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bLaboratoire de Physique Théorique de l’Ecole Normale Supérieure et l’Université Paris-VI,
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1 Introduction

The planar N=4 super-Yang-Mills is believed to be an integrable theory [1] to all orders in

perturbation theory.1 Recently, an integrability-based method for computing the four- [4, 5]

and higher-point [5] correlation functions, named hexagonalization, was proposed. The

method consists in cutting the correlation functions into smaller building blocks called the

1For more recent progress, in particular about the quantum spectral curve method, see the original

article [2] and also the lecture notes [3].
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hexagon form factors which were first introduced in [6] in the context of the three-point

functions. To be more concrete, take for example a planar n-point function. Pictorially,

it can be represented as a sphere with n holes and one cuts this surface into 2(n − 2)

hexagonal patches. The contribution from each patch is given by the hexagon form factor,

and by gluing these hexagons with appropriate weight factor, one can compute the original

correlation function.2

In [5], we applied this method to compute four-point functions at one loop. In this

work, we generalize this analysis to some of the one-loop five-point functions. For the

sake of simplicity, we consider a restricted kinematics in which all five operators live on a

two-dimensional plane.3 From the computational point of view, the main difference from

the previous work is that we now need the two-particle mirror contributions while, in all

the calculations done in [5], only the one-particle contribution was needed. We compare

our results with the perturbative data [8] and show that they agree. We also show that

the integrability result is independent of the way of cutting the worldsheet into hexagons.

This property was named the flip invariance in [5]. The way the flip invariance is realized

in the five-point functions is much more nontrivial as compared to that for the four-point

functions, and it serves as a stringent consistency check of our computation.

The tools developed in this paper should also be useful for computing higher-particles

contributions, which would be relevant for higher-point functions and nonplanar correc-

tion [9, 10].4 As another application of our result, we provide supporting evidence for the

prescription conjectured in [5], which states that one only needs to consider the mirror

corrections coming from 1-edge irreducible (1EI) graphs, i.e. graphs that are still connected

when any bridge with non-zero length is cut. Specifically, we consider one-loop next-to-

extremal four-point functions, which consist only of non-1EI graphs, and show that the

mirror particle corrections for such correlators cancel among themselves. This is in accor-

dance with the non-renormalization property of the next-to-extremal correlators discussed

in [12–14].

The paper is organized as follows. In section 2, we present the prediction from inte-

grability and compare it with the one-loop perturbative data for five-point functions. In

all the examples that we studied, we find a perfect match. We then sketch the strategy

of the computation of two-particle contributions in section 3 relegating more technical de-

tails to the appendices. The flip invariance is also discussed in great detail in section 3.

Using the two-particle contribution, we furthermore show the cancellation of the mirror-

particle corrections coming from non-1EI graphs for a near extremal four-point function

in section 4. Section 5 has our conclusions. Appendices are basically for explaining the

technical details of the computation: appendix A has the Z-marker prescription which we

2Alternatively, one could perform the OPE and then compute the structure constants using the inte-

grability [7]. However this OPE method involves the mixing with multi-trace operators and it is not clear

how to study this mixing systematically. An advantage of using the hexagonalization is that it avoids the

mixing problem. It would be very interesting to understand the relation between the two approaches.
3We also impose analogous constraints on the R-charge polarizations.
4It is also interesting to study the non-planar correction to the non-BPS two-point functions. The initial

attempt in this direction was made in [11]. The computation is however generally more involved and our

tools do not immediately apply to such cases since one also needs to include physical magnons.
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used to dress the mirror bound state basis. The mirror bound state S-matrix is computed

in appendix B. The necessary weak coupling expansions are shown in appendix C. The

complete two-particle integrand is given in appendix D. There, we also comment on how

to evaluate the integral and the prescription to avoid singularities.

2 Five-point functions: perturbation and integrability

In this section, we compare the integrability result and the perturbative data for five-

point functions at one loop. Unlike the four-point functions where a simple closed-form

expression is known for BPS operators of any length, such an expression is not known

for the five-point functions.5 We are thus going to focus on two examples, the case of five

length-two operators and the case of three length-two and two length-three operators, which

were computed and written down explicitly in [8]. Another reason why we focus on these

two examples is because they receive corrections only from the one- and the two-particle

contributions. On the other hand, many other examples such as the correlator of four

length-two and one length-four operators needs higher-particle contributions. Although we

do not perform the computation of such contributions in this paper, in principle they can

be calculated using the tools developed in this paper.

2.1 Set-up

We consider BPS operators and we denote them as

OLi(xi, Yi) = Tr ((Yi · Φ)Li(xi)) , (2.1)

where Yi · Φ =
∑6

I=1 Y
I
i ΦI . Yi’s are null polarization vectors Yi · Yi = 0, ΦI ’s are the six

scalars and Li is the length of the operator. We normalize the two-point functions of these

operators as

〈OL(x1, Y1)OL(x2, Y2)〉 = (d12)L , (2.2)

with

dij =
y2
ij

x2
ij

, and y2
ij = Yi · Yj . (2.3)

In our normalization, the planar five-point functions of such BPS operators are of

the form,

〈OL1(x1, Y1)OL2(x2, Y2)OL3(x3, Y3)OL4(x4, Y4)OL5(x5, Y5)〉 =

(disconnected) +

∏5
i=1

√
Li

N3
G{Li} ,

where the first term on the right hand side denotes the disconnected part of the correlator

which is given by a product of lower-point functions. In this work, we are only interested

in the connected correlator G{Li} up to one-loop order.

5In principle, one can use the method of [8] to compute any desired five-point functions. However, a

closed-form expression similar to the ones given in [15] is not known.

– 3 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
7

For the sake of simplicity, we are going to work with a restricted kinematics, i.e. we

consider the configurations in which the five operators live in a plane both in spacetime

and in R-charge. This reduces the number of cross ratios from ten (five for spacetime and

five for R-charge) to eight (four for spacetime and four for R-charge). They are defined as

zz̄=
x2

12x
2
34

x2
13x

2
24

, (1−z)(1−z̄) =
x2

14x
2
23

x2
13x

2
24

, αᾱ=
y2

12y
2
34

y2
13y

2
24

, (1−α)(1−ᾱ) =
y2

14y
2
23

y2
13y

2
24

,

ww̄=
x2

15x
2
34

x2
13x

2
54

, (1−w)(1−w̄) =
x2

14x
2
35

x2
13x

2
45

, ββ̄=
y2

15y
2
34

y2
13y

2
54

, (1−β)(1−β̄) =
y2

14y
2
35

y2
13y

2
45

.

(2.4)

Because of the restricted kinematics, other cross ratios can be written in terms of the

aforementioned ones as

x2
13x

2
52

x2
15x

2
32

=
(z − w)(z̄ − w̄)

ww̄ (z − 1)(z̄ − 1)
, and

y2
13y

2
52

y2
15y

2
32

=
(α− β)(ᾱ− β̄)

ββ̄ (α− 1)(ᾱ− 1)
. (2.5)

As will be explained more in detail in section 3, this restriction simplifies the computation of

the two-particle contribution since we only need diagonal components of the matrix part of

the hexagon form factor. On the other hand, general kinematics necessitates non-diagonal

components since the generators that take the operators away from the plane have to be

included in the weight factor. We wish to emphasize, however, that this is just a technical

problem rather than a conceptual problem, and could be overcome by generalizing the

analysis in this paper. We leave it for future investigations.

2.2 Results from integrability

We now summarize the basic building blocks for the integrability results. The details of

the computation will be explained in section 3.

The integrability computation for the five-point functions considered in this work in-

volves the one-particle and the two-particle mirror contributions. More precisely, what we

need are the contributions from an one-particle state living on a length-zero bridge and the

contributions from two one-particle states living on neighbouring length-zero bridges. See

figure 2-(a) for a pictorial explanation.

The one-particle contribution was computed in [5]. For the configuration depicted in

figure 1, the result can be written as6

M(1)(z, α) = m(z) +m(z−1) , (2.6)

where m(z) is given by

m(z) ≡ g2 (z + z̄)− (α+ ᾱ)

2
F (1)(z, z̄) , (2.7)

and the cross ratios are defined in (2.4). As is clear from the definition above, m(z) is

actually a function of four cross ratios z, z̄, α and ᾱ. We however only write the dependence

6This expression makes manifest the invariance under the flip transformation, z → z−1 and α→ α−1.
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Figure 1. The configuration for the one-particle mirror correction. The dashed line denotes the

length-zero bridge while the red dot denotes the mirror particle. The result is given in (2.6).

on the first argument z since it is easy to figure out the dependence on the other arguments.

F (1) and g are defined by

F (1)(z, z̄) ≡ Φ(z, z̄)

z − z̄

(
=
x2

13x
2
24

π2

∫
d4x5

x2
15x

2
25x

2
35x

2
45

)
and g2 =

λ

16π2
, (2.8)

with λ being the ‘t Hooft coupling. The function Φ(z, z̄) is given by

Φ(z, z̄) = 2Li2(z)− 2Li2(z̄) + log(zz̄) log

(
1− z
1− z̄

)
. (2.9)

The function m(z) has several important properties,

m(0) = m(1) = m(∞) = 0 ,

m(z) +m(1− z) = 0 ,
(2.10)

which we use often in this paper.

