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Abstract: We present a comprehensive study of the three-active plus N sterile neu-

trino model as a framework for constraining leptonic unitarity violation induced at en-

ergy scales much lower than the electroweak scale. We formulate a perturbation theory

with expansion in small unitarity violating matrix element W while keeping (non-W sup-

pressed) matter effect to all orders. We show that under the same condition of sterile

state masses 0.1 eV2 . m2
J . (1–10) GeV2 as in vacuum, assuming typical accelerator based

long-baseline neutrino oscillation experiment, one can derive a very simple form of the os-

cillation probability which consists only of zeroth-order terms with the unique exception

of probability leaking term Cαβ of O(W 4). We argue, based on our explicit computation

to fourth-order in W , that all the other terms are negligibly small after taking into ac-

count the suppression due to the mass condition for sterile states, rendering the oscillation

probability sterile-sector model independent. Then, we identify a limited energy region in

which this suppression is evaded and the effects of order W 2 corrections may be observ-

able. Its detection would provide another way, in addition to detecting Cαβ , to distinguish

between low-scale and high-scale unitarity violation. We also solve analytically the zeroth-

order system in matter with uniform density to provide a basis for numerical evaluation of

non-unitary neutrino evolution.
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1 Introduction

Studies of neutrino oscillation entered into a “matured phase” after the structure of the

three-flavour lepton mixing [1] is elucidated. The long-lasted discovery phase of neutrino

oscillation has been unambiguously concluded by the Super-Kamiokande (Super-K) at-

mospheric neutrino observation which discovered neutrino oscillation and hence neutrino

mass [2]. It was followed by the KamLAND reactor and the solar neutrino experiments

which uncovered the three-flavour nature of the mixing by observing oscillation and/or

adiabatic flavour conversion of neutrinos in matter [3, 4] in the 1-2 sector [5, 6].1 The last

step of understanding the three-flavour structure of neutrino oscillation was carried out by

the reactor [13–15] and the accelerator [16, 17] measurement of θ13. It lefts only the two

remaining unknowns in the standard three-flavour mixing paradigm, that is, measurement

of CP violating phase and determination of neutrino mass ordering.2

The completion of the theory of the three-flavour neutrino mixing, however, neces-

sitates the paradigm test. A well-known example of such efforts is to verify unitarity of

the quark CKM matrix [19]. We have argued in ref. [20] that we may need a different

strategy to test leptonic unitarity. That is, first prepare a generic framework which de-

scribes unitarity violation at certain energy scale, and then confront it to experimental

data. We contrasted the two typical alternatives, unitarity violation by new physics at

high (E � mW ) and low (E � mW ) energy scales, which are dubbed as high-scale and

low-scale unitarity violation, respectively. They differ in certain characteristic features,

such as absence (low-scale) or presence (high-scale) of violation of flavour universality and

zero-distance flavour transition.
1The unique citation of the solar neutrino measurement here must be understood as the representative

of all the foregoing solar neutrino experiments [7–12].
2Recently, however, there exists accumulating indication that CP phase δ takes value around ∼ 3π

2
[18].
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The scenario of high-scale unitarity violation, based on the orthodox view of new

physics at high-energy scales, has been studied extensively in the literature [21–29].3 On the

other hand, there exist a good amount of activities in recent years hinting the possibilities

of new physics at low energies. For scenarios which involve light sterile neutrino(s), see,

e.g., [40–42], and the references therein. In the former case, due to the preserved SU(2) ×
U(1) symmetry at high scales, it is conceivable that the constraints from measurements

using probes in the charged lepton sector play a dominant role. On the other hand, in the

case of low-scale unitarity violation, neutrino oscillation experiments will play key role in

constraining unitarity violation.

In a previous paper [20], we have proposed a model-independent framework for testing

low-scale unitarity violation. It is based on the three active plus N sterile lepton (called

neutrino) system, which is unitary in the whole (3 + N) dimensional state space but re-

striction to observables in the active neutrino subspace renders the theory non-unitary in

that subspace. It is referred to as the “(3 + N) space unitary model”. We have shown in

the context of accelerator and reactor neutrino measurement that the restriction on the

masses of sterile states4 to 0.1 eV2 . m2
J . 1 MeV2 (with J being sterile state index) is

sufficient to make the observables sterile-sector model independent. That is, the neutrino

oscillation probability can be written in such a way that it is independent of details of the

sterile neutrino mass spectrum and mixing with active neutrinos. The model-independent

nature of the framework will be translated into that of the constraints obtained, thereby

making leptonic unitarity test more powerful.

As an outcome of our formulation we have pointed out a new way of distinguishing low-

scale unitarity violation from high-scale one by observing the probability leaking term in the

oscillation probability. The term signals existence of energetically accessible sterile states,

which is characteristic to low-scale unitarity violation, and it has been included for the first

time in the analysis of unitarity violation in [20] which uses a JUNO [43]-like setting. See

refs. [28, 44] for a comprehensive analysis of the currently available neutrino data with the

active plus sterile framework, and [28, 45] for analyses of the future experiments.

In this paper, we give a comprehensive treatment of the (3 +N) space unitary model.

We formulate a novel perturbative framework with small unitarity violating matrix element

W as the unique perturbing parameter, which we call “small unitarity-violation perturba-

tion theory”. It allows us to calculate the oscillation probability in the presence of matter

effect comparable in size to the vacuum mixing effect. It must be remarked that the sterile

sector model-independent nature of the (3 + N) space unitary model is demonstrated in

ref. [20] only in vacuum and in matter to first order in matter perturbation theory. Hence,

the first goal of this paper is to show that the model-independence holds after inclusion of

sizeable matter effect. In fact, we observe that the same condition on the sterile neutrino

masses guarantees this property, and the extremely simple expressions of the oscillation

probabilities result even with our computation to fourth order.

3Works have also been done on unitarity violation by sterile sector from somewhat different point of

view, e.g., if it exists, how it could disturb measurement of lepton Kobayashi-Maskawa phase δCP, or mass

ordering. See for example, [30–39].
4To be more precise, “masses of sterile states” implies hereafter masses of neutrinos which are mostly

sterile. In this paper, for brevity, we use this simplified terminology in most of the places.
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The second goal of this paper is to utilize the oscillation probability formulas to uncover

in which region of energies and baselines unitarity violating effect is large, and to examine

the possibility of sizeable W 2 corrections which distinguishes between high- and low-scale

unitarity violation. These exercises may be useful in the application of our framework to

some of the ongoing and next generation neutrino oscillation experiments [16, 17, 46–52].

To carry it out, we derive an exact expression of the oscillation probability in leading order

in perturbation theory for uniform matter density. In summary, the framework can be used

in dual modes: it serves (1) as a suitable framework for leptonic unitarity test in neutrino

oscillation experiments, and (2) as a hunting tool for unitarity violation effects, which could

serve for another way of distinguishing low-scale unitarity violation from high-scale one.

2 Essence of the present and the previous papers

In this section, we present essence of the present and the previous [20] papers, in which

an adequate formulation is given to describe neutrino oscillations with unitarity violation

caused by new physics at energies much lower than mW . In section 2.1 we define the system,

section 2.2 serves for reviewing the content of ref. [20], and section 2.3 is to summarize the

key points of this paper.

2.1 Unitary 3 active + N sterile neutrino system with partial decoherence

The system we are considering consists of 3 active + N sterile neutrinos which is unitary in

the whole state space, but serves for a model of non-unitarity when restricted to observables

in the active neutrino subspace. The sterile-sector model independence is realized due to

decoherence between active-sterile and sterile-sterile states, which essentially wipes out

detailed informations of sterile sector such as mass spectrum and mixing structure with

active neutrinos. Generically, the decoherence condition associated with energy resolution

reads (see [20])

|∆m2
Ja| &

4πE

L

(
δE

E

)−1

≈ 2.5× 10−2 eV2

(
E

1 GeV

)(
L

1000 km

)−1(δE/E
0.1

)−1

(2.1)

where ∆m2
Ja denote either active-sterile or sterile-sterile mass squared difference and L is

a baseline. It simplifies to |∆m2
Ja| & 2|∆m2

31| (δE/E)−1 assuming the conventional setting

of accelerator long-baseline (LBL) experiments, i.e., a detector at around the oscillation

maximum.5 It leads to |∆m2
Ja| & 5 × 10−2 eV2 assuming 10% energy resolution, which

implies the lower limit of (mostly) sterile neutrino mass, m2
J & 0.1 eV2, to ensure partial

decoherence [20]. Though we sometimes quote the lower limit as the reference value in this

paper, we have to rely on the formula (2.1) for the condition of partial decoherence in more

generic setting off the oscillation maximum.

We also restrict the sterile neutrino mass range from above such that they can be

produced energetically from a given source and participate to the neutrino oscillation to-

gether with active neutrinos. It yields the upper bound, typically, m2
J . 1 MeV2 for

5In medium-baseline reactor neutrino experiments which utilize the solar oscillation maximum, such

as JUNO [43], the condition becomes |∆m2
Ja| & 2∆m2

21 (δE/E)−1 ≈ 5 × 10−3 eV2, assuming 3% energy

resolution.
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reactor neutrinos and m2
J . (1 − 10) GeV2 for accelerator neutrinos. Thus, a minimal

range 0.1 eV2 . m2
J . 1 MeV2 results as quoted in ref. [20]. For more energetic neutrino

sources one can take the upper limit of mJ as the kinematical limit of production.

Throughout this paper, we assume for validity of our discussion, the sterile neutrino

mass condition (2.1) and that it is below production threshold. When appropriate we may

quote the reference m2
J range, 0.1 eV2 . m2

J . 1 MeV2, or . (1− 10) GeV2, but otherwise

the readers must assume that mJ obeys the general conditions above.

2.2 Non-unitary evolution of neutrinos in vacuum or with small matter effect

Here we summarize the main findings of ref. [20]. Thanks to partial decoherence, fast

oscillations in active-sterile and sterile-sterile channels are averaged out, which leads to a

very simple form of the active neutrino oscillation probability in vacuum

P (νβ → να) = Cαβ +

∣∣∣∣∣∣
3∑
j=1

UαjU
∗
βj

∣∣∣∣∣∣
2

− 2
∑
j 6=k

Re
(
UαjU

∗
βjU

∗
αkUβk

)
sin2 (∆k −∆j)x

2

−
∑
j 6=k

Im
(
UαjU

∗
βjU

∗
αkUβk

)
sin(∆k −∆j)x, (2.2)

where x denotes baseline and

Cαβ ≡
3+N∑
J=4

|WαJ |2|WβJ |2, (2.3)

in the appearance (α 6= β) as well as in the disappearance (α = β) channels with α, β =

e, µ, τ . In eq. (2.2), the indices i, j, k = 1, 2, 3 and J = 4, 5, · · ·, N + 3 are, respectively, for

(mostly) active and (mostly) sterile neutrino mass eigenstates. The active neutrino flavour

states να are connected to mass eigenstates (νi, νJ) through

να =

3∑
i=1

(U)αiνi +

3+N∑
J=4

(W )αJνJ , (2.4)

that is, the (3 × 3) non-unitary U matrix describes mixing in the active neutrino space,

whereas the (3 × N) W matrix elements bridge between active and sterile state spaces.

We have defined the kinematical phase factors ∆j ≡
m2
j

2E and ∆J ≡
m2
J

2E where mj and mJ

denote the active and sterile neutrino masses, respectively, and E denotes neutrino energy.

The characteristic features of the oscillation probability in (2.2) are:

1. The non-unitary matrix U replaces the standard unitary three-flavour mixing matrix

often parametrized with Particle Data Group convention UPDG [19].

2. Probability leakage term Cαβ > 0 appears reflecting the nature of low-energy unitarity

violation in which the probability can flow out from active neutrino space to the sterile

state space, and vice versa.

3. Due to non-unitarity of the U matrix, δαβ term in the unitary case is modified to∣∣∣∑3
j=1 UαjU

∗
βj

∣∣∣2.

– 4 –
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Notice that each term of Cαβ in (2.3) allows interpretation that “probability leaking from

active to sterile state spaces” and coming back. The simple terminology of probability

leaking assumes that the latter process must also exist which is ensured by generalized T

invariance. Another aspect of the probability leaking term, which has a form of incoherent

sum of the products of probabilities of active-to-sterile and sterile-to-active transitions

clearly illustrates the decoherence associated to the sterile states. For instance, near the

upper end of the sterile state mass region quoted in section 2.1, it describes effect of

decoherence caused by separation of wave packets between active and sterile neutrinos.

The points 2 and 3 above are important ones and the clarifying remarks about them

are in order:

• Presence or absence of the probability leakage term Cαβ distinguishes between low-

energy and high-energy unitarity violation [20]. Nevertheless, Cαβ may be small

because it is of fourth order in W .

• Difference in normalization factor, the second term in (2.2), between unitary and non-

unitary cases is of order ∼W 4 (∼W 2) in the appearance (disappearance) channels.

To understand the latter point, we notice that unitarity in the (3+N) space unitary model

can be written as

δαβ =
3∑
j=1

UαjU
∗
βj +

N+3∑
J=4

WαJW
∗
βJ . (2.5)

Then,
∣∣∣∑3

j=1 UαjU
∗
βj

∣∣∣2 =
∣∣∣∑N+3

J=4 WαJW
∗
βJ

∣∣∣2 in the appearance channel (α 6= β), and(∑3
j=1 |Uαj |2

)2
=
(

1−
∑N+3

J=4 |WαJ |2
)2

= 1 −O(W 2) in the disappearance channel (α =

β), which justifies the above statement.

We emphasize, therefore, that the probability leaking term Cαβ and the another con-

stant term
∣∣∣∑3

j=1 UαjU
∗
βj

∣∣∣2 in the oscillation probabilities are the same order, O(W 4), in

the appearance channels. Hence, we do not see any good reasons why the former can be

ignored, as was done in the existing literatures. It is also worth to note that O(W 2) dif-

ference in normalization in the disappearance channel would make detection of unitarity

violation more feasible. It is one of the reasons for high sensitivity to unitarity violation

that could be reached in disappearance measurement in the JUNO-like setting [20].

In the same work, by including small matter effect up to first order, we have found that

as far as we remain in the region of unitarity violating element |W | ' 0.1,6 or somewhat

larger, the matter effect does not alter the above features of the oscillation probability

in (2.2) under the same restriction on sterile neutrino masses. Notice that |W | ' 0.1

implies that the unitarity violating effect in the probability is of the order of |W |4 ∼ 10−4,

except for the O(W 2) difference in normalization constant in the disappearance probability.

It is practically the limit of order of magnitude that can be explored by the next generation

neutrino oscillation experiments.

6Speaking more precisely, we mean that all the W matrix elements are assumed to be small, of the order

of ' 0.1.
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2.3 Non-unitary evolution of neutrinos in matter to all orders

Given the fact that setup of some of the next generation accelerator LBL experiments

require consideration of the matter effect comparable with the vacuum mixing one, it is

clear that a better treatment is necessary to understand the influence of the matter effect

in the (3 + N) model. Then, we formulate in this paper the small unitarity-violation

perturbation theory, a systematic and controlled way of treating small unitarity violation

effect while including all order matter effect. We derive a simple expression of the oscillation

probability in matter which retains the favourable feature of the vacuum formula (2.2), the

sterile sector model independence under the same sterile neutrino mass condition as in

vacuum. That is, the model-dependent terms are either averaged out, or made small due

to large sterile state mass denominator suppression. We must note here that our treatment

of the matter effect in this and the previous papers is restricted to the case of uniform

matter density.

