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1 Introduction

Concepts and perspectives from the field of quantum information theory have been a fruitful

source ideas in the quest to gain a deeper understanding of holography, particularly in the

context of AdS/CFT. One such perspective is offered by the recent proposals of holographic

quantum complexity. Roughly speaking, an extensive measure in the bulk geometry, such

as extremal volume or on-shell action, is associated to the complexity of the quantum state.

Complexity itself can be loosely defined by the size of the minimum quantum circuit

that is needed to approximate a state from a reference one as measured by some set

of elementary entanglement operations. Expectations from quantum many-body theory

predict a linear growth of such quantity for generic excited states. Motivated by the

study of Einstein-Rosen bridges, the initial conjecture implied a correspondence between

the expected linear growth of quantum complexity for thermal systems and the growth of

wormhole volumes (defined as extremal codimension-one surfaces) for AdS black holes [1].

This conjecture became further developed into the so called Action-Complexity proposal,

which postulates an equivalence between quantum complexity and the gravitational on-shell

action on a particular region of space called the Wheeler-DeWitt patch [2] (see also [3–7]).

The linear growth of complexity, in either the Complexity-Volume or Complexity-

Action prescription,
dCV
dt

= c S T ,
dCA
dt

= 2M , (1.1)
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with c a parameter of order unity, is an asymptotic statement which should hold at times

parametrically larger than the scrambling time, but still smaller than the Heisenberg time

of the system, which scales exponentially with the entropy, tH ∼ T−1 exp(S). At times

of this order the complexity itself is expected to saturate, fluctuating around a maximum

value of order exp(S) (cf. [8]).

In this paper we study various situations in which the picture of a linear complexity

growth followed by a long-time saturation plateau is modified by a ‘computational delay’.

In the examples we consider, this delay is either permanent or rather it can be made

parametrically large in some approximation, representing an instance of a ‘holographic

non-computer’. The non-computing behavior is characteristic of the Complexity-Action

proposal (CA), which is perhaps more intimately related to the ‘computational’ aspect of

holographic complexity, as opposed to the Complexity-Volume proposal (CV), which is

closer to the interpretation of complexity in terms of the tensor-network parametrization

of quantum states.

In section 2 of this paper we consider the simplest example of a holographic non-

computer, namely the well-known case of extremal black holes, whose complexity remains

constant for arbitrarily long times [2]. This is however quite a peculiar example at zero

temperature, where our general intuition of quantum complexity might not hold. In section

3 we consider a less fine-tuned example provided by small hyperbolic black holes, which

exhibit again a non-computer behavior for the finite range of temperatures that span its

near-extremal regime [9].

Finally, we devote section 4 to a third class of non-computing behavior, exhibited by

higher dimensional black holes. As showed in [2], black holes in four or higher spacetime

dimensions enjoy a period of constant Action-Complexity at early times, postponing the

usual linear growth after some delay lapse which depends on physical properties of the

black hole. As we will show, this behavior gets enhanced as the dimension grows and can

lead to an eternal non-computer system at leading order in a large d expansion.

The large-d expansion of General Relativity has illuminated a number of classical

dynamical regimes in various black-hole systems (cf. [10, 11]). While its status at the

quantum level is rather unclear, we find it interesting that a non-trivial statement can be

made for such highly quantum properties as the computational complexity of black holes.

2 A frozen non-computer. Extremal black holes

As it was shown by [2, 12, 13], Reissner-Nördstrom black holes exhibit a constant com-

putation rate which depends on both mass and charge of the solution. In particular, an

explicit computation yields for the rate of growth of the on-shell action:

dI

dt
= 2(d− 1)Vh

(
Q2

rd−2
−
− Q2

rd−2
+

)
, (2.1)

where Q is the charge of the black hole, r± the location of outer and inner horizons and

Vh the volume of the event horizon. Here we quote the results for the rescaled quantity

I = 16πGCA , (2.2)

where CA is the on-shell gravitational action evaluated on the WdW patch.
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Figure 1. WdW patch for a charged extremal black hole. The bulk volume and boundary contri-

butions are conserved by the isometries of the spacetime, whereas the joint piece vanishes due to

the sphere shrinking at the singurality.

