two point functions

2.1 Example of a free scalar field

Before going into the general contour correlators and their relations, let us begin with a

simple example. Consider the contour-ordered, thermal two point functions of a free real

scalar field in SK formalism (in the mostly plus metric convention):

〈TCφ1(x1)φ1(x2)〉 = 〈T φ(x1)φ(x2)〉 =

∫

p

ρp(Θ12 + fp)e
ip·(x1−x2) ,

〈TCφ1(x1)φ2(x2)〉 = 〈φ(x2)φ(x1)〉 =

∫

p

ρpfpe
ip·(x1−x2) ,

〈TCφ2(x1)φ1(x2)〉 = 〈φ(x1)φ(x2)〉 =

∫

p

ρp(1 + fp)e
ip·(x1−x2) ,

〈TCφ2(x1)φ2(x2)〉 = 〈T ∗φ(x1)φ(x2)〉 =

∫

p

ρp(Θ21 + fp)e
ip·(x1−x2) .

(2.1)

Here, φ1 is the ‘ket’ field with time-ordered propagator whereas φ2 is the ‘bra’ field of

Schwinger formalism with anti-time-ordered propagators. The symbol TC denotes SK con-

tour ordering and Θ12 denotes Heaviside step function in time. We have written down the

corresponding correlators in the single-copy notation (with the time-ordering operator T

and anti-time-ordering operator T ∗) for the convenience of the reader.

The symbol ρp in the above equation stands for the spectral function which in a free

scalar theory takes the form

ρp ≡ 2π sign(p0)δ(p2 +m2) =
2π

2ωp
[δ(ω − ωp)− δ(ω + ωp)] .

Here ωp =
√
p2 +m2. The spectral function is also directly related to the Fourier-

transform of commutators in the theory, viz.,
∫

p

ρpe
ip·(x1−x2) = 〈[φ(x1), φ(x2)]〉

– 4 –
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and it neatly encodes all the theory-dependent information. The factor fp is the Bose-

Einstein factor

fp ≡
1

eβp0 − 1

which obeys 1+fp+f−p = 0 and fp = e−βp0(1+fp). These Bose-Einstein factors are universal

and the way they occur in the correlators are completely fixed by general arguments.

Further, we have used the notation

∫

p

≡

∫
ddp

(2π)d

to denote the momentum integrals in d spacetime dimensions. Using these relations, we

get the more familiar two point correlators:

〈TCφ1(x1)φ1(x2)〉 = 〈T φ(x1)φ(x2)〉

=

∫
dd−1p

(2π)d−12ωp

[
(Θ12 + fp)e

ip·(x1−x2) + (Θ21 + fp)e
−ip·(x1−x2)

]
p0=ωp

,

〈TCφ1(x1)φ2(x2)〉 = 〈φ(x2)φ(x1)〉

=

∫
dd−1p

(2π)d−12ωp

[
fpe

ip·(x1−x2) + (1 + fp)e
−ip·(x1−x2)

]
p0=ωp

,

〈TCφ2(x1)φ1(x2)〉 = 〈φ(x1)φ(x2)〉

=

∫
dd−1p

(2π)d−12ωp

[
(1 + fp)e

ip·(x1−x2) + fpe
−ip·(x1−x2)

]
p0=ωp

,

〈TCφ2(x1)φ2(x2)〉 = 〈T ∗φ(x1)φ(x2)〉

=

∫
dd−1p

(2π)d−12ωp

[
(Θ21 + fp)e

ip·(x1−x2) + (Θ12 + fp)e
−ip·(x1−x2)

]
p0=ωp

.

(2.2)

The reader can readily verify the correctness of the above expressions by starting with

the free theory mode expansion

φ(x) =

∫
dd−1p

(2π)d−1
√

2ωp

[
ape

ip·x + a†pe
−ip·x

]
p0=ωp

(2.3)

and using the thermal expectation values 〈a†p1ap2〉 = (2π)d−1δd−1(~p1−~p2)fp1 and 〈ap1a
†
p2〉 =

(2π)d−1δd−1(~p1 − ~p2)(1 + fp1).

2.2 The column vector structure

For a general scalar operator Φ(x) instead of the free field, the above form of two point

functions in (2.1) still holds in SK formalism, just with a different spectral function still

defined by ∫

p

ρpe
ip·(x1−x2) ≡ 〈[Φ(x1),Φ(x2)]〉 .
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This is the SK analog of the famous Kallen-Lehman representation in zero temperature

QFT and is a direct consequence of periodicity in imaginary time of thermal correla-

tors, viz.,

〈Φ(x1 − iβ)Φ(x2)〉 = 〈Φ(x2)Φ(x1)〉 .

Here βµ is a time-like vector defining thermal equilibrium with its direction giving the rest

frame and its magnitude (also denoted by β) giving rest frame inverse temperature.

The statement of periodicity is also termed Kubo-Martin-Schwinger(KMS) relations

and is the underlying reason behind fluctuation-dissipation theorems in QFTs. Using these

relations along with the second equation of (2.1) (which can be taken as the definition of

ρp), the rest of (2.1) follows. Thus, the four two point functions of SK formalism depend

eventually on only one system-dependent spectral function and thermality fixes the rest,

as advertised.

We will find it convenient to write the above correlators as an array:

〈TCΦi(x1)Φj(x2)〉 =

∫

p

ρp


Θ12+fp fp

1+fp Θ21+fp


 eip·(x1−x2)

= Θ12

∫

p

ρp


1+fp fp

1+fp fp


 eip·(x1−x2)+Θ21

∫

p

ρp


 fp fp

1+fp 1+fp


 eip·(x1−x2)

= Θ12

∫

p

ρp

(
1

1

)
eip·x1⊗


1+fp

fp


 e−ip·x2+Θ21

∫

p

ρp


 fp

1+fp


 eip·x1⊗

(
1

1

)
e−ip·x2 ,

(2.4)

where in the last line we have re-written the answer as tensor products of certain set of

column vectors for later convenience. The first term in the above expression corresponds

to the retarded propagator as it is nonzero only when x01 ≥ x02. Similarly, the second term

corresponds to the advanced propagator as it is nonzero only when x02 ≥ x01. Thus, this basis

of column vectors appears naturally when we decompose the contour ordered correlators

into retarded and advanced pieces. This is the origin of the name ‘retarded-advanced’ or

RA basis for this basis of column vectors.2

Such arrays and the column vectors have various structural features which generalise

to the case of OTOCs as well as higher point functions. Note that the array that appears

2Note that our basis is closely related to RA basis (as it appears for example in [42]) upto overall

normalisations. In the notations of [42], the column vectors appearing in this expression can be written as

[

eR(p)
]

Hou-Wang-Heinz
≡





1 + fp

fp



 ,

[

eA(p)
]

Hou-Wang-Heinz
≡ −

(

1

1

)

. (2.5)

Using, these column vectors, (2.4) can be rewritten as

〈TCΦi(x1)Φj(x2)〉 =−Θ12

∫

p

ρp

[

eA(−p)
]

Hou-Wang-Heinz
⊗

[

eR(p)
]

Hou-Wang-Heinz
e
ip·(x1−x2)

+Θ21

∫

p

ρp

[

eR(−p)
]

Hou-Wang-Heinz
⊗

[

eA(p)
]

Hou-Wang-Heinz
e
ip·(x1−x2)

.

(2.6)

We will find it convenient to work with a slightly different RA basis in the following.
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along with the step function Θ21 can be obtained from transposing the array that appears

with the step function Θ12, followed by a map p 7→ −p under which ρp 7→ −ρp and

fp 7→ −(1+ fp). At the level of tensor products, the transpose appears as a permutation in

the order of tensor products as the time-order changes.

A more symmetric representation is obtained by defining
∫

p1

∫

p2

ρ[12] ei(p1·x1+p2·x2) ≡ 〈[Φ(x1),Φ(x2)]〉

in terms of which we can write a spectral representation [38, 41–43]

〈TCΦi(x1)Φj(x2)〉 =

∫

p1

∫

p2

{
ρ[12] Θ12

(
−1

−1

)
eip1·x1 ⊗

(
f2

1 + f2

)
eip2·x2

+ρ[21] Θ21

(
f1

1 + f1

)
eip1·x1 ⊗

(
−1

−1

)
eip2·x2

}
,

(2.7)

where we have used the notation f1 ≡ fp1 , ρ[12] ≡ ρ[p1, p2] etc. For a free scalar,

ρ[12] ≡ 2π sign(p01)δ(p
2
1 +m2)× (2π)dδd(p1 + p2) = −ρ[21] .

In this presentation, the action on the array can be described as the joint permutation of

the time ordering, the array indices and the momenta.

2.3 The Wightman array

In the end of the last subsection, we had obtained

〈TCΦi(x1)Φj(x2)〉 = Θ12M(x1, x2) + permutation (2.8)

where

M(x1, x2) ≡

∫

p1

∫

p2

ρ[12]

(
−1

−1

)
eip1·x1 ⊗

(
f2

1 + f2

)
eip2·x2 . (2.9)

The permutation in (2.8) refers to the term given by

Θ21

∫

p1

∫

p2

ρ[21]

(
f1

1 + f1

)
eip1·x1 ⊗

(
−1

−1

)
eip2·x2 . (2.10)

Thus, the permutation involves summing over all possible time-ordering. This is accom-

panied by a simultaneous transpositions of the column vectors, thus changing the order

in which they appear in the tensor product. We also exchange the momenta (p1 ↔ p2)

appearing in the argument of spectral function as well as the column vectors. As we will

see later, this kind of a permutation structure is common to higher point contour-ordered

correlators whether time-ordered or out of time-ordered.

The array correlator M is actually an array of Wightman correlators:

M(x1, x2) =


〈Φ1(x1)Φ2(x2)〉 〈Φ2(x2)Φ1(x1)〉

〈Φ1(x1)Φ2(x2)〉 〈Φ2(x2)Φ1(x1)〉


 =


〈12〉 〈21〉

〈12〉 〈21〉


 . (2.11)
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Here we have introduced a useful notation for Wightman correlators [32] whereby only

insertion points and their ordering are retained. The Fourier representation is then obtained

by using KMS relations:

〈12〉 = −

∫

p1

∫

p2

ρ[12]f2e
ipk·xk ,

〈21〉 = −

∫

p1

∫

p2

ρ[12](1 + f2)e
ipk·xk .

(2.12)

Note that the array of Wightman correlators above is constructed so as to agree with

the contour-ordered correlators for a particular time-ordering of insertions, viz.,

Θ12〈TCΦi(x1)Φj(x2)〉 = Θ12M(x1, x2) . (2.13)

Such an arrangement of Wightman correlators play a crucial role throughout this work and

we will henceforth refer to it as the Wightman array corresponding to a time-ordering and

denote it by M. Often, it is convenient to deal with the Fourier transform of the Wightman

array which we will denote by M̃:

M(x1, x2) ≡

∫

p

M̃(p)eip·(x1−x2) with M̃(p) ≡ ρp


1 + fp fp

1 + fp fp


 . (2.14)

or

M(x1, x2) ≡

∫

p1

∫

p2

M̃(p1, p2)e
ipk·xk ,

with

M̃(p1, p2) ≡ ρ[12]

(
−1

−1

)
⊗

(
f2

1 + f2

)
. (2.15)

This formula is the basic building block out of which spectral representations are con-

structed via Fourier transforms and sum over time-orderings. We note the following fea-

tures:

• First of all, there is a clear separation here between the theory dependent information

in the spectral function (viz. the Fourier transform of the commutators) and the array

structure imposed by KMS relations captured by the column vectors. In practical

terms, it is always easier to compute ρ[12] and use the above representation than

computing each of these thermal correlators in turn.

• Next one notes the causal structure of these correlators made manifest via step-

functions in time. We note that the correlators here are written as a sum over

various time-orderings. Within each time-ordering, specific spectral functions appear

in conjunction with a particular tensor product of column vectors.

• As we permute across time-orderings, the arguments of spectral functions get per-

muted along with a permutation in the order in which the tensor products are taken.

– 8 –
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As we will see later on, all these features directly generalise to spectral representations of

higher point thermal correlators (whether time-ordered or out of time-ordered).

Before we move to the generalisation of these results, let us focus on an example of

how causal structure is encoded in these column vectors: consider taking either the first

field to be a SK difference field Φd ≡ Φ1 − Φ2. This is equivalent to contracting the first

vector of the product with a row vector (1 − 1) resulting in

〈TC(Φ1(x1)− Φ2(x1))Φj(x2)〉 = Θ21

∫

p1

∫

p2

ρ[21] f1e
ip1·x1

(
1

1

)
eip2·x2 . (2.16)

We note that this vanishes unless the difference operator at x1 is actually in the past of x2.

What we have shown is the largest time equation for difference operators: any correlator

with the future-most operator being the difference operator, vanishes [4].

The structure of the two-point thermal correlators that we just reviewed raises a variety

of questions: how much of these structures could be generalised to higher point functions?

What is the systematic way to derive similar results? Could one systematically understand

the structure of the column vectors whose tensor-products appear in such formulae? How

do we generalise these results in the context of out of time order correlators beyond the

usual SK formalism?

3 Spectral representation of generalised SK two point functions

3.1 Structure of generalised SK two point functions

We would now like to generalise the column vector representation in eq. (2.7) to two point

functions on a generalised SK contour like the one shown below:

2

1

1

2

Each of the two insertions can lie on any of the four legs of the contour thus resulting in a

4× 4 array of contour ordered two point functions. This is a simple enough correlator that

all the contour-ordering can be explicitly worked out. We obtain

〈TCΦi(x1)Φj(x2)〉 = Θ12M(x1, x2) + permutation (3.1)

with the Wightman array

M =




〈12〉 〈21〉 〈21〉 〈21〉

〈12〉 〈21〉 〈21〉 〈21〉

〈12〉 〈12〉 〈12〉 〈21〉

〈12〉 〈12〉 〈12〉 〈21〉




. (3.2)
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In Fourier domain, we have

M(x1, x2) ≡

∫

p1

∫

p2

M̃(p1, p2)e
ipk·xk

with

M̃ = −ρ[12]




f2 1 + f2 1 + f2 1 + f2

f2 1 + f2 1 + f2 1 + f2

f2 f2 f2 1 + f2

f2 f2 f2 1 + f2




. (3.3)

We want to now choose a judicious ‘RA-like’ basis of column vectors which make the causal

structure of this array manifest. To see why a good basis is required, note that, a generic

4 × 4 array decomposed in a general basis is a sum of 16 tensor products. In the context

of perturbation theory, using the above two point function as the propogator, this is the

statement that, naively we seem to have 4 fields in the path-integral which all get changed

into each other during time-evolution, thus producing 16 propagators. The concomitant

proliferation of diagrams arising from this fact seems to be intimidating to all but profligate

diagrammars.