The resulting oscillation probability in matter between active flavour neutrinos in the

(3 +N) space unitary model to fourth order in W can be written as

P (νβ → να) = Cαβ +

∣∣∣∣∣∣
3∑
j=1

UαjU
∗
βj

∣∣∣∣∣∣
2

− 2
∑
j 6=k

Re
[
(UX)αj(UX)∗βj(UX)∗αk(UX)βk

]
sin2 (hk − hj)x

2

−
∑
j 6=k

Im
[
(UX)αj(UX)∗βj(UX)∗αk(UX)βk

]
sin(hk − hj)x, (2.6)

where hi (i = 1, 2, 3) denote the energy eigenvalues of zeroth-order states of active neutrinos

in matter, and X is the unitary matrix which diagonalizes the zeroth-order Hamiltonian

used to formulate our perturbation theory. Cαβ is the same as we have in the vacuum

case in (2.3). The expression is valid under the same restriction on sterile neutrino masses

we have in vacuum, 0.1 eV2 . m2
J . (1 − 10) GeV2 for |W |4 & 10−4 assuming neutrino

energy and baseline (and the associated matter density) which correspond to accelerator

LBL experiments. For more precise conditions we require and for the restriction needed

on the sterile state masses for smaller W , see section 3.5.

The expression (2.6) is a very transparent result in the sense that (1) the vacuum

non-unitary mixing matrix U is “dressed” in a simple way by the matter effect represented

by X, and (2) the probability leaking term Cαβ and the normalization term stay as they

are in vacuum. The latter feature is perfectly natural, given the nature of these terms as

probability leaking and (mis-) normalization at zero distance.7 The detailed derivation of

eq. (2.6) is carried out in section 3. While in section 4, we derive an exact analytic expres-

sion for the matter dependent part of the oscillation probability (2.6). The combinations

7A comment is ready for the normalization term, the second term in (2.6). Its original form is∑3
j=1(UX)αj(UX)∗βj , which is natural because it comes from the contribution of zeroth-order Hamilto-

nian with all orders effect of the matter potential. It is easily reduced to the vacuum form in (2.6) (or

in (2.2)) by using unitarity relation
∑3
j=1XkjX

∗
lj = δkl.
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of X matrix elements that used in the derivation can also be utilized to calculate higher

order corrections in W . In section 5.1, the regions of visible effect of unitarity violation is

illuminated by plotting the probabilities with/without unitarity violation in wide ranges

of E and baseline L.

After understanding the general feature of perturbative series based on explicit calcula-

tion to order W 4, we postulate the “Uniqueness theorem” which states that the oscillation

probability formula eq. (2.6) is valid to all orders in W expansion under the same con-

ditions on the sterile state mass and the kinematical region as used in the discussion of

fourth-order formulas. See section 6.3. The reasons for this interesting feature, the same

mass conditions as in vacuum to guarantee the sterile sector model independence prevail

in matter, will be partially explained at the end of section 3.5.

Finally, but probably most importantly, we point out that outside the region of validity

of our above theorem, there are regions of neutrino energy and baseline that condition for

suppression due to the large sterile state mass denominators is not fully effective. We show

that in such region, second order correction terms in W , together with the leaking term

Cαβ , may not be totally negligible, and it could be detectable. It would offer yet another

way of distinguishing low-scale unitarity violation from high-scale one. These new terms

are derived in section 3.4 and their effects are quantified in section 5.2.

3 Small unitarity-violation perturbation theory of neutrino oscillation

in matter

We formulate a perturbation theory of the (3 + N) state unitary model using an expan-

sion parameter of matrix elements of W signifying unitarity violation effect, assuming it

small. It will be done aiming at constructing a model-independent framework for leptonic

unitarity test. It necessitates the conditions on the sterile neutrino mass as discussed in

section 2.1. In most of the discussions in this section we presume, as an appropriate set-

ting for unitarity test, terrestrial neutrino experiments, i.e., accelerator LBL experiments,

and/or atmospheric neutrino measurement. Use of reactor and accelerator neutrinos at

short baselines offers an alternative way for testing leptonic unitarity but with only minor

matter effect.

In the main text we mostly confine ourselves to the formulas to second order in W ,

but include fourth order terms whenever it is necessary. We take for simplicity the uniform

number density approximation for electrons and neutrons in matter. However, extension to

the varying density case is, in principle, straightforward as far as adiabaticity holds. Usage

of the same probability formula as a hunting tool of unitarity violation and discriminator

between low-scale and high-scale unitarity violation will be discussed in section 5.

3.1 3 active plus N sterile neutrino system in the flavour basis

The S matrix describes possible flavour changes after traversing a distance x

να(x) = Sαβνβ(0), (3.1)

– 7 –
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and the oscillation probability is given by

P (νβ → να;x) = |Sαβ |2. (3.2)

The neutrino evolution in flavour basis in the (3 + N) space unitary model is governed by

the Schrödinger equation

i
d

dx
ν = Hν. (3.3)

Given the flavour basis Hamiltonian H, the S matrix is given by

S = T exp

[
−i
∫ x

0
dx′H(x′)

]
, (3.4)

where T symbol indicates the “time ordering” (in fact “space ordering” here). The right-

hand side of (3.4) may be written as e−iHx for the case of constant matter density.

The flavour basis Hamiltonian H is (3 +N)× (3 +N) matrix:

H = U



∆1 0 0 0 0 0

0 ∆2 0 0 0 0

0 0 ∆3 0 0 0

0 0 0 ∆4 0 0

0 0 0 0 · · · 0

0 0 0 0 0 ∆3+N


U† +



∆A −∆B 0 0 0 0 0

0 −∆B 0 0 0 0

0 0 −∆B 0 0 0

0 0 0 0 0 0

0 0 0 0 · · · 0

0 0 0 0 0 0


, (3.5)

where

∆i ≡
m2
i

2E
(i = 1, 2, 3), ∆J ≡

m2
J

2E
(J = 4, · · ·, 3 +N). (3.6)

Here, mi (mJ) denote the mass of mostly active (sterile) neutrinos and E is the neutrino

energy. ∆A and ∆B are related to Wolfenstein’s matter potential [4] due to charged current

(CC) and neutral current (NC) reactions, a and b, as

∆A ≡
a

2E
, ∆B ≡

b

2E
, (3.7)

where

a = 2
√

2GFNeE ≈ 1.52× 10−4

(
Yeρ

g cm−3

)(
E

GeV

)
eV2,

b =
√

2GFNnE =
1

2

(
Nn

Ne

)
a. (3.8)

In the above, both a and b are positive. For antineutrinos, we take ∆A → −∆A and

∆B → −∆B. Here, GF is the Fermi constant, Ne and Nn are, respectively, the electron

and neutron number densities in matter. ρ and Ye denote, respectively, the matter density

and number of electron per nucleon in matter. In (3.5), U denotes the flavour mixing

matrix which relates (3 + N) dimensional flavour neutrino states to the vacuum mass

– 8 –



J
H
E
P
0
2
(
2
0
1
9
)
0
1
5

eigenstate basis as νζ = Uζz ν̃z, where ζ runs over active flavour α = e, µ, τ and sterile

flavour s = s1, · · ·, sN indices, z runs over mostly active i = 1, 2, 3 and mostly sterile mass

eigenstate J = 4, 5, · · ·, N + 3 indices.

For simplicity, we introduce a compact notation which writes (3+N)× (3+N) matrix

in a form of 2× 2 matrix. By defining the active 3 × 3 matter potential matrix

A =

∆A −∆B 0 0

0 −∆B 0

0 0 −∆B

 (3.9)

the flavour basis Hamiltonian is written as

H = U

[
∆a 0

0 ∆s

]
U† +

[
A 0

0 0

]
≡ Hvac +Hmatt (3.10)

where ∆a = diag(∆1,∆2,∆3) and ∆s = diag(∆4,∆5, · · ·,∆N+3).

As an application of our framework, we anticipate leptonic unitarity test in the LBL ac-

celerator neutrino experiments which utilize atmospheric-scale neutrino oscillations. There-

fore, we assume that the system satisfies the following conditions in formulating our per-

turbation theory

∆m2
31L

2E
∼ ∆m2

32L

2E
∼ O(1),

aL

2E
∼ bL

2E
∼ O(1), (3.11)

where L denotes baseline, ∆m2
ji ≡ m2

j −m2
i , and

aL

2E
=
√

2GFNeL = 0.58

(
ρ

3 g/cm3

)(
L

1000 km

)
. (3.12)

They probably ensure that our oscillation probability formulas have applicability to the

terrestrial LBL and atmospheric neutrino experiments with baseline up to ∼ 104 km and

energies from low to high, up to E ∼ 100 GeV. More precise discussions on where our

formulas are valid will be given in sections 3.5 and 6.2.

3.2 Vacuum mass eigenstate basis, or tilde basis

To formulate perturbative treatment it is convenient to consider the vacuum mass eigen-

state basis, the tilde basis, introduced in the previous section

ν̃z = (U†)zζνζ . (3.13)

The tilde basis Hamiltonian is related to the flavour basis one as

H̃ = U†HU. (3.14)

The explicit form of H̃ is given by

H̃ = H̃vac + H̃matt =

[
∆a 0

0 ∆s

]
+ U†

[
A 0

0 0

]
U. (3.15)
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We parameterize the (3 + N)× (3 +N) dimensional flavour mixing matrix U as

U =

[
U W

Z V

]
. (3.16)

The matrix U and V are 3× 3 and N ×N matrices, respectively, and W and Z have sizes

that just fill in the space. In our (3 + N) model, unitarity is obeyed in the whole (3 + N)

state space:

UU† =

[
UU † +WW † UZ† +WV †

ZU † + VW † ZZ† + V V †

]
=

[
13×3 0

0 1N×N

]
,

U†U =

[
U †U + Z†Z U †W + Z†V

W †U + V †Z W †W + V †V

]
=

[
13×3 0

0 1N×N

]
. (3.17)

Then, the Hamiltonian H̃ in vacuum mass eigenstate basis is given by

H̃ =

[
∆a 0

0 ∆s

]
+

[
U †AU U †AW

W †AU W †AW

]
. (3.18)

As in vacuum, the neutrino oscillation is governed only by the U and W matrices, and is

independent of Z and V matrices. It is natural that V matrix does not show up in physical

Hamiltonian matrix because the rotations inside sterile basis does not have any physical

meaning, if we observe the system only by the Standard Model interactions. However, the

flavour basis Hamiltonian H in (3.5) obviously depends on Z and V . The apparent puzzle

will be resolved in appendix A.

3.3 Formulating small unitarity-violation perturbation theory

We now construct the small unitarity-violation perturbation theory. It is natural to consider

the framework in which the tilde-basis Hamiltonian H̃ is decomposed into the un-perturbed

and perturbed parts, H̃0 + H̃1, as follows:

H̃0 =

[
∆a + U †AU 0

0 ∆s

]
, H̃1 =

[
0 U †AW

W †AU W †AW

]
. (3.19)

Therefore, what we mean by “expansion by unitarity violation effect” is an expansion by

the W matrix elements.8 We assume, for simplicity, that all the W matrix elements are

small and have the same order εs. Then, 3×N (N × 3) sub-matrix elements in H̃matt are

of order εs, while the pure sterile space N × N sub-matrix elements are of order ε2s. For

simplicity, we often use the expression “expanding to order Wn” which means to order εns
in this paper.

8Through unitarity (3.17), U matrix elements have some dependence on W matrix elements. We choose

not to expand U matrix elements by this W dependence. In this sense, we use a “renormalized basis” (in

the same sense as in ref. [53]) in which some higher order effects are absorbed into the zeroth-order state.
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3.3.1 Hat basis

To formulate perturbation theory with H̃0 and H̃1 given above we transform to a basis in

which the un-perturbed part of the Hamiltonian is diagonal, which we call the “hat basis”.

Since the 3× 3 sub-matrix ∆a + U †AU in H̃0 is Hermitian, it can be diagonalized by the

unitary transformation

X†
(
∆a + U †AU

)
X =

 h1 0 0

0 h2 0

0 0 h3

 ≡ h (3.20)

with X being the 3× 3 unitary matrix. Then, H̃0 can be diagonalized by using

X ≡

[
X 0

0 1

]
(3.21)

as

X†H̃0X =

[
X†
(
∆a + U †AU

)
X 0

0 ∆s

]
=

[
h 0

0 ∆s

]
≡ Ĥ0, (3.22)

the zeroth-order Hamiltonian in the hat basis. Since Ĥ0 is diagonal it is easy to compute

e±iĤ0x:

e±iĤ0x =

[
e±ihx 0

0 e±i∆sx

]
. (3.23)

Then, the perturbed Hamiltonian is given by

Ĥ1 = X†H̃1X =

[
0 (UX)†AW

W †A(UX) W †AW

]
. (3.24)

The eigenvalues of H̃0 is therefore h1, h2, h3, and ∆J (J = 4, · · ·, 3 + N). Therefore, the

sterile neutrino masses are affected neither by the active states nor the matter potential

in our zeroth-order unperturbed basis. It must be a good approximation because we have

assumed that the sterile neutrino masses are much heavier than the active ones, and we

are interested in the energy region implied by a ∼ ∆m2
31.

To do real calculations of the S matrix elements we must solve the zeroth order Hamil-

tonian H̃0. This task will be carried out in section 4.2, in which we derive explicit expres-

sions of the eigenvalues hi and the unitary matrix X.

Now, we formulate perturbation theory with the hat basis Hamiltonian, Ĥ0 in (3.22)

and Ĥ1 in (3.24) after a clarifying note in the next subsection.

3.3.2 The relationship between quantities in various bases

So far we have introduced the tilde- and the hat-basis:

H̃ = U†HU, Ĥ = X†H̃X, (3.25)
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where X is given by eq. (3.21). Therefore,

Ĥ = (UX)†H (UX) . (3.26)

Or

H = (UX) Ĥ (UX)† , S = (UX) Ŝ (UX)† . (3.27)

Notice that both U and X are unitary, and hence UX is unitary too. The relationship

between wave functions of various basis are given by

ν̂y = X†yz ν̃z = (UX)†yζ νζ ,

νζ = (UX)ζy ν̂y, (3.28)

where y denote the hat-basis indices. Using the explicit parametrization of the U matrix

we have

UX =

[
U W

Z V

][
X 0

0 1

]
=

[
UX W

ZX V

]
, (UX)† =

[
(UX)† (ZX)†

W † V †

]
. (3.29)

It may be helpful for our discussions later to understand the relationship between S

and Ŝ matrix elements. For this purpose, we denote them in the block form

S =

[
Saa SaS
SSa SSS

]
, Ŝ =

[
Ŝaa ŜaS
ŜSa ŜSS

]
, (3.30)

where the subscripts a and S indicate that they act (for the right index) to the active or

the sterile subspaces. Notice that Saa and SaS , for example, are 3× 3 and 3×N matrices,

respectively. Then, the relationship between S and Ŝ matrix elements can be written

explicitly as

Saa = (UX)Ŝaa(UX)† + (UX)ŜaSW
† +WŜSa(UX)† +WŜSSW

†,

SaS = (UX)Ŝaa (ZX)† + (UX)ŜaSV
† +WŜSa (ZX)† +WŜSSV

†,

SSa = (ZX) Ŝaa(UX)† + (ZX) ŜaSW
† + V ŜSa(UX)† + V ŜSSW

†,

SSS = (ZX) Ŝaa (ZX)† + (ZX) ŜaSV
† + V ŜSa (ZX)† + V ŜSSV

†. (3.31)

3.3.3 Computation of Ŝ matrix elements

To calculate Ŝ(x) = exp
[
−i
∫ x

0 dxĤ(x)
]

we define Ω(x) as

Ω(x) = eiĤ0xŜ(x). (3.32)

Ω(x) obeys the evolution equation

i
d

dx
Ω(x) = H1Ω(x), (3.33)
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where

H1 ≡ eiĤ0xĤ1e
−iĤ0x. (3.34)

Then, Ω(x) can be computed perturbatively as

Ω(x) = 1 + (−i)
∫ x

0
dx′H1(x′) + (−i)2

∫ x

0
dx′H1(x′)

∫ x′

0
dx′′H1(x′′)

+ (−i)3

∫ x

0
dx′H1(x′)

∫ x′

0
dx′′H1(x′′)

∫ x′′

0
dx′′′H1(x′′′)

+ (−i)4

∫ x

0
dx′H1(x′)

∫ x′

0
dx′′H1(x′′)

∫ x′′

0
dx′′′H1(x′′′)

∫ x′′′

0
dx′′′′H1(x′′′′) + · · ·,

(3.35)

where the “space-ordered” form in (3.35) is essential because of the highly nontrivial spatial

dependence in H1. Upon obtaining Ω(x), Ŝ matrix can be obtained as

Ŝ(x) = e−iĤ0xΩ(x). (3.36)

By knowing Ŝ matrix elements, the S matrix is obtained by using (3.27), or (3.31).