As we go to the extremal limit (taking r− → r+ with constant Q) the quantity above

vanishes identically, exhibiting thus the behavior of a non-computer state. Although this

fact is derived as a smooth limit from the non-extremal RN black hole, it can be directly

seen from the Penrose diagram of the extremal case, in which symmetries protect the action

in the WdW patch to suffer any evolution (see figure 1). From the field theory point of

view however, it is not surprising that complexity remains constant. Indeed, extremal

black holes have zero temperature, meaning that every property is expected to be static

in such states. Nonetheless, extremal black holes provide the first non-trivial state with

vanishing computation rate, and might constitute a very relevant example in the elucidation

of holographic quantum complexity as a microscopic quantity in the CFT side.

3 A cold non-computer. Hyperbolic black holes

The metric for AdSd+1 black holes is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2 dΣ2

d−1, (3.1)

where dΣd−1 stands for the spatial (d − 1)-dimensional boundary metric and we measure

length in units of the AdS curvature radius ` = 1. The standard solution is given by

f(r) = k + r2 − µ

rd−2
, (3.2)

with k = 0, 1,−1 respectively for flat, spherical and hyperbolic boundary metrics. Ther-

modynamic properties for these systems can be calculated straightforwardly

T =
dr2
h + k(d− 2)

4πrh
, S =

V

4G
rd−1
h , M =

V (d− 1)

16πG
µ, (3.3)
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Figure 2. WdW patch for a near-extremal (cold) hyperbolic black hole.

with V the volume factor in d− 1 dimensions and rh the radial location of the horizon. As

shown in [2], the late-time complexity growth for these class of solutions yields a universal

result for any spacetime dimension, given by the simple formula

dI

dt
= 32πGM. (3.4)

For the case of hyperbolic black holes (cf. [14] for a description), the formula above still

holds provided the mass is positive as measured respect to the empty AdS vacuum solution

µ = 0. Careful analysis of the thermodynamics, however, shows that finite temperature

states exist with negative mass respect to this vacuum for the parametric region

− 2(d− 2)
d
2
−1

d
d
2

≤ µ < 0, (3.5)

enjoying a conformal diagram whose topology resembles that of Reissner-Nördstrom black

holes (see figure 2). The complexity of these states, characterized by a temperature 0 < T <

1/2π, is not given by (3.4) but requires a separate calculation. Indeed, the computation

rate of near-extremal hyperbolic black holes only gets contributions from the joint and bulk

pieces of the action, i.e. the Einstein-Hilbert term

IV1 − IV2 = −2V (rdB − rdC)δt, (3.6)

and the contribution of the joints

IBB′ + ICC′ = δtV

[
2rd − (2− d)µ+ (d− 1)rd−2f(r) log

(
f(r)

cc̄

)]rB
rC

. (3.7)

where c, c̄ are the conventional normalization parameters of null vectors in the WdW patch

(cf. [13]). Adding up (3.6) and (3.7) we get that the total rate is given by

dI

dt
= V (d− 1)

[
rd−2f(r) log

(
f(r)

cc̄

)]rB
rC

, (3.8)
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which indeed vanishes in the late time limit,1 i.e. as rB,C → r±. As we see, the above

cancellation holds independently of the temperature of the black hole, as long as it lies

within the near-extremal regime 0 ≤ T ≤ 1/2π. Thereby, cold hyperbolic black holes

provide an example of an ensemble of states enjoying a non-computer behavior. This

contrasts with the result obtained within the CV proposal [15] in which the linear growth

behavior held also in this regime.

Despite the finite-temperature nature of these solutions, it must be said that such states

are unlikely to be stable, but rather should be interpreted as highly degenerate unstable

or perhaps metastable systems. Evidence in this direction comes from the embedding of

these solutions into fully fledged string theory systems, such as stacks of type IIB D3-

branes, yielding a canonical example of AdS5×S5 duality with maximally supersymmetric

Yang-Mills theory on an spatial hyperboloid H3. A marginally tachyonic scalar, saturating

the AdS5 BF bound with m2 = −4 and corresponding to BPS-protected scalar mass

operators with ∆ = 2, will have zero modes that actually violate the BF bound in the

emerging AdS1+1 ×H3 × S5 geometry of the near-horizon region of cold hyperbolic black

holes.2 In this case the AdS1+1 radius of curvature is `′ = 1/2 and the corresponding BF

bound m′ 2 ≥ −1/4`′ 2 = −1. Such systems are therefore expected to undergo tachyonic

instabilities. Even if the perturbative instabilities are somehow checked out, [16] shows that

the cold branch of hyperbolic black holes is likely unstable to non-perturbative D3-brane

fragmentation processes.