The computation of the two-particle contribution is the main outcome of this work and

will be explained in section 3. The result turns out to be given by a linear combination of

one-loop conformal integrals. For the configuration depicted in figure 2-(a), the result reads

M(2)(z1, z2, α1, α2) =−m(z1)−m(z−1
2 )

+m

(
z1 − 1

z1z2

)
+m

(
1− z1 + z1z2

z2

)
+m (z1(1− z2)) ,

(2.11)

where the cross ratios in the formula are given by

z1z̄1 =
x2
imx

2
kl

x2
ikx

2
ml

, (1−z1)(1−z̄1) =
x2
ilx

2
km

x2
ikx

2
lm

, z2z̄2 =
x2
ilx

2
jk

x2
ijx

2
lk

, (1−z2)(1−z̄2) =
x2
ikx

2
jl

x2
ijx

2
kl

, (2.12)

and similarly for the R-charge cross-ratios α1 and α2.

One can then compute the sum of the one-particle and the two-particle corrections

that contribute to the decagon depicted in figure 2 as follows:

M(1)(z1, α1) +M(1)(z2, α2) +M(2)(z1, z2, α1, α2) =

m(z−1
1 ) +m(z2) +m

(
z1 − 1

z1z2

)
+m

(
1− z1 + z1z2

z2

)
+m (z1(1− z2)) .

(2.13)
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(a) (b) (c)

Figure 2. The two-particle mirror correction, (a), and the related one-particle corrections, (b)

and (c). The red dots are the mirror particles and the dashed lines are zero length bridges. The

sum of three contributions gives a one-loop correction to the decagon and is given by a simple

combination of the one-loop conformal integrals as shown in (2.13).

An important property of this expression is that the five terms in the formula correspond to

all possible cross ratios that can be formed inside the five-point graph depicted in figure 2.

This makes it clear that the result is independent of the way we cut the graph into hexagons.

This property, called the flip invariance, will be discussed more in detail in section 3.2.

In the following two subsections, we show that one can reproduce the perturbative

data for five-point functions from these expressions.

2.3 Comparison I: five 20′

Let us first study the simplest five-point functions, which is the correlator of five length-two

operators (also known as 20′ operators).

To express the perturbative result, we introduce the definitions

sijkl =
x2
ijx

2
kl

x2
ikx

2
jl

≡ zijkl z̄ijkl , tijkl =
x2
ilx

2
jk

x2
ikx

2
jl

≡ (1− zijkl)(1− z̄ijkl) . (2.14)

and

Dijkl = g2F (1)(zijkl, z̄ijkl)(2dikdjl+(sijkl−1− tijkl)dildjk+(tijkl−1−sijkl)dijdkl) , (2.15)

which can also be written in terms of m(z) as

Dijkl = 2m(zijlk)dildjk + 2m(ziljk)dijdlk . (2.16)

Then the one-loop result in [8] can be expressed as

G1
{2,2,2,2,2}

∣∣∣
perturbation

= − (D1234[1 3, 2 4|5] +D1324[1 2, 3 4|5] +D1243[1 4, 2 3|5]

+D1235[1 3, 2 5|4] +D1325[1 2, 5 3|4] +D1253[1 5, 2 3|4]

+D1254[1 5, 2 4|3] +D1524[1 2, 4 5|3] +D1245[1 4, 2 5|3]

+D1534[1 3, 5 4|2] +D1354[1 5, 3 4|2] +D1543[1 4, 5 3|2]

+D5234[5 3, 2 4|1] +D5324[5 2, 3 4|1] +D5243[5 4, 2 3|1]) .

(2.17)
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Here G1
{Li} is the one-loop correction to the connected correlator defined in (2.1) and

[ij, kl|m] is given by

[i j, k l|m] = dim djm dkl + dij dkm dlm . (2.18)

We now explain how to reproduce the result above from the hexagonalization proce-

dure. The general rule of the hexagonalization is that for a n-point correlation function,

one needs 2(n − 2) hexagons. Thus for n=5 one needs to decompose the surface into six

hexagonal patches. The first step in the calculation is to enumerate the Wick contractions

at tree level. At tree level, one has the following twelve graphs:

G0
{2,2,2,2,2} = d12d24d43d35d51 + d12d23d34d45d51 + d12d25d53d34d41

+ d12d23d35d54d41 + d12d25d54d43d31 + d12d24d45d53d31

+ d13d34d42d25d51 + d13d32d24d45d51 + d13d35d52d24d41

+ d13d32d25d54d41 + d14d43d32d25d51 + d14d42d23d35d51 .

(2.19)

The second step is to decompose each tree-level graph into six hexagons and dress it

with mirror particles. Important simplifications at one loop are:

1. Only single-particle states on zero-length bridges can contribute.

2. Whenever one introduces more than one particle, they must always be neighbors;

namely each of them must share at least one hexagon with some other magnons.

These rules follow simply from the following weak-coupling behavior of the one-particle

measure, the mirror energy and the hexagon form factor:

µ ∼ O(g2) , e−Ẽ ∼ O(g2) , h(uγ , v−γ) ∼ O(1/g2) . (2.20)

The first two equalities show that we can only have single-particle states on zero-length

bridges. The last equality explains why we can have multi-particle contributions: if we just

take into account the measure factor µ, the n(> 1) particle contributions seem to appear

at O(g2n). However they get enhanced because of the interaction, h(uγ , v−γ).

Now, for definiteness, let us consider the graph corresponding to the first term in (2.19).

All the one-loop mirror-particle contributions for this case are depicted in figure 3. Sum-

ming them up, one gets the result,7

H12435 = 2d12d24d43d35d51

[
M(1)(z, α) +M(1)(1− w−1, 1− β−1)

+M(2)(z, 1− w−1, α, 1− β−1)
]
.

(2.21)

7The way to find the arguments of the functionsM(1) andM(2) follows from (2.12). Here we give further

details in how to find them. Consider the second diagram of figure 3. The spacetime argument of M(1) for

this contribution is found by replacing x1 = 0, x3 = 1, x4 =∞ in the formulas for the cross ratios (2.4) and

solving for the holomorphic part of x2. Similarly, to read the argument for the first diagram of the figure,

one sets x1 = 0, x5 = 1, x3 = ∞ and solves for the holomorphic part of x4. Finally, the arguments of the

function M(2) are the same for the one particle and they are read counterclockwise.

– 7 –
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Figure 3. All the mirror particles contributions for the graph corresponding to the first term

in (2.19).

Using (2.13), one can express it in terms of m(z) as follows:8

H12435 = 2d12d24d43d35d51

×
[
m(z−1) +m(1− w−1) +m

(
1− z−1

1− w−1

)
+m

(
z − w
1− w

)
+m

( z
w

)]
.

(2.22)

The full integrability result is obtained by adding the contributions for all twelve tree-

level graphs:

G1
{2,2,2,2,2}

∣∣∣
integrability

= H12435 +H12345 +H12534 +H12354 +H12543 +H12453

+H13425 +H13245 +H13524 +H13254 +H14325 +H14235 .
(2.23)

Adding all the terms and using the properties of m(z) (2.10), we find that the answer

perfectly matches the perturbative result (2.17).

Note that, although here we chose one particular way of decomposing the five-point

function into hexagons, the final result is independent of the way we decompose it. This

“flip invariance” is an important consistency check of our results and it will be discussed

in section 3.

8To compare with the perturbative result, it is also useful to express (2.22) in terms of the cross ratios

zijkl as follows:

H12435 = 2d12d24d43d35d51 [m(z1324) +m(z2543) +m(z4135) +m(z3251) +m(z5412)] .
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3

1 4

5

1

3

4 5

2

1

5

2 3

4

4

1

3 5

2

1 2 3

4 5

Figure 4. Graphs that contribute to the correlation function of three L = 2 and two L = 3

BPS operators. The full set of graphs is obtained by permuting the operators 1, 2 and 3 in the

diagrams 3, 4 and 5 above. The one-loop result is obtained by adding both the one- and two-particle

contributions associated with the zero-length bridges (dashed lines).

2.4 Comparison II: three L = 2 and two L = 3 BPS operators

In this section, we compute the correlation function of three length-two and two length-

three BPS operators using integrability. For definiteness, we choose the fourth and the

fifth operators to be the length-three operators.

For this correlator, the one-loop perturbative result in [8] reads (in our conventions)

G1
{2,2,2,3,3}(x1, x2, x3, x4, x5)

∣∣∣
perturbation

=

d45G
1
{2,2,2,2,2}(x1, x2, x3, x4, x5) + d14d15G

1
{2,2,2,2}(x2, x3, x4, x5)

+ d24d25G
1
{2,2,2,2}(x1, x3, x4, x5) + d34d35G

1
{2,2,2,2}(x1, x2, x4, x5) ,

(2.24)

where G1
{2,2,2,2} is given by

G1
{2,2,2,2}(xi, xj , xk, xl) = −Dijkldikdjl −Dijlkdildjk −Dikjldijdkl . (2.25)

To reproduce this result from integrability, one first list up the connected tree-level

diagrams and then decompose them into hexagons. The connected tree-level diagrams are

divided into two sets, 1-edge irreducible (1EI) graphs and non-1EI graphs [5]. The 1EI

graphs are graphs that are still connected when any one of its non-zero length bridges are

cut. For the specific correlation function that we are considering, examples of 1EI graphs

and of non-1EI are given in the figures 4 and 5 respectively. In [5], we proposed that one

only needs to consider the corrections coming from 1EI graphs in order to compute the

– 9 –
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Figure 5. Two examples of non-1EI graphs. The contributions coming from these types of graphs

are expected to be zero.

correlation functions of the BPS operators. In other words, we expect that the mirror-

particle corrections coming from non-1EI graphs add up to zero. We have not been able to

show this cancellation explicitly for the graphs in figure 5 since, for that purpose, one needs

more than two-particle contributions. However, we show in section 4 that such cancellation

indeed takes place for next-to-extremal four-point functions. In what follows, we compute

the one-loop five-point function assuming that the non-1EI graphs do not contribute.