The perturbing Hamiltonian H1 defined in (3.34) has a structure

H1 =

[
0 eihx(UX)†AWe−i∆sx

ei∆sxW †A(UX)e−ihx ei∆sxW †AWe−i∆sx

]
. (3.37)

That is, (H1)ij = 0 in the whole active neutrino subspace. The non-vanishing elements of

H1 are as follows:

(H1)iJ = e−i(∆J−hi)x
{

(UX)†AW
}
iJ
,

(H1)Ji = e−i(hi−∆J )x
{
W †A(UX)

}
Ji
,

(H1)JK = e−i(∆K−∆J )x
{
W †AW

}
JK

. (3.38)

Inserting eq. (3.38) into (3.35), we can compute all the Ω matrix elements. The simplest

ones in first order in H1, the second term in (3.35), are given by

Ωij [1] = 0,

ΩiJ [1] =
e−i(∆J−hi)x − 1

(∆J − hi)

{
(UX)†AW

}
iJ
,

ΩJi[1] = −e
i(∆J−hi)x − 1

(∆J − hi)

{
W †A(UX)

}
Ji
,

ΩJK |J 6=K [1] =
e−i(∆K−∆J )x − 1

(∆K −∆J)

{
W †AW

}
JK

,

ΩJJ [1] = (−ix)
{
W †AW

}
JJ
, (3.39)
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which serve as a building block of the perturbation series because of the structure in (3.35).

The notation “[1]” implies that the terms come from first order perturbation with H1. For

more about notations, see appendix B.

We need to compute up to fourth order in H1 because we want to keep all the order

W 4 terms. The requirement arises because the probability leaking term, whose observation

is crucial to distinguish between low-energy and high-energy unitarity violation, is of order

W 4. The other normalization term, the second term in (2.2), also deviates from the one in

unitary case by a quantity of order W 4 in the appearance channels, but in an implicit way.

The resulting expressions of Ŝ matrix elements to order W 4 are summarized in appendix B.

There exists important consistency check in the calculation. That is, the identity

relation between Ŝ matrix elements that follows from generalized T invariance:9

ŜAB(U,W,X,A) = ŜBA(U∗,W ∗, X∗, A∗), AB = {ij, iJ, IJ} (3.40)

where ŜJi is obtained by performing the exchange hi ↔ ∆J in ŜiJ . The generalized T

invariance relation is explicitly verified by the computed results of Ŝ matrix elements to

fourth order in W given in appendix B.10

3.3.4 Computation of S matrix elements

Given the results of Ŝ matrix elements it is straightforward to calculate S matrix elements

by using the formulas in eq. (3.31). The active neutrino space S matrix elements can be

written in perturbative forms, Sαβ = S
(0)
αβ + S

(2)
αβ + S

(4)
αβ , where

S
(0)
αβ =

∑
kl

(UX)αk(UX)∗βlŜ
(0)
kl ,

S
(2)
αβ =

∑
kl

(UX)αk(UX)∗βlŜ
(2)
kl +

∑
kL

(UX)αkW
∗
βLŜ

(1)
kL

+
∑
Kl

WαK(UX)∗βlŜ
(1)
Kl +

∑
KL

WαKW
∗
βLŜ

(0)
KL,

S
(4)
αβ =

∑
kl

(UX)αk(UX)∗βlŜ
(4)
kl +

∑
kL

(UX)αkW
∗
βLŜ

(3)
kL

+
∑
Kl

WαK(UX)∗βlŜ
(3)
Kl +

∑
KL

WαKW
∗
βLŜ

(2)
KL. (3.41)

Using (3.41) the explicit expressions of S matrix elements can be easily obtained with

use of Ŝ matrix elements given in appendix B. For example, Sαβ in zeroth and second

orders in W are given, respectively, by

S
(0)
αβ =

∑
k

(UX)αk(UX)∗βke
−ihkx, (3.42)

9As in the Standard Model in particle physics T invariance is broken in our system only by complex

numbers in the mixing matrix.
10Since Ĥ system is a consistent dynamical system it is legitimate and easier to verify generalized T

invariance in the Ŝ level, though it can be done in the S matrix level as well. A pedagogical treatment for

proving generalized T invariance is given in version 1 of this work, arXiv ePrint: 1712.02798.
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and

S
(2)
αβ =

∑
k,K

1

∆K−hk

[
(ix)e−ihkx+

e−i∆Kx−e−ihkx

(∆K−hk)

]
(UX)αk(UX)∗βk

{
(UX)†AW

}
kK

×
{
W †A(UX)

}
Kk
−
∑
k 6=l

∑
K

[(∆K−hk)e−ihlx−(∆K−hl)e−ihkx−(hl−hk)e−i∆Kx]

(hl−hk)(∆K−hk)(∆K−hl)

×(UX)αk(UX)∗βl

{
(UX)†AW

}
kK

{
W †A(UX)

}
Kl

+
∑
k,K

e−i∆Kx−e−ihkx

(∆K−hk)

×
[
(UX)αkW

∗
βK

{
(UX)†AW

}
kK

+WαK(UX)∗βk

{
W †A(UX)

}
Kk

]
+
∑
K

e−i∆KxWαKW
∗
βK . (3.43)

3.4 The oscillation probability to second order in W

In this section, we discuss the oscillation probability to second order in W . It is to illuminate

the principle of calculation, how averaging over the fast oscillation works, and to show which

constraints are obtained on the sterile state masses by the requirement of suppression by

the large sterile state mass denominators to make these sterile-sector model dependent

terms negligible.

Of course, we will calculate in this paper all the oscillation probabilities P (νβ → να)

in matter to fourth order in W to keep the necessary term, the probability leaking term

Cαβ , as mentioned earlier. The key features of the fourth-order terms will be described in

the next section 3.6.

The oscillation probability P (νβ → να) is given to second order in W as

P (νβ → να)(0+2) =
∣∣∣S(0)
αβ

∣∣∣2 + 2Re
[(
S

(0)
αβ

)∗
S

(2)
αβ

]
=
∑
k

(UX)αk(UX)∗βk(UX)∗αk(UX)βk +
∑
k 6=l

(UX)αk(UX)∗βk(UX)∗αl(UX)βle
−i(hk−hl)x

+ 2Re

{∑
m

∑
k,K

1

∆K − hk

[
(ix)e−i(hk−hm)x +

e−i(∆K−hm)x − e−i(hk−hm)x

(∆K − hk)

]

× (UX)αk(UX)∗βk(UX)∗αm(UX)βm

{
(UX)†AW

}
kK

{
W †A(UX)

}
Kk

−
∑
m

∑
k 6=l

∑
K

(∆K − hk) e−i(hl−hm)x − (∆K − hl) e−i(hk−hm)x − (hl − hk)e−i(∆K−hm)x

(hl − hk)(∆K − hk)(∆K − hl)

× (UX)αk(UX)∗βl(UX)∗αm(UX)βm

{
(UX)†AW

}
kK

{
W †A(UX)

}
Kl

+
∑
m

∑
k,K

e−i(∆K−hm)x − e−i(hk−hm)x

(∆K − hk)

[
(UX)αkW

∗
βK(UX)∗αm(UX)βm

{
(UX)†AW

}
kK

+WαK(UX)∗βk(UX)∗αm(UX)βm

{
W †A(UX)

}
Kk

]
+
∑
m

∑
K

e−i(∆K−hm)xWαKW
∗
βK(UX)∗αm(UX)βm

}
. (3.44)
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The following formulas include the cases of both disappearance (α = β) and appearance

(α 6= β) channels.

Notice that there is no matter dependent terms without suppression either by high-

frequency oscillations ∝ cos(∆K−hm)x (or sin), or by large sterile state mass denominators

∝ 1
∆K−hk .

We take averaging over fast oscillations due to active-sterile and sterile-sterile mass

squared differences which leads to

〈sin ∆Jix〉 ≈ 〈sin ∆JKx〉 ≈ 0, 〈cos ∆Jix〉 ≈ 〈sin ∆JKx〉 ≈ 0, (3.45)

where 〈. . .〉 stands for averaging over neutrino energy within the uncertainty of energy res-

olution, as well as averaging over uncertainty of distance between production and detection

points of neutrinos.11 The second approximate equalities in (3.45) assume that there is no

accidental degeneracy among the sterile state masses. That is, we assume that the relation

|∆m2
JK | � |∆m2

31| always holds.

After averaging out the fast oscillations, P (νβ → να) is given to second order in W as

P (νβ → να)(0+2) = P (νβ → να)(0) + P (νβ → να)(2). (3.46)

The zeroth-order term P (νβ → να)(0) is nothing but the one in eq. (2.6) except for dropping

the probability leaking term

P (νβ→ να)(0) =

∣∣∣∣∣∣
3∑
j=1

UαjU
∗
βj

∣∣∣∣∣∣
2

−2
∑
j 6=k

Re
[
(UX)αj(UX)∗βj(UX)∗αk(UX)βk

]
sin2 (hk−hj)x

2

−
∑
j 6=k

Im
[
(UX)αj(UX)∗βj(UX)∗αk(UX)βk

]
sin(hk−hj)x, (3.47)

while the W 2 correction terms are given by

P (νβ → να)(2) = 2Re

{∑
m

∑
k,K

1

∆K − hk

[
(ix)e−i(hk−hm)x − e−i(hk−hm)x

(∆K − hk)

]

× (UX)αk(UX)∗βk(UX)∗αm(UX)βm

{
(UX)†AW

}
kK

{
W †A(UX)

}
Kk

−
∑
m

∑
k 6=l

∑
K

(∆K − hk) e−i(hl−hm)x − (∆K − hl) e−i(hk−hm)x

(hl − hk)(∆K − hk)(∆K − hl)

× (UX)αk(UX)∗βl(UX)∗αm(UX)βm

{
(UX)†AW

}
kK

{
W †A(UX)

}
Kl

−
∑
m

∑
k,K

e−i(hk−hm)x

(∆K − hk)

[
(UX)αkW

∗
βK(UX)∗αm(UX)βm

{
(UX)†AW

}
kK

+WαK(UX)∗βk(UX)∗αm(UX)βm

{
W †A(UX)

}
Kk

]}
. (3.48)

11To check the point of how the “averaging out the fast oscillation” procedure works, we numerically

solved the 3 + 1 system explicitly and confirmed that it does, as it should be.
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The W 2 correction terms in P (νβ → να)(2), together with the probability leaking term

Cαβ in eq. (2.6), will be utilized in section 5.2 to explore the possibility of distinguishing

between low- and high-scale unitarity violation. If such terms are detected, the sterile

sector model-dependence in P (νβ → να)(2) would serve for identifying the structure of the

sterile sector.

3.5 Suppression by the large sterile state mass denominator

In this section, we study the conditions under which P (νβ → να)(2) in eq. (3.48) can become

negligibly small. It would allow us to use P (νβ → να)(0) + Cαβ (= eq. (2.6)) for leptonic

unitarity test in a sterile sector model-independent manner.

We start by examining the effect of suppression by the large sterile state mass de-

nominator which characterizes transition between active-sterile states, 1/(∆K − hk). We

demand that the matter dependent terms in (3.48) be smaller than the probability leaking

and the normalization terms of order ∼W 4. It leads to∣∣∣∣ AAL

(∆J−hi)

∣∣∣∣< |W |2, ∣∣∣∣ AA

(hk−hj)(∆J−hi)

∣∣∣∣< |W |2, and

∣∣∣∣ A

(∆J−hi)

∣∣∣∣< |W |2, (3.49)

where L is the baseline distance and i and J denote, respectively, generic indices for active

and sterile states. For notational convenience, we define λi (i = 1, 2, 3) to be the eigenvalues

of 3 × 3 submatrix 2EH̃0 in (3.19) corresponding to the active neutrino mass squared in

matter and hence λi = 2Ehi.

In region λi ∼ |∆m2
31| and near the atmospheric oscillation maximum, L ∼ 2E

|∆m2
31|
∼

1
|hk−hj | holds. Then, the left-hand side of the first two inequalities in (3.49) receive an

extra factor |LA| ∼
∣∣∣ A
hk−hj

∣∣∣ ∼ a
|∆m2

31|
' 0.1

(
ρ

2.8 g/cm3

)(
E

1 GeV

)
, which further suppresses

the first and the second items in (3.49) unless ρE & 10 (g/cm3)GeV. Therefore, in this

region the last one in (3.49) gives the severest constraint (taking the matter potential due

to CC in A and removing the factor 1
2E )

a

|m2
J − λi|

≈ a

∆m2
Ji

< |W |2. (3.50)

Notice that, in order for the first inequality in (3.50) to be valid, we have restricted the

energy region for a given matter density such that λi remain in the order of active neutrino

masses. Roughly speaking, it corresponds to −50 (g/cm3)GeV . YeρE . 50 (g/cm3)GeV

where the negative sign is relevant for antineutrinos. See e.g., figure 3 of ref. [53]. Clearly,

it excludes the interesting region of “IceCube resonance” due to sterile neutrino mass of

eV scales [54], for which an entirely different theoretical framework would be necessary.

Then, we notice that in a regime |W |2 ∼ 10−2, the condition in (3.50) is valid given

the estimation (assuming Ye = 0.5)

a

∆m2
Ji

= 2.13× 10−3

(
∆m2

Ji

0.1 eV2

)−1(
ρ

2.8 g/cm3

)(
E

1 GeV

)
, (3.51)

unless ρE & 10 (g/cm3)GeV. That is, the second-order matter dependent correction

terms can be ignored in comparison with O(W 4) terms if ∆m2
Jk & 0.1 eV2, which is already
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required in vacuum. If we want to treat the regime |W |2 & 10−n, we need to limit the sterile

masses to ∆m2
Jk ' m2

J & 10(n−3) eV2 to keep our (3 +N) space unitary model insensitive

to details of the sterile sector [20]. We note, however, that terms of order |W |4 ∼ 10−4

may be the limit of exploration for near future neutrino oscillation experiments.

The condition (3.50) is identical with the one obtained using the first order matter

perturbation theory [20], which may look strange to the readers. Let us understand the

reason why taking care of all order matter effect does not alter the condition obtained by

first-order treatment in matter perturbation theory. The matter-dependent term in the

zeroth-order Hamiltonian H̃0 only involves U matrix, but no W matrix. Since we treat

H̃0 in an unperturbed fashion it produces all-order effect of the matter potential which is

however independent of W matrix elements. On the other hand, perturbative effects that

come from single or double powers in W in Ĥ1 are always accompanied by the matter

potential in the form of WA or W †A, as in eq. (3.37). That is, perturbative effect of W

is always accompanied by matter potential, and hence can always be dealt with matter

perturbation theory.12 It is the reason why the matter perturbation theory is able to yield

the same condition on sterile masses as obtained in a fuller treatment of matter effect done

in this paper.