This way of proceeding is, however, excessively inefficient for the array under question.

For example, here is a column vector decomposition which does much better (with only

two tensor products):

M̃ = ρ[12]








−1

−1

0

0


⊗




f2

1 + f2

1 + f2

1 + f2


+




0

0

−1

−1


⊗




f2

f2

f2

1 + f2








. (3.4)

This is the OTO analogue of the familiar statement in real time SK perturbation theory:

by a judicious choice of basis which exploits the causal/KMS structure, the number of

propagators/diagrams can be reduced drastically.

3.2 A basis of row vectors from causality and KMS

Let us pause to examine why such a simplification is made possible. By analysing the array

in eq. (3.3), we note that M̃ is annihilated by the following row vectors contracted to its

first index (i.e., the index corresponding to its future-most operator):

e(1)
F

(ω1) ≡ (−1 , 1 , 0 , 0) ,

e(2)
F

(ω1) ≡ (0 , 0 ,−1 , 1) .
(3.5)

Here the subscript F is to remind us that these vectors annihilate the future-most index.

This is the multi time-fold analogue of the largest time equation, whereby if the future-most

operator is set to be a difference operator, the correlator vanishes.

In pictures, the annihilation by the row vector e(1)
F

is the statement that the following

combination of correlators vanish (irrespective of the position of the operator insertion 2,
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provided it is in the past of insertion 1):

−

2 1

1

2

+

2

1 1

2

Thus, we say row vector e(1)
F

encodes the sliding of operators against the first future turning

point. A similar picture of the row vector e(2)
F

describing the sliding across the second future

turning point is:

−

2

1

1

2

+

2

1

1

2

These statements immediately generalise to any number of time-fold contours. In the case

of k time-folds, the row-vectors that annihilate the future most index are 2k dimensional

and they are k in number:

e(1)
F

(ω) ≡ (−1, 1, 0, . . . , 0),

e(2)
F

(ω) ≡ (0, 0,−1, 1, 0, . . . , 0),

. . . ,

e(j)
F

(ω) ≡ (0, 0, 0, . . . ,−12j−1, 12j , 0, . . . , 0),

. . . ,

e(k)
F

(ω) ≡ (0, 0, . . . ,−1, 1) .

(3.6)

Here, the row vector e(j)
F

describes the sliding across the j’th future turning point.

The array M̃ is also annihilated by the following row vectors contracted to its second

index (i.e., the index corresponding to its past-most operator):

e(1)
P

(ω2) ≡ (1 , 0 , 0 ,−e−βω2) ,

e(2)
P

(ω2) ≡ (0 ,−1 , 1 , 0) ,
(3.7)

where we have used f2 = e−βω2(1 + f2). Here the subscript P is to remind us that these

vectors annihilate the past-most index.

In pictures, the annihilation by the row vector e(1)
P

is the statement that the following

combination of correlators vanish (irrespective of the position of the operator insertion 1,

provided it is in the future of insertion 2):

2 1

1

2

− e−βω2

2

1

1

2
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This is a frequency domain version of the KMS relation

〈O1(t1)O2(t2)〉 = 〈O2(t2 − iβ)O1(t1)〉 . (3.8)

The readers familiar with the thermal SK formalisms will recognise the above as the com-

bination which occurs in the retarded-advanced (RA) formalism for SK correlators [52–55].

Thus, the row vector e(1)
P

describes the sliding across the thermal density matrix, which,

by convention, is treated as the first past turning point.

A similar picture of the row vector e(2)
P

describing the sliding across the second past

turning point is:

−
2

1

1

2

+
2

1

1

2

These statements again generalise to any number of time-fold contours. In the case of k

time-folds, the row-vectors that annihilate the past most index are 2k dimensional and

they are k in number:

e(1)
P

(ω) ≡ (1, 0, 0, 0 . . . , 0,−e−βω),

e(2)
P

(ω) ≡ (0,−1, 1, 0, . . . , 0),

e(3)
P

(ω) ≡ (0, 0, 0,−1, 1, 0 . . .),

. . . ,

e(j)
P

(ω) ≡ (0, 0, 0, . . . ,−12j−2, 12j−1, 0, . . . , 0) .

(3.9)

Here, the row vector e(j)
P

describes the sliding across the jth past turning point. Thus

causality and KMS conditions naturally choose a basis3 of 2k row vectors {e(j)
F

, e(j)
P

} which

annihilate the future-most and past-most indices, thus implementing largest and smallest

time equations.

Returning back to the case of k = 2 time-folds, we conclude that, due to causality and

KMS conditions, M̃ contracted with the following 12 of the 16 basis tensors vanish:

e(1)
F

⊗ e(1)
P

, e(1)
F

⊗ e(2)
P

, e(1)
F

⊗ e(1)
F

, e(1)
F

⊗ e(2)
F

,

e(2)
F

⊗ e(1)
P

, e(2)
F

⊗ e(2)
P

, e(2)
F

⊗ e(1)
F

, e(2)
F

⊗ e(2)
F

,

e(1)
P

⊗ e(1)
P

, e(1)
P

⊗ e(2)
P

,

e(2)
P

⊗ e(1)
P

, e(2)
P

⊗ e(2)
P

.

(3.10)

We will call such tensor structure orthogonal to M̃ as orthogonal tensors. We will also

introduce the following notation to denote the array M̃ contracted against these row vectors

M̃rs
AB ≡ M̃ij (e

(r)
A )i (e

(s)
B )j ≡ M̃ · ersAB , (3.11)

3More precisely, one obtains a basis at non-zero frequencies ω 6= 0. Throughout this work, we will stay

away from the special points where any one or more of the external frequencies go to zero. The expressions

we write down, in general, receive contact term corrections at these special loci.
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where A,B ∈ {P, F} and i, j ∈ {1, 2} (or more generally i, j ∈ {1, 2, . . . , k}). We have also

introduced the convenient notation ersAB ≡ e
(r)
A ⊗ e

(s)
B .

For example, the orthogonal tensors listed above imply that the following contractions

of the array M̃ are zero:

M̃11
FP , M̃12

FP , M̃11
FF , M̃12

FF ,

M̃21
FP , M̃22

FP , M̃21
FF , M̃22

FF ,

M̃11
PP , M̃12

PP ,

M̃21
PP , M̃22

PP .

(3.12)

3.3 Dual basis of column vectors

We concluded the previous subsection with the result that contractions of the array M̃

with many of the basis tensors vanish. By elementary linear algebra, these contractions

are essentially components of the array in the dual basis. This dual basis will also provide

us a natural generalisation of the Retarded-Advanced basis of the SK formalism.

To see this, let us begin by computing the basis of column vectors which is dual to the

basis of 4-dimensional row vectors mentioned above. We have

ē(1)
P

(ω) ≡ (1 + f(ω) , 1 + f(ω) , 1 + f(ω) , 1 + f(ω))T ,

ē(2)
P

(ω) ≡ (f(ω) , f(ω) , 1 + f(ω) , 1 + f(ω))T ,

ē(1)
F

(ω) ≡ (f(ω) , 1 + f(ω) , 1 + f(ω) , 1 + f(ω))T ,

ē(2)
F

(ω) ≡ (f(ω) , f(ω) , f(ω) , 1 + f(ω))T ,

(3.13)

for any frequency ω 6= 0, where f(ω) ≡ 1
eβω−1

is the Bose-Einstein distribution. These dual

column vectors satisfy the following:

e(i)
P
(ω) · ē(j)

F
(ω) = e(i)

F
(ω) · ē(j)

P
(ω) = 0 ,

e(i)
P
(ω) · ē(j)

P
(ω) = e(i)

F
(ω) · ē(j)

F
(ω) = δij ,

(3.14)

for i, j ∈ {1, 2}. A dual basis for k time-folds can also be constructed and takes the form:

ē(j)
P

(ω) ≡ {f(ω), f(ω), . . . , f(ω)︸ ︷︷ ︸
2j−2 times

, 1 + f(ω), 1 + f(ω), . . . , 1 + f(ω)︸ ︷︷ ︸
2k−2j+2 times

}T ,

ē(j)
F

(ω) ≡ {f(ω), f(ω), . . . , f(ω)︸ ︷︷ ︸
2j−1 times

, 1 + f(ω), 1 + f(ω), . . . , 1 + f(ω)︸ ︷︷ ︸
2k−2j+1 times

}T .
(3.15)

This furnishes the generalised Retarded-Advanced (RA) basis for k time-folds.

One can then expand the array M̃ in the basis of tensor products of these column

vectors defined at ω1 and ω2:

M̃ = M̃ij
PP ē(i)

P
(ω1)⊗ ē(j)

P
(ω2) + M̃ij

FP ē(i)
F
(ω1)⊗ ē(j)

P
(ω2)

+ M̃ij
FF ē(i)

F
(ω1)⊗ ē(j)

F
(ω2) + M̃ij

PF ē(i)
P
(ω1)⊗ ē(j)

F
(ω2)

= M̃ij
PF ē(i)

P
(ω1)⊗ ē(j)

F
(ω2) .

(3.16)
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Here M̃rs
AB denotes the array contracted against the basis row vectors and in the last step,

we have used the fact that many of these contractions vanish. So, we have to fix the 4

coefficients - M̃11
PF , M̃

12
PF , M̃

21
PF and M̃22

PF .

Let us look at the expansion of these coefficients in terms of the elements of the array

M̃ (i.e., the usual contour ordered correlators):

M̃11
PF = −M̃11 + M̃12 + e−βω1M̃41 − e−βω1M̃42 = −ρ[12] ,

M̃12
PF = −M̃13 + M̃14 + e−βω1M̃43 − e−βω1M̃44 = e−βω1ρ[12] ,

M̃21
PF = M̃21 − M̃22 − M̃31 + M̃32 = ρ[12] ,

M̃22
PF = M̃23 − M̃24 − M̃33 + M̃34 = −ρ[12] .

(3.17)

Here, we have computed the correlators directly term by term. We note a few salient

aspects of this result: first, many of the contractions with these basis vectors naturally

evaluate to the spectral function ρ[12]. Second, since all the components are proportional

to ρ[12], we can deduce additional linear combinations which vanish:

M̃11
PF + M̃21

PF , M̃22
PF + eβω1M̃12

PF , M̃22
PF − M̃11

PF . (3.18)

This is equivalent to the statement that there are three additional, non-trivial orthogonal

tensors to M̃:

e(1)
P

⊗ e(1)
F

+ e(2)
P

⊗ e(1)
F

, e(2)
P

⊗ e(2)
F

+ eβω1e(1)
P

⊗ e(2)
F

, e(2)
P

⊗ e(2)
F

− e(1)
P

⊗ e(1)
F

. (3.19)

If we could somehow deduce the complete set of orthogonal tensors independently, then

the only explicit computation needed is that of M̃11
PF . We will develop a method to do so

in the appendix B, using which we systematically tabulate all the orthogonal tensors for

2, 3 and 4 point functions in the appendices C.1, C.2 and C.3 respectively.

Returning to the array M̃, it can be expressed as

M̃ = ρ[12]
(
ē(2)
P

(ω1)⊗ ē(1)
F

(ω2)− ē(1)
P

(ω1)⊗ ē(1)
F

(ω2)

+ e−βω1 ē(1)
P

(ω1)⊗ ē(2)
F

(ω2)− ē(2)
P

(ω1)⊗ ē(2)
F

(ω2)
)
.

(3.20)

Let us define

e(3)
P

(ω) ≡ (eβω, 0, 0,−1) = eβωe(1)
P

(ω) ,

ē(3)
P

(ω) ≡ e−βω ē(1)
P

(ω) =
f(ω)

1 + f(ω)
ē(1)
P

(ω) = (f(ω), f(ω), f(ω), f(ω))T .
(3.21)

Then, the final expression of the array M̃ in terms of tensor products of the column vectors

is as follows:

M̃ = ρ[12]
2∑

i=1

(
ē(i+1)
P

(ω1)⊗ ē(i)
F
(ω2)− ē(i)

P
(ω1)⊗ ē(i)

F
(ω2)

)

= ρ[12]
2∑

i=1

(
ē(i+1)
P

(ω1)− ē(i)
P
(ω1)

)
⊗ ē(i)

F
(ω2) .

(3.22)
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One can check that these two terms correspond exactly to the terms encountered in

eq. (3.4): 


−1

−1

0

0




︸ ︷︷ ︸
ē
(2)
P

−ē
(1)
P

⊗




f2

1 + f2

1 + f2

1 + f2




︸ ︷︷ ︸
ē
(1)
F

+




0

0

−1

−1




︸ ︷︷ ︸
ē
(3)
P

−ē
(2)
P

⊗




f2

f2

f2

1 + f2




︸ ︷︷ ︸
ē
(2)
F

.

As we will show in appendix C.1, for k time folds, the above result simply generalises to

M̃(2-Pt) = ρ[12]
k∑

r=1

(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
. (3.23)

Here, as in k = 2, we have defined

e(k+1)
P

(ω) ≡ (eβω, 0, 0, 0 . . . , 0,−1) = eβωe(1)
P

(ω) ,

ē(k+1)
P

(ω) ≡ {f(ω), f(ω), . . . , f(ω)}T = e−βω ē(1)
P

(ω) .
(3.24)

Instead of 4k2 tensor products, only 2k tensor products appear, illustrating how much of

simplification a judicious choice of basis can achieve.

4 Spectral representation of higher point correlators

We will now move on to the question of how we get a spectral representation for the higher

point functions. Given the description in the previous sections, the basic logic on how to

proceed is clear.