The 1EI graphs relevant for the correlation function of three length-two and two length-

three BPS operators are shown in figure 4. The complete set of graphs is composed of the

diagrams 1 and 2 and of all the permutations of the operators 1, 2 and 3 of the diagrams 3,

4 and 5. At one loop, one has to compute the one-particle and two-particles contributions

associated with the zero-length bridges. From the diagrams 1 and 2, we get

Diagram1+Diagram2 = d41d15d53d34d42d25

×
[
2M(1)

(
1− z

w
,1−α

β

)
+2M(1)

(
w−z
w−1

,
β−α
β−1

)
+2M(1)

(
1−w−1,1−β−1

)]
.

(2.26)

The diagram 3 is similar to the diagrams that appeared in the previous subsection, see

figure 3; the only difference is that it has one more propagator:

Diagram 3 = d45H13542 . (2.27)

Lastly, the diagrams 4 and 5 give

Diagrams4+Diagrams5 = d14d45d51d42d23d35 (2.28)

×
[

3M(1)

(
w−1

z−1
,
β−1

α−1

)
+M(1) (1−z,1−α)+M(1)

(
1−w−1,1−β−1

)
+M(1)

(
z(w−1)

w(z−1)
,
α(β−1)

β(α−1)

)
+M(2)

(
1−z, z(w−1)

w(z−1)

)
+M(2)

(
1−w−1,

z−1

w−1

)]
.

Adding all the diagrams (including the permutations), one can reproduce the pertur-

bative result given in (2.24). This supports our original assumption that the sum of the

mirror-particle corrections for non-1EI graphs vanishes.
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3 Two-particle contributions and flip invariance

We now outline how to compute the two-particle contribution shown in figure 2 to get (2.11).

More technical details are explained in appendices B and D. In addition, we discuss the

flip invariance of the two-particle result.

3.1 The two-particle computation

To compute the two-particle contribution given in figure 2, one has to evaluate the con-

tribution from each hexagon and sum over all the mirror particle bound states which we

insert on the dashed edges.

Let us begin by recalling what the mirror-particle states are. A complete basis of states

on the mirror edge is given by multi-particle states made up of various bound states. Each

bound state is labelled by the integer a, and the a-th mirror bound state X is made up of a

pair of “quarks” χ and χ̇, each of which belongs to the a-th anti-symmetric representation

of su(2|2):

χ , χ̇ =|ψα1 · · ·ψαa〉+ · · · , |φ1ψa1 · · ·ψαa−1〉+ · · · ,
|φ2ψα1 · · ·ψαa−1〉+ · · · . |φ1φ2ψα1 · · ·ψαa−2〉+ · · · .

(3.1)

A small complication which arises for the multi-point functions is that the naive basis given

above does not reproduce the correct perturbative result. To obtain a match, one needs to

dress the basis elements with the so-called Z-markers as follows [5]:

|ψα1 · · ·ψαa〉+ · · · , |Z±
1
2φ1ψa1 · · ·ψαa−1〉+ · · · ,

|Z∓
1
2φ2ψα1 · · ·ψαa−1〉+ · · · . |φ1φ2ψα1 · · ·ψαa−2〉+ · · · ,

(3.2)

The correct result is reproduced after one averages over the two signs. This was shown

explicitly for the one-particle contribution in [5]. Also for the two-particle contribition,

we found that essentially the same prescription (with a little bit of refinement) gives the

correct answer. For details of the prescription, see appendix A.

Having determined the correct basis elements, one can write down9 the two-particle

contribution following the general prescription given in [5]:

M(2)(z1, z2, α1, α2) =

∫
du1

2π

du2

2π

∞∑
a=1

∞∑
b=1

µa(u
γ
1)µb(u

γ
2)
∑
I

∑
J

hL

[
X̄b(u−γ2 )J

]
W [Xb(uγ2)J ] hM

[
Xb(uγ2)J X̄a(u−γ1 )I

]
W [Xa(uγ1)I ] hR [Xa(uγ1)I ] ,

(3.3)

Here h denote the hexagon form factors and the subscripts L,M and R mean the left

hexagon, the middle hexagon and the right hexagon respectively, see figure 2. W’s are

the weight factors which incorporate the cross-ratio dependence and µ’s are the measures.

There are two bound state indices a and b corresponding to the mirror particles 1 and 2.

The indices I and J label the states inside the bound-state module a and b respectively.

9One also needs to average over the choices of the signs in (3.2), although we did not write it explic-

itly here.
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L R

ψ1 +1
2 0

ψ2 −1
2 0

φ1 0 +1
2

φ2 0 −1
2

L R

ψ1̇ −1
2 0

ψ2̇ +1
2 0

φ1̇ 0 −1
2

φ2̇ 0 +1
2

Table 1. The charges of a fundamental magnon under the spacetime and the R-symmetry rotations

L and R.

The expression (3.3) by itself is not very useful for the actual computation. In what

follows, we explain the individual factors and derive a more compact form of the two-

particle integrand. Let us first discuss the weight factors W. As discussed in [5], they

are determined by the symmetry arguments and consist of the a flavor-independent and a

flavor-dependent part. The flavor-independent part is given by

Wnon−flavor [X (uγi )] = e−2ip̃ui log |zi| , (3.4)

where p̃ui is the mirror momentum, while the flavor-dependent part is given by

Wflavor [X ] = eiJXϕi eiLXφi eiRX θi , (3.5)

where JX , LX and RX are the eigenvalues of the state X for the generators J , L, and R

defined below:10

J : eiJϕZ = eiϕZ , eiJϕZ̄ = e−iϕZ̄ ,

L=
1

2

(
L1

1−L2
2−L1̇

1̇
+L2̇

2̇

)
, R=

1

2

(
R1

1−R2
2−R1̇

1̇
+R2̇

2̇

)
,

(3.6)

with the angles

eiφi =

√
zi
z̄i
, eiθi =

√
αi
ᾱi
, eiϕi =

√
αiᾱi
ziz̄i

. (3.7)

The eigenvalues LX and RX can be read off from the charges of the fundamental magnons

listed in table 1.

It then remains to evaluate the hexagon form factors h’s. The hexagon form factors

consist of the dynamical part, which is an overall scalar factor, and the matrix part, which

depends on the flavor. To evaluate each factor, it is convenient to perform the mirror

transformations to the middle hexagon and rewrite it as

hM

[
Xb(uγ2)J X̄a(u−γ1 )I

]
= (−1)a hM

[
Xa(u5γ

1 )I Xb(uγ2)J

]
. (3.8)

The sign (−1)a and the replacement X̄ to X for the entry with u1 are the consequences of

the crossing rules given in [6]. One can then split hM [Xa(u5γ
1 )I Xb(uγ2)J ] into the dynamical

part h and the matrix part MP as follows:

hM

[
Xa(u5γ

1 )IXb(uγ2)J

]
= (−1)F1F2 hab(u

5γ
1 , uγ2) MPab,IJ(uγ1 , u

γ
2) . (3.9)

10The fact that only the generators L, R and J enter in the weight factor is a consequence of our special

kinematics: if the operators are not contained in a single two-dimensional plane, one would need other

generators which move the operators away from that two-dimensional plane.
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Figure 6. The matrix part for the two-particle contribution. The top line explains how we

compute it using the hexagon formalism: we rewrite the middle hexagon by performing the 5γ-

mirror transformation to the first particle. The second line shows the pictorial representation of

the matrix part: the summation over the flavor indices corresponds to adding dashed curves in the

figure, and Wui ’s are the weight factors. The last line gives the final result for the matrix part and

the definition of Fab: it is essentially given by two intersecting loops. At the intersection point we

insert the su(2|2) S-matrix (denoted by a gray dot in the figure) and, on each loop, we insert a twist

gi. The twist comes from the insertion of the weight factor Wui
and it produces different phases

depending on the flavors. (See also [5]).

Here we used the invariance of the matrix part under the 4γ tranformation. The dynamical

part can be evaluated by using the property

hab(u
5γ
1 , uγ2) =

1

hba(u
γ
2 , u

γ
1)
, (3.10)

and the explicit weak-coupling expansions given in appendix C. On the other hand, the

matrix part MP is given essentially by the matrix elements of the su(2|2) S-matrix. For a

pictorial explanation, see figure 6.

The hexagon form factors for the left and the right hexagons can also be represented

pictorially11 as shown in figure 6. Using such pictorial representations, it is easy to see

11For these hexagon form factors, the dynamical factors are just unity.
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that the flavor-dependent part

Fab ≡
∑
I,J

hL
[
X̄b,J

]
Wflavor [Xb,J ] MPab,IJ(uγ1 , u

γ
2)W [Xa,I ] hR [Xa,I ] (3.11)

becomes the quantity depicted in the last line of figure 6. As shown there, it is essentially

given by the matrix elements of the su(2|2) S-matrix dressed by the weight factors.

The computation of Fab is the most complicated task needed for this work. One first

needs to construct the bound-state S-matrices, then multiply them with the weight factors

and compute traces. The computation simplifies slightly owing to the restricted kinematics

we chose: all the generators L, R and J which appear in the weight factor act diagonally

on the bound-state basis. Therefore, when we perform the computation, one only needs

the diagonal components of the S-matrix,

S · |uγ1 , a〉I ⊗ |u
γ
2 , b〉J → (Sab)

J I
I J |u

γ
2 , b〉J ⊗ |u

γ
1 , a〉I . (3.12)

This feature makes the computation slightly easier although it is still a tedious task. See

appendix B for the detail of the computation. Using the result there, one can then express

the two-particle integrand as follows:

M(2)(z1, z2, α1, α2) =

∫
du1

2π

du2

2π

∞∑
a=1

∞∑
b=1

µa(u
γ
1)µb(u

γ
2)

hba(u
γ
2 , u

γ
1)

e−2ip̃a(u1) log |z1|e−2ip̃b(u2) log |z2|Fab .

