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6 Hexagons, Lüscher corrections and Feynman graphs 25

6.1 N = 2 superfields for N = 4 SYM 25

6.2 The Drukker-Plefka vacuum as a sum of hypermultiplets 27

6.3 One-loop diagrams 28

6.4 Edge-reducible graphs 30

6.5 Mirror magnons as Yang-Mills lines 31

7 Conclusions and outlook 33

A Hexagon form factor at tree level 35

B More on spacetime dressing 37

C Colour factors 39

– 1 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
0

1 Introduction

The first objects to be studied in the framework of the AdS/CFT correspondence [1–3]

were correlation functions of BPS operators in N = 4 supersymmetric Yang-Mills theory

(N = 4 SYM), i.e. gauge-invariant composite operators without anomalous dimensions.

In particular, non-renormalised correlation functions received a great deal of attention,

see e.g. [4–6], because they have to coincide in weak-coupling perturbation theory and in

supergravity. What is more interesting, though, are quantities that do receive quantum

corrections. The study of the spectrum of anomalous dimensions of the “BMN” opera-

tors [7] in the large-N limit [8] and of the energy levels of the dual string states was the

starting point for an astounding development: the spectral problem was mapped to the

solution of an integrable spin chain [9] at weak ’t Hooft coupling. This has been extended

to all composite operators of the theory and to arbitrarily high loop order [10–13]. The pic-

ture was then completed by incorporating the so-called “wrapping” finite-size effects [14],

which could be done from the point of view of the dual string theory, see refs. [15–17]

for reviews; this allows the computation of the spectrum up to amazingly high orders in

the perturbative expansion in the ’t Hooft coupling, or numerically at finite coupling with

great precision. The discussion of the spectrum of anomalous dimensions of the N = 4

SYM along these lines is thus by now complete, at least in principle.

The study of three-point functions of non-protected composite operators by integra-

bility was initiated only much later in ref. [18]. Substantial progress came about very

recently by the introduction of the hexagon form-factor approach [19]. The key to this

approach is to consider the string worldsheet with three punctures, and cut it into two

hexagonal patches. Each of these is interpreted as containing a non-local operator that

creates a conical excess — the hexagon operator. The “asymptotic” three point function

is reconstructed by summing over the form factors of such an operator; this is the part

that discards wrapping effects. These too can be included in the formalism [19–22], even

though at the current stage it is possible to do so only in a magnon-by-magnon manner

reminiscent of Lüscher corrections. It would be desirable to have a TBA-like approach

which takes into account all the wrapping corrections at once. In parallel, integrability for

the string-field theory vertex has been explored, too [23–26].

A natural next step is the study of four-point functions. These are rich objects, since

unlike lower-point functions they have a non-trivial (and intricate) dependence on the

position of the operators through the conformal cross-ratios. As they encode information

on lower-point functions, they also play a crucial role in the conformal bootstrap approach,

see e.g. ref. [27]. In AdS/CFT, their study was undertaken early on, focussing especially

on 1
2 -BPS operators, see e.g. refs. [28–31]. More recently, it was understood that four-

point correlators capture information on locality in the bulk [32, 33], which makes their

investigation particularly interesting. Indeed in recent times a number of new results have

appeared in this field [34–36]. In principle, four-point functions are fixed via the operator

product expansion (OPE) in terms of the lower-point correlators. In practice, resumming

the OPE is a daunting tasks, and would require accounting for multi-trace operators — a
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Figure 1. We depict two ways of tessellating a four-point function by hexagonal patches. On

the left, we first cut it into two three-point functions, which can then be cut into hexagons; this

corresponds to performing the operator product expansion (OPE), and it requires summing over

intermediate physical states. On the right, we cut the four point-functions into four hexagons

without introducing a sum over intermediate physical states.

difficult task in integrability, so far.1 An alternative approach was advocated by two of us

in ref. [38] and independently in ref. [39] by Fleury and Komatsu, building on the hexagon

proposal [19] and on earlier investigation of four-point functions in integrability [40]. The

idea is to tessellate the four-point function by hexagons, without cutting it into two three-

point functions like in the OPE,2 see figure 1. Moreover, it is necessary to include the

dependence on the conformal cross-ratios in the hexagon approach. The computation of

the asymptotic part of the four-point function is then straightforward. Including wrapping

effects is also possible, as it was discussed for a single “mirror magnon” in ref. [39], though

this requires some empirical rules on which diagrams to include in the computation of

wrapping corrections.

In this paper, we continue the investigation of hexagon tessellations. While in refs. [38,

39] four-point functions involving at most one non-protected operator were considered, here

we increase the complexity of the set-up and allow for two non-protected operators. This

might seem a slight technical complication; yet there are important conceptual lessons to

be learned, even at tree-level.

Firstly, we see that certain connected, but one-particle reducible diagrams have to be

excluded from tree-level hexagon tessellations — something that had not been anticipated

from earlier studies. We propose that the correct way to account for this is to include

SU(N) colour factors in the hexagon formalism. Not only this prescription allows us to

non-trivially reproduce several field-theory results, but it also automatically incorporates

the empirical rules for wrapping at one-loop proposed in ref. [39].

Secondly, we see that the hexagon formalism does not capture multi-trace admixtures,

even when those give leading effects in the 1/N expansion in field theory. This is not entirely

surprising, given that the whole integrability approach is naturally tailored to single-trace

operators. However it does raise the question of how to include such effects. Indeed it is

an outstanding challenge to account for multi-trace operators and, more in general, 1/N

effects in the integrability, see e.g. ref. [43]. There are three facets to this problem; to

1The OPE approach has been recently considered in the context of integrability in ref. [37].
2This tessellation approach is reminiscent of the “pentagon” approach for scattering amplitudes [41, 42].
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begin with, correlation functions should not only be represented on a sphere, but also

on higher-genus surfaces; next, in general it is necessary to compute correlation functions

that involve one or more multi-trace operators; finally, the precise structure of the mixing

between single and multi-trace operators should be found by diagonalising the complete

dilatation operator. In our work we focus on the computation of correlation functions,

hence on the first two tasks. In particular, we study two-point functions of non-protected

operators at next-to-leading order in the 1/N expansion by hexagon tessellations. Indeed

we find two contributions: from the higher genus topology (a torus at this order), and from

single-trace-double-trace correlators. The first term can be studied by tessellating a torus

by hexagons.3 In practice, we reduce the problem to computing a four-point function on a

torus reminiscent of what was considered in ref. [45]; to reproduce the two-point function

we take two of these operators to be the identity, as it is done when computing the Gaudin

norm by hexagons [19]. Also in this context, colour-dressing turns out to be essential to

reproduce the field-theory result. Correlation functions involving double-trace operators

can also be dealt with by similar identity insertions.