First, we systematically construct all the orthogonal tensors of the Wightman array

in Fourier domain. This constrains the form of the array to a great extent with a few

undetermined coefficients. In fact, we can count the number of orthogonal tensors using

the following fact derived in [32]: after KMS conditions are imposed, for sufficiently large

k, there are (n− 1)! independent n point correlators. Thus, among (2k)n tensors, (2k)n −

(n−1)! linear combinations would be orthogonal to the Wightman array. While the logic is

straightforward, one needs to proceed systematically and algorithmically. We will describe

precisely such a systematic method to list the orthogonal tensors in the appendix B, where

the curious reader can find the details behind our results.

Once the orthogonal tensors have been enumerated and the most general form with

(n − 1)! undetermined coefficients is written down, we can then fix the undetermined

coefficients by (n− 1)! calculations.

4.1 Spectral representation of three point functions

Implementing the above logic for three point functions, we find a simple expression in the

column vector basis:

M̃(3-Pt) = ρ[321]
k∑

r=1

(ē(r+1)
P

⊗ ē(r+1)
P

− ē(r)
P

⊗ ē(r)
P

)⊗ ē(r)
F

− ρ[123]
k∑

r=1

(ē(r+1)
P

− ē(r)
P

)⊗ ē(r)
F

⊗ ē(r)
F

.

(4.1)
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Here, the spectral functions that appear in the Wightman array are defined by

∫

p1

∫

p2

∫

p3

ρ[123] ei(p1·x1+p2·x2+p3·x3) ≡ 〈[[Φ(x1),Φ(x2)],Φ(x3)]〉 ,

∫

p1

∫

p2

∫

p3

ρ[321] ei(p1·x1+p2·x2+p3·x3) ≡ 〈[[Φ(x3),Φ(x2)],Φ(x1)]〉 .

(4.2)

The contour ordered correlators are then given by

〈TCΦi(x1)Φj(x2)Φk(x3)〉 ≡

∫

p1

∫

p2

∫

p3

Θ123 M̃(3-Pt) ei(p1·x1+p2·x2+p3·x3)

+ (Rest of the 3! permutations) .

(4.3)

In the above expression, when the time-orderings are permuted, the tensors should also

be permuted as before. We note again the drastic reduction in number of tensor products

due to the choice of the basis: we go from 8k3 possible terms to only 4k non-zero terms.

Among the 8 possible set of permutations of {P, F} that can occur, causality forbids all

combinations except two: PPF and PFF . This justifies the claim that the above basis

encodes causality constraints quite efficiently. And when we contract M̃ with row vectors

in these two sectors, we naturally obtain the two independent spectral functions that

characterise 3-pt. functions.

Let us look at some examples. Consider the example of k = 1 (Schwinger-Keldysh).

We get:

M̃(3-Pt) = −ρ[123]

(
−1

−1

)
⊗

(
f2

1 + f2

)
⊗

(
f3

1 + f3

)

+ ρ[321]

[(
f1

f1

)
⊗

(
f2

f2

)
⊗

(
f3

1 + f3

)
−

(
1 + f1

1 + f1

)
⊗

(
1 + f2

1 + f2

)
⊗

(
f3

1 + f3

)]
.

(4.4)

This structure, when multiplied by the step function Θ123 and then summed over all its

permutations, yields the contour-ordered 3-point functions of the Keldysh contour. For

example, here is the term obtained by 1 ↔ 3 exchange (i.e., the combination that multi-

plies Θ321):

− ρ[321]

(
f1

1 + f1

)
⊗

(
f2

1 + f2

)
⊗

(
−1

−1

)

+ ρ[123]

[(
f1

1 + f1

)
⊗

(
f2

f2

)
⊗

(
f3

f3

)
−

(
f1

1 + f1

)
⊗

(
1 + f2

1 + f2

)
⊗

(
1 + f3

1 + f3

)]
.

(4.5)
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The Wightman array for the k = 2 contour is given similarly by

M̃(3-Pt) = −ρ[123]







−1

−1

0

0




︸ ︷︷ ︸
ē
(2)
P

−ē
(1)
P

⊗




f2

1+f2

1+f2

1+f2




︸ ︷︷ ︸
ē
(1)
F

⊗




f3

1+f3

1+f3

1+f3




︸ ︷︷ ︸
ē
(1)
F

+




0

0

−1

−1




︸ ︷︷ ︸
ē
(3)
P

−ē
(2)
P

⊗




f2

f2

f2

1+f2




︸ ︷︷ ︸
ē
(2)
F

⊗




f3

f3

f3

1+f3




︸ ︷︷ ︸
ē
(2)
F




+ρ[321]







f1

f1

1+f1

1+f1




︸ ︷︷ ︸
ē
(2)
P

⊗




f2

f2

1+f2

1+f2




︸ ︷︷ ︸
ē
(2)
P

⊗




f3

1+f3

1+f3

1+f3




︸ ︷︷ ︸
ē
(1)
F

−




1+f1

1+f1

1+f1

1+f1




︸ ︷︷ ︸
ē
(1)
P

⊗




1+f2

1+f2

1+f2

1+f2




︸ ︷︷ ︸
ē
(1)
P

⊗




f3

1+f3

1+f3

1+f3




︸ ︷︷ ︸
ē
(1)
F

+




f1

f1

f1

f1




︸ ︷︷ ︸
ē
(3)
P

⊗




f2

f2

f2

f2




︸ ︷︷ ︸
ē
(3)
P

⊗




f3

f3

f3

1+f3




︸ ︷︷ ︸
ē
(2)
F

−




f1

f1

1+f1

1+f1




︸ ︷︷ ︸
ē
(2)
P

⊗




f2

f2

1+f2

1+f2




︸ ︷︷ ︸
ē
(2)
P

⊗




f3

f3

f3

1+f3




︸ ︷︷ ︸
ē
(2)
F




.

(4.6)

As for the k = 1 case, this structure when multiplied by the step function Θ123, summed

over the permutations and Fourier transformed gives the contour ordered correlators.

4.2 Spectral representation of four point functions

We now turn to the 4-point correlators. Classifying the orthogonal tensors and fixing the

remaining coefficients, we can write the column vector representation for 4pt functions.

There are 16 combinations which are a priori possible, but most of them are forbidden by

causality. Only 4 combinations PPPF, PFFF, PFPF, PPFF are allowed. We can thus

write

M̃(4-Pt) = M̃PPPF + M̃PFFF + M̃PFPF + M̃PPFF (4.7)

where we obtain

M̃PPPF = −ρ[4321]
k∑

r=1

(
ē(r+1)
P

⊗ ē(r+1)
P

⊗ ē(r+1)
P

⊗ ē(r)
F

− ē(r)
P

⊗ ē(r)
P

⊗ ē(r)
P

⊗ ē(r)
F

)
,

M̃PFFF = ρ[1234]
k∑

r=1

(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
⊗ ē(r)

F
⊗ ē(r)

F
,
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M̃PFPF =
k∑

r,s=1

(
θr>s ρ[12][34] + θr≤s ρ[34][12]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
⊗ ē(s+1)

P
⊗ ē(s)

F

−
k∑

r,s=1

(
θr≥sρ[12][34] + θr<s ρ[34][12]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
⊗ ē(s)

P
⊗ ē(s)

F
,

M̃PPFF =

k∑

r,s=1

(
θr>s ρ[13][24] + θr≤s ρ[24][13]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(s+1)

P
⊗ ē(r)

F
⊗ ē(s)

F

−
k∑

r,s=1

(
θr≥s ρ[13][24] + θr<s ρ[24][13]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(s)

P
⊗ ē(r)

F
⊗ ē(s)

F

+
k∑

r,s=1

(
θr≥s ρ[14][23] + θr<s ρ[23][14]

)
ē(r+1)
P

⊗
(
ē(s+1)
P

− ē(s)
P

)
⊗ ē(s)

F
⊗ ē(r)

F

−
k∑

r,s=1

(
θr>s ρ[14][23] + θr≤s ρ[23][14]

)
ē(r)
P

⊗
(
ē(s+1)
P

− ē(s)
P

)
⊗ ē(s)

F
⊗ ē(r)

F

+ ρ[2314]
k∑

r=1

(
ē(r+1)
P

⊗ ē(r+1)
P

− ē(r)
P

⊗ ē(r)
P

)
⊗ ē(r)

F
⊗ ē(r)

F
.

(4.8)

Here we define the spectral functions via

∫

p1

∫

p2

∫

p3

∫

p4

ρ[1234] ei(p1·x1+p2·x2+p3·x3+p4·x4) ≡ 〈[[[Φ(x1),Φ(x2)],Φ(x3)],Φ(x4)]〉 ,

∫

p1

∫

p2

∫

p3

∫

p4

ρ[12][34] ei(p1·x1+p2·x2+p3·x3+p4·x4) ≡ 〈[Φ(x1),Φ(x2)][Φ(x3),Φ(x4)]〉 .

Our previous comments about the reduction of number of terms extend to the four point

functions: the column vector basis reduces the 16k4 terms that can potentially appear in

the 4-pt vertices of a k time-fold contour to 12k2 + 6k = 6k(2k + 1) number of terms.

For example, in the Schwinger Keldysh case, the above formulae evaluates to

M̃(4-Pt)Nested = ρ[1234]

(
−1

−1

)
⊗

(
f2

1 + f2

)
⊗

(
f3

1 + f3

)
⊗

(
f4

1 + f4

)

+ ρ[4321]

(
1 + f1

1 + f1

)
⊗

(
1 + f2

1 + f2

)
⊗

(
1 + f3

1 + f3

)
⊗

(
f4

1 + f4

)

− ρ[4321]

(
f1

f1

)
⊗

(
f2

f2

)
⊗

(
f3

f3

)
⊗

(
f4

1 + f4

)
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− ρ[2314]

(
1 + f1

1 + f1

)
⊗

(
1 + f2

1 + f2

)
⊗

(
f3

1 + f3

)
⊗

(
f4

1 + f4

)

+ ρ[2314]

(
f1

f1

)
⊗

(
f2

f2

)
⊗

(
f3

1 + f3

)
⊗

(
f4

1 + f4

)
,

(4.9)

and

M̃(4-Pt)Double = ρ[12][34]

(
1

1

)
⊗

(
f2

1 + f2

)
⊗

(
1 + f3

1 + f3

)
⊗

(
f4

1 + f4

)

− ρ[34][12]

(
1

1

)
⊗

(
f2

1 + f2

)
⊗

(
f3

f3

)
⊗

(
f4

1 + f4

)

+ ρ[13][24]

(
1

1

)
⊗

(
1 + f2

1 + f2

)
⊗

(
f3

1 + f3

)
⊗

(
f4

1 + f4

)

− ρ[24][13]

(
1

1

)
⊗

(
f2

f2

)
⊗

(
f3

1 + f3

)
⊗

(
f4

1 + f4

)

− ρ[14][23]

(
f1

f1

)
⊗

(
1

1

)
⊗

(
f3

1 + f3

)
⊗

(
f4

1 + f4

)

+ ρ[23][14]

(
1 + f1

1 + f1

)
⊗

(
1

1

)
⊗

(
f3

1 + f3

)
⊗

(
f4

1 + f4

)
.

(4.10)

The boxed equations of this and the previous subsections are the main results of this

work. On one hand, they give an efficient way to parametrise the contour-ordered correla-

tors in terms of spectral functions which are easier to compute. On the other hand, they give

a basis in which the diagrammatics is simplified and the number of vertices/propagators

are reduced drastically. The applications of this formalism will be described elsewhere.

A brief comment on the generalisation of the RA basis. We saw that the Wight-

man arrays on a k-fold contour simplify considerably when they are expanded in the gen-

eralised RA basis provided by tensor products of the column vectors introduced in (3.15).

This suggests that while computing truncated correlators (correlators from which the ex-

ternal propagators are removed) in momentum space, it is convenient to switch to a basis

for the fields that is obtained by contraction with these column vectors as shown below:

Φ̃
(i)
P (p) ≡

2k∑

l=1

Φ̃l(p)
(
ē(i)
P
(p0)

)
l
,

Φ̃
(i)
F (p) ≡

2k∑

l=1

Φ̃l(p)
(
ē(i)
F
(p0)

)
l

(4.11)

for i = 1, . . . , k. Here Φ̃l(p) is the field (in momentum space) on the lth leg of the contour.
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For a 1-fold contour (i.e. the SK contour) this basis reduces to the familiar Retarded-

Advanced (RA) basis

Φ̃A(p) ≡ Φ̃
(1)
P (p) ≡ (1 + fp)

(
Φ̃1(p) + Φ̃2(p)

)
,

Φ̃R(p) ≡ Φ̃
(1)
F (p) ≡ fpΦ̃1(p) + (1 + fp)Φ̃2(p).

(4.12)

Just as this RA basis simplifies the array of SK correlators by making use of the

largest time equation and the KMS relations, its generalisation (4.11) achieves a similar

simplification for correlators on the k-fold contour.

5 Conclusion and discussion

In this work, we have set up the basic formalism of spectral representations of thermal out of

time order correlators. We have also explicitly worked out case of n = 2, 3, 4 point functions

which, in an appropriate basis, take a nice and useful form that automatically encodes the

causality and KMS conditions. This opens up a way to simplify OTO perturbation theory,

Feynman rules and diagrammatics at finite temperature. A particular application would

be to develop a full-fledged OTO kinetic theory and hydrodynamics from a consistent

truncation of OTO Schwinger Dyson equations. We hope our formalism can play the role

RA formalism has played in traditional Schwinger-Keldysh applications [45].

While our final results for the spectral representations take a simple and compact

form, their derivation as we sketch in our appendices is somewhat elaborate due to the

combinatorics involved. Perhaps, a simpler and shorter derivation of the spectral represen-

tations that appear in this work, would provide more insight into the physics behind the

simplifications we see in our final results.

A set of interesting questions for future research would be to derive cutting rules for

OTOCs. Ideally, we would like to predict the OTO imaginary parts and give an ‘on-shell’

picture of the physics behind them. Such a work should extend the classic work of Kobes

and Semenoff [56–58] in the SK formalism (see also [45]). It should also automatically

incorporate the emerging understanding of the physics behind OTOCs via operator spread-

ing/‘infection’ models or OTO combustion waves [12, 59–62] as well as reveal the physical

picture behind the OPE inversion formula and double discontinuities in CFTs [25–27].

From the viewpoint of thermal field theory, it would be interesting to extend the existing

intuitions regarding hard thermal loops(HTL) [51, 63] to OTOCs and for example, enquire

whether thermal OTOCs of QCD leave a signature in the heavy ion collision experiments.