It is interesting to notice that the difficulties associated to the emergence of an approx-

imate AdS1+1 geometry in the near-horizon region are also responsible for the mismatch

between the CA ansatz and the CV ansatz observed for these solutions (cf. [9, 15]).

4 A hot non-computer. Large d black holes

Away from the late time approximation, higher dimensional black holes are known to

exhibit a delay in their computation rate for any d ≥ 3 [2]. This phenomenon arises as

a consequence of an extra symmetry of the WdW patch at early times which postpones

the start of the complexity growth to a later time tC . In particular, as the spacetime

dimension gets bigger, the past and future singularities bow into the Penrose diagram,

effectively splitting the time symmetry in two separate left and right time-shift symmetries,

tL,R → tL,R + cL,R, for every WdW patch touching both past and future singularities. As

the past boundaries leave the singularity, this symmetry breaks down to the smaller boost

symmetry cL+cR = 0 and the black hole starts computing. In the following we will calculate

the value of these delays and explore its behaviour respect to the spacetime dimension.

4.1 Computation delays for d ≥ 3 black holes

We begin by recalling the form of the metric for spherical AdSd+1 black holes

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2 dΩ2

d−1, (4.1)

1As we see, whether or not this cancellation also holds at early times depends on our choice of normal-

ization c, c̄ for the null vectors.
2We thank B. Freivogel for a discussion on this issue.
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where dΩ2
d−1 is the volume form of the unit Sd−1 sphere with volume

VΩ =
2π

d
2

Γ(d/2)
, (4.2)

and the warping function is given by

f(r) = 1 +
r2

`2
−
(
rh
r

)d−2 (
1 +

r2
h

`2

)
, (4.3)

after we have restored the dependence on `, the curvature radius of AdS. The basic ther-

modynamic quantities are given by

T =
d r2

h + (d− 2)`2

4πrh `2
, S =

VΩ

4G
rd−1
h , M =

VΩ(d− 1)

16πG

(
rd−2
h +

rdh
`2

)
. (4.4)

In order to study the delay, it is necessary to construct the Kruskal extension for

general dimensions. The first step will be to define the tortoise coordinate, given by

r∗(r) =

∫ r

0

dr

f(r)
+ C, (4.5)

where the constant C is chosen so that the coordinate is real in the exterior region. Analytic

expressions for this integral cannot be found in general. For our purposes however, it will

suffice to find the asymptotic limit r∗(∞), whose value will be crucial in the construction

of the conformal diagram. In terms of this coordinate, the Kruskal extension is defined in

the lightcone coordinates as follows

uv = −e4πTr∗(r), (4.6)

u

v
= −e4πTt. (4.7)

With this choice, the singularity will be located at uv = 1 for any dimension, whereas the

AdS boundary is located at

uv = e4πTr∗(∞). (4.8)

The value of r∗(∞) will in general depend both on the dimension and physical parameters

of the solution, with qualitatively different behaviors depending on the relative size of the

black hole respect to the curvature radius.

4.1.1 Large AdS black holes

In the large black hole limit3 (rh � `) we might approximate

f(r) = 1 +
r2

`2
−
(
rh
r

)d−2(
1 +

r2
h

`2

)
' r2

`2
−

rdh
`2rd−2

, (4.9)

3For flat (k = 0) AdS Black holes, this condition is not needed and the result holds for any hierarchy of

rh and `.
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and we can calculate the integral in (4.5) analytically∫ r

0

dr

f(r)
=
`2

r

[
2F1

(
1,−1

d
; 1− 1

d
;

(
r

rh

)d)
− 1

]
, (4.10)

which forces us to choose C = −iπd . Using the asymptotic expansions for the hypergeo-

metric function at large r/rh we get (cf. [17, 18])

lim
r→∞

r∗(r) =
1

4T
cot

π

d
. (4.11)

As we see, the value of uv at the boundary depends only on the dimension for large

black holes

uv = eα(d), (4.12)

with α(d) = π cot πd , an approximately linear function of d. This means that as d grows,

the corresponding hyperbola in the Kruskal diagram is further apart from the origin. In

order to construct now the Penrose diagram, we might choose to flatten one of the two

pairs of hyperbolas. If we choose (as usual) to flaten the AdS asymptotic boundary, we

may perform the change of coordinates

v = e
α(d)
2 tan

ṽ

2
, (4.13)

u = e
α(d)
2 tan

ũ

2
, (4.14)

in which the full spacetime is now compactified in a finite region. Undoing the lightcone

coordinates

ũ = τ + ρ, (4.15)