Finally, we turn to wrapping corrections, showing that indeed colour-dressing gives

the correct rules for selecting which diagrams to dress by mirror magnons, at least in the

one-loop case which is the only one studied in the literature so far. In the process, we find a

direct relation between single-magnon exchanges in the hexagon formalism and Yang-Mills

lines in the N = 2 supersymmetric Feynman diagram formalism.

The paper is organised as follows: in section 2, we review the computation of four-point

functions at tree level in field theory for the case at hand; we also introduce the Drukker-

Plefka restricted kinematics [46, 47], which is natural for the hexagon formalism [19] and

which we will employ for several computations throughout the paper. In section 3 we

briefly review the hexagon formalism starting from the case of three-point functions; we

discuss the case of four-point functions at some length and comment on how the approach

of ref. [38] relates to the one of ref. [39]. In section 4 we detail the computation of pla-

nar four-point functions over two protected and two non-protected operators, explain the

need for SU(N) colour dressing and introduce the study of double-trace admixtures. In

section 5 we show how to use the hexagon formalism to compute the next-to-leading-order

in the 1/N expansion for the tree-level two-point function of non-protected operators. In

section 6 we show that colour-dressing automatically encodes the known rules for wrapping

processes at one loop, and propose an interpretation of wrapping modes in terms of N = 2

supersymmetric Feynman diagrams. We conclude in section 7, and relegate some details

to the appendices.

2 Tree-level four-point functions with two non-protected operators

We consider four-point functions of scalar operators in N = 4 supersymmetric Yang-Mills

theory. The simplest operators that we can consider are 1
2 -BPS ones, such as Tr[ZL]

where Z is a complex scalar. Starting from such an operator it is possible to define

3The idea of tessellating higher-genus surfaces by hexagons was also proposed by P. Vieira [44].
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supersymmetry-protected four-point functions, by considering 1
2 -BPS operators in a spe-

cial kinematic configuration [46]. We introduce the super-translation T,

T = −iεαα̇Pαα̇ + εaȧR
aȧ, (2.1)

written in terms of the Poincaré translation Pαα̇ and of the R-symmetry generator Raȧ.

From a scalar Z at position xµ = 0 we hence have

Z(a) := eaTZ(0)e−aT = [Z + a(Y − Ȳ ) + a2Z̄](0, a, 0, 0) . (2.2)

Similarly, we find

Y(a) = [Y + aZ̄](0, a, 0, 0), Ȳ(a) = [Ȳ − aZ̄](0, a, 0, 0), (2.3)

while X and X̄ are only translated in Minkowski space. We will suppress the a-dependence

when this does not cause confusion, or adopt the short-hand notation Zj = Z(aj). It is

useful to spell out the non-vanishing propagators

〈XiX̄j〉 =
1

a2
ij

, 〈YiȲj〉 =
1

a2
ij

, 〈YiZj〉 =
1

aij
, 〈ȲiZj〉 =

1

aji
, 〈ZiZj〉 = 1 ,

(2.4)

where aij = −aji = ai − aj . We denote 1
2 -BPS operators of length L as

OL =
1√
LNL

Tr(ZL). (2.5)

Computing the tree-level four-point functions of such operators is straightforward, though

somewhat cumbersome, and can be done by taking Wick contractions and using eq. (2.4).

Moreover, these correlators are protected by supersymmetry so that the tree-level result

does not get corrected at higher loops [46].

One way to obtain more interesting correlators is to allow some of the operators to be

non-protected. We shall focus on so-called BMN operators [7] with two impurities. It is

only a technical complication to consider more general operators, both in field theory and

in the hexagon approach of the next section. For the purposes of this paper, we will focus

on this simplest non-trivial example. Hence we consider operators of the type

OkL = Tr(ZL−k−2YZkY) , (2.6)

where we could (and will) also allow the two impurities to be {Ȳ, Ȳ}, {X ,X} or {X̄ , X̄ }. For

each set of excitations, eq. (2.6) gives bL/2c distinct operators. Conformal eigenstates are

found by diagonalising the dilatation operator for every L, which gives a linear combination

of OkLs with definite anomalous dimension γ = g2γ1+O(g4).. We are interested in operators

with γ1 6= 0, as these are independent from the 1
2 -BPS states — rather than being a

symmetry descendant thereof.

It is a well-known yet remarkable fact that such operators and their planar anomalous

dimensions can be found by computing the spectrum of an integrable SU(2) spin chain

with nearest-neighbour interactions [9]. The Bethe ansatz equations for a chain of length

– 5 –
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L operator Bethe vector γ1 Rapidity u

4 B4
1√
3N4

(
O0

4 −O1
4

)
6 1

2
√

3

5 B5
1√
2N5

(
O0

5 −O1
5

)
4 1

2

6 B∓6 1√
5N6

(
1±
√

5
2 O0

6 + 1∓
√

5
2 O1

6 −O2
6

)
5∓
√

5 1
2

√
1± 2√

5

7 B′7 1√
2N7

(
O0

7 −O2
7

)
2

√
3

2

7 B′′7 1√
6N7

(
O0

7 − 2O1
7 +O2

7

)
6 1

2
√

3

Table 1. BMN operators with two impurities and length L ≤ 7. we also list the one-loop anomalous

dimension γ1 and the Bethe rapidity u = u1, cf. eq. (2.8). Operators are normalised so that their

two-point function reads 〈BLBL〉 = 1 +O(1/N2).

L take a simple form in terms of the “rapidities” u1, u2 of the two impurities; these are

associated to the momentum as

ei p(u) =
u+ i/2

u− i/2
, (2.7)

in our convention. Furthermore, cyclicity of the trace requires u1 + u2 = 0 so that the

Bethe ansatz equation and the anomalous dimension are simply given by [9](
u1 + i/2

u1 − i/2

)L−1

= 1 , u2 = −u1 , γ1 =
2∑
i=1

1

u2
i + 1/4

. (2.8)

The eigenvectors of the dilatation operator, in the planar limit, are given by the Bethe

wave-functions associated to a given rapidity. In table 1 we list the first few eigenstates

with γ1 6= 0, along with their associated anomalous dimension and rapidity. Notice that

the eigenstates have been normalised for later convenience.

From this set of operators, it is also straightforward to compute tree-level correlation

functions. Our focus here is on four-point functions involving two 1
2 -BPS operators and

two (non-protected) BMN operators. We will list several such correlators in table 2 below;

in the next section we will see how to reproduce that table using the integrability-based

approach of hexagon tessellations. Finally we would like to mention that we restrict our-

selves to the simplest BMN operators with two magnons in order to keep the discussions

as simple as possible. We can, of course, perform the same analysis for longer operators

with more magnons. This would increase the complexity of our exercise without revealing

any further insight.