Another set of interesting questions revolve around holography and black holes in

AdS. It would be nice to have a derivation of the OTOC spectral representations in this

work, from gravity, say along the lines of [64, 65]. Such a framework should allow us to

compute OTO spectral functions of energy momentum tensor and currents in strongly

coupled gauge theories study their low frequency, high temperature behaviour that gives

rise to OTO hydrodynamics.

Finally, the spectral representations we derive in this work are valid modulo contact

terms in the frequency domain (since the basis row vectors we use, become linearly de-

pendent when any one of the external frequencies of a correlator is taken to vanish). This
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is a limitation already in the RA formalism of SK correlators, which the extended for-

malism inherits. This is usually addressed by shifting to a Keldysh basis, in which only

causality conditions are implemented (and not the KMS conditions). Consequently, the

column vector type representations in such a basis contain more terms, but have the merit

of being applicable in non-equilibrum situations. A Keldysh type basis for OTOCs was

described by [13] and it would be interesting to see how our results can be extended away

from equilibrium using similar basis [66].
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A Basis of column vectors

In the series of appendices that follow, we will sketch the computations behind the spectral

representations quoted in the main text. For simplicity, we will suppress the spatial depen-

dence and the dependence on the spatial momenta in the all the correlators that appear in

these appendices. We will only retain the time/frequency dependencies.

We will begin by describing the basis vectors that we use on the k-fold time contour. We

expand the array M̃(ω1, · · · , ωn) in the basis of tensor products of the following (generalised

RA basis) column vectors:

ē(j)
P

(ω) ≡ {f(ω), f(ω), . . . , f(ω)︸ ︷︷ ︸
2j−2 times

, 1 + f(ω), 1 + f(ω), . . . , 1 + f(ω)︸ ︷︷ ︸
2k−2j+2 times

}T ,

ē(j)
F

(ω) ≡ {f(ω), f(ω), . . . , f(ω)︸ ︷︷ ︸
2j−1 times

, 1 + f(ω), 1 + f(ω), . . . , 1 + f(ω)︸ ︷︷ ︸
2k−2j+1 times

}T ,
(A.1)

where f(ω) ≡ 1
eβω−1

is the Bose-Einstein distribution and j = 1, 2, . . . , k.

The dual basis of row vectors consists of the following vectors:

e(1)
P

(ω) ≡ (1, 0, 0, 0 . . . , 0,−e−βω),

e(2)
P

(ω) ≡ (0,−1, 1, 0, . . . , 0),
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e(3)
P

(ω) ≡ (0, 0, 0,−1, 1, 0 . . .),

. . . ,

e(j)
P

(ω) ≡ (0, 0, 0, . . . ,−12j−2, 12j−1, 0, . . . , 0),

. . . ,

e(k)
P

(ω) ≡ (0, 0, . . . , 0,−1, 1, 0) ,

e(1)
F

(ω) ≡ (−1, 1, 0, . . . , 0),

e(2)
F

(ω) ≡ (0, 0,−1, 1, 0, . . . , 0),

. . . ,

e(j)
F

(ω) ≡ (0, 0, 0, . . . ,−12j−1, 12j , 0, . . . , 0),

. . . ,

e(k)
F

(ω) ≡ (0, 0, . . . ,−1, 1).

(A.2)

We then have
e(i)
P
(ω) · ē(j)

P
(ω) = e(i)

F
(ω) · ē(j)

F
(ω) = δij ,

e(i)
P
(ω) · ē(j)

F
(ω) = e(i)

F
(ω) · ē(j)

P
(ω) = 0 .

(A.3)

Here e(j)
P

corresponds to the difference field across jth past turning point (with density

matrix being counted as the first past turning point) counted from the ket to the bra,

whereas e(j)
F

corresponds to the difference field across jth future turning point counted from

the ket to the bra. For notational convenience, we will extend the definition of these vectors

to all integers via Bloch-Floquet periodicity:

e(j+k)
P

(ω) ≡ eβωe(j)
P

(ω) , ē(j+k)
P

(ω) ≡ e−βω ē(j)
P

(ω) ,

e(j+k)
F

(ω) ≡ eβωe(j)
F

(ω) , ē(j+k)
F

(ω) ≡ e−βω ē(j)
F

(ω) ,
(A.4)

with
e(i)
P
(ω) · ē(j)

P
(ω) = e(i)

F
(ω) · ē(j)

F
(ω) = eβω(i−j)δi−j mod k,0 ,

e(i)
P
(ω) · ē(j)

F
(ω) = e(i)

F
(ω) · ē(j)

P
(ω) = 0 .

(A.5)

In particular, we have

e(k+1)
P

(ω) ≡ (eβω, 0, 0, 0 . . . , 0,−1) = eβωe(1)
P

(ω) ,

ē(k+1)
P

(ω) ≡ {f(ω), f(ω), . . . , f(ω)}T = e−βω ē(1)
P

(ω) ,

e(0)
F

(ω) ≡ {0, 0, . . . , 0,−e−βω, e−βω}T = e−βωe(k)
F

(ω) ,

ē(0)
F

(ω) ≡ {1 + f(ω), 1 + f(ω), . . . , f(ω), eβω(1 + f(ω))}T = eβω ē(k)
F

(ω) .

(A.6)

B Rules of contraction for general k

B.1 Summary of the rules

The contractions of the array M̃(ω1, · · · , ωn) with the tensor products of the row vectors

introduced above give the components of the array in the basis of tensor products of the
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dual column vectors. For instance,

M̃rsu
PPF =

4∑

a=1

4∑

b=1

4∑

c=1

e(r)
P

(ω1)a e(s)
P

(ω2)b e
(u)
F

(ω3)c M̃(3-Pt)abc . (B.1)

In this example the indices of e(u)
F

(ω3) and e(s)
P

(ω2) contract with the third and the second

indices of M̃(3-Pt) respectively. These 2 indices correspond to the positions of past-most

insertion and the next insertion to its future in the array M(t1, t2, t3) which is obtained by

taking the inverse Fourier transform of M̃(3-Pt) and multiplying by a theta function Θ123.

In what follows, for such a contraction, we would loosely say that e(u)
F

(ω3) lies to the past

of e(s)
P

(ω2). In a similar sense, we would say that e(r)
P

(ω1) lies to the future of e(s)
P

(ω2).

As we noted in the main text, the components obtained from these contractions with

tensor products of the row vectors are not all independent. Here, we enumerate a set of

rules that such contractions satisfy:

1. F-collapse (Largest time Eqn): the contraction is zero if there is an e(r)
F

and if

there is no e(s)
P

to its future such that s ∈ {r, r + 1}.

2. P-collapse (Smallest time Eqn): the contraction is zero if there is an e(r)
P

and if

there is no e(s)
F

to its past such that s ∈ {r, r − 1}.

3. F-sliding: one can replace e(r−1)
F

by −e(r)
F

without changing the value of the con-

traction,

(a) if there is an e(r)
P

to its future (Anchor condition) and

(b) if there is no other e(r)
F

or e(r−1)
F

to the past of e(r)
P

(Eclipse condition).

4. P-sliding: one can replace e(r+1)
P

by −e(r)
P

without changing the value of the con-

traction,

(a) if there is an e(r)
F

to its past (Anchor condition) and

(b) if there is no other e(r)
P

or e(r+1)
P

to the future of e(j)
F

(Eclipse condition).

5. C-shift: One can do a global contour translation, viz., shift all the indices by a given

number i.e. do the following replacement:

e(r)
F

7→ e(r+m)
F

,

e(s)
P

7→ e(s+m)
P

(B.2)

for all e(r)
F

and e(s)
P

in the contraction and any integer m, without changing the value

contraction.

6. F-fragmentation: for a given r, one can do the following replacements together

without changing the value of the contraction:

e(r)
F

7→ e(r)
F

+ e(r+1)
F

,

e(r+m)
F

7→ e(r+1+m)
F

∀ m > 0 ,

e(r+m)
P

7→ e(r+1+m)
P

∀ m > 0 .
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7. P-fragmentation: for a given r, one can do the following replacements together

without changing the value of the contraction:

e(r)
P

7→ e(r)
P

+ e(r+1)
P

,

e(r+m)
P

7→ e(r+1+m)
P

∀ m > 0 ,

e(r−1+m)
F

7→ e(r+m)
F

∀ m > 0 .

We are going to introduce a diagrammatic scheme to represent the contractions and

then show some cases where the above rules can be applied to demonstrate why they are

valid.

B.2 A diagrammatic scheme for the contractions

As we have seen earlier, unitarity of the theory allows one to slide insertions in a correlator

along the contour without changing the value of the correlator as long as it does not

encounter another insertion. To impose these conditions between correlators in the time

domain, we can assume that similar relations hold between the corresponding elements of

the array M̃(ω1, · · · , ωn). So we can represent the array elements by contour diagrams

with insertions as is demonstrated by the following example:

M̃(2-Pt)42 =

2

1

1

2

(B.3)

Note that the array M̃(2-Pt) is constructed to reproduce the contour ordered correla-

tors in the domain t1 > t2. So, we put the first insertion to the right of the second insertion

in the above diagram. We emphasize that this is just a digrammatic way to represent the

array elements of M̃(ω1, · · · , ωn) and the exact horizontal position of any insertion is not

important. One should just make sure that the relative horizontal positions of the inser-

tions are in the correct order. Now, notice that each of the dual vectors e
(r)
P (ωi) and e

(r)
F (ωi)

have just 2 nonzero elements. We can represent contraction of the array M̃(ω1, · · · , ωn)

with any of these vectors by drawing 2 insertions at the same horizontal position but on

2 different legs where the components of the vector are nonzero. With each insertion, we

associate the corresponding element of the vector. For instance, one can represent the

contraction of M̃(2-Pt) with e
(2)
P (ω1)⊗ e

(1)
F (ω2) by the following diagram:

M̃(2-Pt) ·
(
e
(2)
P (ω1)⊗ e

(1)
F (ω2)

)
=

−1

+1 −1

+1

1

2

(B.4)

Here we remind the reader that e
(2)
P (ω1) = (0,−1, 1, 0) and e

(1)
F (ω2) = (−1, 1, 0, 0). The

rule for obtaining the contraction from such a diagram with multiple insertions on the

same horizontal position is to choose one insertion for each horizontal position, calculate
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the corresponding correlator, multiply by the product of the factors associated with each

chosen insertion, and then take a sum over all such possible choices. For instance, in the

example given in (B.4), we have

M̃21
PF =

−1

+1 −1

+1

1

2

= (−1)(−1)

2

1 1

2

+ (1)(−1)

2

1

1

2

+ (−1)(1)

2 1 1

2

+ (1)(1)

2

1

1

2

= M̃(2-Pt)21 − M̃(2-Pt)22 − M̃(2-Pt)31 + M̃(2-Pt)32 .

(B.5)

The numbers on top of the insertions in the diagram in the first line of the above

equations are the factors which are to be multiplied to get the contraction. On the other

hand, the numbers on top of the insertions in the diagrams in the second and the third lines

indicate horizontal positions of the insertions. In such diagrams, one can slide any insertion

down or up a leg without changing the value of the contraction as long as such a sliding

is not obstructed by another insertion. If one slides any insertion from the bottom-most

leg to the top-most one, then one picks up an additional factor of eβω because of the KMS

relations.

Now, let us look at some examples of contractions which are related to each other by

the rules mentioned in appendix B.1 using such diagrams. We will work with the k = 2

case for the collapse rules, the sliding rules and the C-shift. For the fragmentation rules,

we will give examples in the k = 4 case.

B.3 Some examples demonstrating the rules of contraction

F-collapse. Consider the contraction of M̃(3-Pt) with the tensor
(
e
(2)
F (ω1)⊗ e

(2)
P (ω2)⊗

e
(2)
F (ω3)

)
. The corresponding diagram is

M̃(3-Pt) ·
(
e
(2)
F (ω1)⊗ e

(2)
P (ω2)⊗ e

(2)
F (ω3)

)

= −1

+1

−1

+1 −1

+1

1

2

(B.6)

Notice that e(2)
F

(ω1) is the future-most insertion and there is no e(2)
P

or e(1)
P

to block it

from collapsing. One can slide down the future-most insertion on the third leg down to the
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fourth leg without changing the value of the contraction as there is no other insertion to

obstruct this sliding. But this leads to the pair of future-most insertions with opposite signs

lying on exactly the same position. Consequently they cancel each other’s contribution and

the value of the contraction is 0.

P-collapse. Consider the contraction of M̃(3-Pt) with the tensor
(
e
(2)
P (ω1)⊗ e

(1)
F (ω2)⊗

e
(2)
P (ω3)

)
. The corresponding diagram is

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(1)
F (ω2)⊗ e

(2)
P (ω3)

)

=
−1

+1

−1

+1 −1

+1

1

2

(B.7)

Notice that e(2)
P

(ω3) is the past-most insertion and there is no e(2)
F

or e(1)
F

to block it

from collapsing. One can slide down the past-most insertion on the second leg down to the

third leg without changing the value of the contraction as there is no other insertion to

obstruct this sliding. But this leads to the pair of past-most insertions with opposite signs

lying on exactly the same position. Consequently they cancel each other’s contribution

and the value of the contraction is 0.

Similarly, consider the contraction of M̃(3-Pt) with the tensor
(
e
(2)
P (ω1) ⊗ e

(1)
F (ω2) ⊗

e
(1)
P (ω3)

)
. The corresponding diagram is

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(1)
F (ω2)⊗ e

(1)
P (ω3)

)

=

1

−e
−βω3

−1

+1 −1

+1

1

2

(B.8)

Again, notice that e(1)
P

(ω3) is the past-most insertion and there is no e(1)
F

or e(2)
F

to block

it from collapsing. One can slide the past-most insertion on the fourth leg up to the first leg

picking up a factor eβω3 because of the KMS relations. Again, this leads to the pair of past-

most insertions with opposite signs lying on exactly the same position. Consequently,as

before, they cancel each other’s contribution and the value of the contraction is 0.