ṽ = τ − ρ, (4.16)

it is easy to see that the AdS boundary at uv = eα(d) is now given by the straight lines

ρ = ±π
2 . The singularity, on the other hand, becomes bowed in4 with a form given

implicitly by

tan

(
τ + ρ

2

)
tan

(
τ − ρ

2

)
= e−α(d). (4.17)

Assuming a symmetric evolution for the action growth (i.e. the WdW patch starts at

the same asymptotic time in both sides tL = tR ), it is possible to calculate the time at

which the ‘south tip’ of the WdW patch leaves the singularity for the first time. This will

correspond to the time at which the black hole starts computing. Finding the intersection

of the past singularity with ρ = 0 and inverting back to the asymptotic time t we get that

the delay is given by the simple expression

tC =
α(d)

4πT
' d

4πT
+O(1/d). (4.18)

4Had we chosen to flatten the singularity in the Penrose diagram, the result would have been that the

AdS boundary becomes bowed out. One might wonder if there exist a suitable conformal transformation

that could flatten out both boundaries at the same time. Symmetries guarantee that this is not possible in

this case [19].

– 7 –



J
H
E
P
0
2
(
2
0
1
8
)
1
8
1

Figure 3. Conformal diagram for higher dimensional black holes and WdW patch at the moment

of computation starting.

As we could have intuitively expected, the computation delay increases as the singularity

bows further into the diagram for higher and higher dimensions. As the spacetime dimen-

sion changes, however, many physical properties of the black hole might become trivial

unless the scales in the problem are made d-dependent. The latter interpretation, thereby,

can depend on such possible scalings. In section 5, we will discuss such scalings and their

implications in the study of complexity for large d black holes.

4.1.2 Small AdS black holes. Schwarzschild black holes.

The shape of the large-d conformal diagram shows some significant differences for the case

of small AdS black holes. In particular, the singularity does not bow arbitrarily further in

as the dimension grows, and the tortoise coordinate asymptotic value saturates at the same

value independently of d. In particular, for rh � ` we may approximate f(r) ' 1 + r2

`2
, and

using the definition in (4.5) we get

r∗(r) = ` arctan
r

`
, (4.19)

whose r →∞ limit gives us the corresponding delay

tC '
π

2
`. (4.20)

Equivalently, asymptotically flat Schwarzschild black holes in a box give a similar solution,

i.e. a computational delay that is only controlled by the size of the box. Indeed, for

f(r) = 1− (rh/r)
d−2 we get

r∗(r) = r 2F1

(
1,

1

2− d
; 1 +

1

2− d
;
(rh
r

)d−2
)
. (4.21)

If we regard the WdW patch as anchored at the walls of the box, we must evaluate the

tortoise coordinate at the location of the box in order to find the corresponding delay. For

– 8 –
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Figure 4. If a box is too small (L < Lc) the non-computing features can disappear.

a well-contained black hole, L � rh, we have the asymptotic behavior r∗(L) ∼ L and we

obtain

tC = r∗(L) ' L .

We see that well-contained black holes have computation delays controlled by the size

of box rather than the black hole itself. In other words, the non-computing feature is a

property of the combined system, including both the black hole and its ‘container’.

It is then interesting to ask what happens when we shrink the box down to the size

of the black hole. For AdS black holes, there is a smooth transition from small to large

black holes. At the transition region we have T ∼ 1/`, so that the small black-hole

behavior (4.20) smoothly morphs into the large black-hole behavior (4.18). On the other

hand, for asymptotically flat Schwarzschild black holes with a WdW patch anchored at

the location of walls, there is always a limiting value of the box size, Lc, below which the

combined system of black hole and box cease to present non-computer behavior, since the

WdW patch eventually becomes too small to simultaneously touch both past and future

singularities (cf. figure 4). The smallest WdW patch with a non-computer delay is anchored

at a zero of the tortoise coordinate, i.e.

r∗(Lc) = 0

5 Holographic non-computers in the large d limit

In the previous section we have seen that large AdS black holes feature a computational

delay which becomes parametrically large at large dimensions. This suggests the analysis

of holographic complexity in the 1/d expansion of general relativity [10, 11]. These large-

d approximations are a kind of mean-field expansion which reveal interesting structure in

many classical gravitational phenomena. A non-trivial question is whether there exist a set

of large-d scalings which preserve the standard ‘phenomenology’ of complexity, namely the

existence of a linear growth and a large-complexity saturation at very long times (cf. [8]).