3 The hexagon formalism for correlation functions

We start by reviewing the hexagon approach to correlation functions.

3.1 The hexagon proposal for three-point functions

Above we have discussed correlation functions in N = 4 SYM. In the dual string theory,

n-point correlation functions emerge from puncturing the string worldsheet n times. The

– 6 –
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simplest case, for n = 3, gives the topology of a “pair of pants”. It was suggested in

ref. [19] that the three-point function can be found from decompactifying the worldsheet

by cutting the pants “along the seams”, which gives two hexagonal patches. Each of these

hexagonal patches could be mapped to an ordinary (square) worldsheet patch with the

insertion of a conical excess operator — the hexagon operator. A sum over form factors

of this operator will then yield the three-point function. This generalises the cutting and

sewing of spin chains that is natural at weak ’t Hooft coupling [18] with the advantage that

the hexagon form factor is known non-perturbatively — much like what happens for the

S matrix for two point functions [48, 49].

Let us briefly illustrate the construction on a simple case: a three-point function of

the form 〈BL1OL2OL3〉, involving one non-protected operator and two 1
2 -BPS operators.

We start from three operators OL1 ,OL2 ,OL3 which without loss of generality we can take

at positions a1 = 0, a2 = 1 and a3 = ∞. Decompactifying the resulting three-point

function gives two empty hexagons; to get the 〈BL1OL2OL3〉 three-point function we have

to introduce two impurities (magnons) with rapidities u1, u2 on top of the vacuum OL1 .

Then, the hexagon tessellation yields a sum over partitions α, ᾱ with α ∪ ᾱ = {u1, u2}.
The sum is weighted by phases that emerge from transporting either magnon across the

chain [19],

A =
∑

u=α∪ᾱ
(−1)|ᾱ| ω(α, ᾱ, `12) h123(α) h132(ᾱ), ω(α, ᾱ, `) =

∏
k∈ᾱ

eipk`
∏

j∈α,j>k
Skj , (3.1)

In particular, for a two-impurity state we have e.g.

A = h123({u1, u2}) h132(∅)− eip2`12h123({u1}) h132({u2})

− S12e
ip1`12h123({u2}) h132({u1}) + ei(p1+p2)`12h123(∅) h132({u1, u2}) ,

(3.2)

where ∅ is the empty set. The ingredients in this formula are Beisert’s S-matrix ele-

ments [48] for the scattering of the two impurities, and the hexagon form factor, which

also depends on the impurities we consider. The empty hexagon is normalised to give

h(∅) = 1; in appendix A we collect the tree-level expressions needed for the computation

of the hexagon form factors with flavours Z, Y, Ȳ ,X, X̄. From A, the three-point function

follows immediately as [19]

〈BkL1
OL2OL3〉 =

√
L1L2L3

N

A√
G
∏
j<k

√
Sjk

, (3.3)

where the Gaudin norm G is given by

G = det

[
∂Φj(u)

∂uk

]
with eiΦj(u) = eipjL

2∏
i 6=j

S(uj , ui) . (3.4)

Notice that this construction is only asymptotic, and it should be completed by incorpo-

rating Lüscher-like finite-size corrections [19–22]. However, we will not need the details of

wrapping corrections in the rest of this paper, and we will not review them here.

– 7 –
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3.2 Four-point functions and position-dependence for hexagons

It is not immediately obvious how to adapt the above construction to describe four-point

correlation functions. Perhaps the most glaring issue is that only three points can be put

at chosen locations — say 0, 1,∞ — and the final, physical result will depend on the

position of the fourth point. Even in the restricted kinematics [46] described in section 2,

this introduces a new parameter a ∈ R. In ref. [38] we have proposed how to account

for the dependence on the position and how to tessellate the four-point function. We will

review that proposal in some detail, commenting on how it relates to the similar approach

proposed independently in ref. [39].

A first indication of how to include position dependence (or, equivalently, R-symmetry

charge dependence) comes from field theory, and was put forward in ref. [38]. Let us start

from the simplest case of a hexagon involving three operators, two of which are 1
2 -BPS. The

remaining operator, which we take at point (x1)µ, contains a single impurity — e.g. arising

from acting with a derivative ∂µ in Lorentz space. The resulting three-point function is a

Lorentz-covariant tensor; besides, by conformal invariance, it must have definite conformal

weight at point (x1)µ. The only possibility is hence the conformal vector

(v1;23)µ =
(x12)µ

(x12)ν(x12)ν
− (x13)µ

(x13)ν(x13)ν
. (3.5)

It is convenient to parametrise this vector by introducing the holomorphic and anti-

holomorphic part4 of the distances xij , x
+
ij and x−ij , respectively. This will allow us to

make contact with ref. [39]. In fact, projecting on the (anti-)holomorphic part and using

xµxµ = x+x−, we have

(v1;23)± =
x±12

x+
12x
−
12

− x±13

x+
13x
−
13

=
x∓23

x∓12x
∓
13

. (3.6)

This is precisely the position-dressing associated to the hexagon in ref. [39], see also ap-

pendix B, even though the authors there reached this expression by a somewhat different

reasoning. Similarly, if instead of acting with a derivative ∂µ we acted with a lowering

operator J i in su(4) R-symmetry space, we would have found a vector (u1;23)i in the em-

bedding formalism. Again, this is most simply expressed in terms of holomorphic and

anti-holomorphic parameters which we denote as y±ij . By the very same algebra we have

(u1;23)± =
y∓23

y∓12y
∓
13

. (3.7)

We refer the reader to appendix B for further details on this prescription and for its

comparison with the approach of ref. [39]. For the purpose of this paper we shall mostly

restrict to the Drukker-Plefka kinematics. Notice that in eq. (2.2) we have coupled the

4It is thanks to the four-point function kinematics that we can write our results in terms of holomorphic

and anti-holomorphic coordinates. Putting three of the operators on a line in Minkowski space, which can

be done without loss of generality owing to conformal invariance, the whole four-point function is defined

on a plane, hence the two-dimensional kinematics; the same happens in R-symmetry space.