F-sliding. Consider the contraction of M̃(3-Pt) with the tensor
(
e
(2)
P (ω1) ⊗ e

(2)
P (ω2) ⊗

e
(1)
F (ω3)

)
. The corresponding diagram is

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)

)

=

−1

+1 −1

+1

−1

+1

1

2

(B.9)
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Notice that e(1)
F

(ω3) is the past-most insertion. There is an e(2)
P

(ω2) to its future. But,

apart from e(1)
F

(ω3),there is no other e(1)
F

or e(2)
F

to the past of e(2)
P

(ω2). If we choose the

past-most insertion with the factor (−1) on the first leg, then there is no insertion to block

the 2 insertions corresponding to e(2)
P

(ω2) from collapsing on to each other i.e. one can slide

either of those insertions to the position of the other and their contributions would exactly

cancel each other. Therefore, we have

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)

)

=

+1 −1

+1

−1

+1

1

2

(B.10)

One can slide the past-most insertion on the second leg down to the third leg without

changing the value of the contraction and obtain

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)

)

= +1

−1

+1

−1

+1

1

2

(B.11)

Now, one can add another past-most insertion with a factor (−1) on the fourth leg without

changing the value of the contraction because if we choose this new insertion, then again

there is no insertion to block the pair of points of e(2)
P

(ω2) from collapsing onto each other.

Therefore, we have

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)

)

= +1

−1

−1

+1

−1

+1

1

2

= − −1

+1

−1

+1

−1

+1

1

2

= −M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(2)
F (ω3)

)
.

(B.12)

So, we see that, in this case the transformation e
(1)
F (ω3) 7→ −e

(2)
F (ω3) keeps the value of the

contraction unchanged.
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P-sliding. Consider the contraction of M̃(3-Pt) with the tensor
(
e
(2)
P (ω1) ⊗ e

(1)
F (ω2) ⊗

e
(1)
F (ω3)

)
. The corresponding diagram is

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(1)
F (ω2)⊗ e

(1)
F (ω3)

)

=

−1

+1

−1

+1 −1

+1

1

2

(B.13)

Notice that e(2)
P

(ω1) is the future-most insertion. There is an e(1)
F

(ω2) to its past. But,

apart from e(2)
P

(ω1),there is no other e(1)
P

or e(2)
P

to the future of e(1)
F

(ω2). If we choose,

the future-most insertion with the factor (+1) on the third leg, then there is no insertion

to block the 2 insertions corresponding to e(1)
F

(ω2) from collapsing on to each other i.e.

one can slide either of those insertions to the position of the other and their contributions

would exactly cancel each other. Therefore, we have

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(1)
F (ω2)⊗ e

(1)
F (ω3)

)

=

−1

+1

−1

+1 −1 1

2

(B.14)

One can slide the future-most insertion on the second leg up to the first leg without changing

the value of the contraction and obtain

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(1)
F (ω2)⊗ e

(1)
F (ω3)

)

=

−1

+1

−1

+1

−1

1

2

(B.15)

Now, one can add another future-most insertion with a factor (e−βω1) on the fourth leg

without changing the value of the contraction because if we choose this new insertion, then

again there is no insertion to block the pair of points of e(1)
F

(ω2) from collapsing onto each

other. Therefore, we have

M̃(3-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)

)

=

−1

+1

−1

+1

−1

e
−βω1

1

2
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= −

−1

+1

−1

+1

+1

−e
−βω1

1

2

= −M̃(3-Pt) ·
(
e
(1)
P (ω1)⊗ e

(1)
F (ω2)⊗ e

(1)
F (ω3)

)
.

(B.16)

So, we see that, in this case the transformation e
(2)
P (ω1) 7→ −e

(1)
P (ω1) keeps the value of the

contraction unchanged.

C-shift. Consider the contraction of M̃(2-Pt) with the tensor
(
e
(1)
P (ω1)⊗ e

(1)
F (ω2)

)
. The

corresponding diagram is

M̃(2-Pt) ·
(
e
(1)
P (ω1)⊗ e

(1)
F (ω2)

)
=

−1

+1

+1

−e
−βω1

1

2

(B.17)

One can slide the insertions one after the other without changing the value of the contrac-

tion as shown below:

M̃(2-Pt) ·
(
e
(1)
P (ω1)⊗ e

(1)
F (ω2)

)

=

−1

+1

+1

−e
−βω1

1

2

=

−1 +1

1

2

+
+1

+1

1

2

+

−1

−e
−βω1

1

2

+

+1

−e
−βω1

1

2

= −1 +1

1

2

+

+1

+1

1

2
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+ −1

−1 1

2

+

+1

−1 1

2

= −1

+1

−1

+1

1

2

= M̃(2-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
F (ω2)

)
.

(B.18)

So, we see that, in this case the transformation e
(1)
P (ω1) 7→ e

(2)
P (ω1), e

(1)
F (ω2) 7→ e

(2)
F (ω2)

keeps the value of the contraction unchanged.

F-fragmentation. Consider the contraction of M̃(4-Pt) with the tensor
(
e
(2)
P (ω1) ⊗

e
(3)
P (ω2)⊗ e

(2)
F (ω3)⊗ e

(2)
F (ω4)

)
. The corresponding diagram is

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(3)
P (ω2)⊗ e

(2)
F (ω3)⊗ e

(2)
F (ω4)

)

=

−1

+1

−1

+1 −1

+1

−1

+1

1

2

3

4

(B.19)

One can slide all the insertions that lie on the 4th leg or below down by two legs to obtain

the following diagram:

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(3)
P (ω2)⊗ e

(2)
F (ω3)⊗ e

(2)
F (ω4)

)

=

−1

+1

−1

+1 −1

+1

−1

+1

1

2

3

4

(B.20)

We can add a pair of points with opposite signs on the 4th and the 5th legs at positions

corresponding to the frequency ω3 without changing the value of the contraction as shown
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below:
M̃(4-Pt) ·

(
e
(2)
P (ω1)⊗ e

(3)
P (ω2)⊗ e

(2)
F (ω3)⊗ e

(2)
F (ω4)

)

=

−1

+1

−1

+1

+1

−1

−1

+1

−1

+1

1

2

3

4

(B.21)

There is no insertion to the past of these new insertions which can block them from col-

lapsing onto one another. Now, one can add another pair of insertions with opposite signs

on the 4th and the 5th legs at positions corresponding to the frequency ω4 without changing

the value of the contraction as shown below:

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(3)
P (ω2)⊗ e

(2)
F (ω3)⊗ e

(2)
F (ω4)

)

=

−1

+1

+1

−1

−1

+1

+1

−1

−1

+1

−1

+1

1

2

3

4

(B.22)

As before, there is no insertion to the past of these new insertions which can block

them from collapsing onto one another. But this is exactly the diagram for the contraction

of M̃(4-Pt) with

(
e
(2)
P (ω1)⊗ e

(4)
P (ω2)⊗ (e

(2)
F (ω3) + e

(3)
F (ω3))⊗ (e

(2)
F (ω4) + e

(3)
F (ω4))

)
.

Therefore, we have

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(3)
P (ω2)⊗ e

(2)
F (ω3)⊗ e

(2)
F (ω4)

)

= M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(4)
P (ω2)⊗ (e

(2)
F (ω3) + e

(3)
F (ω3))

⊗ (e
(2)
F (ω4) + e

(3)
F (ω4))

)
.

(B.23)
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P-fragmentation. Consider the contraction of M̃(4-Pt) with the tensor
(
e
(2)
P (ω1) ⊗

e
(2)
P (ω2)⊗ e

(1)
F (ω3)⊗ e

(2)
F (ω4)

)
. The corresponding diagram is

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)⊗ e

(2)
F (ω4)

)

=

−1

+1

−1

+1 −1

+1

−1

+1

1

2

3

4

(B.24)

One can slide all the insertions that lie on the 3rd leg or below down by two legs to obtain

the following diagram:

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)⊗ e

(2)
F (ω4)

)

=
−1

+1

−1

+1 −1

+1

−1

+1

1

2

3

4

(B.25)

We can add a pair of points with opposite signs on the 3rd and the 4th legs at positions

corresponding to the frequency ω2 without changing the value of the contraction as shown

below:

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)⊗ e

(2)
F (ω4)

)

=
−1

+1

−1

+1 −1

+1

+1

−1

−1

+1

1

2

3

4

(B.26)

There is no insertion to the future of these new insertions which can block them from

collapsing onto one another. Now, one can add another pair of insertions with opposite
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signs on the 3rd and the 4th legs at positions corresponding to the frequency ω1 without

changing the value of the contraction as shown below:

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)⊗ e

(2)
F (ω4)

)

=
−1

+1

−1

+1 −1

+1

+1

−1

−1

+1

+1

−1

1

2

3

4

(B.27)

As before, there is no insertion to the future of these new insertions which can block

them from collapsing onto one another. But this is exactly the diagram for the contraction

of M̃(4-Pt) with
(
(e

(2)
P (ω1)+e

(3)
P (ω1))⊗(e

(2)
P (ω2)+e

(3)
P (ω2))⊗e

(1)
F (ω3)⊗e

(3)
F (ω4)

)
. Therefore,

we have

M̃(4-Pt) ·
(
e
(2)
P (ω1)⊗ e

(2)
P (ω2)⊗ e

(1)
F (ω3)⊗ e

(2)
F (ω4)

)

= M̃(4-Pt) ·
(
(e

(2)
P (ω1) + e

(3)
P (ω1))⊗ (e

(2)
P (ω2) + e

(2)
P (ω2))

⊗ e
(1)
F (ω3)e

(3)
F (ω4)

)
.

(B.28)

C Orthogonal tensors and column vector representation

C.1 Column vector representation for 2 pt. functions

In this section, we are going to discuss the column vector representation of the array of two

point correlators on a k-fold contour. We take M̃(2-Pt) to be the Wightman array in the

Fourier domain. Its components in column vector basis satisfy the rules mentioned in B.1.

Using these rules, one can show that

M̃(2-Pt) = ρ[12]
k∑

r=1

(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
. (C.1)

Orthogonal tensors for two pt. functions. The expression in (C.1) can be proved by

demonstrating that the array of two pt. functions should be orthogonal to the following

tensors:
3k2 orthogonal tensors: ers

PP
, ers

FP
, ers

FF
,

k(k − 2) orthogonal tensors: ers
PF

for r 6= s, s+ 1 ,

k orthogonal tensors: err
PF

+ e(r+1)r
PF

,

k − 1 orthogonal tensors: err
PF

− e11
PF

.

(C.2)

Here we have used a short-hand notation for the tensor products of the row vectors. For

example, we have written e(r)
P

(ω1)⊗ e(s)
F

(ω2) as e
rs
PF

and so on.

– 33 –



J
H
E
P
0
2
(
2
0
1
9
)
0
1
8

Orthogonal Total no. Argument

tensor of tensors

ers
PP

k2 e
rs

PP

P-collapse
−−−−−−→ 0

ers
FP

k2 e
rs

FP

F-collapse
−−−−−−→ 0

ers
FF

k2 e
rs

FF

F-collapse
−−−−−−→ 0

ers
PF

k(k − 2) e
rs

PF

F-collapse
−−−−−−→ 0

for r 6= s, s+ 1

err
PF

+ e(r+1)r
PF

k e
(r+1)r

PF

P-sliding
−−−−−→ −err

PF

err
PF

− e11
PF

k − 1 err
PF

C-shift
−−−−→ e11

PF

Table 1. Arguments for the tensors orthogonal to the array of 2 point contour correlators.

The total number of elements in this array is 2k × 2k = 4k2. The total number of

tensors that are orthogonal to the array M̃(2-Pt) is (4k2 − 1). These are enumerated

in (C.2). Therefore, the orthogonal tensors completely fix the array upto a single function

which has to be determined.

The arguments for the tensors mentioned in (C.2) being orthogonal to the array of

contour correlators are based on rules of contraction enumerated in appendix B.1. These

arguments are given in table 1.

In this table, we have indicated the e
P
(e

F
) which leads to a P(F)-collapse by red colour,

and in case of a P/F-sliding we have indicated the e
P
/e

F
that slides by blue colour and the

corresponding e
F
/e

P
that acts as the anchor by brown colour. The array that is orthogonal

to all the tensors mentioned above must have the form

M̃(2-Pt) = α(2)
k∑

r=1

(ē(r+1)
P

(ω1)− ē(r)
P

(ω1))⊗ ē(r)
F

(ω2) . (C.3)

Now, the coefficient α(2) is given by the contraction with the tensor e
(r+1)r
PF , an example

of which is the case r = 1. Then this coefficient is given by

α(2) = M̃(2-Pt) · e 21
PF = ρ[12] . (C.4)

Substituting the value of α(2) that was obtained in (C.4) into the equation (C.3) we

get the expansion that was mentioned in (C.1).

C.2 Column vector representation for 3 pt. functions

Now, let us discuss the column vector representation of the array of 3-point correlators on

a k-fold contour. We take M̃(3-Pt) to be the Wightman array in the Fourier domain. Its
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Orthogonal Total no. Argument

tensor of tensors

ersu
PPP

k3 e
rsu

PPP

P-collapse
−−−−−−→ 0

ersu
PFP

k3 e
rsu

PFP

P-collapse
−−−−−−→ 0

ersu
FPP

k3 e
rsu

FPP

F-collapse
−−−−−−→ 0

ersu
FPF

k3 e
rsu

FPF

F-collapse
−−−−−−→ 0

ersu
FFP

k3 e
rsu

FFP

F-collapse
−−−−−−→ 0

ersu
FFF

k3 e
rsu

FFF

F-collapse
−−−−−−→ 0

Table 2. Arguments for the tensors trivially orthogonal to the array of 3 point contour correlators.

components in column vector basis satisfy the rules mentioned in B.1. Using these rules,

one can show that

M̃(3-Pt) = ρ[321]
k∑

r=1

(ē(r+1)
P

⊗ ē(r+1)
P

− ē(r)
P

⊗ ē(r)
P

)⊗ ē(r)
F

− ρ[123]
k∑

r=1

(ē(r+1)
P

− ē(r)
P

)⊗ ē(r)
F

⊗ ē(r)
F

.