– 9 –
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Figure 5. Scheme for complexity pattern of a finite d black hole.

The holographic prescription captures the growth of complexity at a rate of order

ST ∼M , up until we reach complexities of order

Cmax ∼ log(1/ε) eS , (5.1)

where ε is a coarse-graining parameter in Hilbert space, controlling the degree of approxi-

mation we require to ‘stop the computation’. It is unclear to what extent ε could have an

interpretation in the bulk geometry. Assuming log(1/ε) of order unity, the time of com-

plexity saturation is thus of the order of the Heisenberg time of the system, tH ∼ T−1eS up

to subleading terms in the exponent. Over periods of the order of the quantum Poincaré

recurrence time, tP ∼ T−1 exp
(
eS log(1/ε)

)
, one expects the system to undo its evolution

and decrease its complexity. A caricature of this behavior is shown in figure 5. Notice that

any large-d scaling preserving the plateau shape must keep finite both the mass and the

entropy of the black hole.

Making this choice however implies that we should not forget about the Hawking pro-

cess, which actually becomes rather violent in the large d limit. Indeed, typical frequencies

for Hawking quanta scale as ω ∼ d2/rh , yielding a radiation power that grows factorially in

d [20] and implying thus an almost immediate evaporation in the large d limit. Of course,

a suitable scaling of quantities could be made in order to keep the evaporation time finite,

but would limit our possibilities to do so with other quantities of interest. Instead, we will

require our ‘computers’ to remain in thermodynamic equilibrium for exponentially long

times, such as large AdS black holes or Schwarzschild black holes inside a suitable box, in

order to avoid the evaporation process.

In the following sections we show that the requirement of thermodynamic stability is

actually non-trivial for small Schwarzschild black holes. On the other hand, no obstructions

are found for large AdS black holes, which are always thermodynamically stable.

5.1 1/d scaling for large AdS black holes

In the large AdS black hole regime, rh � `, the relevant thermodynamic quantities behave

as follows

T =
drh
4π`2

, S =
VΩ

4G
rd−1
h , M =

VΩ(d− 1)

16πG`2
rdh, (5.2)

– 10 –
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satisfying the relation

TS =
d

d− 1
M, (5.3)

which stabilizes in the large d limit. Since keeping the parameters M and S is funda-

mental to maintain the plateau-shape of the complexity function, (5.3) forces us to fix

the temperature as well for the picture to be consistent. To do so, we may rewrite the

temperature as

T =
d

4π

(
rh
`

)
1

`
. (5.4)

Now, making sure that we stay in the large black hole regime implies that the ratio

rh/` is always above unity. Thus, we might choose a general set of scalings

rh
`

= f(d), (5.5)

with f(d) either a constant larger than unity or a growing function of d. Once this function

is chosen, we must rescale the AdS radius in such a way that the temperature remains finite,

i.e.

` T ∼ d f(d), (5.6)

To make the entropy finite we can now exploit our freedom to rescale the Planck length

G = (`P )d−1 as (
`

`P

)d−1

∼ S

f(d)d−1 VΩ
, (5.7)

with fixed S. In order to ensure consistency of the geometrical description, `P � `, we

must limit the growth of f(d) to remain below O(
√
d), since then the strong vanishing

of the unit volume VΩ →
(
1/
√
d
)d

is enough to maintain `P as the hierarchically smaller

length scale in the problem.

Once we stabilize the scalings of S and T , the mass M is kept stable by the Smarr

relation (5.3), thus keeping the qualitative shape of the plateau as d becomes large. Look-

ing now at the computational delay, we can see that the finiteness of the temperature

ensures that tC blows up as d becomes large, meaning that the complexity plateau becomes

postponed away in the future

tC ∼
d

T
. (5.8)

At leading order in the 1/d expansion, we have thus a parametric example of a holo-

graphic non-computer, i.e. a finite temperature state for which complexity seems to remain

always at a constant value.

5.2 Infinite-volume scaling

It is interesting that the successful large-d scaling of the complexity plateau involves a large-

d scaling of the AdS ‘containment box’ . Since the radius of AdS becomes a physical box

size in the CFT dual, it is interesting to reformulate the problem in terms of a ‘complexity

density’ which becomes stable in the infinite-volume limit of the CFT. To this end we

consider black-brane solutions dual to thermal states on flat space. Now we are free from

– 11 –
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Figure 6. Plateau shifting of large d AdS black holes.

any restrictions regarding the rh/` ratio, and this additional freedom allows us to preserve

the complexity plateau without scaling with d every physical scale in the problem.