3.6 The oscillation probability in fourth order in W

The oscillation probability in fourth order in W contains the two terms

P (νβ → να)(4) =
∣∣∣S(2)
αβ

∣∣∣2 + 2Re
[(
S

(0)
αβ

)∗
S

(4)
αβ

]
. (3.52)

We will show in appendix C.1 that the first term in (3.52), after averaging over the fast

oscillations and using the suppression by large sterile state mass denominator as discussed

in the previous section, leaves the unique term, the probability leaking term Cαβ in eq. (2.6),

which can be seen in eq. (C.6). An interesting feature of Cαβ in matter is that it is identical

to the one in vacuum, eq. (2.3) without any matter effect dressing. In our computation

the term comes from the hat basis S matrix in zeroth order, the first term in the last

line of eq. (B.4), and hence it is free from the matter potential.13 We will also show in

appendix C.2 that the second term in (3.52), under the same treatment for the first term,

gives vanishing contribution. Therefore, no matter-dependent fourth order term survives

after large sterile state mass denominator suppression is used and averaging over the fast

oscillations is performed.

In conclusion, the oscillation probability in matter between active flavour neutrinos

in the (3 + N) space unitary model to fourth order in W in our small unitarity-violation

12An example of this feature can be observed in eq. (7.13) in ref. [20]. We must remark, however, that

this reasoning does not prove that the first order in matter perturbation theory is sufficient to obtain all

the necessary conditions on the sterile state masses.
13One may suspect that including higher order corrections could alter the feature of matter potential

independence of Cαβ . However, one can show (see section 6.3) that higher order W corrections to the piece

of S matrix elements relevant to Cαβ organize themselves as a phase factor, so that Cαβ has no matter effect

dressing. The rest of the correction terms are suppressed due to the dimensional reason, an extra matter

potential must be accompanied by an energy denominator.
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perturbation theory can be written as in eq. (2.6) in section 2. We hope that it serves as

a useful tool to test leptonic unitarity in various ongoing and future neutrino oscillation

experiments.

4 Analytical and numerical methods for solving non-unitary evolution

in matter

In this section, we describe the numerical and analytical methods for calculating the neu-

trino oscillation probability by solving non-unitary evolution in matter.

4.1 Numerical method for calculating neutrino oscillation probability

We describe a numerical method for computing the oscillation probability in matter. This

method can be used, assuming adiabaticity, in cases with varying matter density. We

show that in zeroth order in W the system simplifies to an evolution equation in the 3× 3

active subspace.

We solve the Schrödinger equation in the vacuum mass eigenstate basis (“tilde basis”),

ν̃z = (U†)zζνζ with Hamiltonian H̃ in (3.18):

i
d

dx

[
ν̃i
ν̃J

]
=

[
∆a + U †AU U †AW

W †AU ∆s +W †AW

][
ν̃i
ν̃J

]
, (4.1)

where i = 1, 2, 3 and J = 4, 5, · · ·, 3 + N denote mostly active and mostly sterile neutrino

mass eigenstate labels, respectively. The initial condition with only active component

implies

ν̃i(0) =
∑
α

(U †)iανα(0), ν̃J(0) =
∑
α

(W †)Jανα(0). (4.2)

Using the solution of equation (4.1), we need the wave function of active flavour component

to calculate the probability at baseline x = L.

να(L) =
∑
i

Uαiν̃i(L) +
∑
J

WαJ ν̃J(L). (4.3)

Therefore, in the mass-basis formulation only U and W are involved, which is consistent

with our experience in W perturbation theory. An apparent contradiction to this property

that one faces in the evolution equation in the flavour basis is resolved in appendix A.

A drawback of this method is that we have to solve explicitly the evolution of the

sterile states which are coupled to the active states. Then, we need to specify the sterile

sector model, and have to know how to deal with averaging over the fast modes.

We notice, however, that in the zeroth-order in W the system simplifies. Since the

Hamiltonian H̃ is block-diagonal it suffices to solve the equation only in the 3 × 3 active

neutrino subspace:

i
d

dx
νi =

∑
j

(
∆a + U †AU

)
ij
νj . (4.4)
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The initial condition (4.2) and final reverse-back formula (4.3) involve only U matrix ele-

ments. Therefore, the oscillation probability in the zeroth-order in W can be calculable in

a manner independent of sterile sector models.14

4.2 An exact solution of zeroth-order oscillation probability

Here, we describe a method for obtaining the analytical solution of the zeroth-order Hamil-

tonian. The exact solution, as well as the numerical one described in the previous section,

provides the basis for computing the higher order corrections in W .

We calculate an exact form of the oscillation probability P (νβ → να) in leading order

in our perturbative framework, the one in (2.6) except for Cαβ , in the case of uniform

matter density.

The zeroth-order S matrix element S
(0)
αβ in (3.42) can be written as

S
(0)
αβ =

∑
i,j

UαiU
∗
βj

(∑
k

XikX
∗
jke
−ihkx

)
, (4.5)

and the factor in parenthesis can be calculated by the KTY technique [55]. We want to

diagonalize the Hamiltonian

H0 ≡
1

2E


m2

1 0 0

0 m2
2 0

0 0 m2
3

+ U †

 a− b 0 0

0 −b 0

0 0 −b

U
 , (4.6)

the active 3× 3 block of H̃0 in (3.19). We have defined in eq. (3.20) the unitary matrix X

which diagonalize H0 as

H0 =
1

2E
X

 λ1 0 0

0 λ2 0

0 0 λ3

X† ≡ Hd. (4.7)

For our notational convenience we call this form of H0 as Hd. Note that hi = λi
2E where

λ1,2 =
T
3
∓ 1

3
F cosG − 1√

3
F sinG, λ3 =

T
3

+
2

3
F cosG, (4.8)

where

F ≡
√
T 2 − 3A, G ≡ 1

3
arccos

{
2T 3 − 9AT + 27D

2 (T 2 − 3A)3/2

}
, (4.9)

with

T = (2E) TrH0, A = (2E)2 Tr (AdjH0) , D = (2E)3 detH0. (4.10)

14As we remarked in footnote 8 the non-unitary mixing matrix U has some W dependence through

unitarity of the U matrix in the whole (3 + N) space. Therefore, the nature of the eq. (4.4) as the

zeroth-order in W is ambiguous. However, following [20], we remain in the treatment with this “W effect

renormalized basis” in this paper.
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The adjugate of H0 is defined as AdjH0 ≡ (H0)−1detH0. Notice that T , A and D are

invariant under unitary transformation of H0 → KH0K
† with K any unitary matrix and

so are λi.

Following the notation in [55] we define pij and qij as (i, j = 1, 2, 3)

pij
2E
≡ (H0)ij ,

qij
(2E)2

≡ (AdjH0)ij . (4.11)

Notice that pij and qij are written only by the known (or given) quantities. Then, the

equations

(Hd)ij =
pij
2E

, (AdjHd)ij =
qij

(2E)2
, (4.12)

together with unitarity of X, become the equations to determine XX†:

Xi1X
∗
j1 +Xi2X

∗
j2 +Xi3X

∗
j3 = δij ,

λ1Xi1X
∗
j1 + λ2Xi2X

∗
j2 + λ3Xi3X

∗
j3 = pij ,

λ2λ3Xi1X
∗
j1 + λ3λ1Xi2X

∗
j2 + λ1λ2Xi3X

∗
j3 = qij . (4.13)

They lead to the solution (k = 1, 2, 3)

XikX
∗
jk =

qij + pijλk − δijλk(λl + λm)

(λl − λk)(λm − λk)
, (4.14)

where k, l,m is cyclic, and sum over k is not implied in (4.14).

Therefore, to zeroth-order in W expansion, the S matrix elements are given by

S
(0)
αβ =

∑
k

∑
i,j

Uαi [qij + pijλk − δijλk(λl + λm)]U∗βj

 e−ihkx

(λl − λk)(λm − λk)
, (4.15)

and the oscillation probability by P (νβ → να) = |S(0)
αβ |

2.

Finally, armed with the solution (4.14), we can also calculate all higher order terms in

oscillation probability for e.g. those in eq. (3.48) since only such combination XikX
∗
jk (no

sum over k implied) can appear.

5 Where are the unitarity violation and W 2 corrections?

Having formulated the small unitarity violation perturbation theory, we now utilize it to

answer the following questions: (1) Where is the regions of energy E and baseline L in which

the effect of unitarity violation is significant?, and (2) how large can the W 2 corrections

be? We address the questions (1) and (2) in sections 5.1 and 5.2, respectively.

5.1 Comparison between the oscillation probabilities with and without

unitarity violation

To know where the effect of unitarity violation is large, and how large it is, we calculate

∆P (νβ → να) ≡ P (νβ → να)standard − P (νβ → να)
(0)
non-unitary (5.1)
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as a function of E and L, where P (νβ → να)standard and P (νβ → να)
(0)
non-unitary imply, re-

spectively, the oscillation probabilities calculated with the standard unitary mixing matrix

and the leading order (i.e., W 0) one with non-unitarity. The probability leaking term Cαβ
in eq. (2.6) as well as the W 2 correction terms in eq. (3.48) are not included in the analysis

here. Therefore, the results given in section 5.1 apply to both high-scale unitarity violation

as well as low-scale one in its leading order in W .15 On intuitive ground, at zeroth order

in W our system describes high-scale unitarity violation. There is no “W corrections” in

high-scale unitarity violation because the energy scale is so high that the high-mass sector is

truncated. We examine the three channels νµ → νe, νµ → ντ , and νµ → νµ. However, we do

not enter into any quantitative analyses, nor attempt to cover the whole parameter space.

Here is a brief note on how the standard mixing and the unitarity violating parameters

are chosen: we take the (3 + 1) model in which the constraints on the parameters are

best understood [27, 56–58]. In consistent with the current constraints we have chosen:

sin2 θ14 = 0.02, sin2 θ24 = 0.01, and sin2 θ34 = 0.1 for ∆m2
41 = 0.1 eV2, and set all the CP

phases to zero. Then, we cut out the 3 × 3 active neutrino mixing matrix, which is non-

unitary.16 For the standard leptonic mixing parameters in UPDG, we take sin2 θ12 = 0.3,

sin2 θ23 = 0.5, sin2(2θ13) = 0.09, and the mass squared differences ∆m2
21 = 7.4× 10−5 eV2

and ∆m2
31 = 2.4×10−3 eV2, and set the CP phase δCP to zero. The uniform matter density

is taken as ρ = 3.2 g cm−3 over the entire baseline, which may not be realistic.17

5.1.1 P (νµ → νe)

In figure 1-(a) (upper panel) and (b) (lower panel), presented are the iso-contours of P (νµ →
νe)

(0)
non-unitary and ∆P (νµ → νe) ≡ P (νµ → νe)standard−P (νµ → νe)

(0)
non-unitary in E−L space.

Here, the superscript (0) implies that it is calculated in zeroth-order in W by solving (4.4)

with appropriate initial condition and final projection to flavour eigenstate. In most of

the E − L space P (νµ → νe)
(0)
non-unitary is small. However, we identify the two regions

where P (νµ → νe)
(0)
non-unitary is relatively large, & 0.3. One of them is at low energy,

E . a few hundred MeV, and baseline L &1000 km. The other one is a region E ∼ 10 GeV

and L ∼ 10000 km. The former may be understood as due to the solar MSW enhancement,

and the latter as the atmospheric MSW enhancement [3, 4]. Roughly speaking, the regions

with relatively large |∆P (νµ → νe)| overlap with these regions.

15In fact, it is in agreement with the formulations in ref. [28] with which we share the same evolution equa-

tion (4.4) in the vacuum mass eigenstate basis. See also [21]. However, it appears that the flavour basis for-

mulation of neutrino evolution in matter in high-scale unitarity violation poses some nontrivial features such

as non-Hermitian Hamiltonian [21], or the evolution equation i d
dx
να =

∑
j

[
U
(
∆a + U†AU

)
U†
]
αβ
νβ [29].

The latter is not equivalent to (4.4) in the vacuum mass eigenstate basis due to non-unitarity of the U matrix.
16It can be re-parameterized in terms of the “αmatrix parameterization” defined in ref. [26]. The resultant

values of α parameters are given as follows: α11 = 0.990, α21 = −0.0141, α22 = 0.995, α31 = −0.0445,

α32 = −0.0316, α33 = 0.949.
17One can apply our formulas of S matrix obtained under the constant matter density approximation to

semi-realistic calculation for earth crossing neutrinos by using them in each shell (core, mantle, and crust

regions, etc.) with proper connecting conditions at the boundaries.
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Figure 1. In the upper panel (a), presented is the iso-contour of P (νµ → νe)
(0)
non-unitary in space

spanned by neutrino energy E and baseline L. In the lower panel (b), the iso-contour of the

difference ∆P (νµ → νe) ≡ P (νµ → νe)standard − P (νµ → νe)
(0)
non-unitary is presented. For the values

of unitarity-violating as well as the standard mixing parameters taken, see the text.
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5.1.2 P (νµ → ντ ) and P (νµ → νµ)

In figures 2 and 3, the same quantities (in each upper (a) and lower (b) panels) are presented

but in νµ → ντ and νµ → νµ channels, respectively. In contrast to νµ → νe channel, P (νµ →
ντ )

(0)
non-unitary and P (νµ → νµ)

(0)
non-unitary contours are globally “vacuum effect dominated”,

apart from the solar MSW region, both in the standard (not shown) and the non-unitary

cases. The first oscillation peak of P (νµ → ντ )
(0)
non-unitary scales roughly as the vacuum

oscillation peak does, L/103 km = 0.33E/1 GeV. This feature is more or less seen in

P (νµ → νe)
(0)
non-unitary , but P (νµ → ντ )

(0)
non-unitary has a higher peak height ' 0.7–0.8, and

the effect of atmospheric MSW enhancement is less prominent.

For P (νµ → νµ)
(0)
non-unitary, roughly speaking, the relation P (νµ → νµ)

(0)
non-unitary ≈

1 − P (νµ → ντ )
(0)
non-unitary holds in region where P (νµ → νe)

(0)
non-unitary is small. It must be

the case in the unitary case, but even in non-unitary case the relation holds approximately

because unitarity violation is small in our choice of the parameters. Therefore, P (νµ →
νµ)

(0)
non-unitary is large in region where P (νµ → ντ )

(0)
non-unitary is small, and vice versa, as seen

in figure 3. It appears that the anticorrelation is inherited to the relationship between

∆P (νµ → νµ) and ∆P (νµ → ντ ). Relatively large ∆P (νµ → ντ ) in first a few oscillation

maxima, or similar large depletion of ∆P (νµ → νµ), would allow detection of non-unitarity

if the detector has a good τ (in the former channel), or µ (in the latter channel) detection

capabilities. If the detector can detect the both, anticorrelation between µ and τ yields

must help.

Some comments on observational aspects: in the two regions where |∆P (νµ → νe)| is

large, and ∆P (νµ → νµ) in energy region E . 10 GeV may be explored by high-statistics

atmospheric neutrino observation by Super-K, Hyper-K/HKK, or DUNE [46, 48–50]. The

atmospheric MSW enhanced region of P (νµ → νe) would be a good target for PINGU

extensions of IceCube and KM3NeT-ORCA [51, 52]. P (νµ → ντ ) and P (νµ → νµ) would

be explored by them, with possibility of seeing anticorrelation between µ and τ yields.

Although it is very interesting to investigate these experimental prospects, a detailed ex-

amination of these questions is beyond the scope of this paper.

5.2 The probability leaking and W 2 correction terms

5.2.1 Low-scale versus high-scale unitarity violation

In leptonic unitarity test, a clear understanding of the relationship between low-scale and

high-scale unitarity violation may be one of the key issues. We have stressed in our previous

paper [20] that observing the probability leaking term Cαβ in eq. (2.3) would testify for low-

scale unitarity violation. As mentioned in section 3.6 the leaking term is not dressed by the

matter effect, which is perfectly natural for the effect of probability leakage. In this paper,

we propose yet another way of distinguishing low-scale unitarity violation from high-scale

one. That is, detection of the W 2 correction terms in eq. (3.48). In this section 5.2, we

give a brief sketch of how and where we might see visible effects of the probability leaking

and the W 2 correction terms.
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Figure 2. In the upper panel (a), presented is the iso-contour of P (νµ → ντ )
(0)
non-unitary in E − L

space. In the lower panel (b), the iso-contour of the difference ∆P (νµ → ντ ) ≡ P (νµ → ντ )standard−
P (νµ → ντ )

(0)
non-unitary is presented. The parameters used are the same as in figure 1.
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Figure 3. In the upper panel (a), presented is the iso-contour of P (νµ → νµ)
(0)
non-unitary in E − L

space. In the lower panel (b), the iso-contour of the difference ∆P (νµ → νµ) ≡ P (νµ → νµ)standard−
P (νµ → νµ)

(0)
non-unitary is presented. The parameters used are the same as in figure 1.
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5.2.2 How large are the W 2 corrections and Cαβ?