(C.5)

Orthogonal tensors for three pt. functions. The expression in (C.5) can be proved

by demonstrating that the three pt. function should be orthogonal to the following tensors:

6k3 orthogonal tensors: ersu
PPP

, ersu
FPP

, ersu
PFP

, ersu
FFP

, ersu
FPF

, ersu
FFF

,

k2(k − 1) orthogonal tensors: ersu
PPF

for r 6= s ,

k(k − 2) orthogonal tensors: errs
PPF

for s 6= r, r − 1 ,

k orthogonal tensors: errr
PPF

+ e(r+1)(r+1)r
PPF

,

k − 1 orthogonal tensors: errr
PPF

− e111
PPF

,

k2(k − 1) orthogonal tensors: ersu
PFF

for s 6= u ,

k(k − 2) orthogonal tensors: erss
PFF

for r 6= s, s+ 1 ,

k orthogonal tensors: errr
PFF

+ e(r+1)rr
PFF

,

k − 1 orthogonal tensors: errr
PFF

− e111
PFF

.

(C.6)

This gives in total 8k3 − 2 orthogonal tensors.

The arguments for the tensors mentioned in (C.6) being orthogonal to the array of

contour correlators are given in tables 2, 3 and 4.

As before, in tables 2, 3 and 4 we have indicated the e
P
(e

F
) which leads to a P(F)-

collapse by red colour, and in case of a P/F-sliding we have indicated the e
P
/e

F
that slides

by blue colour and the corresponding e
F
/e

P
that acts as the anchor by brown colour.

– 35 –



J
H
E
P
0
2
(
2
0
1
9
)
0
1
8

Orthogonal Total no. Argument

tensor of tensors

ersu
PPF

k2(k − 1) W.L.O.G let us consider r > s.

for r 6= s Case 1: r > (s + 1)

If u 6= s, s− 1, then

e
rsu

PPF

P-collapse
−−−−−−→ 0, otherwise e

rsu

PPF

P-collapse
−−−−−−→ 0.

Case 2: r = (s + 1)

If u = s, then

e
(s+1)ss

PPF

F-sliding
−−−−−→ −e

(s+1)s(s+1)

PPF

P-collapse
−−−−−−→ 0,

if u > s, then e
(s+1)su

PPF

P-collapse
−−−−−−→ 0,

and if u < s, then e
(s+1)su

PPF

P-collapse
−−−−−−→ 0.

errs
PPF

k(k − 2) e
rrs

PPF

F-collapse
−−−−−−→ 0

for s 6= r, r − 1

errr
PPF

+ e(r+1)(r+1)r
PPF

k e(r+1)(r+1)r
PPF

C-shift
−−−−→ e

rr(r−1)

PPF

F-sliding
−−−−−→ −errr

PPF

errr
PPF

− e111
PPF

k − 1 errr
PPF

C-shift
−−−−→ e111

PPF

Table 3. Arguments for the tensors in the PPF sector orthogonal to the array of 3 point contour

correlators.

The array that is orthogonal to all the tensors mentioned above must have the form

M̃(3-Pt)

= α
(3)
1

(
k∑

r=1

(ē(r+1)
P

(ω1)⊗ ē(r+1)
P

(ω2)⊗ ē(r)
F

(ω3)− ē(r)
P

(ω1)⊗ ē(r)
P

(ω2)⊗ ē(r)
F

(ω3))

)

+ α
(3)
2

(
k∑

r=1

(ē(r+1)
P

(ω1)− ē(r)
P

(ω1))⊗ ē(r)
F

(ω2)⊗ ē(r)
F

(ω3)

)
.

(C.7)

Now, the coefficient α
(3)
1 is given by the contraction with the tensor e

(r+1)(r+1)r
PPF , an example

of which is the case r = 1. Then this coefficient is given by

α
(3)
1 = M̃(3-Pt) · e 221

PPF = ρ[321] . (C.8)

The coefficient α
(3)
2 is given by the contraction with the tensor e

(r+1)rr
PFF , an example of

which is the case r = 1. Then this coefficient is given by

α
(3)
2 = M̃(3-Pt) · e 211

PFF = −ρ[123] . (C.9)
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Orthogonal Total no. Argument

tensor of tensors

ersu
PFF

k2(k − 1) W.L.O.G let us consider s > u.

for s 6= u Case 1: s > (u + 1)

If r 6= s, s+ 1, then

e
rsu

PFF

F-collapse
−−−−−−→ 0, otherwise e

rsu

PFF

F-collapse
−−−−−−→ 0.

Case 2: s = (u + 1)

If r = u+ 1, then

e
(u+1)(u+1)u

PFF

P-sliding
−−−−−→ −e

(u+2)(u+1)u

PFF

F-collapse
−−−−−−→ 0,

if r > (u+ 1), then e
r(u+1)u

PFF

F-collapse
−−−−−−→ 0,

and if r < (u+ 1), then e
r(u+1)u

PFF

F-collapse
−−−−−−→ 0.

erss
PFF

k(k − 2) e
rss

PFF

F-collapse
−−−−−−→ 0

for r 6= s, s+ 1

errr
PFF

+ e(r+1)rr
PFF

k e
(r+1)rr

PFF

P-sliding
−−−−−→ −errr

PFF

errr
PFF

− e111
PFF

k − 1 errr
PFF

C-shift
−−−−→ e111

PFF

Table 4. Arguments for the tensors in the PFF sector orthogonal to the array of 3 point contour

correlators.

Substituting the values of α
(3)
1 and α

(3)
2 that were obtained in (C.8) and (C.9) into the

equation (C.7) we get the expansion that was mentioned in (C.5).

C.3 Column vector representation for 4 pt. functions

Finally, let us discuss the column vector representation of the array of 4-point correlators

on a k-fold contour. We take M̃(4-Pt) to be the Wightman array in the Fourier domain.

Its components in column vector basis satisfy the rules mentioned in B.1. Using these

rules, one can show that

M̃(4-Pt) = M̃PPPF + M̃PFFF + M̃PFPF + M̃PPFF (C.10)

where

M̃PPPF = −ρ[4321]
k∑

r=1

(
ē(r+1)
P

⊗ ē(r+1)
P

⊗ ē(r+1)
P

⊗ ē(r)
F

− ē(r)
P

⊗ ē(r)
P

⊗ ē(r)
P

⊗ ē(r)
F

)
,

(C.11)

M̃PFFF = ρ[1234]
k∑

r=1

(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
⊗ ē(r)

F
⊗ ē(r)

F
, (C.12)
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M̃PFPF =
k∑

r,s=1

(
θr>s ρ[12][34] + θr≤s ρ[34][12]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
⊗ ē(s+1)

P
⊗ ē(s)

F

−
k∑

r,s=1

(
θr≥sρ[12][34] + θr<s ρ[34][12]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(r)

F
⊗ ē(s)

P
⊗ ē(s)

F
, (C.13)

M̃PPFF =
k∑

r,s=1

(
θr>s ρ[13][24] + θr≤s ρ[24][13]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(s+1)

P
⊗ ē(r)

F
⊗ ē(s)

F

−
k∑

r,s=1

(
θr≥s ρ[13][24] + θr<s ρ[24][13]

)(
ē(r+1)
P

− ē(r)
P

)
⊗ ē(s)

P
⊗ ē(r)

F
⊗ ē(s)

F

+
k∑

r,s=1

(
θr≥s ρ[14][23] + θr<s ρ[23][14]

)
ē(r+1)
P

⊗
(
ē(s+1)
P

− ē(s)
P

)
⊗ ē(s)

F
⊗ ē(r)

F

−
k∑

r,s=1

(
θr>s ρ[14][23] + θr≤s ρ[23][14]

)
ē(r)
P

⊗
(
ē(s+1)
P

− ē(s)
P

)
⊗ ē(s)

F
⊗ ē(r)

F

+ ρ[2314]
k∑

r=1

(
ē(r+1)
P

⊗ ē(r+1)
P

− ē(r)
P

⊗ ē(r)
P

)
⊗ ē(r)

F
⊗ ē(r)

F
. (C.14)

Orthogonal tensors for four pt. functions. The results in (C.10), (C.11), (C.12),

(C.13) and (C.14) can be proved by demonstrating that the array of four pt. functions

should be orthogonal to the following tensors. The arguments for the orthogonality of

these tensors to the array of 4 point functions are given in tables 5–12.

Trivial orthogonal tensor.

12k4 orthogonal tensors: ersuv
PPPP

, ersuv
PPFP

, ersuv
PFPP

, ersuv
PFFP

, ersuv
FPPP

, ersuv
FPPF

,

ersuv
FPFP

, ersuv
FPFF

, ersuv
FFPP

, ersuv
FFPF

, ersuv
FFFP

, ersuv
FFFF

(C.15)

Orthogonal tensors in the PPPF sector.

k(k3 − k) orthogonal tensors: ersuv
PPPF

when r, s and u are not all equal ,

k(k − 2) orthogonal tensors: errrs
PPPF

for r 6= s, s+ 1 ,

2k − 1 orthogonal tensors: e(r+1)(r+1)(r+1)r
PPPF

+ errrr
PPPF

.

(C.16)

Total number of orthogonal tensors in this sector = k4 − 1.

These orthogonal tensors fix M̃PPPF to be of the following form:

M̃PPPF

= α
(4)
1

k∑

r=1

(
ē(r+1)
P

(ω1)⊗ ē(r+1)
P

(ω2)⊗ ē(r+1)
P

(ω3)⊗ ē(r)
F

(ω4)

− ē(r)
P

(ω1)⊗ ē(r)
P

(ω2)⊗ ē(r)
P

(ω3)⊗ ē(r)
F

(ω4)
)
.

(C.17)
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Orthogonal Total no. Argument

tensor of tensors

ersuv
PPPP

k4 e
rsuv

PPPP

P-collapse
−−−−−−→ 0

ersuv
PPFP

k4 e
rsuv

PPFP

P-collapse
−−−−−−→ 0

ersuv
PFPP

k4 e
rsuv

PFPP

P-collapse
−−−−−−→ 0

ersuv
PFFP

k4 e
rsuv

PFFP

P-collapse
−−−−−−→ 0

ersuv
FPPP

k4 e
rsuv

FPPP

F-collapse
−−−−−−→ 0

ersuv
FPPF

k4 e
rsuv

FPPF

F-collapse
−−−−−−→ 0

ersuv
FPFP

k4 e
rsuv

FPFP

F-collapse
−−−−−−→ 0

ersuv
FPFF

k4 e
rsuv

FPFF

F-collapse
−−−−−−→ 0

ersuv
FFPP

k4 e
rsuv

FFPP

F-collapse
−−−−−−→ 0

ersuv
FFPF

k4 e
rsuv

FFPF

F-collapse
−−−−−−→ 0

ersuv
FFFP

k4 e
rsuv

FFFP

F-collapse
−−−−−−→ 0

ersuv
FFFF

k4 e
rsuv

FFFF

F-collapse
−−−−−−→ 0

Table 5. Arguments for the tensors trivially orthogonal to the array of 4 point contour correlators.

The coefficient α
(4)
1 is given by the contraction with the tensor e

(r+1)(r+1)(r+1)r
PPPF , an

example of which is the case r = 1. Then this coefficient is given by

α
(4)
1 = M̃(4-Pt) · e 2221

PPPF = ρ[4321] . (C.18)

Orthogonal tensors in the PFFF sector.

k(k3 − k) orthogonal tensors: ersuv
PFFF

when s,u and v are not all equal ,

k(k − 2) orthogonal tensors: ersss
PFFF

for r 6= s, s+ 1 ,

2k − 1 orthogonal tensors: e(r+1)rrr
PFFF

+ errrr
PFFF

.

(C.19)

Total number of orthogonal tensors in this sector = k4 − 1.

These orthogonal tensors fix M̃PFFF to be of the following form:

M̃PFFF

= α
(4)
2

k∑

r=1

(
ē(r+1)
P

(ω1)− ē(r)
P

(ω1)
)
⊗ ē(r)

P
(ω2)⊗ ē(r)

P
(ω3)⊗ ē(r)

F
(ω4) .

(C.20)
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Orthogonal Total no. Argument

tensor of tensors

ersuv
PPPF

k(k3 − k) Case 1: s 6= u

when r, s and u W.L.O.G let us consider s > u.

are not all equal Subcase 1: s > (u + 1)

e
rsuv

PPPF

P-collapse
−−−−−−→ 0, otherwise e

rsuv

PPPF

P-collapse
−−−−−−→ 0.

Subcase 2: s = (u + 1)

If v = u, then

e
r(u+1)uu

PPPF

F-sliding
−−−−−→ −e

r(u+1)u(u+1)

PPPF

P-collapse
−−−−−−→ 0,

if v > u, then

e
r(u+1)uv

PPPF

P-collapse
−−−−−−→ 0,

if v < u, then

e
r(u+1)uv

PPPF

P-collapse
−−−−−−→ 0,

Case 2: s = u 6= r

W.L.O.G let us consider r > s.

Subcase 1: r > (s + 1)

If v 6= s, s− 1, then

e
rssv

PPPF

P-collapse
−−−−−−→ 0,

otherwise e
rssv

PPPF

P-collapse
−−−−−−→ 0.

Subcase 2: r = (s + 1)

If v = s, then

e
(s+1)sss

PPPF

F-sliding
−−−−−→ −e

(s+1)ss(s−1)

PPPF

P-collapse
−−−−−−→ 0,

if v > s, then e
(s+1)ssv

PPPF

P-collapse
−−−−−−→ 0,

and if v < s, then e
(s+1)ssv

PPPF

P-collapse
−−−−−−→ 0.

errrs
PPPF

k(k − 2) e
rrrs

PPPF

F-collapse
−−−−−−→ 0

for s 6= r, r − 1

errrr
PPPF

+ e(r+1)(r+1)(r+1)r
PPPF

2k − 1 e(r+1)(r+1)(r+1)r
PPPF

C-shift
−−−−→ e

rrr(r−1)

PPPF

F-sliding
−−−−−→ −errrr

PPPF

Table 6. Arguments for the tensors in the PPPF sector orthogonal to the array of 4 point contour

correlators.
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tensor of tensors

ersuv
PFFF

k(k3 − k) Case 1: s 6= u

when s, u and v W.L.O.G, let us consider s > u

are not all equal Subcase 1: s > (u + 1)

e
rsuv

PFFF

F-collapse
−−−−−−→ 0, otherwise e

rsuv

PFFF

F-collapse
−−−−−−→ 0.