– 8 –
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Poincaré translation and the R-symmetry rotation; hence, the Minkowski and R-symmetry

vectors are now related and in fact, for our choice, identical.5 Both vectors can be written

in terms of the positions aj ; we find, for the only non-vanishing component of (v1;23)µ

v1;23 = u1;23 =
1

a12
− 1

a13
=

a23

a12a13
. (3.8)

This argument can be repeated for excitations at any of the operators in a given hexagon,

and it gives a simple prescription for incorporating space-time dependence at tree level;

schematically [38]

h123(α1, α2, α3) → ĥ123(α1, α2, α3)

= v
|α1|
1;23 v

|α2|
2;31 v

|α3|
3;12 h123(α1, α2, α3) ,

(3.9)

where we have three groups of excitations, with |αj | excitations at position (xj)
µ =

(0, aj , 0, 0), for j = 1, . . . 3. Beyond tree-level, one should take into account that the scaling

dimension of magnons is corrected as in eq. (2.8) so that the exponents |αj | are shifted by

γ(αi), the anomalous dimension of the magnons in the set αi [39]. While we mostly work

in the restricted kinematics on the line, it is rather straightforward to promote the vectors

vi;jk to functions of the holomorphic coordinates, see appendix B.

We remark that vi;jks are clearly not independent for different choices of i, j, k. For

instance, vi;jk + vi;kl = vi;jl. In ref. [38] we found that the tree-level four-point function of

the form 〈BL1OL2OL3OL4〉 can be written in terms of the following basis(
v2

1;23, v1;23 v1;24, v
2
1;24

)
. (3.10)

For the four-point functions involving two BMN operators of table 2, we might näıvely

expect nine such basis elements; however, only five of those are linearly independent and

we can therefore introduce the basis vector v

v =
(
v2

1;24 v
2
2;13, v1;23 v1;24 v

2
2;13, v

2
1;23 v

2
2;13, v

2
1;23 v2;13 v2;14, v

2
1;23 v

2
2;14

)
. (3.11)

Using this, we can compactly write down the tree-level four-point functions as

〈BL1 BL2 OL3 OL4〉 =
1

N2
mχ,χ′ · v, (3.12)

where mχ,χ′ is a vector of coefficients depending on the impurities’ flavours χ, χ′ which

we may take to be X, X̄, Y, Ȳ ; for convenience, we have explicitly extracted the leading

SU(N) colour scaling 1/N2. In this way, we can compactly write the four-point functions

of table 2 below.

3.3 Spin-chain interpretation

The field-theory prescription for dressing the four-point function is rather straightforward.

It is also interesting to obtain the same results in the spin-chain picture, which can be

5Running a bit ahead of ourselves, let us remark that in terms of the conformal cross-ratios the line

configuration reads simply z = z̄ = α = ᾱ = a, cf. appendix B.
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Figure 2. Spin-chain picture for the spacetime dressing. We have one BMN operator on the left

panel and two BMN operators on the right panel. We denote the number of propagators between

two points i, j as `ij . When there are two possible ways for the Wick contraction, one in the front

and one in the back, we denote the corresponding number of propagators by `Fij and `Bij respectively.

done explicitly at tree level. Let us start by presenting a neat argument originally given

in ref. [39]. We first consider the spacetime dressing for a single BMN operator and then

extend the argument to the case with two BMN operators. Consider figure 3 where we

place the BMN operator at position a1. For simplicity, we take the one magnon state with

impurity of flavour Y and momentum p. At tree-level we find

TY
1 =

`F12∑
n=1

eipn

a12
+ eip `

F
12

`14∑
n=1

eipn

a14
+ eip(`

F
12+`14)

`B12∑
n=1

eipn

a12
+ eip(`

F
12+`14+`B12)

`13∑
n=1

eipn

a13

=
1

N (p)

[
v1;23 + v1;42 e

ip`F12 + v1;24 e
ip(`F12+`14) + v1;32 e

ip(`F12+`14+`B12)
]
.

(3.13)

where vi;jk = 1/aij − 1/aik and we have used eipL1 = 1, (L1 = `F12 + `14 + `B12 + `13). This

result reproduces exactly the “position-dressed” hexagon form factor ĥi;jk of eq. (3.9) up

to the overall normalisation N (p) = e−ip − 1.

Things become more interesting when we consider two BMN operators with non-trivial

excitations. Let us consider an example where excitations on both operators are Y s. We

get a term which is the product of two factors — one for each operator — which are similar

to the one in eq. (3.13)

TY
1 =

1

N (p)

[
v1;23 + v1;42 e

ip`F12 + v1;24 e
ip(`F12+`14) + v1;32 e

ip(`F12+`14+`B12)
]
,

TY
2 =

1

N (q)

[
v2;13 + v2;41 e

iq`F21 + v2;14 e
iq(`F21+`24) + v2;31 e

iq(`F21+`24+`B21)
]
.

(3.14)

However, there is a contact term arising when we have Y -excitations at corresponding

positions on both operators. The propagator vanishes in this case and we should subtract

the corresponding contribution, which is

CY Y
12 =

`F12∑
n=1

eipn

a12

eiqn

a21
+ eip(`

F
12+`14)eip(`

F
21+`24)

`B12∑
n=1

eipn

a12

eiqn

a21
(3.15)

= − 1

a2
12

1

N (p+ q)

(
1− ei(p+q)`F12 + eip(`

F
12+`14)+ip(`F21+`24)(1− ei(p+q)`F12)

)
,
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so that the corrected result is

TY Y
12 = TY

1 TY
2 − CY Y

12 . (3.16)

To extract the hexagon form factors for two excitations of type Y ,Y at tree level, we can

look at for example the coefficient of ei(p+q)`
F
12 . Noticing that v1;42v2;41 = −1/a12, we have

v1;42 v2;41

(
1 +
N (p)N (q)

N (p+ q)

)
= v1;42 v2;41

u− v − i
u− v

, (3.17)

where the second term in the bracket comes from the contact term and we have used the

change of variables eip = (u+ i/2)/(u− i/2) and eiq = (v− i/2)/(v+ i/2). Once again, up

to normalisation, eq. (3.16) reproduces the hexagon amplitude ĥ including the space-time

dressing, cf. eq. (3.9). Here we considered two excitations of type Y, Y ; the explicit form

of (3.14) and of the contact terms (3.15) depends on the choice of excitations, cf. eq. (2.4).

It is easy to check that the matching works more generally. A calculation similar to the

one above gives TX
1 = TX̄

1 = 0 and TȲ
1 = −TY

1 . The contact terms are given by

CXX̄
12 = CX̄X

12 = −CȲ Ȳ
12 = −CY Y

12 . (3.18)

All the other contact terms are zero. The four-point functions are given by

Tχ1χ2
12 = Tχ1

1 Tχ2
2 − Cχ1χ2

12 , χi = X, X̄, Y, Ȳ . (3.19)

Moreover, since the excitations in each operator are magnons of an integrable spin chain,

it is natural that this structure generalises to more complicated multi-excitation states.

3.4 Tessellating the four-point function

We have seen how to incorporate the dependence on spacetime (and R-symmetry charges)

in the hexagon; we still have to work out how to cut the four-point function into hexagons.