Let us go back to the expression of the oscillation probability to second order in W ,

eq. (3.48), in section 3.4 to know where we might see visible effects. If we enter into the

region ρE � 10 (g/cm3)GeV at around the first oscillation maximum, the first two terms

in eq. (3.48) can become large apart from W 2 suppression,∣∣∣∣ AAL

(∆J − hi)

∣∣∣∣ ∼ ∣∣∣∣ AA

(hk − hj)(∆J − hi)

∣∣∣∣ = 0.27

(
∆m2

Ji

0.1 eV2

)−1(
ρE

100(g/cm3) GeV

)2

. (5.2)

Comparing to the conditions (3.49), they can be larger than W 4 terms and hence cannot

be neglected. After taking account of W 2 suppression of ∼ 0.01 (assuming W ' 0.1),

| AAL
(∆J−hi)W

2| ∼ 3× 10−2 at E ∼ 100 GeV, assuming ∆m2
Ji = 0.1 eV2.

To know more quantitatively the sizes of W 2 corrections and their E or L dependences,

we have to fix the W matrix elements which have large arbitrariness. We defer this technical

discussion to appendix D, which describes the recipe we took to fix them with a common

m2
J = 0.1 eV2.18 We plot in figure 4, δP (νµ → να) ≡ P (νµ → να)(2) + Cµα, that is, the

order W 2 correction terms in P (νµ → να), eq. (3.48), plus the probability leaking term

Cµα, α = e (top panel), α = τ (middle panel), and α = µ (bottom panel). In other

words, δP (νµ → να) is equal to the total probability minus P (νµ → να)(0), if the fourth

and the higher-order in W correction terms with matter are neglected. In each panel the

three cases are examined. N = 1 case with maximal Cµα (solid line), the universal scaling

model19 with N = 3 (dotted line), and the order W 2 correction only (dashed line). The

last case corresponds to the universal scaling model with N = ∞. The blue lines are for

E = 10 GeV, and the red for E = 100 GeV.

We will first focus on the appearance channels νµ → νe and νµ → ντ . At E = 10 GeV

(100 GeV) δP depends very much on the above three cases, N = 1, N = 3, and N = ∞
for baseline L of several 100 km (L & 1000 km). The maximum value of |δP | is always

given by the case of maximal (minimal) Cµα for positive (negative) δP (νµ → να) shown by

the solid (dashed) lines. These maximal values of |δP (νµ → να)| are, roughly speaking,

' 10−3 for νµ → ντ , and ' a few × 10−4 for νµ → νe. The effect might be visible for

the former, though it might be challenging for the latter channel.20 For the disappearance

channel νµ → νµ, |δP (νµ → νµ)| ∼ 10−3(10−2) for E = 10 GeV (100 GeV). In this case,

the contribution from Cµµ is subdominant compared to W 2 correction terms.

At longer distance and in appearance channels, we see enhancement. At E = 10 GeV,

we observe a factor of several enhancement in |δP (νµ → να)| for both α = e and α = τ

18We are aware that the assumption of equal sterile neutrino masses is contradictory to the assumption

of no accidental degeneracy in the sterile mass spectrum we made in section 3.4. It was done not to

complicate term by term evaluation of the perturbative series, and to avoid using degenerate perturbation

theory. Fortunately, we can remove this assumption to second order in W in which no purely sterile state

mass splitting denominator is involved.
19The universal scaling model is defined in appendix E. It prescribes a way of distributing Wα4 matrix

element in 3 + 1 model to the W matrix elements in 3 + N model in such a way that the size of order W 2

correction terms in (3.48) remains unchanged when all the sterile masses are equal.
20Of course, there is an issues of how to separate effects of W 2 correction terms from unitarity violation

through U matrix in leading order.
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Figure 4. The sum of the order W 2 correction terms in eq. (3.48) plus the probability leaking

term Cµα (see eq. (2.3) for definition) in P (νµ → να), namely, δP (νµ → να) ≡ Cµα +P (νµ → να)(2)

is plotted assuming a common m2
J = 0.1 eV2. The top, middle and bottom panels are for α = e, τ ,

and µ, respectively. In each panel the three cases are shown: N = 1 case with maximal Cµα (solid

line), the universal scaling model with N = 3 (dotted line), and the order W 2 correction terms only

(dashed line). The last case corresponds to the universal scaling model with N = ∞. The blue

lines are for E = 10 GeV, and the red for E = 100 GeV. The leaking terms in the N = 1 model

(shown without superscript (N = 1) in the legend) have values Ceµ = 2× 10−4, Cτµ = 9.5× 10−4,

and Cµµ = 9.6× 10−5.
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in region L & 3000 km. They may provide a clear signature. The similar tendency exists

at E = 100 GeV, but in a less pronounced way. In this case, δP (νµ → να) flips sign at

around 1000–3000 km for α = e and 3000–6000 km for α = τ channels. It produces, assum-

ing detector’s sensitivity, a peculiar zenith angle dependence. The relevant energy region

of ρE = 50–1000 (g/cm3)GeV may be explored, for example, by atmospheric neutrino

observation by Deep Core, PINGU, or KM3NeT-ORCA [47, 51, 52] as well as Super-K,

Hyper-K/HKK, or DUNE [46, 48–50] in relatively lower energy region.

A final remark on Cαβ vs. W 2 corrections. Since Cαβ is a constant term in the oscillation

probability, it can in principle be distinguished from the other normalization term which

shares U matrix element dependences with the oscillation terms. In particular, they can

dominate for large m2
J since the W 2 correction terms are suppressed by at least ∼ 1/m2

J .

In this case, they will be the sole indicator of low-scale unitarity violation. In general

(though not in the N = 1 model), the order W 2 terms depend upon details of the sterile

sector, e.g., matrix structure of W . Therefore, once the effect is seen it would give us useful

information on the structure of low-scale leptonic unitarity violation.

6 Some remaining theoretical issues and extending

In this section, we will give some remarks on the theoretical basis in our framework, basic

one as well as on its perturbative aspects. They include our treatment of decoherence,

generic structure of higher-order corrections and its relation to the “Uniqueness theorem”

(see section 2.3), absence of enhancement due to small solar mass splitting denominator,

and its relation to the other non-standard physics.

6.1 Decoherence imposed onto coherent evolution system

We have started with the Schrödinger equation (3.3) with Hamiltonian (3.5) assuming

that all the neutrino states remain coherent. We have shown in this and the previous

papers that the coherence between active and sterile, and sterile and sterile states are not

maintained for sterile mass differences larger than 0.1 eV2. The effect of decoherence is

taken into account by making average over the fast oscillations. We feel it desirable for

the current treatment be replaced by the real quantum mechanical one using wave packets,

in which the effect of decoherence would automatically come in. Yet, we do believe that

our present framework is able to describe effectively the right physics derived from such

improved treatment.

6.2 Smallness of expansion parameters and higher order corrections

Here, we discuss general structure of the perturbation series without recourse to averaging

out the fast oscillations. The effective expansion parameters in our perturbative framework

are the following four,

AW

∆J − hi
,

AW

hj − hi
, ALW, and W. (6.1)
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We already saw them, except for the last one, in the discussion in section 3.5, and it can

be seen by inspecting the expressions of the oscillation probabilities up to the fourth or-

ders given in section 3.4 and appendix C. Formally, the expansion parameter is the first

one in (6.1) in view of (3.35) with Ω[1], the kernel, in (3.39). But, the spatial integra-

tion in (3.35) produces different effective expansion parameters, the second and the third

ones in (6.1). The extra factor of W ’s without the kinematical factors is provided when

transforming from the Ŝ to S matrices, as seen in section 3.3.4.

For simplicity of the discussion in this section, we limit ourselves to the case of |W | '
0.1. Under the same conditions we have imposed in section 3.5, the first one in (6.1)

is ' 7.6 × 10−4 for ∆m2
Ji = 0.1 eV2 and ρE = 10 (g/cm3)GeV while the second and

the third, which are comparable to each other at around the first oscillation maximum,

are estimated to be 2.3 × 10−2. Therefore, the smallness of the expansion parameter is

ensured unless ρE � 10 (g/cm3)GeV. In fact, a close examination of the order W 4 terms

in the oscillation probability (see appendix C) shows that all the formally W 4 terms are

actually further suppressed. The largest term in the fourth-order oscillation probabilities

is of the one suppressed by a factor
∣∣∣( AW

∆J−hi

)
(ALW )W 2

∣∣∣ . 1.7× 10−7, which is as small

as ∼ 10−4 even in the case |W | = 0.5. Therefore, we expect that the formula for the

oscillation probability in (2.6) works under much relaxed conditions than the one in (3.50).

6.3 On Uniqueness theorem and matter-dependent dynamical phase

We have shown in sections 3.4 and 3.6 that there is no surviving matter dependent correc-

tion term in the oscillation probability up to order W 4 after averaging out fast oscillations

and using the suppression by large sterile state mass denominators. Should we expect that

this feature is stable against higher order corrections beyond order W 4? We argue that the

answer is Yes. Based on the feature of perturbative series we have learned, we postulate

the following theorem:

Uniqueness theorem. All the matter dependent perturbative corrections in W in the os-

cillation probability either vanish or can be ignored after averaging over the fast oscillations

and using the suppression due to the large sterile state mass denominators, leaving only

the probability leakage term Cαβ, the first term in eq. (2.6) with (2.3).

It must be remarked here that unitarity violation effects which are hidden in non-unitary

active space mixing matrix U produces zeroth- to higher order effects of W . The above

theorem is only about the terms generated by explicit perturbative corrections in W .

We first note that higher-order corrections in terms of W are computed by using Ω[1]

as the kernel, as indicated in eq. (3.35). Notice also that all the elements of Ω[1], except for

Ω[1]JJ , carry the sterile state mass denominator, as shown in (3.39). Then, higher order

correction terms are always accompanied by the sterile state mass denominators which are

composed of some of the first three in (6.1), and therefore they are suppressed. The unique

exception for it is the terms generated only by Ω[1]JJ which lacks the sterile state mass

denominator. Therefore, apart from this special case, we have shown that higher-order

corrections in W does not produce the surviving terms after averaging over fast oscilla-

tion and using the sterile state mass denominator suppression. It is consistent with what
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we saw in our explicit computation to order W 4. This concludes our justification of the

Uniqueness theorem.

We need to clear up the issue of special type of perturbative correction terms which

involve only Ω[1]JJ as the kernel in (3.35). It produces the unique form of ŜJJ as

ŜJJ = e−i∆Jx
∑
n

(−ix)n

n!

{
(W †AW )JJ

}n
, (6.2)

a collection of terms of matter-dependent higher order renormalization to
∑

JWαJW
∗
βJ ,

the probability leaking term at the amplitude level. However, it exponentiates and has

contribution to the S matrix element as21

Sαβ =
∑
J

WαJW
∗
βJ exp

[
−i
{

∆J + (W †AW )JJ

}
x
]
. (6.3)

The unique form of S matrix, in principle, raises an interesting issue of dynamically gener-

ated phase produced jointly by unitarity violation and the matter effect.22 In our setting,

however, it either disappears from the amplitude squared, or has vanishing effect when the

high frequency oscillation is averaged out.

Finally, we should remark that our discussion to justify Uniqueness theorem in this

section assumes the same kinematical region as in the treatment of order W 2 and W 4

correction terms in sections 3.4 and 3.6, in particular, ρE . 10 (g/cm3)GeV. However, as

mentioned at the end of section 6.2, it is likely that the region of validity of the probability

formula (2.6) with vanishingly small higher order corrections is wider. At present, the

precise boundary of kinematical region for its validity is not known to us.

6.4 Absence of enhancement due to small solar mass splitting denominator

In perturbation theory one has to sum up intermediate states including off mass shell states.

Therefore, even though we sit in the kinematic region where atmospheric-scale oscillations

are large, the denominator can become small, to the order of solar ∆m2 mass splitting.

Then, one might question whether the correction terms blow up at the small denominator,

which would invalidate our perturbative treatment.

Fortunately, one can show that the “singularity” which could be produced in the limit

of small solar mass splitting always cancels against the small numerator of the similar

size. This problem exists already in the second-order expression of the oscillation probabil-

ity (3.44). See the second term in second order (in W ) term. If we denote hl − hk ≡ ε the

term would have 1/ε singularity in the limit of ε→ 0. However, one can see by inspection

by eye that the expression inside the square parenthesis is antisymmetric under l ↔ k,

and hence it is of order ε or higher. Therefore, the singularity cancels. Notice that the

antisymmetry under l ↔ k is not required for the whole expression including the matrix

element factor.

21It might be easier to obtain the phase factor if we use a different decomposition of H̃ from (3.19) by

absorbing W †AW into H̃0.
22The phase itself needs not be small. Taking the matter potential of CC reaction and the earth diameter,

AL = 6.2
(

ρ

5g/cm3

)(
L

6,400km

)
. Therefore, ALW 2 can be order unity for |W | ' 0.4.
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The situation is a little bit more complicated in the fourth-order expression of the

oscillation probability given in appendix C. In addition to 1/ε singularity similar to the one

we already saw, there exist apparent singularity of 1/ε2 type. See, for example, the second

term in (C.11) and the last term in (C.12). But, an explicit calculation shows that the 1/ε2

singularity always cancels against order ε2 numerator in the limit of small solar splitting.

This phenomenon is reminiscent of the finiteness of the oscillation probability at the

small solar mass splitting limit in helio-perturbation theory with the unique expansion

parameter
∆m2

21

∆m2
31

(or a renormalized one), see e.g., [53] and the references therein. Possible

interpretation of applicability of the perturbative framework to the region of solar level

crossing has been discussed [59, 60]. Another example for the similar phenomena is the

one at the small atmospheric mass splitting limit with additional expansion parameter

sin θ13. In this case it is observed that near the atmospheric resonance region not only the

oscillation probability is finite but also its accuracy improves when the higher order terms

to fourth order in sin θ13 is added [61].

Then, one might ask if our small unitarity violation perturbation theory gives quantita-

tively accurate result at around the denominator with small solar mass splitting. However,

we note that this problem is not relevant in our case because all these terms with ap-

parent singularities vanish after averaging over the high-frequency oscillations and using

the suppression by the large sterile mass denominators. Yet, we must remark that if we

investigate possible enhancement of the correction terms outside the condition (3.50), as

done in section 5.2, the quantitative accuracy of the expression may become an issue.

6.5 Leptonic non-unitarity and the other non-standard physics

This final subsection is to mention the related but different approaches, and to make some

clarifying remarks. Our 3 + N model has obvious relation with the various versions of ac-

tive plus sterile neutrino models proposed in the context of LSND-MiniBooNE anomaly, as

reviewed in [62], see also the references therein. The clear difference exists in the attitude

of the treatment of the model, in our case seeking the conditions to make the predic-

tions as model-independent as possible, while in the others pursuing the particular model

which provide the best fit to the data. Unless we use our model-independent simplified

formula (2.6), we would have to marginalise over the huge parameter space of the (3 +N)

model to obtain the bound on non-unitarity 3 × 3 mixing matrix U .

It is pointed out that one can establish a mapping between parameters in the mass

eigenstate basis which describe non-unitary leptonic mixing and the ones for non-standard

neutrino interactions (NSI) under certain conditions between neutron and electron number

densities [28]. However, when we rotate back to the flavour basis, a non-unitary mixing

matrix is involved in unitarity violating case, but not in the NSI case, as far as propagation

in matter is concerned.