(3.13)

A more explicit form of the integrand is given in appendix D while the weak-coupling

expansions of various quantities are listed in appendix C. By performing the integration

in (3.13), one arrives at the expression (2.11).

3.2 Flip invariance

In this subsection, we will discuss the flip invariance of the decagon, i.e. we are going to

show that the contribution of the mirror particles is independent of the way one decomposes

the decagon into hexagons. The decagon which is a polygon with both five physical and five

mirror edges appears for example in the computation of the five-point function of length

two BPS operators. As discussed before, we are considering a restricted kinematics where

all five operators are in a plane (we also impose an analogous constraint on the R-charge

polarizations). The configuration is characterized by the set of cross ratios given in (2.4).

At one loop level, we have two one-particle contributions coming from each zero-length

bridge and a two-particle contribution, which represents the interaction between two one-

particle states (see figure 2). Depending on how we cut the decagon into three hexagons,
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2 5 

4 3 
1 

2 5 

4 3 

1 

2 5 

4 3 

1 

2 5 

4 3 

1 

2 5 

4 3 

≇∵

≇∲

≇∱

≇∳

≇∴

Figure 7. The flip invariance of the decagon. Each diagram in the figure corresponds to a different

way of cutting the decagon into hexagons. They all give the same answer.

we obtain the following expressions:12

G1 =M(1) (z) +M(1)
(
1− w−1

)
+M(2)

(
z, 1− w−1

)
,

G2 =M(1)

(
1

1− w−1

)
+M(1)

( z
w

)
+M(2)

(
1

1− w−1
,
z

w

)
,

G3 =M(1)

(
1− w−1

1− z−1

)
+M(1)

(
1

z

)
+M(2)

(
1− w−1

1− z−1
,

1

z

)
,

G4 =M(1)
(w
z

)
+M(1)

(
w − z
w − 1

)
+M(2)

(
w

z
,
w − z
w − 1

)
,

G5 =M(1)

(
w − 1

w − z

)
+M(1)

(
1− z−1

1− w−1

)
+M(2)

(
w − 1

w − z
,

1− z−1

1− w−1

)
.

(3.14)

Here Gi denotes the expression coming from each configuration in figure 7. Using the

expressions for M(1) and M(2) given in (2.6) and (2.11), one can show that all the Gi
above are equal. This establishes the flip invariance of the decagon.

4 Next-to-extremal four-point functions

In [5], it was conjectured that one only needs to compute the mirror-particle corrections as-

sociated with 1-edge irreducible (1EI) graphs in order to reproduce the correlation functions

of BPS operators. This is equivalent to saying that the mirror-particle corrections associ-

ated with a non-1EI graph cancel among themselves.13 Due to the fact that non-1EI graphs

have multiple length-zero bridges, showing the cancellation requires the knowledge of the

12Here, for simplicity, we did not write the R-charge cross-ratio argument of M(1) and M(2).
13Recently in [11], an interesting proposal was made regarding the non-1EI graphs. They proposed that

one should multiply the color factors to each hexagons and attributed the cancellation of the non-1EI

graphs to such color factors. Nicely as we show here, the color factors do not seem necessary to observe the

cancellation. This and related issues will be discussed more in detail in [9, 10].
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1 4

2 3

1 4

2 3

1 4

2 3

Figure 8. An example of the tree-level Wick contraction for G{2,2,2,4} and its mirror-particle

corrections. Other diagrams, which are also non-1EI, can be obtained by permuting the indices of

the length-2 operators. The sum of the contributions depicted above vanishes in agreement with

the non-renormalization property of the next-to-extremal correlator.

multi-particle contribution. In this section, using the two-particle contribution computed in

the previous section, we show this cancellation explicitly for the so-called next-to-extremal

four-point functions at one loop. To show it for more general one-loop four-point functions,

one needs three-particle contributions and we will leave it for future investigations.

Let us consider the four-point function of three length-two BPS operators and one

length-four BPS operator which we choose to be the operator four. This is an example

of a next-to-extremal correlator because the lengths satisfy the defining condition L4 =

L1 + L2 + L3 − 2. This kind of correlators is known to be protected [12–14]. Namely the

quantum corrections to this correlator must vanish.

From the hexagonalization point of view, the computation of this correlator only in-

volves non-1EI graphs. An example of non-1EI graphs and its mirror-particle corrections

at one loop are given in figure 8. The remaining ones can be obtained by permuting the

indices of the external operators. Using the result in the previous section, one can compute

it explicitly as

figure 8 = d2
14d23d24d34

[
M(1)(1− z−1, 1− α−1) +M(1)

(
1

1− z ,
1

1− α

)
+M(2)

(
1− z−1,

1

1− z , 1− α
−1,

1

1− α

)]
.

(4.1)

Using (2.13) and the properties of m(z) given in (2.10), one obtains

figure 8 = d2
14d23d24d34

[
m

(
z

z − 1

)
+m

(
1

1− z

)
+ 2m(1) +m(0)

]
= 0 . (4.2)

This proves the absence of one-loop corrections to this four-point function.

Although we have focused on one particular example so far, the argument presented

here can be readily applied to general next-to-extremal four-point functions. To see this,

one just needs to use the fact that the graphs for the next-to-extremal four-point functions

(satisfying L4 = L1 + L2 + L3 − 2) can be obtained by

1. First drawing the graphs for the extremal correlator GL1−1,L2−1,L3,L4 .

2. Then adding one propagator between O1 and O2.
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4 
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2 

3 

Figure 9. Examples of graphs for the extremal four-point functions. The solid black lines are

the propagators while the red thick lines are the additional propagator one adds to make them

into graphs for the next-to-extremal four-point functions. In the left figure, the resulting next-to-

extremal graph contains two length-zero bridges (denoted by the dashed lines), while in the right

figure, it only has one length-zero bridge whose cross ratio is unity.

It is straightforward to see that the graphs for the extremal correlator contain three or

two length-zero bridges. Thus, if we add one propagator as in step 2 above, we are left

with graphs with two zero-length bridges or graphs with a single zero-length bridge (see

figure 9). The graphs with two zero-length bridges have the same topology as the one

in figure 8, and therefore the contributions from such a graph add up to zero. On the

other hand, for the graphs with a single zero-length bridge, the cross ratios associated

with the zero-length bridge are 1. By taking the limit z, z̄ → 1 and α, ᾱ → 1 in the

one-particle mirror contribution (2.6), one can show that the mirror-particle corrections

to these graphs also vanish. Thus, in summary, the one-loop correction to the next-to-

extremal four-point functions always vanishes, in agreement with the non-renormalization

theorem shown in [14].

Note also that the cancellation proven in this section holds at the level of individual

graphs. Therefore, one can use the result here to show that many of the non-1EI graphs

(that appear in more general four-point functions) do not contribute at one loop. The

only graphs that are not covered by the discussion here are the graphs which contain three

length-zero bridges, such as the ones that appear in the extremal four-point functions. It

would be an interesting future problem to compute the three-particle contributions and

show the cancellation in full generality.

5 Summary and possible applications

In this paper, we have computed the two-particle mirror contribution at one loop. Using its

result, we computed two five-point correlators using integrability and have found agreement

with the perturbative data. In addition, we proved that the contributions from non-1EI

graphs that appear in the next-to-extremal four-point functions add up to zero, thereby

giving supports to the prescription in the previous paper [5] which states that one only

needs to consider corrections from 1EI graphs.

In this paper, we only considered the five-point functions in a restricted kinematics

where all the operators lie in a two-dimensional plane. It would be an interesting future
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direction to generalize the computation performed here to the five-point function in general

kinematics. As already mentioned, to study the general kinematics, one needs to include

in the weight factors the generators that take the operators away from the plane. As a

consequence, the non-diagonal elements of the mirror S-matrix (computed in appendix B)

will also show up in the computation. Although this makes the computation slightly more

involved, there is no additional conceptual difficulty in doing this.

The techniques developed in this paper, in particular the Z-marker dressing and the

calculation of the mirror bound state S-matrix can be used to evaluate the higher-particle

contributions which are necessary for computing the higher-loop corrections and the non-

planar correlators. In particular, it is interesting to compute the two-(and three-)loop

four-point functions and see if one can reproduce the perturbative data [15].

Another interesting application would be to use the hexagonalization to evaluate com-

plicated Feynman integrals. Recently in [16], they succeeded in evaluating particular sets

of fishnet diagrams, which generalize the conformal ladder integrals, by using the hexago-

nalization (and also by the pentagon OPE). It would be interesting to try to extract other

integrals that have not yet been computed, such as the double box integrals, by using the

two- and higher-particle contributions. For this purpose, it would perhaps be useful to

apply the hexagonalization approach to the strongly deformed planar N = 4 SYM pro-

posed recently [17–22] since many quantities in this theory admit only a single Feynman

diagram at each loop order, and it should be easier to identify the contribution from a

given Feynman graph.
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A The Z-marker dressing

As discussed in [5], the naive basis for the mirror bound states does not reproduce the

perturbative data and it is necessary to dress it with Z-markers. In this section, we

explain how to dress the two-particle states by Z-markers.14

14At the moment, we do not have a clear-cut physical explanation for the prescription. However, adding

the Z-markers removes all the unwanted square-root cuts of the integrand and makes all the states of

the bound-state multiplet produce a non-zero contribution to the integral. This means that it should be

somehow related to the supersymmetry.
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Figure 10. The configuration of mirror particles which produces the one-particle contribution.