There are two routes: obviously, we could first split the four-point functions into two three-

point functions, like in the OPE, and tessellate those. This however requires summing

over intermediate physical states, including multi-trace operators, which is rather involved,

see ref. [37] for an implementation of this approach. What we advocated in ref. [38] is

decomposing the hexagon along “mirror cuts”, cf. figure 1. A first question is exactly in

which way the four-point function should be cut. In figure 3 we highlight four distinct

ways to cut the four-point function of two BMN and two 1
2 -BPS operators along mirror

lines. As explained in the caption, the position of the propagators naturally suggests how

to tessellate the sphere.

There is an important subtlety, however. Diagrams that have vanishing bridge-lengths

`ij = 0 for several choices of i and j may be represented over more than one of the topologies

of figure 3. This prompts the question of whether we should sum over these different

topologies or we are free to pick the one that suits us best. In ref. [38] we proposed that

the result of the tessellation approach is independent on how we cut the diagram, whenever

we have multiple choices. We call this property embedding invariance. This was checked

explicitly over a number of tree-level examples [38], and in ref. [39] the property was shown
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Figure 3. Four tessellations of the sphere into hexagons. The four-point function of two non-

protected operators at positions 1, 2 (dark dots) and two 1
2 -BPS ones (white dots) is depicted on

the sphere. Strands of `ij propagators are denoted as lines connecting points i and j. Planarly, only

six set of “edge-widths” `ij can be non vanishing; this gives the four topologies of the picture. For

each of them, we find an hexagon tessellation by cutting the sphere along the edges with `ij > 0.

We denote the corresponding hexagon amplitudes as A(kl) to highlight that operator 1 has been cut

into k pieces and operator 2 into l pieces. As always, the computation of A(kl) requires summing

over magnon partitions, which we denote by Greek letters.

to hold also at one loop for a particular setup. In fact, in all the examples we will consider

in this paper we find that embedding invariance holds, though we cannot yet offer a proof

for it from general principles.

We now come to our recipe for computing the four-point functions. Firstly, we list all

the diagrams which we expect from free field theory, by taking all possible planar Wick

contractions. Next, we look at how these can be embedded in the hexagonal tessellations

of figure 3. If it is possible to choose more than one embedding, we are free to pick the one

that suits us best. One subtlety may arise in the embedding; consider topology (33): it may

happen that the same diagram can be embedded in two inequivalent ways on that topology,

if we have three non-vanishing edges, say, on operator 1. For instance, we could arrange

them so that they connect to operators 3, 2 and 4, ordered clockwise; or we could arrange
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them so that they connect to 3, 4 and 2 again clockwise, instead. We call these graphs

chiral, and we count both such embeddings separately; clearly, a similar issue may arise for

topology (44). Having listed the hexagon tessellations with appropriate multiplicities, the

tree-level result can be found by evaluating the hexagon form factors, taking care of using

the splitting factors ω(α, ᾱ, `ij) (3.1) and the position-dependent hexagons (3.9).

To illustrate the procedure, which was detailed in ref. [38], let us spell out A(22), which

is the least cumbersome diagram. We assume that the magnons of operator 1 are originally

on the back of the figure, while those of operator 2 are on the front. We obtain

A(22) =
∑

α∪ᾱ={u1,u2}

∑
β∪β̄={u′1,u′2}

ω(α, ᾱ, `13)ω(β, β̄, `24)

× ĥB
143(α, ∅, ∅) ĥB

134(ᾱ, ∅, ∅) ĥF
243(β, ∅, ∅) ĥF

234(β̄, ∅, ∅),
(3.20)

where the labels B and F distinguish the back and front of the figure for the convenience

of the reader. To simplify our notation, we made the dependence of the hexagon operators

on the space-time factors implicit, cf. eq. (3.9). The other cases in figure 3 yield analogous

expressions, but obviously with partitions into more sets. The full four-point function is

given by summing over all diagrams, each counted once,

〈BL1BL2OL3OL4〉c =
1

N2

√
L1L2L3L4

G1G2S12S34

 ∑
(jk)=(33),(44),(42), `

A(jk)
`

 , (3.21)

where the subscript c indicates that we are computing the connected part of the correlator

and A(jk) are the hexagon amplitudes defined in ref. [38]. Notice that we removed topol-

ogy (22) from the sum; this is a minor simplification that is possible for the particular cases

studied here — all diagrams can also be represented on the other three topologies, so that

by embedding invariance we do not need to consider (22).

3.5 Edge-reducible graphs

The rules that we have summarised above were successfully employed in ref. [38] to compute

tree-level correlation functions involving one non-protected operator. As we discussed in

section 3.2 (see also appendix B), they coincide with the prescription of ref. [39] for the

asymptotic part of the hexagon correlators. An interesting observation was made in ref. [39]

when studying the one-magnon Lüscher-like corrections to correlators (cf. section 4.5 there):

the authors propose that, in order to match field theory, one should sum over all connected

graphs at the asymptotic level, and only over “one-edge irreducible” graphs for Lüscher

corrections — i.e. over graphs that cannot be disconnected by cutting a single edge with

however many propagators. We will see that this empirical rule fails at tree-level when

considering four-point correlators involving two non-protected operators. As we will detail

in the next section, we propose that the correct prescription is instead to dress graphs by

their SU(N) colour factor.
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Graph multiplicity ∗A(33)
Π12,Π13,Π24

multiplicity ∗A(44)

Πf12,Π
b
12,Π13,Π23

(Π12)2(Π13)(Π14)2(Π23)2 2c
(33)
1 ∗ A(33)

2,1,0 c
(44)
1 ∗ A(44)

1,1,1,2

(Π12)2(Π13)2(Π14)(Π23)(Π24) 2c
(33)
2 ∗ A(33)

2,2,1 c
(44)
2 ∗ A(44)

1,1,2,1

(Π12)2(Π13)3(Π24)2 c
(33)
3 ∗ A(33)

2,3,2 c
(44)
3 ∗ A(44)

1,1,3,0

(Π12)3(Π13)(Π14)(Π23)(Π34) 2c
(33)
4 ∗ A(33)

3,1,0

(Π12)3(Π13)2(Π24)(Π34) c
(33)
5 ∗ A(33)

3,2,1

(Π12)4(Π13)(Π34)2 c
(33)
6 ∗ A(33)

4,1,0

Table 3. Relevant graphs and the corresponding hexagon amplitudes for the correlator

〈B5B4O3O2〉. The graphs’ topologies are grouped according to figure 3. Notice that one choice

of propagators Πij can be embedded in multiple topologies depending on how the progagators are

distributed among the front and back of the sphere. For instance, in the first line, we can write

(Π12)2(Π13)(Π14)2(Π23)2 in two ways on topology (33) when the two Π12-propagators are both on

the front or both on the back of the sphere — hence the factor of two. When one is on the front

and one is on the back, we have a single graph of topology (44).