7 Concluding remarks

In this paper, we have presented a comprehensive treatment of the three active plus N

sterile neutrino model in the context of leptonic unitarity test. We have formulated an
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appropriate perturbative framework with expansion in small unitarity violating W matrix

elements, while keeping (non-W suppressed) matter effect to all orders.

What we have done in this paper is mainly threefold:

• We have shown that the oscillation probability in matter between active states can

be made sterile-sector model independent, apart from N dependence in the lower

bound on probability leaking term Cαβ [see eq. (D.2)]. The property holds under

the environment of active and sterile neutrino evolution with decoherence in active-

sterile and sterile-sterile channels, which requires 0.1 eV2 . m2
J . (1–10) GeV2 for the

typical kinematical setting of LBL experiments. It leads to a very simple expression

of the oscillation probability in matter, eq. (2.6).

The model-independent nature of the observable is demonstrated by showing that

perturbative corrections to eq. (2.6) either vanish or are negligible after averaging

over fast oscillations and using large sterile state mass denominator suppression. It

is done by an explicit computation to fourth order in W which lefts the unique

non-vanishing vacuum term, the probability leaking term Cαβ . We have argued by

postulating the “Uniqueness theorem” that this feature prevails to all orders in W

perturbation theory.

• We have used the oscillation probability formula, eq. (2.6), to analyze νµ → να
channels (α = e, µ, τ ), to know in which region of energy and baseline the effect of

unitarity violation is large. As a general tendency the effect is sizeable in regions

where standard oscillation probability is large, with notable amplification in the two

regions corresponding to the solar and the atmospheric MSW enhancement. We have

observed relatively large effect in νµ → νµ and νµ → ντ channels, and pointed out,

though qualitatively, that anticorrelation of signals between them would enhance the

sensitivity to unitarity violating effects.

• We have discussed the question of how to distinguish low-scale unitarity violation

from high-scale one. We have pointed out that outside the region of validity of

our Uniqueness theorem, ρE � 10 (g/cm3) GeV, the second order W correction

[eq. (3.48)] to the leading order could become large and, if detected, it would signal

low-scale unitarity violation, offering new way of discriminating between low- and

high-scale unitarity violation. Then, it would allow us to probe structure of W ma-

trix elements which bridges between active and sterile sectors. This is to add to

the method of detecting the probability leaking term Cαβ discussed in [20], which

may have a broader applicability by relying on the existence of “sterile”, or unde-

tectable but communicable, sector at low energy scales, a generic feature beyond the

(3 +N) model.

Notice that in “constraining mode” of unitarity violation, the model-independence of the

framework translates into a universal nature of the bounds, thereby making them more

powerful. Whereas in “discovery mode” of unitarity violation, the model dependence, in

particular through the W dependent correction terms, is welcome because it serves for

identifying the structure of the sterile sector.
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During the course of this work, we have obtained the new results and had some inter-

esting observations including:

• We have obtained an exact solution, eq. (4.15), of S matrix for the Hamiltonian (4.6)

with uniform matter density. It describes neutrino evolution in low-scale unitarity

violation in zeroth-order in W , which applies also to the case of high-scale unitarity

violation. It has been utilized in section 5 to calculate the oscillation probability

in the leading-order as well as its higher order corrections in W . When applied to

each shell inside the earth, it could provide a semi-quantitative way of simulating

non-unitary neutrino evolution for the terrestrial experiments.

• The value of Cαβ , if detected, could reveal structure of the hidden sterile sector. In

this paper, this point is illustrated only in a toy model of equally distributed W

matrix elements within each flavour, as defined in appendix E. In this model, the

probability leaking term scales as 1/N depending upon number of sterile states.

We emphasize that neutrino experiment is the most powerful way to execute leptonic

unitarity test in scenarios of low-scale unitarity violation, though it is unlikely in the case

of high-scale unitarity violation. Nonetheless, we have to admit that our observations on

what we could do for experimental detection of possible non-unitarity effects are rather

qualitative to make any definitive claim for possible detection in the future. Clearly, more

detailed analyses are called for.

While we worked exclusively on the (3 + N) state unitary model as a model of low-

scale unitarity violation, we do not know if it is the unique choice, or it merely reflects our

ignorance. Even in the case there exist more generic class of models for low-scale unitarity

violation, the phenomenon of probability leaking is likely to survive. It is because the

probability leaking must take place whenever the extra light sector exists and communicates

with the three active neutrinos.
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A Neutrino evolution equation in flavour basis

The Schrödinger equation takes the form with flavour basis Hamiltonian H in (3.10)

i
d

dx

[
νa
νs

]
=

[
U∆aU

† +W∆sW
† +A U∆aZ

† +W∆sV
†

Z∆aU
† + V∆sW

† Z∆aZ
† + V∆sV

†

][
νa
νs

]
, (A.1)

where νa (νs) denotes 3 (N) component vector in active (sterile) space. Apparently, the

system depends not only on U and W , but also on Z and V matrix elements, which is not

the case in our treatment using the mass eigenstate basis.

Here, we show that the dependence on Z and V is superficial. Since there is no physical

meaning of the particular basis for the sterile sector fermions we can redefine it by doing

the transformation [
νa
νs

]
→

[
1 0

0 Y

][
νa
νs

]
≡

[
ν ′a
ν ′s

]
, (A.2)

where Y is a N ×N unitary matrix. In the primed basis the Hamiltonian becomes

H ′≡

[
1 0

0 Y

]
H

[
1 0

0 Y †

]
=

[
(U∆aU

†+W∆sW
†+A) (U∆aZ

†+W∆sV
†)Y †

Y (Z∆aU
†+V∆sW

†) Y (Z∆aZ
†+V∆sV

†)Y †

]
. (A.3)

We can arbitrarily choose Y = V †. Then, one can show by using unitarity (3.17) that

H ′ =

[
(U∆aU

† +W∆sW
† +A) −U∆aU

†W +W∆s(1−W †W )

−W †U∆aU
† + (1−W †W )∆sW

† W †U∆aU
†W + (1−W †W )∆s(1−W †W )

]
.

(A.4)

Therefore, our system depends only on U and W , and the dependence on Z and V is

superficial.

B Ŝ matrix elements

The method of computing Ŝ matrix elements is outlined in section 3.3.3 and here, we

will collect the results. We denote computed results of the matrix elements of Ŝ as Ŝ[n]

to indicate that it is the one that comes from n-th order contribution in H1. Since the

elements of H1 are of order either W or W 2, Ŝ[n] generally has order Wn or higher. To

show that a particular contribution is of order Wm we use the superscript “(m)”. That is,

Ŝ(m)[n] denotes contribution to Ŝ that arizes from n-th order perturbative contribution in

H1 and is of order Wm.

In the following, we will denote

ciJ ≡
[
(UX)†AW

]
iJ
, dIJ ≡

[
W †AW

]
IJ

= d∗JI , (B.1)

ei ≡ e−ihix, eI ≡ e−i∆Ix, (B.2)

∆ij ≡ ∆i −∆j , ∆Ij ≡ ∆I −∆j , ∆IJ ≡ ∆I −∆J . (B.3)
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B.1 Contribution to Ŝ matrix elements from zeroth and first order in H1

The zeroth and first order Ŝ matrix elements can be calculated as follows:

Ŝ
(0)
ij [0+1] =

(
e−iĤ0x

)
ik

(Ωki)+
(
e−iĤ0x

)
iK

(ΩKi) = e−ihix(Ωii) = δijei

Ŝ
(1)
iJ [0+1] =

(
e−iĤ0x

)
ij

(ΩjJ)+
(
e−iĤ0x

)
iK

(ΩKJ) = e−ihix(ΩiJ) = ciJ
eJ−ei
∆Ji

Ŝ
(1)
Ji [0+1] =

(
e−iĤ0x

)
Jk

(Ωki)+
(
e−iĤ0x

)
JK

(ΩKi) = c∗iJ
eJ−ei
∆Ji

Ŝ
(2)
JK |J 6=K [0+1] =

(
e−iĤ0x

)
Ji

(ΩiK)+
∑
I

(
e−iĤ0x

)
JI

(ΩIK) = dJK
eK−eJ
∆KJ

Ŝ
(0+2)
JJ [0+1] =

∑
i

(
e−iĤ0x

)
Ji

(ΩiJ)+
∑
I

(
e−iĤ0x

)
JI

(ΩIJ) = eJ (1−ixdJJ) . (B.4)

The terms above are invariant under generalized T transformation Ŝpq(U,W,X,A) →
Ŝqp(U

∗,W ∗, X∗, A∗) [eqs. (3.40)].

B.2 Contribution to Ŝ matrix elements from second order in H1

Likewise, Ŝ matrix elements can be calculated in second order in Ĥ1 by using the formula

for Ω in (3.35) and Ŝ-Ω relation in (3.36) as

Ŝ
(2)
ij [2] =

∑
K

ciKc
∗
jKf

(2)
ij,K , (B.5)

Ŝ
(3)
iJ [2] =

∑
K

ciKdKJf
(2)
iJ,K , Ŝ

(3)
Ij [2] =

∑
K

c∗jKdIKf
(2)
Ij,K , (B.6)

Ŝ
(2+4)
IJ [2] =

∑
k

ckJc
∗
kIf

(2)
IJ,k +

∑
K

dIKdKJf
(2)
IJ,K , (B.7)

where

f
(2)
ij,K =


1

∆Ki

(
ixei + eK−ei

∆Ki

)
for j = i

1
∆Kj∆Ki

(
eK +

∆Kj

∆ji
ei − ∆Ki

∆ji
ej

)
for j 6= i

,

f
(2)
iJ,K = f

(2)
Ji,K =

− 1
∆Ji

(
ixeJ + eJ−ei

∆Ji

)
for K = J

1
∆Ji∆Ki∆KJ

(eK∆Ji − eJ∆Ki + ei∆KJ) for K 6= J
,

f
(2)
IJ,k =

− 1
∆Ik

(
ixeI + eI−ek

∆Ik

)
for J = I

− 1
∆Jk∆IJ∆Ik

(eJ∆Ik − eI∆Jk − ek∆IJ) for J 6= I
,

f
(2)
IJ,K =



−x2

2 eI for J = I, K = I

− 1
∆IK

(
ixeI + eI−eK

∆IK

)
for J = I, K 6= I

1
∆JI

(
ixeI + eJ−eI

∆JI

)
for J 6= I, K = I

− 1
∆JI

(
ixeJ + eJ−eI

∆JI

)
for J 6= I, K = J

− 1
∆JK∆IJ∆IK

(eJ∆IK − eI∆JK − eK∆IJ) for J 6= I, K 6= I, J

.
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In the expressions above, the combinations of the couplings remain invariant taking the

complex conjugate together with p ↔ q while one can verify directly that f
(2)
pq,r = f

(2)
qp,r.

Hence the expressions are T invariance [eqs. (3.40)].

What we should do in the rest of appendix is to compute Ŝ matrix elements pertur-

batively to fourth order in H1. In the rest of the appendix, we present only the terms

which are required to compute S matrix elements to order W 4. In view of the relations

between Ŝ and S matrix elements given in eq. (3.41), Ŝ
(3)
IJ , Ŝ

(4)
IJ , and Ŝ

(4)
iJ (and Ŝ

(4)
Ji ) are

all unnecessary. We only give the results of manifestly generalized T invariant form of Ŝ

matrix elements with which it must be straightforward to prove generalized T invariance.

B.3 Contribution to Ŝ matrix elements from third order in H1

For the third order terms in H1, we have

Ŝ
(4)
ij [3] =

∑
K,L

ciKdKLc
∗
jLf

(3)
ij,KL, (B.8)

Ŝ
(3)
iJ [3] =

∑
k,L

ciLc
∗
kLckJf

(3)
iJ,kL+O

(
W 5
)
, Ŝ

(3)
Ij [3] =

∑
k,L

ckLc
∗
kIc
∗
jLf

(3)
Ij,kL+O

(
W 5
)
, (B.9)

Ŝ
(4)
IJ [3] =

∑
k,L

c∗kLckJdILg
(3)
IJ,kL+

∑
k,L

ckLc
∗
kIdLJh

(3)
IJ,kL+O

(
W 5
)
, (B.10)

where

f
(3)
ij,KL =



− 1
∆Ki∆Li

(
ixei− eL−ei

∆Li∆LK
∆Ki+

eK−ei
∆Ki∆LK

∆Li

)
for j= i, K 6=L

− 1
∆2
Li

[
ix(eL+ei)+2 eL−ei∆Li

]
for j= i, K =L

1
∆Ki∆Kj∆Li∆Lj

(
eL∆Ki∆Kj−eK∆Li∆Lj

∆LK
− ej∆Ki∆Li−ei∆Kj∆Lj

∆ij

)
for j 6= i, K 6=L

− 1
∆Lj∆Li

(
ixeL+

ei−ej
∆ji

+ eL−ei
∆Li

+
eL−ej
∆Lj

)
for j 6= i, K =L

,

f
(3)
iJ,kL = f

(3)
Ji,kL =



− 1
∆Ji∆Jk∆Li∆Lk

(
eL∆Ji∆Jk−eJ∆Li∆Lk

∆JL
+ ek∆Ji∆Li−ei∆Jk∆Lk

∆ik

)
for k 6= i, L 6= J

− 1
∆Ji∆Li

(
ixei+

eJ−ei
∆Ji

+ eL−ei
∆Li
− eJ−eL

∆JL

)
for k= i, L 6= J

− 1
∆Jk∆Ji

(
ixeJ− ei−ek

∆ik
+ eJ−ei

∆Ji
+ eJ−ek

∆Jk

)
for k 6= i, L= J

− 1
∆2
Ji

[
ix(ei+eJ)+2 eJ−ei∆Ji

]
for k= i, L= J

,

g
(3)
IJ,kL =



ixeI
∆Ik∆LI

+ 1
∆Ik∆LI∆Lk

(
eL−eI
∆LI

∆Ik+ eI−ek
∆Ik

∆LI

)
for J = I, L 6= I

1
∆Ik

(
−x2eI

2 + ix
∆Ik

eI− ek−eI
∆2
Ik

)
for J = I, L= I

ixeI
∆Ik∆JI

+ 1
∆Jk

(
eJ−eI
∆2
JI

+ eI−ek
∆2
Ik

)
for J 6= I, L= I

ixeJ
∆Jk∆IJ

+ 1
∆Ik

(
eI−eJ
∆2
IJ

+ eJ−ek
∆2

Jk

)
for J 6= I, L= J

eI
∆Ii∆KI∆JI

+ eJ
∆Ji∆KJ∆IJ

− ei
∆Ii∆Ji∆Ki

+ eK
∆KI∆KJ∆Ki

for J 6= I, L 6= I,J

,

h
(3)
IJ,kL =



ixeI
∆Ik∆LI

+ 1
∆Ik∆LI∆Lk

(
eL−eI
∆LI

∆Ik+ eI−ek
∆Ik

∆LI

)
for J = I, L 6= I

1
∆Ik

(
−x2eI

2 + ix
∆Ik

eI− ek−eI
∆2
Ik

)
for J = I, L= I

ixeJ
∆Jk∆IJ

+ 1
∆Ik

(
eI−eJ
∆2
IJ

+ eJ−ek
∆2
Jk

)
for J 6= I, L= J

ixeI
∆Ik∆JI

+ 1
∆Jk

(
eJ−eI
∆2
JI

+ eI−ek
∆2
Ik

)
for J 6= I, L= I

eI
∆Ii∆KI∆JI

+ eJ
∆Ji∆KJ∆IJ

− ei
∆Ii∆Ji∆Ki

+ eK
∆KI∆KJ∆Ki

for J 6= I, L 6= I,J

.
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Notice that for Ŝ
(4)
ij [3], Ŝ

(3)
iJ [3] and Ŝ

(3)
Ij [3], the combinations of the couplings remain in-

variant under complex conjugation together with (p↔ q) and hence we need that f
(3)
ab,cd =

f
(3)
ba,cd as can be verified in the expressions above. On the other hand, for S

(3)
IJ , we have

c∗kLckJdIL ↔ ckLc
∗
kIdLJ under complex conjugation with (I ↔ J) and hence we need that

g
(3)
IJ,kL ↔ h

(3)
IJ,kL under (I ↔ J) which can again be verified from the expressions above.