One can glue the edge 14 by either putting a virtual-particle pair on the edge 1.

A.1 Review of Z-marker dressing for one-particle states

Let us first briefly review the rule to dress the one-particle states. The a-th bound state X
is made up of a pair of “quarks” χ and χ̇, each of which belongs to the a-th anti-symmetric

representation of psu(2|2):

χ , χ̇ = |ψα1 · · ·ψαa〉+ · · · , |φ1ψa1 · · ·ψαa−1〉+ · · · ,
|φ2ψα1 · · ·ψαa−1〉+ · · · , |φ1φ2ψα1 · · ·ψαa−2〉+ · · · ,

(A.1)

To correctly reproduce the four-point function perturbative data, one must dress the

states containing bosons φ1 and φ2 (and their dotted counter parts) as follows:

+ dressing : φ1→Z
1
2 φ1 , φ2→Z−

1
2 φ2 , φ̇1→Z−

1
2 φ̇1 , φ̇2→Z

1
2 φ̇2 ,

− dressing : φ1→Z−
1
2 φ1 , φ2→Z

1
2 φ2 , φ̇1→Z

1
2 φ̇1 , φ̇2→Z−

1
2 φ̇2 .

(A.2)

and average over + and − dressings at the end of the computation. (Note that the dressings

for the left psu(2|2) and the right psu(2|2) are different). For instance, for the fundamental

magnons, we dress the states in the following way:

+ dressing :

Dαα̇ → Dαα̇ , Φ12 → Z Φ12 , Φ21 → Z−1 Φ21 , Φ11 → Φ11 , Φ22 → Φ22 ,

Ψ1α̇ → Z
1
2 Ψ1α̇ , Ψ2α̇ → Z−

1
2 Ψ2α̇ , Ψα1̇ → Z−

1
2 Ψα1̇ , Ψα2̇ → Z

1
2 Ψα2̇ .

− dressing :

Dαα̇ → Dαα̇ , Φ12 → Z−1 Φ12 , Φ21 → Z Φ21 , Φ11 → Φ11 , Φ22 → Φ22 ,

Ψ1α̇ → Z−
1
2 Ψ1α̇ , Ψ2α̇ → Z

1
2 Ψ2α̇ , Ψα1 → Z

1
2 Ψα1 , Ψα2 → Z−

1
2 Ψα2 .

(A.3)

Let us also recall how the weight factors are affected by the Z-marker dressings. In

what follows, we only discuss the fundamental magnon, but the generalization to the bound

states is straightforward. To figure out the effect of the dressing, it is useful to think of

the gluing as the process of putting virtual particle pairs in the adjacent physical edges

and making the edges entangled [5]. (See also figure 10). Let us consider the configuration
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Figure 11. The configuration of the mirror particles which produces the two-particle contribution.

depicted in figure 10, and try to glue the mirror edge 14 by putting a virtual particle pair

on the edge 1. In this case, the particle pairs are dressed in the following way:

|Z−t
(±)
X X̄ (u−γ)〉︸ ︷︷ ︸

left hexagon

⊗ |X (uγ)Z+t
(±)
X 〉︸ ︷︷ ︸

right hexagon

.
(A.4)

Here the superscript (±) in t
(±)
X denotes the choice of the + or the − dressing and t

(+)
X (=

−t(−)
X ) is determined from (A.3) as

t
(+)
Dαα̇

= 0 , t
(+)
Φ12

= 1 , t
(+)
Φ21

= −1 , t
(+)
Φ11

= t
(+)
Φ22

= 0 ,

t
(+)
Ψ1α̇

= t
(+)
Ψα2̇

= 1/2 , t
(+)
Ψ2α̇

= t
(+)
Ψα1̇

= −1/2 .
(A.5)

Comparing (A.5) with table 1, one can see that t
(+)
X coincides with the eigenvalues of the

R-symmetry rotation generator

R =
1

2
(R1

1 −R2
2 −R1̇

1̇ +R2̇
2̇) . (A.6)

Therefore, one can express the flavor-dependent weight factor as

Wflavor = eiJXϕ eiLXφ eiRX θ = eiLXφ eiRX (θ±ϕ) , (A.7)

where ± correspond to the + and − dressings respectively. In sum, the net effect of the

Z-marker dressing for the one-particle state is to change θ to θ+ ϕ or θ− ϕ depending on

the choice of the dressings.

A.2 Z-marker dressing for two-particle states

We now explain how to dress the two-particles states (one particle for each edge, see

figure 11). For simplicity, we again consider fundamental magnons only.

The prescription for the two-particle states is a natural generalization of the one for

the one-particle states. Namely we propose to dress the state in the following way,

|Z−t
(±)
X2 X̄2(u−γ2 )〉︸ ︷︷ ︸

left hexagon

⊗ |X2(uγ2)Z
+t

(±)
X2 Z

−t(±)
X1 X̄1(u−γ1 )〉︸ ︷︷ ︸

middle hexagon

⊗ |X1(uγ1)Z
+t

(±)
X1 〉︸ ︷︷ ︸

right hexagon

. (A.8)
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and average over the two choices, (±). (Note that we do not sum over 2× 2 = 4 choices of

the signs: the choices of the signs in tX1 and tX2 must be correlated.) For the two-particle

state, the effect of the Z-markers is twofold: one is to introduce the J-charge and change

the flavor dependent weight factor. As in the one-particle case, the net effect is to change

θi to θi ± ϕi. (θi and ϕi are the angles for the two channels.) The other is the phase shift

induced by moving and removing the Z-markers in the state (A.8). Using the rule given

in [6], one obtains

e
−it(±)
X1

p(uγ2 )/2+it
(±)
X2

p(uγ1 )/2|X̄2(u−γ2 )〉 ⊗ |X2(uγ2)X̄1(u−γ1 )〉 ⊗ |X1(uγ1)〉 . (A.9)

Using the fact that t
(+)
X coincides with the eigenvalue of the R generator, we arrive at

the following effective replacement rule, which implements the Z-marker dressing:

+ dressing : θ1 → θ1 + ϕ1 − p(uγ2)/2 , θ2 → θ2 + ϕ2 + p(uγ1)/2 ,

− dressing : θ1 → θ1 − ϕ1 + p(uγ2)/2 , θ2 → θ2 − ϕ2 − p(uγ1)/2 .
(A.10)

Written more explicitly, the additional phases for scalars in the + dressing are given as fol-

lows:

X1(uγ1) : Φ12(uγ1)→ ei(θ1+ϕ1−p(uγ2 )/2) , Φ21(uγ1)→ e−i(θ1+ϕ1−p(uγ2 )/2) ,

X2(uγ2) : Φ12(uγ2)→ ei(θ2+ϕ2+p(uγ1 )/2) , Φ21(uγ2)→ e−i(θ2+ϕ2+p(uγ1 )/2) .
(A.11)

As mentioned in the main text, it is convenient for the actual computation to perform

the mirror transformation to the middle hexagon and rewrite it as

|X2(uγ2)X̄1(u−γ1 )〉 7→ |X1(u5γ
1 )X2(uγ2)〉 . (A.12)

After this rewriting, one can read off the flavor-dependent weight factors just by looking

at the charges of what are inside the middle hexagon.15

The prescription for the Z-marker dressing we described here can be straightforwardly

generalized to the multi-particle states. It is an interesting future problem to perform

the multi-particle computation explicitly and see if the prescription reproduces the cor-

rect answer. Also important is to understand the origin of this Z-marker prescription.

From various circumstantial evidence, we know that it must be related to how the super-

symmetry is realized in the hexagon formalism, but it would be nice if we can make it

more precise. It would also be desirable to understand it from the viewpoint of the string

worldsheet theory.16

B The bound state-bound state mirror S-matrix

The matrix part of the hexagon form factor needed to evaluate the two-particle contribution

is given by the elements of the mirror bound state S-matrix. The physical bound state

15Originally the middle hexagon contained X̄1 and we needed to invert the charge to read off the correct

weight factor.
16The necessity of the discrete sum is a bit reminiscent of the sum over the spin structure although it

cannot be the same thing.
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S-matrix was computed in [23] using its Yangian invariance, see also [24–27] for previous

results and the case of the scattering of a fundamental particle with a bound state. In

order to compute the necessary mirror bound state S-matrix, we only need to adapt the

procedure described in [23] to our case.

B.1 Basis and invariant subsectors

In our case, the bound state with index a is in the a-th anti-symmetric representation of

su(2|2). A basis is given by

|ψα1 · · ·ψαa〉+ . . . , |φ1ψα1 · · ·ψαa−1〉+ . . . ,

|φ2ψα1 · · ·ψαa−1〉+ . . . , |φ1φ2ψα1 · · ·ψαa−2〉+ . . . .

The S-matrix is an operator acting in the tensor product of two bound states with

indices a and b and rapidities u1 and u2 respectively. After the action of the S-matrix the

two spaces are interchanged, i.e.

S · |u1, a〉i ⊗ |u2, b〉j = (Sab)
kl
ij (u1, u2) |u2, b〉k ⊗ |u1, a〉l , (B.1)

where i, j, k and l denote the basis elements.

As discuted in [23] for the physical bound state S-matrix and following the same

reasoning, it is possible to show that the mirror bound state S-matrix has a block diagonal

structure. The S-matrix commutes with su(2|2) and the generators of the algebra are the

Lorentz rotations Lαβ , the R-charge rotations Rab, and the supersymmetry generators Qαa
and Saα. In particular, the commutator of R1

1 with the S-matrix implies that the following

quantity is conserved

C1 = ] φi1 − ] φi2 + ] φj1 − ] φ
j
2 , (B.2)

where the superscripts i and j refer to the first and to the second bound state being

scattered and ] means the number of the corresponding fields. As a consequence of the

form of the basis elements, the charge C1 can take the values C1 = −2,−1, 0, 1, 2 and one

can use it to classify the following invariant subspaces under the action of the S-matrix:

Case I

C1 = 2:

|k, l〉Ia = |φ1ψ
a−k−1
1 ψk2 〉 ⊗ |φ1ψ

b−l−1
1 ψl2〉 .