4 Four-point functions with two non-protected operators by hexagons

The computation of tree-level four-point functions with any number of non-protected opera-

tors should follow straightforwardly from the general rules of the previous section. Nonethe-

less, it is worth detailing one such computation, as it will reveal an important subtlety in

the hexagon formalism.

4.1 One example and a puzzle: 〈B5B4O3O2〉

In this section we work out in full detail one particular example among the correlation

functions of table 2: 〈B5B4O3O2〉. To make our computation more explicit, we slightly

alter eq. (3.21) by distinguishing the contributions of different graphs by coefficients cjkl :

〈BL1BL2OL3OL4〉c =
1

N2

√
L1L2L3L4

G1G2S12S34

 ∑
(jk)=(33),(44),(42), `

c
(jk)
` A(jk)

`

 . (4.1)

We have listed in table 3 which graphs can contribute to this four-point function. As it

turns out, by using embedding invariance, we can restrict to topologies (33) and (44). The

result that we expect from free field theory can be found in table 2, and reads for impurities

of type Y ,

〈B5B4O3O2〉c = 3 v2
1;24v

2
2;13 − 6 v1;23v1;24v

2
2;13 + 5 v2

1;23v
2
2;13 − 4 v2

1;23v2;13v2;14 + 2 v2
1,23v

2
2;14 .

(4.2)

From the hexagon tessellation, keeping explicit the coefficients c
(33)
j with j = 1, . . . 6 and

c
(44)
k with k = 1, . . . 3, we find:

〈B5B4O3O2〉 = (2 c
(33)
1 + c

(44)
1 ) v2

1;24v
2
2;13

+ (−4 c
(33)
1 + 6 c

(33)
2 − 4 c

(33)
4 − 2 c

(44)
1 − 2 c

(44)
2 ) v1;23v1;24v

2
2;13
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Figure 4. A one-particle reducible four-point function. The lengths of the four operators that

yield this graph are given by L1, L2 = L1 + 1, L3 = L4 + 1 and L4.

+
(

2 c
(33)
1 − 12 c

(33)
2 + c

(33)
3 + 4 c

(33)
4 + 4 c

(33)
5

+ 6 c
(33)
6 + c

(44)
1 + 4 c

(44)
2 + c

(44)
3

)
v2

1;23v
2
2;13

+ (6 c
(33)
2 − 2 c

(33)
3 − 4 c

(33)
5 − 2 c

(44)
2 − 2 c

(44)
3 ) v2

1;23v2;13v2;14

+ (c
(33)
3 + c

(44)
3 ) v2

1;23v
2
2;14 (4.3)

Equating the two results and solving the resulting system we find:

c
(44)
1 = 3− 2 c

(33)
1 ,

c
(44)
2 = 3 c

(33)
2 − 2 c

(33)
4 ,

c
(44)
3 = 2− c(33)

3 ,

c
(33)
5 = c

(33)
4 ,

c
(33)
6 = 0 .

(4.4)

Näıvely, we would be tempted to set all coefficients c
(kk)
l = 1, i.e. to count once all the

distinct graphs. This almost works, except from the condition c
(33)
6 = 0. Even if this

specific test of the hexagon approach does not fix all coefficients, we find rather explicitly

that one particular connected graph should be excluded. This graph is the only one-

particle reducible graph encountered in this case — though it is not the only one-egde

reducible example, as the graph corresponding to c
(33)
3 can be disconnected by cutting two

propagators along a single edge. In the next section we will propose a systematic way to

make sense of this discrepancy.

4.2 Colour-dressing for hexagons

We propose that when computing the diagrams of table 3 by the hexagon approach we

should weight every diagram by its SU(N) colour pre-factor. This rule allows us to repro-

duce all of the results of table 2, and modifies the original prescription in a non-trivial

way, as highlighted by the example in the previous subsection. To further demonstrate this

point, consider a one-particle reducible diagram such as the one of figure 4. In general, this

diagram gives a non-vanishing hexagon amplitude. However, its contribution vanishes in
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Graph multiplicity ∗A(33)
Π12 Π13 Π24

multiplicity ∗A(44)

ΠF12 ΠB12 Π13 Π23

(Π12)4(Π13)(Π14)2(Π23) 2 c
(33)
1 ∗ A(33)

410 c
(44)
11 ∗ A

(44)
1311; c

(44)
12 ∗ A

(44)
2211; c

(44)
13 ∗ A

(44)
3111

(Π12)4(Π13)2(Π14)(Π24) 2 c
(33)
2 ∗ A(33)

510

(Π12)5(Π13)(Π14)(Π34) 2 c
(33)
3 ∗ A(33)

421 c
(44)
31 ∗ A

(44)
1320; c

(44)
32 ∗ A

(44)
2220; c

(44)
33 ∗ A

(44)
3120

Table 4. Relevant graphs and the corresponding hexagon contributions for the sub-extremal four-

point function 〈B′7B5O2O2〉.

field theory. To see it, let us work out the colour part of the Feynman diagram. Indicating

the colour generator for line a1, etc. as Ta1 , etc., we get schematically

Tr
[
Ta1 · · ·Tal

]
Tr
[
Tal · · ·Ta1Tb

]
Tr
[
TbTc1 · · ·Tck

]
Tr
[
Tck · · ·Tc1

]
∝ Tr

[
Tb
]

Tr
[
TbTc1 · · ·Tck

]
Tr
[
Tck · · ·Tc1

]
,

(4.5)

where we used the well-known identities for SU(N) generators, cf. appendix C, on the

indices a1, . . . al. Hence, the result vanishes as it is proportional to the trace of a single

SU(N) generator.6 For all the correlators involving a term like in figure 4 we find that such

a diagram must be set to zero in order to reproduce the correct correlation function by the

hexagon approach. The reason why this subtlety might have been missed in earlier studies

is that graphs of the type of figure 4 have a vanishing hexagon amplitude when considering

a single non-protected operator.

Let us remark that, unlike the prescription for “edge-reducible” graphs of ref. [39],

the constraint that we have found here applies already at tree-level. This does not mean

that colouring the hexagon formalism will not affect higher orders too. In fact, as we will

discuss in section 6, colouring plays a crucial role also at one loop, and reproduces the

“no edge-reducible” empirical rule. We will also test our prescription for a rather involved

setup, where we consider the leading 1/N corrections to a class of two-point functions —

again, colouring is instrumental in recovering the field-theory result. Finally, this whole

line of reasoning suggests that there is a rather direct map between each diagram appearing

in the hexagon tessellation and the graphs of field theory; it is interesting to explore how

precise such a link may be; we will turn to this issue too in section 6.