B.4 Contribution to Ŝ matrix elements from fourth order in H1

For the fourth order terms in H1, we have

Ŝ
(4)
ij [4] =

∑
k,L,M

ciLc
∗
kLckMc

∗
jMf

(4)
ij,kLM +O

(
W 5
)
, (B.11)

Ŝ
(4)
iJ [4] = O

(
W 5
)
, Ŝ

(4)
Ij [4] = O

(
W 5
)
, (B.12)

Ŝ
(4)
IJ [4] =

∑
k,l,M

c∗kIckMc
∗
lMclJf

(4)
IJ,klM +O

(
W 5
)
, (B.13)

where

f
(4)
ij,kLM =



− 1
∆Li∆Lk∆Mi∆Mk

[
(eM−ei)∆Li∆Lk

∆Mi∆LM
− (eL−ei)∆Mi∆Mk

∆Li∆LM
for j= i, k 6= i, M 6=L

− (ek−ei)∆Li∆Mi

∆ik∆ik
+ixei

∆Lk∆Mk
∆ik

]
− 1

∆Li∆Lk

(
ix eL

∆Li
+ix ei

∆ik
+ix ei

∆Li
for j= i, k 6= i, M =L

+ eL−ei
∆2
Li
− ek−ei

∆2
ik

+ eL−ei
∆Li∆Lk

+ ek−ei
∆ik∆Lk

+ eL−ei
∆Li∆Lk

)
− 1

∆Li∆Mi

(
x2

2 ei+ix
ei

∆Li
+ix ei

∆Mi
for j= i, k= i, M 6=L

+ eL−ei
∆2
Li

+ eM−ei
∆2
Mi

+ eM−ei
∆Mi∆LM

− eL−ei
∆Li∆LM

)
− 1

∆2
Li

(
x2

2 ei+ix
eL

∆Li
+2ix ei

∆Li
− ei−eL

∆2
Li

+2 eL−ei
∆2
Li

)
for j= i, k= i, M =L

1
∆Lk∆Mk

(
eL∆Mk

∆Lj∆Li∆LM
− eM∆Lk

∆Mj∆Mi∆LM
for j 6= i, k 6= i, j, M 6=L

+ ∆Lk∆Mk
∆ji∆ki∆Li∆Mi

ei− ∆Lk∆Mk
∆ji∆kj∆Lj∆Mj

ej+
ek

∆ki∆kj

)
1

∆Lk

[
−ix eL

∆Li∆Lj
−
(

1
∆Li∆Lj∆Lk

+
∆Li+∆Lj

∆2
Li∆

2
Lj

)
eL for j 6= i, k 6= i, j, M =L

+ ∆Lk

∆ji∆ki∆
2
Li
ei− ∆Lk

∆ji∆kj∆
2
Lj
ej+

1
∆kj∆ki∆Lk

ek

]
+ 1

∆Li∆Mi

[
ix ei

∆ji
+ ∆Mi

∆Lj∆Li∆LM
eL− ∆Li

∆Mj∆Mi∆LM
eM for j 6= i, k= i, M 6=L

−
(

1
∆2
ji

+ 1
∆ji∆Li

+ 1
∆ji∆Mi

)
ei+

∆Li∆Mi

∆Lj∆Mj∆
2
ji
ej

]
− 1

∆Lj∆Mj

[
ix

ej
∆ji

+
∆Lj

∆Mi∆Mj∆LM
eM−

∆Mj

∆Li∆Lj∆LM
eL for j 6= i, k= j, M 6=L

+

(
1

∆2
ji
− 1

∆ji∆Lj
− 1

∆ji∆Mj

)
ej−

∆Lj∆Mj

∆Li∆Mi∆
2
ji
ei

]
− 1

∆2
Li

(
ix eL

∆Lj
+ix ei

∆ij

)
for j 6= i, k= i, M =L

− 1
∆2
Li

[(
1

∆2
ji

+ 2
∆ji∆Li

)
ei−

∆2
Li

∆2
ji∆

2
Lj
ej+

eL
∆Lj

(
1

∆Lj
+ 2

∆Li

)]
− 1

∆2
Lj

(
ix eL

∆Li
+ix

ej
∆ji

)
for j 6= i, k= j, M =L

− 1
∆2
Lj

[(
1

∆2
ji
− 2

∆ji∆Lj

)
ej−

∆2
Lj

∆2
ji∆

2
Li
ei+

eL
∆Li

(
1

∆Li
+ 2

∆Lj

)]

,
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f
(4)
IJ,klM =



ek
∆kl∆kM∆2

Ik
+ el

∆lk∆lM∆2
Il

+ eM
∆Mk∆Ml∆

2
IM

for J = I, l 6= k, M 6= I

− ix
∆Ik∆Il∆IM

eI+
(

1
∆Mk∆kl∆

2
Ik
− 1

∆Ml∆kl∆
2
Il
− 1

∆Mk∆Ml∆
2
IM

)
eI

ix
(

eI
∆2
Ik∆MI

+ ek
∆2
Ik∆Mk

)
−
(

1
∆2
Mk∆2

Ik
+ 2

∆Mk∆3
Ik

)
ek+ eM

∆2
IM∆2

Mk
for J = I, l= k, M 6= I

+
(

1
∆2
Ik∆2

Mk
− 1

∆2
IM∆2

Mk
+ 2

∆3
Ik∆Mk

)
eI

ix
(

1
∆Ik∆2

Il
+ 1

∆2
Ik∆Il

)
eI− x2

2∆Ik∆Il
eI for J = I, l 6= k, M = I

+ ek
∆lk∆3

Ik
+ el

∆kl∆
3
Il

+
(

1
∆2
Ik∆2

Il
+ 1

∆Ik∆3
Il

+ 1
∆Il∆

3
Ik

)
eI

ix
∆3
Ik
ek+ 2ix

∆3
Ik
eI− x2

2∆2
Ik
eI+ 3

∆4
Ik

(eI−ek) for J = I, l= k, M = I

ek
∆Ik∆kk∆Jk∆Mk

+ el
∆kl∆Il∆Jl∆Ml

+ eM
∆IM∆JM∆Mk∆Ml

for J 6= I, l 6= k, M 6= J,I

+ eI
∆Ik∆Il∆IM∆IJ

+ eJ
∆Jk∆Jl∆JM∆JI

ix
∆Ik∆Jk∆Mk

ek−
(

1
∆2
Ik∆Jk∆Mk

+ 1
∆Ik∆2

Jk∆Mk
+ 1

∆Ik∆Jk∆2
Mk

)
ek for J 6= I, l= k, M 6= J,I

+ 1
∆IM∆JM∆2

Mk
eM+ 1

∆2
Ik∆IJ∆IM

eI+ 1
∆2
Jk∆JI∆JM

eJ

ix
∆kI∆IJ∆Il

eI+ 1
∆kJ∆2

Ik∆kl
ek+ 1

∆lk∆Jl∆
2
Il
el+

1
∆Jk∆2

JI∆Jl
eJ for J 6= I, l 6= k, M = I

−
(

1
∆Ik∆IJ∆2

Il
+ 1

∆Ik∆2
JI∆Il

+ 1
∆2
Ik∆IJ∆Il

)
eI

ix
∆kJ∆JI∆Jl

eJ+ 1
∆kI∆2

Jk∆kl
ek+ 1

∆lk∆Il∆
2
Jl
el+

1
∆Ik∆2

JI∆Il
eI for J 6= I, l 6= k, M = J

−
(

1
∆Jk∆JI∆2

Jl
+ 1

∆Jk∆2
JI∆Jl

+ 1
∆2
Jk∆JI∆Jl

)
eJ

ix
(

ek
∆2
Ik∆Jk

+ eI
∆2
Ik∆JI

)
−
(

1
∆2
Ik∆2

Jk
+ 2

∆3
Ik∆Jk

)
ek for J 6= I, l= k, M = I

−
(

1
∆2
Ik∆2

JI
+ 2

∆3
Ik∆IJ

)
eI+ 1

∆2
Jk∆2

JI
eJ

ix
(

ek
∆2
Jk∆Ik

+ eJ
∆2
Jk∆IJ

)
−
(

1
∆2
Ik∆2

Jk
+ 2

∆3
Jk∆Ik

)
ek for J 6= I, l= k, M = J

−
(

1
∆2
Jk∆2

JI
+ 2

∆3
Jk∆JI

)
eJ+ 1

∆2
Ik∆2

JI
eI

.

Notice that for Ŝ
(4)
ij [4], the combinations of couplings remain invariant under complex

conjugation with (i↔ j) and (L↔M) and hence we need that f
(4)
ij,kLM = f

(4)
ji,kML as can

be verified from the expressions above. As for Ŝ
(4)
IJ [4], the combinations of the couplings

remain invariant under complex conjugation with (I ↔ J) and (k ↔ l) and hence we need

that f
(4)
IJ,klM = f

(4)
JI,lkM which can be verified from the expression above.

C Expression of the oscillation probability in fourth order in W

For the S matrix elements S
(4)
αβ , we decompose S

(4)
αβ into the following three pieces (include

both α 6= β and α = β)

S
(4)
αβ = S

(4)
αβ [3 + 4] + S

(4)
αβ [3] + S

(4)
αβ [2]. (C.1)

To prevent too long expression, we decompose the first term in (C.1) as

S
(4)
αβ [3 + 4] = S

(4)
αβ [3] diag + S

(4)
αβ [4] diag + S

(4)
αβ [3] offdiag + S

(4)
αβ [4] offdiag , (C.2)

where the S matrix with subscript “diag” (“offdiag”) implies (n = 3, 4)

S
(4)
αβ [n] diag (offdiag) =

∑
k(k 6=l)

(UX)ik

(
Ŝ

(4)
kk(kl)[n]

){
(UX)†

}
kj(lj)

. (C.3)
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The latter two terms in (C.1) are given, respectively, by

S
(4)
αβ [3] =

∑
kL

(UX)ikŜ
(3)
kL

{
(W †)

}
Lj

+
∑
Kl

WiK Ŝ
(3)
Kl

{
(UX)†

}
lj
,

S
(4)
αβ [2] =

∑
K

WiK Ŝ
(2)
KK

{
(W †)

}
Kj

+
∑
K 6=L

WiK Ŝ
(2)
KL

{
(W †)

}
Lj
. (C.4)

We do not display explicitly the expression of each term in (C.1). But, the nota-

tion of S
(4)
αβ [n] diag and S

(4)
αβ [n] offdiag will be transported to the notation for the oscillation

probability such that 2Re
[(
S

(0)
αβ

)∗
S

(4)
αβ [n] diag

]
. Similarly, to make the equation fit to

a single page we present the first and the second terms of S
(4)
αβ [3] in (C.4) separately,

S
(4)
αβ [3]First =

∑
kL(UX)αkW

∗
βLŜ

(3)
kL and S

(4)
αβ [3]Second =

∑
LkWαL(UX)∗βkŜ

(3)
Lk , whose nota-

tions are also transported to the oscillation probability.

The oscillation probability to second order in W is given in eq. (3.44) in section 3.4.

What is left is, therefore, the expressions of the oscillation probability in fourth order in

W , the explicit form of the two terms in (3.52), P (νβ → να) =
∣∣∣S(2)
αβ

∣∣∣2 +2Re
[(
S

(0)
αβ

)∗
S

(4)
αβ

]
.

Besides using the notations defined in eqs. (B.1)–(B.3), we will further define the

following quantities

eij ≡ e−i(hi−hj)x, eIj ≡ e−i(∆I−hj)x, eIJ ≡ e−i(∆I−∆J )x. (C.5)

C.1 Second order S matrix squared term:
∣∣∣S(2)
αβ

∣∣∣2
The S matrix element S

(2)
αβ in eq. (3.43) contains four terms. To prevent too long expres-

sions, we divide
∣∣∣S(2)
αβ

∣∣∣2 into the two terms, one sum of each term squared and the other

one composed of cross terms. The first one is given by∣∣∣S(2)
αβ

∣∣∣2
1st

=
∑
k,K

∑
l,L

(UX)αk(UX)∗βkckKc
∗
kK(UX)∗αl(UX)βlclLc

∗
lL

∆Kk∆Ll

×
[
x2ekl−(ix)

eKl−ekl
∆Kk

+(ix)
ekL−ekl

∆Ll
+

1

∆Kk∆Ll

(
eKL+ekl−eKl−ekL

)]
+
∑
k 6=m

∑
K

∑
l 6=n

∑
L

(UX)αk(UX)∗βmckKc
∗
mK(UX)∗αl(UX)βncnLc

∗
lL

∆mk∆Kk∆Km∆nl∆Ll∆Ln

×
[
∆Kkem−∆Kmek−∆mkeK

][
∆Lle

∗
n−∆Lne

∗
l −∆nle

∗
L

]
+
∑
k,K

∑
l,L

(eK−ek)(e∗L−e∗l )
∆Kk∆Ll

×
[
(UX)αkW

∗
βKckK+WαK(UX)∗βkc

∗
kK

][
(UX)∗αlWβLc

∗
lL+W ∗αL(UX)βlclL

]
+
∑
K

|WαK |2|WβK |2+
∑
K 6=L

eKLWαKW
∗
βKW

∗
αLWβL. (C.6)

Apart from the last line in (C.6) all the terms are suppressed by the two sterile state mass

denominators with ∆m2
Jk which doubly suppress the active-sterile state transition. The

first term in the last line is the probability leaking term mentioned in section 2.2.
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The second term of
∣∣∣S(2)
αβ

∣∣∣2 (interference terms) is given by

∣∣∣S(2)
αβ

∣∣∣2
2nd

=−2Re

{∑
k,K

∑
l 6=m

∑
L

(UX)αl(UX)∗βm(UX)∗αk(UX)βk clLc
∗
mLckKc

∗
kK

∆Kk∆Ll∆Lm∆ml

×
[
∆Llem−∆Lmel−∆mleL

][
−(ix)e∗k+

e∗K−e∗k
∆Kk

]}
+2Re

{∑
k,K

∑
l,L

[
−(ix)e∗k+

e∗K−e∗k
∆Kk

]

× eL−el
∆Kk∆Ll

(UX)∗αk(UX)βkckKc
∗
kK

[
(UX)αlW

∗
βLclL+WαL(UX)∗βlc

∗
lL

]}
+2Re

{∑
k,K

∑
L

[
−(ix)eLk+

eLK−eLk
∆Kk

]
(UX)∗αk(UX)βkWαLW

∗
βLckKc

∗
kK

∆Kk

}

−2Re

{∑
k 6=m

∑
K

∑
l,L

1

∆mk∆Kk∆Km

[
∆Kke

∗
i−∆Kme

∗
k−∆mke

∗
K

]
eL−el
∆Ll

×(UX)∗αk(UX)βmcmKc
∗
kK×

[
(UX)αlW

∗
βLclL+WαL(UX)∗βlc

∗
lL

]}
−2Re

{∑
k 6=m

∑
K

∑
L

(UX)∗αk(UX)βmWαLW
∗
βLcmKc

∗
kK

∆mk∆Kk∆Km

[
∆KkeLm−∆KmeLk−∆mkeLK

]}

+2Re

{∑
K

∑
l,L

eLK−elK
∆Ll

[
W ∗αKWβK(UX)αlW

∗
βLclL+W ∗αKWβKWαL(UX)∗βlc

∗
lL

]}
. (C.7)

C.2 Interference terms of the type 2Re
[(
S

(0)
αβ

)∗
S

(4)
αβ

]
We classify the fourth order in W contribution of the interference terms into 8 terms:

P (νβ → να)
(4)
interference = P (νβ → να)

(4)
1st + P (νβ → να)

(4)
2nd + P (νβ → να)

(4)
3rd

+ P (νβ → να)
(4)
4th−s + P (νβ → να)

(4)
4th−d (C.8)

+ P (νβ → να)
(4)
5th−1st + P (νβ → να)

(4)
5th−2nd + P (νβ → να)

(4)
6th.