C1 = −2:

|k, l〉Ib = |φ2ψ
a−k−1
1 ψk2 〉 ⊗ |φ2ψ

b−l−1
1 ψl2〉 .

Case II

C1 = 1:

|k, l〉IIa1 = |φ1ψ
a−k−1
1 ψk2 〉⊗|ψb−l1 ψl2〉 , |k, l〉IIa2 = |ψa−k1 ψk2 〉⊗|φ1ψ

b−l−1
1 ψl2〉 ,

|k, l〉IIa3 = |φ1ψ
a−k−1
1 ψk2 〉⊗|φ1φ2ψ

b−l−1
1 ψl−1

2 〉 , |k, l〉IIa4 = |φ1φ2ψ
a−k−1
1 ψk−1

2 〉⊗|φ1ψ
b−l−1
1 ψl2〉 .
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C1 = −1:

|k, l〉IIb1 = |φ2ψ
a−k−1
1 ψk2 〉⊗|ψb−l1 ψl2〉 , |k, l〉IIb2 = |ψa−k1 ψk2 〉⊗|φ2ψ

b−l−1
1 ψl2〉 ,

|k, l〉IIb3 = |φ2ψ
a−k−1
1 ψk2 〉⊗|φ1φ2ψ

b−l−1
1 ψl−1

2 〉 , |k, l〉IIb4 = |φ1φ2ψ
a−k−1
1 ψk−1

2 〉⊗|φ2ψ
b−l−1
1 ψl2〉 .

Case III

C1 = 0

|k, l〉III1 = |ψa−k1 ψk2 〉 ⊗ |ψb−l1 ψl2〉 ,
|k, l〉III2 = |ψa−k1 ψk2 〉 ⊗ |φ1φ2ψ

b−l−1
1 ψl−1

2 〉 , |k, l〉III3 = |φ1φ2ψ
a−k−1
1 ψk−1

2 〉 ⊗ |ψb−l1 ψl2〉 ,
|k, l〉III4 = |φ1φ2ψ

a−k−1
1 ψk−1

2 〉 ⊗ |φ1φ2ψ
b−l−1
1 ψl−1

2 〉 ,
|k, l〉III5 = |φ1ψ

a−k−1
1 ψk2 〉 ⊗ |φ2ψ

b−l
1 ψl−1

2 〉 , |k, l〉III6 = |φ2ψ
a−k
1 ψk−1

2 〉 ⊗ |φ1ψ
b−l−1
1 ψl2〉 .

In addition to the classification of the invariant subspaces above, it is possible to

extract further constraints from the conservation of C1 given in (B.2), the commutation

of the S-matrix with L1
1 and the conservation of the bound state indices. After a few

manipulations, one can show that the following quantities are conserved:

C2 = 2 ]φi2 + 2 ]φj2 + ] ψi1 + ] ψi2 + ] ψj1 + ] ψj2 ,

C3 = ] φi2 + ] φj2 + ] ψi2 + ] ψj2 .
(B.3)

Considering φ2 as a composite state of two fermions [28], the two conserved quantities above

imply the conservation of the total number of fermions and of ψ2. Thus the S-matrix can

be written in the form (N = k + l):

Case Ia and Ib

S · |k, l〉I =

N∑
n=0

Hk,l
n |N − n, n〉I , (B.4)

Case IIa and IIb

S · |k, l〉IIi =

N∑
n=0

Y k,l,j
n,i |N − n, n〉

II
j , (B.5)

Case III

S · |k, l〉IIIi =

N∑
n=0

Zk,l,jn,i |N − n, n〉
III
j . (B.6)

B.2 Hybrid conventions and the action of the Yangian

The hexagon form factor was derived in [6] and a “hybrid” convention was used for the

excitations in order for the S-matrix to match the string frame one. In the “hybrid”

convention the action of the fermionic generators of su(2|2) on the fundamental particles

have non-standard Z-markers and are of the form

Qαa|φb〉 = aδba |Z
1
2ψα〉 , Qαa|ψβ〉 = bεαβεab |Z

1
2φb〉 ,

Saα|φb〉 = cεabεαβ |Z−
1
2ψβ〉 , Saα|ψβ〉 = dδβα |Z−

1
2φa〉 ,

(B.7)
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with

a =
√
gγ , b =

√
g

γ

(
1− x+

x−

)
, c =

i
√
gγ

x+
, d =

√
gx+

iγ

(
1− x−

x+

)
, (B.8)

and

γ =

(
x+

x−

) 1
4 √

i(x− − x+) . (B.9)

Note that these transformations are different both from the spin chain frame transforma-

tions of [28, 29] and from the string frame transformations of [30, 31]. In our conventions

for the calculations, when a fermionic generator acts on a bound state basis element we

move all the Z-markers to the right of all excitations by using Zχ = e−ipχZ and then we

delete them.

The symmetry algebra of the su(2|2) fundamental S-matrix was determined in [32] as

the Yangian of the centrally extended su(2|2) superalgebra, see [33] for the bound state

case and for example [34] for an introduction to the Yangian symmetry. This symmetry

algebra was used in [23] to find a closed expression for the physical bound state S-matrix

and we will adapt their construction here to compute the mirror bound state S-matrix.

The invariance of the S-matrix under the Yangian is expressed as

[ ∆(JA), S ] = 0 , (B.10)

where ∆ is the coproduct of the Yangian algebra and JA are the Yangian generators.

In what follows, we will need the coproducts of some level 0 and 1 Yangian generators.

The level 1 generators are going to be denoted by a hat. For completeness, we are going to

give explicitly formulas for a few coproducts in the “hybrid” convention that we are going

to use. We have for example for level 0 generators:

∆(L2
1) = L2

1 ⊗ I + I ⊗ L2
1 , ∆(Q2

2) = Q2
2 ⊗ U

1
2 + I ⊗Q2

2 . (B.11)

where U is an operator that gives e−ip when acting on a state. We act with the coproducts

on the bound states basis from the left and additional signs can appear because we are

working with graded vector spaces. Moreover, for level 1 generators, we have

∆(L̂2
1) = iu1 L

2
1 ⊗ I + iu2 I ⊗ L2

1

− 1

2
L2

α ⊗ Lα1 +
1

2
Lα1 ⊗ L2

α +
1

2
Sa1 ⊗ U−

1
2Q2

a +
1

2
Q2

a ⊗ U
1
2Sa1 , (B.12)

∆(Q̂2
2) = iu1Q

2
2 ⊗ U

1
2 + iu2 I ⊗Q2

2

− 1

2
L2

α ⊗Qα2 +
1

2
Qα2 ⊗ U

1
2L2

α −
1

2
Ra2 ⊗Q2

a +
1

2
Q2

a ⊗ U
1
2Ra2

− 1

4
H ⊗Q2

2 +
1

4
Q2

2 ⊗ U
1
2H − 1

2
C ⊗ US1

1 +
1

2
S1

1 ⊗ U−
1
2C , (B.13)

∆(Ŝ1
1) = iu1 S

1
1 ⊗ U−

1
2 + iu2 I ⊗ S1

1

+
1

2
Lα1 ⊗ S1

α −
1

2
S1

α ⊗ U−
1
2Lα1 +

1

2
R1

a ⊗ Sa1 −
1

2
Sa1 ⊗ U−

1
2R1

a

+
1

4
H ⊗ S1

1 −
1

4
S1

1 ⊗ U−
1
2H +

1

2
C† ⊗ U−1Q2

2 −
1

2
Q2

2 ⊗ U
1
2C† . (B.14)
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where u1 and u2 are the rapidities of the first and the second bound state respectively and

H,C and C† are the central charges of the algebra:

{Qαa, Q
β
b} = εαβεabC , {Saα, Sbβ} = εαβε

abC† ,

{Qαa, Sbβ} = δbaL
α
β + δαβR

b
a +

1

2
δbaδ

α
βH .

(B.15)

B.3 The computation of the mirror bound state S-matrix

In this subsection, we explicitly compute the mirror bound state S-matrix elements by

adapting and following the computation of [23].17 We consider first the basis elements in

Case I, then in Case II and finally in Case III.

B.3.1 Case I

The cases Ia and Ib are similar, so we will consider only case Ia here and we will omitted

the a for simplicity. The first step of the calculation is to express the state |k, l〉I for any

k and l as products of operators acting on |0, 0〉I . Indeed, one can show that

|k, l〉I ∝ [(L2
1 ⊗ I)(iδu−∆(L1

1))]k [(I ⊗ L2
1)(iδu−∆(L1

1))]l |0, 0〉I , (B.16)

where we have defined δu = u1 − u2 and one can fix the coefficient of proportionality

by a direct computation. The particular combination of operators appearing on the right

hand size was chosen because one can rewrite it as a product of terms involving only

coproducts by using the following relations (see (4.5) of [23] for the analogous equation for

the physical case)

(L2
1⊗I)(iδu−∆(L1

1))|k, l〉I = (∆(L̂2
1)−iu2∆(L2

1)−∆(L2
1)(L1

1⊗I))|k, l〉I ,
(I⊗L2

1)(iδu−∆(L1
1))|k, l〉I = (−∆(L̂2

1)+iu1∆(L2
1)−∆(L2

1)(I⊗L1
1))|k, l〉I ,

(B.17)

and the equations above can be verified by replacing the definitions of the coproducts

given previously.