4.3 Sub-extremal correlators and multi-trace admixtures

Sub-extremal four-point functions yield another example of correlators with interesting

properties. We call a four-point function sub-extremal when the lengths of the four oper-

ators obey L1 + 2 = L2 + L3 + L4. It is easy to work out that they contain three different

types of graphs. In table 2, the sub-extremal cases are 〈B±6 B4O2O2〉, 〈B7B4O3O2〉 and

〈B7B5O2O2〉, where in the last two correlators B′7 and B′′7 can be used. Let us work out

6Note that here it is crucial that we are considering the gauge group SU(N), rather than U(N). In fact,

had we taken the gauge group to be U(N) in the tree-level example above, we would have found that the

näıve choice ckkl = 1 would have worked. However, when considering one-loop diagrams, which we will do

in section 6.4 below, colour dressing gives equivalent results for SU(N) and U(N).
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in detail the case of 〈B′7B5O2O2〉. The possible graphs and their hexagon amplitudes are

listed in table 4. The field theory result from table 2 reads simply

〈B7B4O2O2〉c = 20 v2
1;23v

2
2;13 , (4.6)

while the hexagon tessellation yields

〈B′7B5O2O2〉c = (−6 c
(33)
1 + c

(44)
11 + 4 c

(44)
12 + c

(44)
13 ) v1;23v1;24v

2
2;13

+ (6 c
(33)
1 − c(44)

11 + c
(44)
12 − c

(44)
13

+ 10 c
(33)
2 + 6 c

(33)
3 − c(44)

31 + c
(44)
32 − c

(44)
33 ) v2

1;23v
2
2;13

+ (−6 c
(33)
3 + c

(44)
31 + 4 c

(44)
32 + c

(44)
33 ) v2

1;23v2;13v2;14 .

(4.7)

By comparing the two expression we see that setting all coefficients to one gives a perfect

matching.

In a sense, this perfect matching is bemusing, because for such a correlator we might

expect leading-order contributions by double-trace admixtures. This was not the case for

the example of section 4.1, which was 〈B5B4O2O2〉; in fact by group theory a non-protected

operator (“long”, from the point of view of psu(2, 2|4) representations) cannot mix with

multi-trace operators involving only 1
2 -BPS single-trace components (which sit in “short”

multiplets). This rules out any mixing for B4 and B5. However, longer operators can mix

with double-trace operators. An explicit diagonalisation of the one-loop dilatation operator

confirms this. The eigenvalue problem for length 6 and 7 leads to complicated root functions

of N , which we can expand at N � 1. For instance, for B′7 we have

B′7 −
1

N

(
3

2
√

2
O3 B4 + 2

√
2O2 B5

)
+ . . . with γ1 = 2 +

1

N2

11

2
+ . . . , (4.8)

for which we only indicated the leading and next-to leading orders in the 1/N expansion.

Notice that, as expected from psu(2, 2|4) representation theory, and given the small length

of the operator, the mixing that we find has the form O · B.

These admixtures potentially change the analysis of the sub-extremal correlators which

we consider, as they may contribute at the same order as the connected four-point functions

of the single-trace parts. For instance, for the case of 〈B7(a1)′B5(a2)O2(a3)O2(a4)〉c which

we considered above, we have a contribution due to admixtures at leading order, i.e. at

O(1/N2). Namely, we find

− 2
√

2

N

(
1

2
〈B5(a1)B5(a2)〉〈O2(a1)O2(a3)O2(a4)〉

+ 〈O2(a1)O2(a3)〉〈B5(a1)B5(a2)O2(a4)〉+ (3↔ 4)

)
= −

16κχ,χ′

N2 a4
12

,

(4.9)

where the coefficient κχ,χ′ distinguishes the case where the excitations are of type Y or Ȳ

or X, X̄ on the first and second operators: κY,Y = 1, κȲ ,Ȳ = 0 and κX,X̄ = 2. Similar

results hold e.g. for 〈B′7(a1)B4(a2)O3(a3)O2(a4)〉 and 〈B∓6 (a1)B4(a2)O2(a3)O2(a4)〉.
In all the cases we consider, we find that the hexagon amplitudes are tailored to the

single-trace part of the full conformal field theory eigenstates. This is not surprising,
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because the integrable spin-chain of N = 4 SYM is inherently single-trace. Indeed our

diagrams on the sphere only account for one trace — i.e. one puncture — at each point. In

the next section we will further explore how to use the hexagon formalism to compute two-

point functions involving single-trace and double-trace operators; by a similar approach,

we will reproduce two-point functions when the worldsheet has the topology of a torus.

5 Hexagons and 1/N corrections

In the above analysis of four-point functions involving two non-protected operators we have

learned two important lessons: firstly, we need to colour-dress the hexagon to know which

diagrams we should take into account (cf. section 4.2); secondly, that the hexagon ampli-

tudes A(jk) describe the single-trace part of the conformal eigenstates, while double-trace

and higher admixtures would eventually have to be dealt with separately (cf. section 4.3).

In this section we will see that, keeping colour-dressing in mind, we can indeed reproduce

the first correction to the norm of a conformal eigenstate. This comes with a relative factor

of 1/N2 with respect to the leading order.

We shall focus on two-point functions giving the norm of a BMN operator B with

two impurities including their admixtures. We will consider two cases: the two-point

function between an operator B with two impurities X,X and its conjugate with two

impurities X̄, X̄, and the case where all impurities on both operators have flavour Y . This

last case might appear confusing from field-theory point of view; however, as detailed

in ref. [19] this is the correct flavour identification in the hexagon formalism when the

crossing transformation is accounted for. At any rate, these two computations should

match for any given operator, due to SU(4) symmetry. This is however not explicit in

the hexagon formalism, and therefore performing both calculations will be a further check

of our approach. We hence consider the tree-level two-point functions of two conformal

eigenstates with SU(4) charges as above; these have a single-trace part and multi-trace

admixtures. We are interested in the two-point function up to order 1/N2, so that only

the single-trace and the double-trace part are relevant:〈(
Bn +

c

N
Bn−mOm + . . .

)(
Bn +

c

N
Bn−mOm + . . .

)〉
= 〈BnBn〉+

2c

N
〈Bn(Bn−mOm)〉+

c2

N2
〈Bn−mBn−m〉〈OmOm〉+O(N−4).