Subcase 2: s = (u + 1)

If r = u+ 1, then

e
(u+1)(u+1)uv

PFFF

P-sliding
−−−−−→ −e

u(u+1)uv

PPPF

F-collapse
−−−−−−→ 0,

if r > u+ 1, then

e
r(u+1)uv

PFFF

F-collapse
−−−−−−→ 0,

if r < u+ 1, then

e
r(u+1)uv

PFFF

F-collapse
−−−−−−→ 0.

Case 2: s = u 6= v

W.L.O.G, let us consider s > v

Subcase 1: s > (v + 1)

If r 6= s, s+ 1, then e
rssv

PFFF

F-collapse
−−−−−−→ 0,

otherwise e
rssv

PFFF

F-collapse
−−−−−−→ 0.

Subcase 2: s = (v + 1)

If r = v + 1, then

e
(v+1)(v+1)(v+1)v

PFFF

P-sliding
−−−−−→ −e

(v+2)(v+1)(v+1)v

PFFF

F-collapse
−−−−−−→ 0,

if r > (v + 1), then e
r(v+1)(v+1)v

PFFF

F-collapse
−−−−−−→ 0,

and if r < (v + 1), then e
r(v+1)(v+1)v

PFFF

F-collapse
−−−−−−→ 0

ersss
PFFF

k(k − 2) e
rsss

PFFF

F-collapse
−−−−−−→ 0

for r 6= s, s+ 1

errrr
PFFF

+ e(r+1)rrr
PFFF

2k − 1 e
(r+1)rrr

PFFF

P-sliding
−−−−−→ −errrr

PFFF

Table 7. Arguments for the tensors in the PFFF sector orthogonal to the array of 4 point contour

correlators.
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The coefficient α
(4)
2 is given by the contraction with the tensor e

(r+1)rrr
PFFF , an example

of which is the case r = 1. Then this coefficient is given by

α
(4)
2 = M̃(4-Pt) · e 2111

PFFF = ρ[1234] . (C.21)

Orthogonal tensors in the PFPF sector.

k3(k − 2) orthogonal tensors: ersuv
PFPF

for r 6= s, s+ 1 ,

k2(k − 2) orthogonal tensors: e(r+1)ruv
PFPF

for v 6= u, u− 1 ,

k2(k − 2) orthogonal tensors: erruv
PFPF

for v 6= u, u− 1 ,

k2 orthogonal tensors: e(r+1)ruu
PFPF

+ erruu
PFPF

,

k2 orthogonal tensors: err(u+1)u
PFPF

+ err(u+1)(u+1)
PFPF

,

k2 orthogonal tensors: e(r+1)r(u+1)u
PFPF

− err(u+1)(u+1)
PFPF

,

1

2
(k2 − k) orthogonal tensors: e(r+1+l)(r+1+l)rr

PFPF
− e(r+1)(r+1)rr

PFPF
for 1 ≤ l ≤ (k − r) ,

1

2
(k2 − k) orthogonal tensors: e(r−l)(r−l)(r+1)(r+1)

PFPF
− err(r+1)(r+1)

PFPF
for 1 ≤ l ≤ (r − 1) ,

k − 1 orthogonal tensors: errrr
PFPF

− e1111
PFPF

.

(C.22)

Total number of orthogonal tensors in this sector = k4 − 1.

These orthogonal tensors fix M̃PFPF to be of the following form:

M̃PFPF

= α
(4)
3

k∑

r,s=1

(
θr>s + θr≤se

β(ω3+ω4)
)

(
ē(r+1)
P

(ω1)− ē(r)
P

(ω1)
)
⊗ ē(r)

F
(ω2)⊗ ē(s+1)

P
(ω3)⊗ ē(s)

F
(ω4)

− α
(4)
3

k∑

r,s=1

(
θr≥s + θr<se

β(ω3+ω4)
)

(
ē(r+1)
P

(ω1)− ē(r)
P

(ω1)
)
⊗ ē(r)

F
(ω2)⊗ ē(s)

P
(ω3)⊗ ē(s)

F
(ω4) .

(C.23)

The coefficient α
(4)
3 is given by the contraction with the tensor e

(r+1)r(s+1)s
PFPF for r > s, an

example of which is the case r = 2, s = 1. Then this coefficient is given by

α
(4)
3 = M̃(4-Pt) · e 3221

PFPF = ρ[12][34] . (C.24)

Orthogonal tensors in the PPFF sector.

k(k − 3)(k2 − 8) orthogonal tensors: ersuv
PPFF

for |u− v| > 1 and

(r, s) /∈ {(u, v), (u, v + 1), (u+ 1, v), (u+ 1, v + 1),

(v, u), (v + 1, u), (v, u+ 1), (v + 1, u+ 1)} ,

k(k − 3) orthogonal tensors: e(u+1)vuv
PPFF

+ euvuv
PPFF

for |u− v| > 1 ,
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Orthogonal Total no. Argument

tensor of tensors

ersuv
PFPF

k3(k − 2) ersuv
PFPF

F-collapse
−−−−−−→ 0

for r 6= s, s+ 1

e(s+1)suv
PFPF

k2(k − 2) e(s+1)suv
PFPF

P-collapse
−−−−−−→ 0

for v 6= u, u− 1

essuv
PFPF

k2(k − 2) essuv
PFPF

P-collapse
−−−−−−→ 0

for v 6= u, u− 1

e(s+1)suu
PFPF

+ essuu
PFPF

k2 e(s+1)suu
PFPF

P-sliding
−−−−−→ −essuu

PFPF

ess(u+1)u
PFPF

+ ess(u+1)(u+1)
PFPF

k2 ess(u+1)u
PFPF

F-sliding
−−−−−→ −ess(u+1)(u+1)

PFPF

e(s+1)s(u+1)u
PFPF

− ess(u+1)(u+1)
PFPF

k2 e(s+1)s(u+1)u
PFPF

F-sliding
−−−−−→ −e(s+1)s(u+1)(u+1)

PFPF

P-sliding
−−−−−→ ess(u+1)(u+1)

PFPF

e(s+1+l)(s+1+l)ss
PFPF

− e(s+1)(s+1)ss
PFPF

1
2(k

2 − k) e(s+1)(s+1)ss
PFPF

P-sliding
−−−−−→ −e(s+2)(s+1)ss

PFPF

for 1 ≤ l ≤ (k − s)
F-sliding
−−−−−→ e(s+2)(s+2)ss

PFPF

P-sliding
−−−−−→ −e(s+3)(s+2)ss

PFPF

F-sliding
−−−−−→ e(s+3)(s+3)ss

PFPF

P-sliding
−−−−−→ . . .

F-sliding
−−−−−→ e(s+1+l)(s+1+l)ss

PFPF

(
e(s−l)(s−l)(s+1)(s+1)
PFPF

1
2(k

2 − k) ess(s+1)(s+1)
PFPF

F-sliding
−−−−−→ −es(s−1)(s+1)(s+1)

PFPF

−ess(s+1)(s+1)
PFPF

)
P-sliding
−−−−−→ e(s−1)(s−1)(s+1)(s+1)

PFPF

for 1 ≤ l ≤ (s− 1)
F-sliding
−−−−−→ −e(s−1)(s−2)(s+1)(s+1)

PFPF

P-sliding
−−−−−→ e(s−2)(s−2)(s+1)(s+1)

PFPF

F-sliding
−−−−−→ . . .

P-sliding
−−−−−→ e(s−l)(s−l)(s+1)(s+1)

PFPF

essss
PFPF

− e1111
PFPF

k − 1 essss
PFPF

C-shift
−−−−→ e1111

PFPF

Table 8. Arguments for the tensors in the PFPF sector orthogonal to the array of 4 point contour

correlators.
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Orthogonal Total no. Argument

tensor of tensors

ersuv
PPFF

k(k − 3) If r 6= u, u+ 1 and s 6= u, u+ 1,

for |u− v| > 1 and (k2 − 8) then ersuv
PPFF

F-collapse
−−−−−−→ 0

(r, s) /∈ {(u, v), (u, v + 1), If r 6= v, v + 1 and s 6= v, v + 1

(u+ 1, v), (u+ 1, v + 1), then ersuv
PPFF

F-collapse
−−−−−−→ 0

(v, u), (v + 1, u),

(v, u+ 1), (v + 1, u+ 1)}

e(u+1)vuv
PPFF

+ euvuv
PPFF

k(k − 3) e(u+1)vuv
PPFF

P-sliding
−−−−−→ −euvuv

PPFF

for |u− v| > 1

eu(v+1)uv
PPFF

+ euvuv
PPFF

k(k − 3) eu(v+1)uv
PPFF

P-sliding
−−−−−→ −euvuv

PPFF

for |u− v| > 1

e(u+1)(v+1)uv
PPFF

− euvuv
PPFF

k(k − 3) e(u+1)(v+1)uv
PPFF

P-sliding
−−−−−→ −e(u+1)vuv

PPFF

for |u− v| > 1
P-sliding
−−−−−→ euvuv

PPFF

ev(u+1)uv
PPFF

+ evuuv
PPFF

k(k − 3) ev(u+1)uv
PPFF

P-sliding
−−−−−→ −evuuv

PPFF

for |u− v| > 1

e(v+1)uuv
PPFF

+ evuuv
PPFF

k(k − 3) e(v+1)uuv
PPFF

P-sliding
−−−−−→ −evuuv

PPFF

for |u− v| > 1

e(v+1)(u+1)uv
PPFF

− euvuv
PPFF

k(k − 3) e(v+1)(u+1)uv
PPFF

P-sliding
−−−−−→ −ev(u+1)uv

PPFF

for |u− v| > 1
P-sliding
−−−−−→ evuuv

PPFF

Table 9. Arguments for the tensors in the PPFF sector orthogonal to the array of 4 point contour

correlators.
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k(k − 3) orthogonal tensors: eu(v+1)uv
PPFF

+ euvuv
PPFF

for |u− v| > 1 ,

k(k − 3) orthogonal tensors: e(u+1)(v+1)uv
PPFF

− euvuv
PPFF

for |u− v| > 1 ,

k(k − 3) orthogonal tensors: ev(u+1)uv
PPFF

+ evuuv
PPFF

for |u− v| > 1 ,

k(k − 3) orthogonal tensors: e(v+1)uuv
PPFF

+ evuuv
PPFF

for |u− v| > 1 ,

k(k − 3) orthogonal tensors: e(v+1)(u+1)uv
PPFF

− evuuv
PPFF

for |u− v| > 1 .

(C.25)

k(k2 − 7) orthogonal tensors: ersu(u+1)
PPFF

for(r, s) /∈ {(u, u+ 1), (u, u+ 2), (u+ 1, u+ 1),

(u+ 1, u+ 2), (u+ 1, u), (u+ 2, u),

(u+ 2, u+ 1)} ,

k(k2 − 7) orthogonal tensors: ers(v+1)v
PPFF

for(r, s) /∈ {(v + 1, v), (v + 2, v), (v + 1, v + 1),

(v + 2, v + 1), (v, v + 1), (v, v + 2),

(v + 1, v + 2)} ,

k orthogonal tensors: eu(u+2)u(u+1)
PPFF

+ eu(u+1)u(u+1)
PPFF

,

k orthogonal tensors: e(u+1)(u+2)u(u+1)
PPFF

− eu(u+1)u(u+1)
PPFF

,

k orthogonal tensors: e(u+2)uu(u+1)
PPFF

+ e(u+1)uu(u+1)
PPFF

,

k orthogonal tensors: e(u+2)(u+1)u(u+1)
PPFF

− e(u+1)uu(u+1)
PPFF

,

k orthogonal tensors: ev(v+2)(v+1)v
PPFF

+ ev(v+1)(v+1)v
PPFF

,

k orthogonal tensors: e(v+1)(v+2)(v+1)v
PPFF

− ev(v+1)(v+1)v
PPFF

,

k orthogonal tensors: e(v+2)v(v+1)v
PPFF

+ e(v+1)v(v+1)v
PPFF

,

k orthogonal tensors: e(v+2)(v+1)(v+1)v
PPFF

− e(v+1)v(v+1)v
PPFF

,

k − 1 orthogonal tensors: e(u+1)(u+1)u(u+1)
PPFF

− e2212
PPFF

,

k − 1 orthogonal tensors: e(v+1)(v+1)(v+1)v
PPFF

− e2221
PPFF

.

(C.26)

1

2
k(k − 1)− 1 orthogonal tensors: euvuv

PPFF
− e2121

PPFF
for u > v ,

1

2
k(k − 1)− 1 orthogonal tensors: euvuv

PPFF
− e1212

PPFF
for u < v ,

1

2
k(k − 1)− 1 orthogonal tensors: evuuv

PPFF
− e1221

PPFF
for u > v ,

1

2
k(k − 1)− 1 orthogonal tensors: evuuv

PPFF
− e2112

PPFF
for u < v ,
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1 orthogonal tensor: e1212
PPFF

− eβ(ω2+ω4)e2121
PPFF

,

1 orthogonal tensor: e2112
PPFF

− eβ(ω1+ω4)e1221
PPFF

.

(C.27)

k(k2 − 4) orthogonal tensors: ersuu
PPFF

for(r, s) /∈ {(u, u), (u+ 1, u), (u, u+ 1), (u+ 1, u+ 1)} ,

k − 1 orthogonal tensors: euuuu
PPFF

− e1111
PPFF

,

k − 1 orthogonal tensors: e(u+1)(u+1)uu
PPFF

− e2211
PPFF

,

k − 1 orthogonal tensors: e(u+1)uuu
PPFF

− e2111
PPFF

,

k − 1 orthogonal tensors: eu(u+1)uu
PPFF

− e1211
PPFF

,

1 orthogonal tensor: e2111
PPFF

− e3121
PPFF

− e3112
PPFF

,

1 orthogonal tensor: e1211
PPFF

− e1321
PPFF

− e1312
PPFF

,

1 orthogonal tensor: e2221
PPFF

− e2331
PPFF

− e3231
PPFF

,

1 orthogonal tensor: e2212
PPFF

− e2313
PPFF

− e3213
PPFF

,

1 orthogonal tensor: e1111
PPFF

+ e2111
PPFF

+ e1211
PPFF

+ e2211
PPFF

.

(C.28)

Total number of orthogonal tensors in this sector = k4 − 3.