Replacing the relations (B.17) in (B.16), one gets a combination of products of co-

products. The next step is to apply the S-matrix operator to both sides of (B.16). The

left hand side will be precisely the wanted Case I mirror bound state S-matrix and the

right hand side can be evaluated because the S-matrix operator commutes with any com-

bination of coproducts and it will be proportional to the action of it on the state |0, 0〉I .
Thus to complete the computation, one needs to evaluate S · |0, 0〉I . One way of doing the

computation is to again use the symmetry properties of the S-matrix. Consider the state

|0, 0〉 = |ψa1〉 ⊗ |ψb1〉 , (B.18)

The S-matrix acts diagonally in the state above as it gives a product of the elements D12,

see [29, 38]. In our conventions this element has the value -1, thus we have

S · |0, 0〉 = (−1)(ab) |0, 0〉 . (B.19)

17Notice that the Bethe Ansatz equations were derived previously in [35] and the classical limit was

considered in [36, 37].
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Using in addition the following relations

[∆(S1
1)∆(Q2

2), S ] |0, 0〉 = 0 , (B.20)

and that in our normalization

∆(S1
1)∆(Q2

2) |0, 0〉 = g i (−1)ae−ip(u2)/2

[
1

x−b(u2)
− 1

x+a(u1)

]
|0, 0〉I , (B.21)

one can show that

S · |0, 0〉I ≡ Dab(u1, u2) = (−1)(a−1)(b−1) x
−a(u1)− x+b(u2)

x+a(u1)− x−b(u2)
eip(u1)/2 e−ip(u2)/2 , (B.22)

where x±a = x(u± i
2a) with x a Zhukowsky variable defined by u/g = x+ 1/x.

Collecting all the results above, the final expression for the mirror bound state S-matrix

for Case I is

S · |k, l〉I =
N∑
n=0

Hk,l
n |N − n, n〉I , (B.23)

where

Hk,l
n =Dab(u1,u2)×

∏n
m1=1m1

∏k+l−n
m2=1 m2∏k+l

m3=1[ iδu+(a+b
2
−m3) ]

∏k
m4=1m4

∏l
m5=1m5

(B.24)

×
k∑

m=0

(
k

k−m

)(
l

n−m

) m∏
p=1

c+(p)

l−n∏
p=1−m

c−(p)

k−m∏
p=1

d
(
k−p+2

2

)n−m∏
p=1

d̃
(
k+l−m−p+2

2

)
,

and we have used the definitions

c+(t) = iδu− (a− b)
2

+ t− 1 , d(t) = −(a+ 1− 2t) ,

c−(t) = iδu+
(a− b)

2
+ t− 1 , d̃(t) = −(b+ 1− 2t) .

(B.25)

Note that in our normalization conventions

L2
1 · |φ1ψ

a−k−1
1 ψk2 〉 = (k + 1)|φ1ψ

a−k−2
1 ψk+1

2 〉 ,
L1

2 · |φ1ψ
a−k−1
1 ψk2 〉 = (a− k)|φ1ψ

a−k
1 ψk−1

2 〉 .
(B.26)

The formula (B.24) is an adaptation of the formula (4.11) of [23] and we have tested it for

many values of the bound state indices a and b. A discussion about the pole structure of

bound state S-matrices can be found for example in [39, 40].

B.3.2 Case II

Analogously to the previous case, we are not going to distinguish Case IIa and IIb as

the computation for both cases are similar. We will consider Case IIa and omit the a for

simplicity. The Case II mirror bound state S-matrix can also be fixed by using its Yangian
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invariance and by using the result of Case I. Recall that by symmetries arguments the Case

II S-matrix can be written in the form

S · |k, l〉IIi =

N∑
n=0

Y k,l,j
n,i |N − n, n〉

II
j . (B.27)

The idea of [23] is to derive a set of equations involving both the Case II and Case I

S-matrices. In matrix form, the equations takes the form

A ·Yk,l
n = B+Hk+1,l−1

n +B−Hk−1,l+1
n +BHk,l

n , (B.28)

where

Yk,l
n =


Y k,l,1
n,1 Y k,l,1

n,2 Y k,l,1
n,3 Y k,l,1

n,4

Y k,l,2
n,1 Y k,l,2

n,2 Y k,l,2
n,3 Y k,l,2

n,4

Y k,l,3
n,1 Y k,l,3

n,2 Y k,l,3
n,3 Y k,l,3

n,4

Y k,l,4
n,1 Y k,l,4

n,2 Y k,l,4
n,3 Y k,l,4

n,4

 , (B.29)

and A,B+, B− and B are matrices. In what follows we are going to derive the entries of

these matrices. In this work, we are interested in the one-loop result, so we are not going

to give a closed expression for the inverse matrix A−1 and for Y k,l,j
n,i valid at any value of

the coupling constant. Instead, one can solve the matrix equation at the necessary order

in g2.

The first line of the matrix equation (i = 1, 2, 3, 4) is obtained from

I〈N − n, n|∆(Q2
2)S |k, l〉IIi =I 〈N − n, n|S∆(Q2

2) |k, l〉IIi , (B.30)

Similarly, the second line is obtained from

I〈N − n, n|∆(S1
1)S |k, l〉IIi =I 〈N − n, n|S∆(S1

1) |k, l〉IIi . (B.31)

Note that in the equations above only the coproduct of level 0 generators appeared. The

remaining linearly independent equations are derived using also the coproducts of level 1

generators. Consider the following combination of coproducts in our normalization

S̃1
1 = ∆(Ŝ1

1) + a1 ∆(L̂2
1) ∆(S1

2) + a2 ∆(L2
1) ∆(S1

2) , and (B.32)

Q̃2
2 = ∆(Q̂2

2)− a1 ∆(L̂2
1) ∆(Q1

2)− a2 ∆(L2
1) ∆(Q1

2) , with

a1 =
2

a+ b− 2(N + 1− iδu)
, a2 =

a− b+ 2(N − 2n− iu1 − iu2)

2(a+ b)− 4(N + 1− iδu)
.

The third and forth line of the matrix equations are obtained from

I〈N − n, n| Q̃2
2 S |k, l〉IIi =I 〈N − n, n|S Q̃2

2 |k, l〉IIi , (B.33)

and
I〈N − n, n| S̃1

1 S |k, l〉IIi =I 〈N − n, n|S S̃1
1 |k, l〉IIi . (B.34)

The procedure to obtain the values of the coefficients a1 and a2 is to impose that the

left hand side of the above equations only contain Y k,l,j
n,i . Notice that for general a1 and a2

terms of the form Y k,l,j
n+1,i can also appear for example, see [23] for more details.
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B.3.3 Case III

Recall that the Case III S-matrix can be written in the form

S · |k, l〉IIIi =
N∑
n=0

Zk,l,jn,i |N − n, n〉
III
j . (B.35)

The way of computing it is to use again the symmetry algebra of the S-matrix and

relate the Case III to the already known results for Case II and Case I, see [23]. In this

case, only the coproducts involving level 0 generators are necessary. The key observation

is that acting in any Case III basis element with the coproducts of Q2
2, Q

1
1, S

1
1 and S2

2

one gets a result proportional to a basis element of Case II. In other words, using some of

the relations
II
i 〈N − n, n|[∆(Q1

1), S]|k, l〉IIIj = 0 , II
i 〈N − n, n|[∆(Q2

2), S]|k, l〉IIIj = 0 ,
II
i 〈N − n, n|[∆(S1

1), S]|k, l〉IIIj = 0 , II
i 〈N − n, n|[∆(S2

2), S]|k, l〉IIIj = 0 ,
(B.36)

one can select a set of linearly independent equations to write a matrix equation for the

elements of the Case III S-matrix as function of the elements of the Case II. The solution

can be expanded up to the necessary order in powers of g2.

C Weak coupling expansions

In this appendix, we defined and perform the weak coupling expansion of necessary quanti-

ties for the computation of the two-particle contribution at order g2. The fused dynamical

part of the hexagon form factor is given by

hab(u, v) =

a−1
2∏

k=−a−1
2

b−1
2∏

l=− b−1
2

h(u[2k], v[2l]) . (C.1)

In fact, we will need the mirror rotated fused dynamical part. To evaluate this quantity,

it is necessary to compute the mirror rotated dressing phase [41, 42]. Different results are

obtained depending on the order, i.e. the processes of fusion and crossing do not commute

for the dressing phase. Here, the correct procedure is to first fuse and then crossing and

we get at order g0:

σab (uγ , vγ) =
Γ
[
1− a

2 + iu
]

Γ
[
1 + a−b

2 − i (u− v)
]

Γ
[
1 + b

2 − iv
]

Γ
[
1 + a

2 − iu
]

Γ
[
1 + b−a

2 + i (u− v)
]

Γ
[
1− b

2 + iv
] , (C.2)

σab
(
uγ , v−γ

)
=

Γ
[
1 + a

2 − iu
]

Γ
[
1− a+b

2 + i (u− v)
]

Γ
[
1 + b

2 + iv
]

Γ
[
1− a

2 + iu
]

Γ
[
1 + a+b

2 − i (u− v)
]

Γ
[
1− b

2 − iv
] . (C.3)

We have at order g2

hab (uγ , vγ) =
g2

σab (uγ , vγ)

(
(a+b)2

4 + (u− v)2
)

(
a2

4 + u2
)(

b2

4 + v2
)

×
Γ
[
−a

2 − iu
]

Γ
[
a+b

2 − i (u− v)
]

Γ
[
−a+b

2 + i (u− v)
]

Γ
[
b
2 − iv

]
Γ
[
a
2 − iu

]
Γ
[
b−a

2 − i (u− v)
]

Γ
[
b−a

2 + i (u− v)
]

Γ
[
− b

2 − iv
] . (C.4)
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The momentum and the exponential of the energy for mirror bound states are

p̃a(u) = u+O(g2) ,

e−Ẽa(u) =
g2

(u2 + a2

4 )
+O(g4) .