The temperature formula

T =
d rh
4π`2

(5.9)

remains the same as before. However, the horizon entropy density is now given by

S

V
=

1

4G

(
rh
`

)d−1

= N∗

(
4πT

d

)d−1

, (5.10)

where we have denoted N∗ = `d−1/4G the effective number of ‘species’ in the CFT (pro-

portional to the central charge).

At fixed T , the power-like behavior proportional to T d−1 implies that any notion of

entropy which remains stable in the large-d limit must factor out this term. A natural way

of achieving this is to focus on the entropy per thermal cell, namely

Scell ≡
S

V T d−1
, (5.11)

and a similar definition for the thermal-cell energy:

Mcell ≡
M

V T d−1
. (5.12)

Scaling now N∗ →∞ according to

N∗ = Scell

(
d

4π

)d−1

, (5.13)

as d→∞ with fixed Scell, we make stable the ‘thermal cell complexity’ given by

Ccell ≡
C

V T d−1
. (5.14)

Then we find that Ccell should reproduce a plateau shape with parameters Scell, T and

Mcell. As before, the delay time remains given by tC ∼ d/T , which diverges linearly in the

large d limit.
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5.3 1/d scaling for small AdS black holes

If we now consider small black holes in AdS, rh � `, the thermodynamic quantities will

behave as those of the usual Schwarzschild black holes

T =
d− 2

4πrh
, S =

VΩ

4G
rd−1
h , M =

VΩ(d− 1)

16πG
rd−2
h . (5.15)

And again, we can find a simple expression relating the three of them which stabilizes in

the large d limit

TS =
d− 2

d− 1
M. (5.16)

Keeping now a finite temperature requires that we scale up the horizon radius as

rh T ∼ d, (5.17)

whereas the entropy S is fixed if we scale the Planck length as(
rh
`P

)d−1

∼ S

VΩ
. (5.18)

Up to this point, the AdS radius did not make an appearance. However, it will be the

relevant scale for the computation delay (4.20) and it is constrained by the requirement

that the black hole actually ‘fits the box’, i.e. rh < `. In general we can allow(
rh
`

)
= g(d), (5.19)

with g(d) either a small constant or a decreasing function of d. Feeding these scalings

into (4.20) we get a computation delay

tC ∼
d

g(d)
T−1, (5.20)

which again diverges in the large d limit for any of the allowed behaviours of g(d). The

case of Schwarzschild black holes well-contained in a flat box follows along similar lines,

with the size of the box playing the role of the AdS radius, `.

Our analysis shows that a blow-up of the ‘containment box’ is essential to manufacture

a large-d Schwarzschild non-computer. Since thermodynamic equilibrium of ordinary black

holes in finite boxes requires certain ratios between the relative sizes of the black hole and

the box, we must check the compatibility of stability with the required large-d scaling.

5.3.1 Stability analysis at large d

Having isolated large-d scalings with parametric computational delay for both large and

small black holes, we come now to the discussion of their thermodynamical stability. Since

the discussion of action-complexity is formally tied to the two-sided eternal black hole

geometries, we shall focus mostly on the canonical ensemble at fixed temperature, which

is the effective one-sided description of the associated thermofield-double states.

– 13 –
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The canonical thermodynamics for AdS black holes is well known (cf. [21]). Large

and small black holes form a continuous family of solutions labeled by the horizon radius

rh. For rh � ` all small black holes have negative specific heat and their thermodynamics

is locally unstable. The associated temperature is large, and the dominant phase in this

regime is a large AdS black hole with rh � ` and positive specific heat. There is a critical

temperature, the so-called Hawking-Page (HP) temperature, THP = (d − 1)/2π`, below

which the large AdS black hole has larger free energy than a gas of gravitons in AdS.

Below the HP temperature there is a narrow window down to Tl =
√
d(d− 2)/2π` in

which black holes are locally stable but globally unstable. In this narrow window the size

of the black holes is of order ` and all of them have computational delays of order `.

Locally stable but globally unstable entangled black holes should behave as ordinary

holographic computers for large periods of time, exponential in 1/G, where G is Newton’s

constant, after which they are likely to fluctuate into a state of two entangled boxes filled

with radiation, with a complexity of order G0. It would be very interesting to study how this

time scale compares to the Heisenberg time scale, controlling the saturation of complexity.