The nature of each term is explicitly indicated as follows:

P (νβ→ να)
(4)
1st≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [3] diag

]
= 2Re

{
−
∑
K

∑
k

∑
m

[
1

∆2
Kk

{
(ix)+

2

∆Kk

}
(eKm+ekm)

]
×(UX)∗αm(UX)βm(UX)αk(UX)∗βkckKdKKc

∗
kK

+
∑
K 6=L

∑
k

∑
m

[
1

∆2
Kk∆KL

eKm−
1

∆2
Lk∆KL

eLm+
1

∆2
Kk∆

2
Lk

(∆K+∆L−2hk)ekm

]

×(UX)∗αm(UX)βm(UX)αk(UX)∗βkckKdKLc
∗
kL

}
. (C.9)
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P (νβ → να)
(4)
2nd ≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [3] offdiag

]
= 2Re

{∑
m

∑
k 6=l

∑
K

[
− (ix)

∆Kk∆Kl
eKm +

1

∆lk∆
2
Kk∆

2
Kl

×
{

∆lk(hl + hk − 2∆K)eKm + ∆2
Kkelm −∆2

Klekm

}]
× (UX)αk(UX)∗βl(UX)∗αm(UX)βmckKdKLc

∗
lK

+
∑
m

∑
k 6=l

∑
K 6=L

1

∆lk∆LK∆Kk∆Kl∆Lk∆Ll

×
[
∆lk

{
∆Kk∆KleLm −∆Lk∆LleKm

}
+ ∆LK

{
∆Kk∆Lkelm −∆Kl∆Llekm

}]
× (UX)αk(UX)∗βl(UX)∗αm(UX)βmckKdKLc

∗
lL

}
. (C.10)

P (νβ → να)
(4)
3rd ≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [4] diag

]
= 2Re

{∑
n

∑
k

∑
K

[
−x

2

2

1

∆2
Kk

ekn −
2(ix)

∆3
Kk

ekn −
(ix)

∆3
Kk

eKn −
3

∆4
Kk

(eKn − ekn)

]
× (UX)αk(UX)∗βk(UX)∗αn(UX)βnckKc

∗
kKckKc

∗
kK

+
∑
n

∑
k

∑
K

∑
m 6=k

[
(ix)

∆2
Kk∆mk

ekn −
(ix)

∆2
Kk∆Km

eKn +
(hk + 2hm − 3∆K)

∆3
Kk∆

2
Km

eKn

+
1

∆2
Km∆2

mk

emn −
(∆K + 2hm − 3hk)

∆3
Kk∆

2
mk

ekn

]
× (UX)αk(UX)∗βk(UX)∗αn(UX)βnckKc

∗
mKcmKc

∗
kK

+
∑
n

∑
k

∑
K 6=L

[
−x

2

2

1

∆Kk∆Lk
ekn − (ix)

(∆K + ∆L − 2hk)

∆2
Kk∆

2
Lk

ekn −
1

∆3
Kk∆LK

eKn

+
1

∆3
Lk∆LK

eLn +
1

∆3
Kk∆

3
Lk

{
∆2
L + ∆L∆K + ∆2

K − 3hk(∆L + ∆K) + 3h2
k

}
ekn

]
× (UX)αk(UX)∗βk(UX)∗αn(UX)βnckKc

∗
kKckLc

∗
kL

+
∑
n

∑
k

∑
K 6=L

∑
m 6=k

[
(ix)

∆Kk∆Lk∆mk
ekn

− 1

∆2
Kk∆

2
Lk∆

2
mk

{
∆K∆L + (hm − 2hk)(∆K + ∆L) + 3h2

k − 2hmhk

}
ekn

+
1

∆Km∆Lm∆2
mk

emn +
1

∆KL∆2
Kk∆Km

eKn −
1

∆KL∆2
Lk∆Lm

eLn

]
× (UX)αk(UX)∗βk(UX)∗αn(UX)βnckKc

∗
mKcmLc

∗
kL

}
. (C.11)
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P (νβ→ να)
(4)
4th−s≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [4] offdiag (single)

]
= 2Re

{∑
n

∑
k 6=l

∑
K

[
(ix)ekn
∆2
Kk∆lk

− (ix)eKn
∆2
Kk∆Kl

+
eln

∆2
Kl∆

2
lk

− (∆K+2hl−3hk)ekn
∆3
Kk∆

2
lk

+
(hk+2hl−3∆K)eKn

∆3
Kk∆

2
Kl

]
(UX)αk(UX)∗βl(UX)∗αn(UX)βnckKc

∗
cKckKc

∗
lK

+
∑
n

∑
k 6=l

∑
K

[
− (ix)eln

∆2
Kl∆lk

− (ix)eKn
∆2
Kl∆Kk

+
(hl+2hk−3∆K)eKn

∆2
Kk∆

3
Kl

− (∆K+2hk−3hl)eln
∆3
Kl∆

2
lk

+
ekn

∆2
Kk∆

2
lk

]
(UX)αk(UX)∗βl(UX)∗αn(UX)βnckKc

∗
lKclKc

∗
lK

+
∑
n

∑
k 6=l

∑
K

∑
m 6=k,l

[
(ix)eKn

∆Kk∆Kl∆Km
−
{

3∆2
K−2∆K (hk+hl+hm)+(hkhl+hlhm+hmhk)

}
eKn

∆2
Kk∆

2
Kl∆

2
Km

+
1

∆2
Km∆mk∆ml

emn+
1

∆2
Kl∆lm∆lk

eln−
1

∆2
Kk∆km∆lk

ekn

]
×(UX)αk(UX)∗βl(UX)∗αn(UX)βnckKc

∗
mKcmKc

∗
lK

}
. (C.12)

P (νβ→ να)
(4)
4th−d≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [4] offdiag (double)

]
= 2Re

{∑
n

∑
k 6=l

∑
K 6=L

[
(ix)

∆Kk∆Lk∆lk
ekn−

1

∆KL∆2
Lk∆Ll

eLn+
1

∆KL∆2
Kk∆Kl

eKn

+
1

∆Kl∆Ll∆
2
lk

eln−
1

∆2
Kk∆

2
Lk∆

2
lk

{
3h2

k−2hkhl+(hl−2hk)(∆K+∆L)+∆K∆L

}
ekn

]
×(UX)αk(UX)∗βl(UX)∗αn(UX)βnccKc

∗
kKckLc

∗
lL

+
∑
n

∑
k 6=l

∑
K 6=L

[
− (ix)

∆Kl∆Ll∆lk
eln+

1

∆KL∆Kk∆
2
Kl

eKn−
1

∆KL∆Lk∆
2
Ll

eLn+
1

∆Kk∆Lk∆
2
lk

ekn

− 1

∆2
Kl∆

2
Ll∆

2
lk

{
3h2

l −2hkhl−(2hl−hk)(∆K+∆L)+∆K∆L

}
eln

]
×(UX)αk(UX)∗βl(UX)∗αn(UX)βnckKc

∗
lKclLc

∗
lL

+
∑
n

∑
k 6=l

∑
K 6=L

∑
m 6=k,l

[
∆ml∆Kl∆Llekn−∆mk∆Kk∆Lkeln

∆mk∆ml∆lk∆Kk∆Kl∆Lk∆Ll
+

1

∆mk∆ml∆Km∆Lm
emn

+
∆Kk∆Kl∆KmeLn−∆Lk∆Ll∆LmeKn

∆Kk∆Kl∆Km∆Lk∆Ll∆Lm∆LK

]
×(UX)αk(UX)∗βl(UX)∗αn(UX)βnckKc

∗
mKcmLc

∗
lL

}
. (C.13)
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P (νβ→ να)
(4)
5th−1st≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [3]First

]
= 2Re

{
−
∑
n

∑
kL

1

∆Lk

[
(ix)eLn+

eLn−ekn
∆Kk

]
(UX)αkW

∗
βL(UX)∗αn(UX)βnckLdLL

+
∑
n

∑
kL

∑
K 6=L

[∆KkeLn−∆Lk−hkeKn−∆KLekn]

∆LK∆Lk∆Kk
(UX)αkW

∗
βL(UX)∗αn(UX)βnckKdKL

−
∑
n

∑
kL

1

∆2
Lk

[
(ix)(ekn+eLn)+2

eLn−ekn
∆Lk

]
(UX)αkW

∗
βL(UX)∗αn(UX)βnckLc

∗
kLckL

+
∑
n

∑
kL

∑
m 6=k

[
− (ix)eLn

∆Lk∆Lm
+

∆2
Lmekn−∆2

Lkemn+∆km(hk+hm−2∆L)eLn
∆km∆2

Lk∆
2
Lm

]

×(UX)αkW
∗
βL(UX)∗αn(UX)βnckLc

∗
mLcmL+

∑
n

∑
kL

∑
K 6=L

[
− (ix)ekn

∆Lk∆Kk
+

1

∆LK∆2
Lk∆

2
Kk

×
{

∆2
KkeLn−∆2

LkeKn+∆LK(∆L+∆K−2hk)ekn

}]
(UX)αkW

∗
βL(UX)∗αn(UX)βnckKc

∗
kKckL

+
∑
n

∑
kL

∑
K 6=L

∑
m 6=k

[∆mk{∆Kk∆KmeLn−∆Lk∆LmeKn}−∆LK{∆Lm∆Kmekn−∆Lk∆Kkemn}]
∆LK∆mk∆Lk∆Lm∆Kk∆Km

×(UX)αkW
∗
βL(UX)∗αn(UX)βnckKc

∗
mKcmL

}
. (C.14)

P (νβ→ να)
(4)
5th−2nd≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [3]Second

]
= 2Re

{
−
∑
n

∑
Lk

1

∆Lk

[
(ix)eLn+

eLn−ekn
∆Lk

]
WαL(UX)∗βk(UX)∗αn(UX)βndLLc

∗
kL

+
∑
n

∑
Lk

∑
K 6=L

∆KkeLn−∆LkeKn−∆KLekn
∆LK∆Lk∆Kk

WαL(UX)∗βk(UX)∗αn(UX)βndLKc
∗
kK

−
∑
n

∑
Lk

1

∆2
Lk

[
(ix)(ekn+eLn)+2

eLn−ekn
∆Lk

]
WαL(UX)∗βk(UX)∗αn(UX)βnc

∗
kLckLc

∗
kL

+
∑
n

∑
Lk

∑
m 6=k

[
− (ix)eLn

∆Lk∆Lm
+

1

∆km∆2
Lk∆

2
Lm

{
∆2
Lmekn−∆2

Lkemn+∆km(hk+hm−2∆L)eLn

}]

×WαL(UX)∗βk(UX)∗αn(UX)βnc
∗
mLcmLc

∗
kL+

∑
n

∑
Lk

∑
K 6=L

[
− (ix)ekn

∆Lk∆Kk
+

1

∆LK∆2
Lk∆

2
Kk

×
{

∆2
KkeLn−∆2

LkeKn+∆LK(∆L+∆K−2hk)ekn

}]
WαL(UX)∗βk(UX)∗αn(UX)βnc

∗
kLckKc

∗
kK

+
∑
n

∑
Lk

∑
K 6=L

∑
m 6=k

[∆mk{∆Kk∆KmeLn−∆Lk∆LmeKn}−∆LK{∆Lm∆Kmekn−∆Lk∆Kkemn}]
∆LK∆mk∆Lk∆Lm∆Kk∆Km

×WαL(UX)∗βk(UX)∗αn(UX)βnc
∗
mLcmKc

∗
kK

}
. (C.15)
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P (νβ → να)
(4)
6th ≡ 2Re

[(
S

(0)
αβ

)∗
S

(4)
αβ [2]

]
= 2Re

{
−
∑
n

∑
K

∑
k

1

∆Kk

[
(ix)eKn +

ekn − eKn
∆kK

]
(UX)∗αn(UX)βnWαKW

∗
βKc

∗
kKckK

+
∑
n

∑
K 6=L

∑
k

∆LeKn −∆KeLn + (eLn − eKn)hk −∆LKekn
∆LK∆Lk∆Kk

× (UX)∗αn(UX)βnWαKW
∗
βLc
∗
kKckL

}
. (C.16)

D A note on the parameter choice

To discuss W correction and the probability leaking term we have to determine the W

matrix. Given the non-unitary U matrix there is a way to construct the W matrix. In

general, it is given by

W = S
√
wR, (D.1)

where S is a 3 × 3 matrix which diagonalizes 13×3 − UU †, w is diagonal matrix which

consists of eigenvalues of 13×3−UU †, and R is an arbitrary 3×N complex matrix obeying

RR† = 13×3. The construction makes sense for N ≥ 3. Therefore, for a given N there

is a large arbitrariness on the choice of the W matrix, and hence on the sizes of the W

corrections and Cαβ .

Lacking a guiding principle of how to choose the R matrix in (D.1), we examine the

cases with largest and smallest possible values of Cαβ for given values of unitarity violation

1−
∑3

j=1 |Uαj |2 (α = e, µ, τ). It is shown that in the (3 + N) model Cαβ is bounded from

above and below as [20]

1

N

(
1−

3∑
j=1

|Uαj |2
)(

1−
3∑
j=1

|Uβj |2
)
≤ Cαβ ≤

(
1−

3∑
j=1

|Uαj |2
)(

1−
3∑
j=1

|Uβj |2
)
. (D.2)

In the (3 + 1) model, the W matrix elements are unique, with the upper and lower bound

being equal. For the numbers given in section 5.1, we have We4 = 0.141, Wµ4 = 0.099,

and Wτ4 = 0.141 assuming that they are real. Then, the leaking terms have the unique

values, C(N=1)
eµ = 2 × 10−4, C(N=1)

µµ = 9.6 × 10−5, and C(N=1)
τµ = 9.5 × 10−4. The lower

bound is realized in the “universal scaling” model described in appendix E, which predicts

WαJ = 1√
N
W

(N=1)
α4 (J = 4, 5, · · ·, 3 + N).23 It is shown in appendix E that under the

assumption of equal sterile state masses the universal scaling model predicts the same W 2

correction terms as those of the (3 + 1) model.

E Universal scaling model of N sterile sector

Suppose that we obtain a particular parametrization of U matrix by taking N = 1 sterile

sector, as we did in section 5.1. In this (3+1) model, the W matrix elements are completely

23This feature must be obvious if one goes back to the derivation of bound on Cαβ in [20].
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determined, up to phase, by unitarity for a given U matrix

|Wα4|2 = 1−
3∑
j=1

|Uαj |2. (E.1)

Now, we attempt to create a toy model of N sterile sector by “universal scaling”. We

postulate that all the W matrix elements are real and equal:

Wα4 = Wα5 = · · ·WαN+3 =
1√
N

(
1−

3∑
j=1

|Uαj |2
)1/2

, (E.2)

which is consistent with (3 +N) space unitarity. In this universal scaling model, the order

W 2 correction terms in (3.48) remains unchanged provided that we further assume that

all the sterile masses are equal.24 It is because the W matrix elements enter into the W 2

terms in the form ∑
K

WαKW
†
Kβ

1

(∆K − hk)n
, (E.3)

where n = 1 or 2.

However, the leaking term Cαβ becomes smaller by a factor of N in the universal scaling

model. In the (3 + 1) model, Cαβ takes the largest value, the upper limit in eq. (D.2).

Because Cαβ is fourth order in W it is evident that in the universal scaling model,

Cαβ =
1

N

(
1−

3∑
j=1

|Uαj |2
)(

1−
3∑
j=1

|Uβj |2
)
, (E.4)

which is the lower limit of (D.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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