(C.5)

Finally the measure for mirror bound states is

µa(u
γ) =

ag2

(u2 + a2

4 )2
+O(g4) . (C.6)

D The integrand and the integral for the two-particle contribution

D.1 Explicit form of the integrand

In this section, we are going to write down the complete two-particle integrand. We will use

the mirror bound state S-matrix elements of appendix B and the Z-markers prescription

of appendix A. Consider the figure 11. We are going to compute the hexagon form factor

of the middle hexagon by applying mirror tranformations to the particle 1 to get u5γ
1 (Of

couse, this is not necessary and the result of the integral must be the same if one works

with u−γ1 ). The hexagon form factors of the left and right hexagons of the figure are trivial

because they only have one bound state. Their values is a product of one particle hexagon

form factors and they can give only a non-trivial sign. Using the important identity

h(u4γ , v) =
1

h(v, u)
, (D.1)

where h(u, v) is the dynamical part of the hexagon form factor, the two-particle contribu-

tion is

M(2)(z1, z2, α1, α2) =

∫
du1

2π

du2

2π

∑
a,b

µa(u
γ
1)µb(u

γ
2)

hba(u
γ
2 , u

γ
1)

e−2ip̃a(u1)log|z1|e−2ip̃b(u2)log|z2|Fab .

(D.2)

In the expression above, µa(u) are the measures, the exponentials are the flavor independent

part of the weight factors, z1 and z2 are the relevant cross-ratios for the right edge and the

left edge respectively. Fab is essentially the matrix part of the middle hexagon form factor

which contains the interaction between the two mirrors particles and its expression will be

given below. The flavor dependent part of the weight factors will be written in terms of

the angles:

eiφi =

√
zi
z̄i
, eiθi =

√
αi
ᾱi
, eiϕi =

√
αiᾱi
ziz̄i

, (D.3)

with αi the R-charge cross-ratios.

The matrix part is a sum of several terms coming from the different elements of the

mirror bound state S-matrix. Before considering all the cases, let us first make a list of all

contributing signs:

• There is a factor of (−1)F1(−1)F2 where Fi is the fermion number of each state. These

signs appear because in the string frame the one-particle hexagon form factor differs

by a factor of −i for bosonic and fermionic indices [38].
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• The factor (−1)f of the middle hexagon gives (−1)F1F2 .

• The mirror transformations of the particle 1 give (−1)a

• The left and right hexagons form factors and the one particle hexagon form factors

contractions gives (−1)b.

Using the Z-markers prescription for the two-particle case, the S-matrix of appendix B

and recalling that one has to average the result of both the + dressing and the − dressing,

the matrix part Fab(u1, u2) is the sum of the following terms

Case Ia and Ib

2 (−1)(a−1)(b−1) cos (θ1 + θ2) cos

(
ϕ1 + ϕ2 +

p (uγ1)− p (uγ2)

2

)
×

a−1∑
k=0

b−1∑
l=0

eiφ1(a−2k−1)eiφ2(b−2l−1)Hk,l
k .

Case IIa and Case IIb

−2 (−1)(a−1)b cos (θ1) cos

(
ϕ1 −

p (uγ2)

2

) a−1∑
k=0

b∑
l=0

eiφ1(a−2k−1)eiφ2(b−2l)Y k,l,2
k,1

−2 (−1)a(b−1) cos (θ2) cos

(
ϕ2 +

p (uγ1)

2

) a∑
k=0

b−1∑
l=0

eiφ1(a−2k)eiφ2(b−2l−1)Y k,l,1
k,2

−2 (−1)(a−1)b cos (θ1) cos

(
ϕ1 −

p (uγ2)

2

) a−1∑
k=0

b−1∑
l=1

eiφ1(a−2k−1)eiφ2(b−2l)Y k,l,4
k,3

−2 (−1)a(b−1) cos (θ2) cos

(
ϕ2 +

p (uγ1)

2

) a−1∑
k=1

b−1∑
l=0

eiφ1(a−2k)eiφ2(b−2l−1)Y k,l,3
k,4

Case III

(−1)ab
a∑
k=0

b∑
l=0

eiφ1(a−2k)eiφ2(b−2l)Zk,l,1k,1 + (−1)ab
a∑
k=0

b−1∑
l=1

eiφ1(a−2k)eiφ2(b−2l)Zk,l,3k,2

+ (−1)ab
a−1∑
k=1

b∑
l=0

eiφ1(a−2k)eiφ2(b−2l)Zk,l,2k,3 + (−1)ab
a−1∑
k=1

b−1∑
l=1

eiφ1(a−2k)eiφ2(b−2l)Zk,l,4k,4

+(−1)(a−1)(b−1) eiθ1e−iθ2cos

(
ϕ1−ϕ2−

p(uγ2)+p(uγ1)

2

) a−1∑
k=0

b∑
l=1

eiφ1(a−2k−1)eiφ2(b−2l+1)Zk,l,6k,5

+(−1)(a−1)(b−1) e−iθ1eiθ2cos

(
ϕ1−ϕ2−

p(uγ2)+p(uγ1)

2

) a∑
k=1

b−1∑
l=0

eiφ1(a−2k+1)eiφ2(b−2l−1)Zk,l,5k,6

The complete integrand is the matrix part given by the sum of all the terms above and

the other terms in (D.2). It remains to expand the integrand up to desire order. One can

use the weak coupling expansions of the appendix C to get it at order g2.
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To acutually perform the integral, we first evaluated them by taking the residues up

to certain values of a and b. This produces the expansion of the final integral in z1 and

z2. We then compared that expansion with the expansion of some ansatz that consist of a

linear combinations of functions and fit for the coefficients. The ansatz is given by a linear

combination of one-loop conformal integrals with the arguments being various possible

cross ratios that one can have for the five-point function.18 We also checked that the result

is correct by computing some of the integrals numerically for given values of z1 and z2.

The final result is given in the main text in (2.11).

D.2 The iε prescription

Before closing this appendix, let us make one more comment about the integral. When-

ever the bound state indices are the same (a = b), the integral contains a simple pole at

u1 = u2, which corresponds to the so-called kinematical singularity. Physically, this sin-

gularity represents the IR divergence which arises from the two particles moving together

and decoupling from the hexagon (see figure 12). Since this pole lies right on top of the

integration contour, one has to specify how to avoid it in order to get a meaningful result.19

To see what is the correct prescription, it is useful to consider the form factor in the

position space rather than in the rapidity (or equivalently in the momentum) space. As

usual, the conversion is done by the Fourier transformation,

1

u1 − u2
→

∫
dp̃1dp̃2

1

u1 − u2 ± iε
eip̃1x+ip̃2y . (D.4)

Here x and y are the coordinates of the mirror edges which, in our convention, run in the

directions depicted in figure 12. We also put ±iε in the denominator and they correspond

to two different ways of avoiding the kinematical pole. Now, using the weak coupling

expansion of the momenta p̃i given in (C.5), one can perform the above integral to get∫
dp̃1dp̃2

1

u1 − u2 ± iε
eip̃1x+ip̃2y ∝

∫
dδp̃

1

u1 − u2 ± iε
eiδp̃(x−y)

∝ Θ(±(x− y)) ,

(D.5)

where δp̃ = (p̃1 − p̃2)/2 and Θ(z) is the Heaviside step function.

The equation (D.5) shows that the effect of the kinematical pole is visible in the region

x − y > 0 if we choose +iε while it is visible in the region x − y < 0 if we choose −iε.
However, from the figure 12, it is clear that the kinematical pole corresponds to the process

in which the two particles move together in the region x − y < 0. Therefore we conclude

that the correct choice is −iε. In fact, it is this choice (−iε) that reproduces the pertur-

bative data and, if we choose the other one (+iε), the results would not agree with the

perturbation theory.

18We are obligated to P. Vieira for helping us to compute the integral and suggesting the basis of functions.
19For the Pentagon Program for the null polygonal Wilson loops [43], the correct iε prescription was

discussed in [44]. The argument presented here is essentially the same as the one in that paper.
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Figure 12. The kinematical pole and its physical meaning. Left: the kinematical pole arises

from the physical process in which the two particles move together in the direction depicted in the

figure and decouple from the rest. Right: the coordinates on the mirror edges. x and y are the

coordinates on the mirror edges which run from −∞ to ∞. The arrows indicate the directions

in which these coordinatres increase. The two shaded regioins denote the region x − y > 0 and

x− y < 0 respectively.
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[13] J. Erdmenger and M. Pérez-Victoria, Nonrenormalization of next-to-extremal correlators in

N = 4 SYM and the AdS/CFT correspondence, Phys. Rev. D 62 (2000) 045008

[hep-th/9912250] [INSPIRE].

[14] B.U. Eden, P.S. Howe, E. Sokatchev and P.C. West, Extremal and next-to-extremal n point

correlators in four-dimensional SCFT, Phys. Lett. B 494 (2000) 141 [hep-th/0004102]

[INSPIRE].

[15] D. Chicherin, J. Drummond, P. Heslop and E. Sokatchev, All three-loop four-point

correlators of half-BPS operators in planar N = 4 SYM, JHEP 08 (2016) 053

[arXiv:1512.02926] [INSPIRE].

[16] B. Basso and L.J. Dixon, Gluing Ladder Feynman Diagrams into Fishnets, Phys. Rev. Lett.

119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].
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