At any rate, black holes whose thermodynamic state is both locally and globally stable,

i.e. those with rh > `, are guaranteed to last beyond the saturation plateau and furnish

the pattern of large-d computational delay indicated in the previous section.

The situation is different for asymptotically-flat Schwarzschild black holes contained

inside entangled cages of size L. If each black hole is much smaller than its cage, it is

guaranteed to be locally unstable, so that it will decay very fast into a graviton-gas state

(cf. [22]). In the present interpretation, we say that the thermofield double state will look

like an entangled pair of boxes full of radiation for almost all the time. Such states should

have growing complexity of order G0. On the other hand, for black holes which almost touch

the cage, there are windows of local and global stability for growing complexity of order

1/G. Following [23], we can determine these regimes by evaluating the Euclidean action of

the black hole solution with two boundary conditions: the temperature is physically fixed

at the walls of the box for both the black hole and the graviton gas states, and of course

the metric is smooth at the horizon.

Writing the Euclidean black hole metric as

ds2
bh =

(
1−

(rh
r

)d−2
)
dτ ′ 2 +

dr2(
1−

(
rh
r

)d−2
) + r2dΩ2

d−1 ,

with τ ′ ≡ τ ′ + β′, we require that the S1 parametrized by τ ′ be smoothly contractible,

which fixes

β′ =
4πrh
d− 2

.

On the other hand, the physical temperature is measured as the inverse proper length of

the S1 at the walls of the box, i.e.

β =
1

T
= β′

√
1− (rh/L)d−2 . (5.21)

The vacuum metric which is used for normalization is given by

ds2
vac = dτ2 + dr2 + r2dΩ2

d−1 ,

– 14 –
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with τ ≡ τ+β. The canonical free energy is computed in the saddle-point approximation by

substracting the corresponding Euclidean actions. Ricci flatness of both solutions implies

that only the YGH term contributes in both cases:

− logZ(β) ≈ − 1

8πG

∫
∂Xbh

K +
1

8πG

∫
∂Xvac

K = βMeff − S ,

where S is the entropy of the black hole and Meff is the quasilocal Brown-York mass

(cf. [24]) given by

Meff = 2Ld−2 (d− 1)Ωd−1

16πG

(
1−

√
1− (rh/L)d−2

)
. (5.22)

Notice that this effective mass approaches the standard ADM mass of the black hole as we

push the cage to infinity, L→∞. The form of Meff is completely fixed by the Bekenstein-

Hawking formula

S =
Ωd−1

4G
rd−1
h ,

together with the smoothness condition (5.21). To see this, notice that we can rewrite the

first law as

β =
∂S

∂E
=
dS

drh

∂rh
∂E

,

where E is the internal energy. Since we know the functional dependence of both β and

S on rh, the previous relation is a simple differential equation for E(rh). This equation is

easily solved with the condition that E(rh = 0) = 0 to yield exactly the expression (5.22):

E(rh) = Meff(rh) ,

and the free energy follows then from the standard thermodynamic relation

logZ(β) = −βE + S .

At any rate, our expression for logZ(β) as a function of rh determines a window of local

stability for black holes which are sufficiently close to the walls of box. In terms of the

parameter

x ≡
(rh
L

)d−2
,

locally stable black holes exist inside the cage for xl < x < 1 with

xl =
2

d
.

Globally stable black holes are determined by a negative free energy, which requires that

xs < x < 1 with

xs = 4
d− 1

d2
.

Notice that, as d→∞, the stable black holes lie arbitrarily close to the walls of the box.

These windows of stability combine in a non-trivial fashion with the requirement that

they behave as holographic non-computers. As indicated in the previous section, the con-

dition for the black hole to possess a computational delay is that the cage is not too small.

– 15 –
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Figure 7. Tortoise coordinate at the wall as function of x =
(
rh
L

)d−2
. The band compatible with

global stability as well as non-computing features lies within xc < x < xs.

In particular, the critical value for non-computing, determined by r∗(Lc) = 0 must be such

that xc = (rh/Lc)
d−2 be smaller than xs. Only then we can find stable black holes with a

non-computing WdW patch. Alternatively, we require that the tortoise coordinate at the

wall be positive for the critically stable black hole at x = xs. We show in figure 7 that

this is indeed the case, so that a band of large-d non-computers exist among the narrowly

caged Schawrzschild black holes.

5.4 Firewalls as natural non-computers?

As we learned in section 4.1, singularities of some black hole solutions become arbitrarily

close to the horizon in the large d limit, suggesting the fact that large d black holes could

provide a classical model of firewalls [25]. The exotic complexity dynamics of such solutions

raises the question of whether firewalls might actually provide a natural candidate of non-

computer systems.