In table 12, when there is a P/F or fragmentation we indicate the eP /eF that fragments

by green colour. Let us explain the argument given for the last orthogonal tensor in

table 12. We successively remove the pair of future-most insertions on the first 2 legs

whose contributions cancel each other, thus resulting in zero. These orthogonal tensors fix

M̃PPFF to be of the following form:

M̃PPFF

= α
(4)
4

k∑

r,s=1

(
θr>s + θr≤se

β(ω2+ω4)
)

(
ē(r+1)
P

(ω1)− ē(r)
P

(ω1)
)
⊗ ē(s+1)

P
(ω2)⊗ ē(r)

F
(ω3)⊗ ē(s)

F
(ω4)

− α
(4)
4

k∑

r,s=1

(
θr≥s + θr<se

β(ω2+ω4)
)

(
ē(r+1)
P

(ω1)− ē(r)
P

(ω1)
)
⊗ ē(s)

P
(ω2)⊗ ē(r)

F
(ω3)⊗ ē(s)

F
(ω4)

+ α
(4)
5

k∑

r,s=1

(
θr≥se

β(ω1+ω4) + θr<s

)

ē(r+1)
P

(ω1)⊗
(
ē(s+1)
P

(ω2)− ē(s)
P

(ω2)
)
⊗ ē(s)

F
(ω3)⊗ ē(r)

F
(ω4)

− α
(4)
5

k∑

r,s=1

(
θr>se

β(ω1+ω4) + θr≤s

)

ē(r)
P

(ω1)⊗
(
ē(s+1)
P

(ω2)− ē(s)
P

(ω2)
)
⊗ ē(s)

F
(ω3)⊗ ē(r)

F
(ω4)
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Orthogonal Total no. Argument

tensor of tensors

ersu(u+1)
PPFF

k(k2 − 7) If r 6= u, u+ 1 and s 6= u, u+ 1,

for (r, s) /∈ {(u, u+ 1), (u, u+ 2), then ersu(u+1)
PPFF

F-collapse
−−−−−−→ 0.

(u+ 1, u+ 1), (u+ 1, u+ 2), If r 6= u+ 1, u+ 2

(u+ 1, u), (u+ 2, u), (u+ 2, u+ 1)} and s 6= u+ 1, u+ 2,

then ersu(u+1)
PPFF

F-collapse
−−−−−−→ 0.

ers(v+1)v
PPFF

k(k2 − 7) If r 6= v, v + 1 and s 6= v, v + 1,

for (r, s) /∈ {(v + 1, v), (v + 2, v), then ers(v+1)v
PPFF

F-collapse
−−−−−−→ 0.

(v + 1, v + 1), (v + 2, v + 1), If r 6= v + 1, v + 2

(v, v + 1), (v, v + 2), (v + 1, v + 2)} and s 6= v + 1, v + 2,

then ers(v+1)v
PPFF

F-collapse
−−−−−−→ 0.

eu(u+2)u(u+1)
PPFF

+ eu(u+1)u(u+1)
PPFF

k eu(u+2)u(u+1)
PPFF

P-sliding
−−−−−→ −eu(u+1)u(u+1)

PPFF

e(u+1)(u+2)u(u+1)
PPFF

− eu(u+1)u(u+1)
PPFF

k e(u+1)(u+2)u(u+1)
PPFF

P-sliding
−−−−−→ −eu(u+2)u(u+1)

PPFF

P-sliding
−−−−−→ eu(u+1)u(u+1)

PPFF

e(u+2)uu(u+1)
PPFF

+ e(u+1)uu(u+1)
PPFF

k e(u+2)uu(u+1)
PPFF

P-sliding
−−−−−→ −e(u+1)uu(u+1)

PPFF

e(u+2)(u+1)u(u+1)
PPFF

− e(u+1)uu(u+1)
PPFF

k e(u+2)(u+1)u(u+1)
PPFF

P-sliding
−−−−−→ −e(u+2)uu(u+1)

PPFF

P-sliding
−−−−−→ e(u+1)uu(u+1)

PPFF

ev(v+2)(v+1)v
PPFF

+ ev(v+1)(v+1)v
PPFF

k ev(v+2)(v+1)v
PPFF

P-sliding
−−−−−→ −ev(v+1)(v+1)v

PPFF

e(v+1)(v+2)(v+1)v
PPFF

− ev(v+1)(v+1)v
PPFF

k e(v+1)(v+2)(v+1)v
PPFF

P-sliding
−−−−−→ −ev(v+2)(v+1)v

PPFF

P-sliding
−−−−−→ ev(v+1)(v+1)v

PPFF

e(v+2)v(v+1)v
PPFF

+ e(v+1)v(v+1)v
PPFF

k e(v+2)v(v+1)v
PPFF

P-sliding
−−−−−→ −e(v+1)v(v+1)v

PPFF

e(v+2)(v+1)(v+1)v
PPFF

− e(v+1)v(v+1)v
PPFF

k e(v+2)(v+1)(v+1)v
PPFF

P-sliding
−−−−−→ −e(v+2)v(v+1)v

PPFF

P-sliding
−−−−−→ e(v+1)v(v+1)v

PPFF

e(u+1)(u+1)u(u+1)
PPFF

− e2212
PPFF

k − 1 e2212
PPFF

C-shift
−−−−→ e(u+1)(u+1)u(u+1)

PPFF

e(v+1)(v+1)(v+1)v
PPFF

− e2221
PPFF

k − 1 e2221
PPFF

C-shift
−−−−→ e(v+1)(v+1)(v+1)v

PPFF

Table 10. Arguments for the tensors in the PPFF sector orthogonal to the array of 4 point contour

correlators.
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Orthogonal Total no. Argument

tensor of tensors

euvuv
PPFF

− e2121
PPFF

1
2k(k − 1)− 1 Case 1: u = v + 1

for u > v e2121
PPFF

C-shift
−−−−→ e(v+1)v(v+1)v

PPFF

Case 2: u = (v + m) where m > 1

e2121
PPFF

P-sliding
−−−−−→ e3121

PPFF

F-sliding
−−−−−→ e3131

PPFF

P-sliding
−−−−−→ · · ·

F-sliding
−−−−−→ e(1+m)1(1+m)1

PPFF

C-shift
−−−−→ e(v+m)v(v+m)v

PPFF

euvuv
PPFF

− e1212
PPFF

1
2k(k − 1)− 1 Case 1: v = u + 1

for u < v e1212
PPFF

C-shift
−−−−→ eu(u+1)u(u+1)

PPFF

Case 2: v = (u + m) where m > 1

e1212
PPFF

P-sliding
−−−−−→ e1312

PPFF

F-sliding
−−−−−→ e1313

PPFF

P-sliding
−−−−−→ · · ·

F-sliding
−−−−−→ e1(1+m)1(1+m)

PPFF

C-shift
−−−−→ eu(u+m)u(u+m)

PPFF

evuuv
PPFF

− e1221
PPFF

1
2k(k − 1)− 1 Case 1: u = v + 1

for u > v e1221
PPFF

C-shift
−−−−→ ev(v+1)(v+1)v

PPFF

Case 2: u = (v + m) where m > 1

e1221
PPFF

P-sliding
−−−−−→ e1321

PPFF

F-sliding
−−−−−→ e1331

PPFF

P-sliding
−−−−−→ · · ·

F-sliding
−−−−−→ e1(1+m)(1+m)1

PPFF

C-shift
−−−−→ ev(v+m)(v+m)v

PPFF

evuuv
PPFF

− e2112
PPFF

1
2k(k − 1)− 1 Case 1: v = u + 1

for u < v e2112
PPFF

C-shift
−−−−→ e(u+1)uu(u+1)

PPFF

Case 2: v = (u + m) where m > 1

e2112
PPFF

P-sliding
−−−−−→ e3112

PPFF

F-sliding
−−−−−→ e3113

PPFF

P-sliding
−−−−−→ · · ·

F-sliding
−−−−−→ e(1+m)11(1+m)

PPFF

C-shift
−−−−→ e(u+m)uu(u+m)

PPFF

e1212
PPFF

− eβ(ω2+ω4)e2121
PPFF

1 e1212
PPFF

C-shift
−−−−→ ek(k+1)k(k+1)

PPFF
−→ eβ(ω2+ω4)ek1k1

PPFF

We have already shown that ek1k1
PPFF

−→ e2121
PPFF

.

Therefore, e1212
PPFF

−→ eβ(ω2+ω4)e2121
PPFF

.

e2112
PPFF

− eβ(ω1+ω4)e1221
PPFF

1 e2112
PPFF

C-shift
−−−−→ e(k+1)kk(k+1)

PPFF
−→ eβ(ω1+ω4)e1kk1

PPFF

We have already shown that e1kk1
PPFF

−→ e1221
PPFF

.

Therefore, e2112
PPFF

−→ eβ(ω2+ω4)e1221
PPFF

.

Table 11. Arguments for the tensors in the PPFF sector orthogonal to the array of 4 point contour

correlators.
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tensor of tensors

ersuu
PPFF

k(k2 − 4) If r 6= u, u+ 1 then,

for (r, s) /∈ {(u, u), (u+ 1, u), ersuu
PPFF

P-collapse
−−−−−−→ 0.

(u, u+ 1), (u+ 1, u+ 1)} If s 6= u, u+ 1 then,

ersuu
PPFF

P-collapse
−−−−−−→ 0.

euuuu
PPFF

− e1111
PPFF

k − 1 e1111
PPFF

C-shift
−−−−→ euuuu

PPFF

e(u+1)(u+1)uu
PPFF

− e2211
PPFF

k − 1 e2211
PPFF

C-shift
−−−−→ e(u+1)(u+1)uu

PPFF

e(u+1)uuu
PPFF

− e2111
PPFF

k − 1 e2111
PPFF

C-shift
−−−−→ e(u+1)uuu

PPFF

eu(u+1)uu
PPFF

− e1211
PPFF

k − 1 e1211
PPFF

C-shift
−−−−→ eu(u+1)uu

PPFF

e2111
PPFF

− e3121
PPFF

− e3112
PPFF

1 e2111
PPFF

F-fragmentation
−−−−−−−−−−→ e3111

PPFF
+ e3121

PPFF

+e3112
PPFF

+ e3122
PPFF

P-collapse
−−−−−−→ e3121

PPFF
+ e3112

PPFF

e1211
PPFF

− e1321
PPFF

− e1312
PPFF

1 e1211
PPFF

F-fragmentation
−−−−−−−−−−→ e1311

PPFF
+ e1321

PPFF

+e1312
PPFF

+ e1322
PPFF

P-collapse
−−−−−−→ e1321

PPFF
+ e1312

PPFF

e2221
PPFF

− e2331
PPFF

− e3231
PPFF

1 e2221
PPFF

P-fragmentation
−−−−−−−−−−→ e2231

PPFF
+ e2331

PPFF

+e3231
PPFF

+ e3331
PPFF

F-collapse
−−−−−−→ e2331

PPFF
+ e3231

PPFF

e2212
PPFF

− e2313
PPFF

− e3213
PPFF

1 e2212
PPFF

P-fragmentation
−−−−−−−−−−→ e2213

PPFF
+ e2313

PPFF

+e3213
PPFF

+ e3313
PPFF

F-collapse
−−−−−−→ e2313

PPFF
+ e3213

PPFF

e1111
PPFF

+ e2111
PPFF

+ e1211
PPFF

+ e2211
PPFF

1

−1

+1

−1

+1

+1

−e
−βω2

−1

+1

+1

−e
−βω1

−1

+1

1

2

=

−1

+1

−1

+1

−e
−βω2

+1

−e
−βω1

+1

1

2

= 0

Table 12. Arguments for the tensors in the PPFF sector orthogonal to the array of 4 point contour

correlators.
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+ α
(4)
6

k∑

r=1

(
ē(r+1)
P

(ω1)⊗ ē(r+1)
P

(ω2)⊗ ē(r)
F

(ω3)⊗ ē(r)
F

(ω4)

− ē(r)
P

(ω1)⊗ ē(r)
P

(ω2)⊗ ē(r)
F

(ω3)⊗ ē(r)
F

(ω4)
)
.

(C.29)

The coefficient α
(4)
4 is given by the contraction with the tensor e

(r+1)(s+1)rs
PPFF for r > s,

an example of which is the case r = 2, s = 1. Then this coefficient is given by

α
(4)
4 = M̃(4-Pt) · e 3221

PPFF = ρ[13][24] . (C.30)

The coefficient α
(4)
5 is given by the contraction with the tensor e

(r+1)(s+1)sr
PPFF for r < s,

an example of which is the case r = 1, s = 2. Then this coefficient is given by

α
(4)
5 = M̃(4-Pt) · e 2321

PPFF = ρ[23][14] . (C.31)

Finally, the contraction with the tensor e
(r+1)(r+1)rr
PPFF for any r ∈ {1, · · · , k} gives

α
(4)
4 eβ(ω2+ω4) + α

(4)
5 eβ(ω1+ω4) + α

(4)
6 .

Let us look at this contraction for r = 1 which gives

α
(4)
4 eβ(ω2+ω4) + α

(4)
5 eβ(ω1+ω4) + α

(4)
6 = M̃(4-Pt) · e 2211

PPFF

= ρ[2314] + ρ[24][13] + ρ[14][23] .
(C.32)

Now, using equations (C.30), (C.31) and the KMS relations, we have

α
(4)
4 eβ(ω2+ω4) = eβ(ω2+ω4)ρ[13][24] = ρ[24][13] ,

α
(4)
5 eβ(ω1+ω4) = eβ(ω1+ω4)ρ[23][14] = ρ[14][23] .

(C.33)

Replacing the expressions of α
(4)
4 eβ(ω2+ω4) and α

(4)
5 eβ(ω1+ω4) obtained in (C.33) into (C.32)

we get

α
(4)
6 = ρ[2314] . (C.34)

Next using the values of α
(4)
i ’s obtained in (C.18), (C.21), (C.24), (C.30), (C.31) and (C.34)

respectively, and the following KMS relations:

ρ[34][12] = eβ(ω3+ω4)ρ[12][34] ,

ρ[24][13] = eβ(ω2+ω4)ρ[13][24] ,

ρ[14][23] = eβ(ω1+ω4)ρ[23][14] ,

(C.35)

we get the expressions in (C.11), (C.12), (C.13) and (C.14).
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