In order to check if large-d black holes are really classical models of firewalls, we must

check if the physical ‘thickness’ of the black-hole interior is Planckian. We can phrase this

question by calculating the proper free-fall time through the interior geometry, towards the

singularity. For big (flat and spherical) AdS black holes, this is given by

τsing =

∫ rh

0

dr√
−f(r)

' π

d
`, (5.23)

whereas this quantity is controlled by the size of the horizon for small AdS and

Schwarzschild black holes

τsing '
rh
d
. (5.24)

A classical model for a firewall would presumably correspond to a Planckian infalling

time towards the singularity. The particular scalings defined in this paper, which are fixed

by the requirement of keeping a qualitative plateau-shape for the complexity growth, imply

an effective shrinking of the Planck length, so that the falling time is always large compared

to the Planck length in the case of finite-entropy black holes (large or small). For the case
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of large AdS black holes we have(
τsing

`P

)d−1

∼ S

(d f(d))d−1VΩ
∼

( √
d

f(d)

)d−1

, (5.25)

which diverges at large d, under the condition f(d) <
√
d, which was imposed to ensure that

the Planck length is indeed smaller than the AdS radius. In the case of small AdS black

holes, a similar estimate yields a scaling proportional to (
√
d )d−1, which again diverges as

d→∞. Hence, we conclude that the large-d ‘shrinking’ of the interior geometry is not felt

by an infalling observer as a Planckian wall.

On the other hand, it is interesting to point out that for flat branes we do not need

to scale ` in order to achieve stable ‘thermal-cell complexity’. In this case we can actually

bring a ‘firewall’ physically close to the horizon while maintaining the shape of the plateau.

It would be interesting to study if these considerations have any significance for the meaning

of ‘firewall’ states.

6 Discussion

We have studied the phenomenology of Action-Complexity dynamics for a class of black

hole solutions presenting constant values for the computational complexity, circumventing

the expected growing behavior for thermal quantum systems. In this context, we dis-

tinguish three types of systems: zero temperature states, cold degenerate states and hot

stable states.

The first example, corresponding to charged extremal black holes, confirms the ex-

pected intuition for zero temperature systems, providing a completely static system in

which all physical properties, including complexity, remain constant. The second case, illus-

trated by cold hyperbolic black holes, provides the first example of a finite-temperature sys-

tem with constant complexity, contradicting the general expectations for quantum systems.

The origin of this behavior, as well as its discrepancy with the Volume-Complexity proposal,

are not well understood. Nevertheless, instabilities appearing in consistent string theory

embeddings of these systems could have a decisive impact on the prediction, and its under-

standing could lead to a clarification of the exotic properties of these degenerate systems.

Finally, we show that a formal application of the large-d expansion of GR to large

AdS black holes produces parametric examples of holographic non-computers with com-

putational delays scaling linearly with d. From the gravitational point of view, the origin

of this phenomenon can be traced back to the existence of a larger set of independent

symmetries acting on the WdW patches for t < tC .

We find that small Schwarzschild black holes are somewhat puzzling. First of all, their

computational delay does not appear to be intrinsic, but rather depends on the infrared

regulator, i.e. the containment box. Despite the apparent existence of a parametric delay of

O(d) in the large-d limit, one ultimately finds this incompatible with the requirement that

the black hole be stable unless we fine tune the walls of the box to approach the horizon as

d→∞. Otherwise we are left with a trivial realization of the ‘non-computer’ in this case,

namely two entangled boxes full of radiation.
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It is interesting to notice that the complexity-phenomenology discussed in this paper

seems certainly particular to the CA conjecture, and does not appear (at least in an obvious

manner) in the older CV proposal. In this sense, it joins the properties of cold hyperbolic

black holes in the list of identifiable discrepancies between the two proposals, a question

which deserves further scrutiny.

A major open problem is the understanding of the various non-computing systems

described here in the language of the CFT. On general grounds, we expect the large d

limit of gravity to correspond to the mean field theory approximation of QFT. In this

context, it might be not so surprising that some fine grained properties of the field theory,

such as complexity, are not captured by this approximation, yielding a completely trivial

dynamics for the leading order in the 1/d expansion. On the other hand, given the scarcity

of CFTs in higher dimensions, the very existence of a parametric 1/d expansion in the

AdS/CFT correspondence is a rather intriguing, albeit remote possibility.
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