(5.1)

Remark that the mixing coefficient c needs to be determined by diagonalising the finite-N

dilatation operator. This is a very non-trivial task, which falls outside the scope of this

paper but that would be interesting to study by integrability — at least in a perturbativve

1/N expansion. Let us now look at eq. (5.1) more closely. The single-trace–single-trace

term is leading by construction. This terms contains several contributions that can be

expanded in powers of 1/N2. The leading contribution comes from Wick contractions that

can be represented on a sphere. How this can be computed by hexagons was described in

appendix K of ref. [19]; there, the authors recover the the off-shell scalar product (whence

the Gaudin norm follows) from tessellating a three-point function where the excitations
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Figure 5. Torus two-point function and hexagon tessellations. On the top left diagram, we draw a

two-point function on the torus, highlighting all the possible propagators that can be drawn without

self-intersections. Next, we represent this on a square with opposite edges identified. To cut it into

four hexagons (rightmost panel), we follow the propagators, and include one additional cut which

goes from each operator to itself, wrapping the A-cycle on the torus. Below, we consider the same

picture, but now we also introduce two operators labelled 3, 4, obtaining the topology studied in

ref. [45]. Here the additional operators are needed to regularise the hexagon amplitude, and are

taken to be the identity.

on two operators are “transverse” and the third operator is 1
2 -BPS. Diagrams that can be

drawn on a torus appear at order 1/N2, and we compute them in section 5.1 by considering

a four-point function with two identity insertions.

Next, the single-trace–double-trace contribution comes with an explicit 1/N pre-factor,

and is further suppressed by 1/N due to the colour structure, so that all in all it comes

at order 1/N2. We will explain in section 5.2 how to compute the leading order of this

correlation function from our four-point hexagon amplitude A(42) by point-splitting the

double-trace operator and inserting one identity operator.

Finally, the double-trace–double-trace term in (5.1) requires no further discussion: the

disconnected term will be leading, and at leading order it will trivially give c2/N2 if the

admixtures are written in terms of appropriately normalised operators.

5.1 Two-point function on a torus

In figure 5 we have depicted the two-point function of two single-trace operators on a

torus. With respect to a sphere, now we can draw “planarly”, i.e. without self-intersections,

several strands of propagators which travel across the square’s edges. In what follows, we

will be specifically interested in those diagrams that can be drawn on the torus, but not

on a sphere.

– 20 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
0

Colour factors. Our first goal is to determine the colour-factors for the torus diagrams.

From the top-middle panel of figure 5 it is easy to do so. Let us index the four sets

of propagators as {a1, . . . , a`A}, {c1, . . . , c`C}, {e1, . . . , e`E} and {g1, . . . , g`G}; the SU(N)

generator corresponding to a field connected to the propagator aj will be denoted as Taj ,

and so on. By going around the operators 1 and 2 and minding the ordering of each set of

propagators, we read off the colour factor

T`A`C`E`G = Tr
[
Ta1 · · ·Ta`A Tc1 · · ·Tc`C Te1 · · ·Te`E Tg1 · · ·Tg`G

]
Tr
[
Ta`A · · ·Ta1 Tc`C · · ·Tc1 Te`E · · ·Te1 Tg`G · · ·Tg1

]
.

(5.2)

Imagining that each edge is a ribbon consisting of several propagators, it is easy to un-

derstand how the colour generators should be ordered in each trace by looking at how the

ribbons are attached to the two operators. In particular, the generators of each ribbon

should be sorted in opposite order in the two traces, cf. figure 5. Due to the cyclicity of the

trace it follows immediately that a colour factor T`A`C`E`G where two or more edge-widths

`A, `C , `E , or `G vanish can be mapped to the one on a sphere, i.e. to T`000, where ` is

the sum of the non-vanishing edge-widths. We have seen that colour factors are important

for reproducing four-point functions by hexagons; we will see that this is the case also

for two-point functions on the torus. In table 5 we have collected the evaluation of the

diagrams needed for computing the torus two-point function by Wick contractions. We

will discus the detail of that table in the next subsection; it is worth noting that certain

classes of colour factors, namely Tij10 for i, j > 1 do not contribute at leading order (see

appendix C for the relevant SU(N) manipulations) while others contribute with a sign.

Tessellating the torus. The simplest tessellation of the torus two-point function is

given in the top-right panel of figure 5; the torus is split over four hexagons. If we try to

incorporate the space-time dependence of the hexagon, however, we immediately encounter

an issue. Let us focus on the leftmost hexagon in the figure. Denoting such a hexagon as

h212, and inserting a single Y excitation, we would find by our prescription (3.9)

ĥ212({u}, ∅, ∅) = v2;12 h212({u}, ∅, ∅) =

(
1

a21
− 1

0

)
h212({u}, ∅, ∅), (5.3)

which clearly makes no sense, as the hexagon amplitude itself is non-vanishing and could

not cancel such a pole.7 To remedy this pathology, we introduce two identity operators

at positions a3, a4 along the mirror edges that would lead to a self-contraction. Notice

that these mirror edges have vanishing bridge-length. The resulting tessellation involves

eight hexagons and is presented in the lower panel of figure 5. This picture is reminiscent of

what was found in ref. [45] in the study of torus correlators.8 This allows us to obtain finite

7The situation improves a bit if we consider the transverse excitations X, X̄: then, the single-magnon

hexagon form factor vanishes, and for two excitations we find a regular position-dependence owing to the

identity v1;12v2;11 = 1/a212. Still, we take the presence of divergences for longitudinal magnons as a sign

that the set-up need to be regularised. Besides, while it may be possible to do without any regularisation

at tree level for some flavours, it might be impossible to avoid this when considering wrapping effects.
8We are grateful to Niklas Beisert for bringing ref. [45] to our attention.
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Figure 6. We further detail the tessellation of the torus into eight hexagons. On the left, we draw

the torus as a square; we insert two non-protected operators 1, 2, and tessellate the torus into four

hexagons by cutting along the propagators (solid coloured lines) and along one of the torus’ cycles

(coloured dotted lines). To regularise the construction we insert two identity operators labelled by

3, 4 along the coloured dotted lines. It is then natural to further cut the picture by drawing the

gray dotted lines. In the right panel, we represent the eight hexagons arising from the procedure.

results, but introduces a spurious dependence on a3, a4; it will be a test of our construction

that this dependence should drop out, and that the correlator should scale as 1/a4
12 as

expected from free field theory.

As we have introduced eight hexagons, for both set of rapidities {u1, u2} and {u3, u4}
we need an eight-fold partition, which we indicate as α and β, respectively; here α =

{α1, . . . , α8} with
⋃8
j=1 αj = {u1, u2}, and similarly for β. In figure 6 we detail how to

distribute such partitions. The partition factors ω are constructed as usual, cf. eq. (3.3).

Somewhat schematically, we find

A8
`A `C `E `G

=
L

nG S12

∑
α,β

{
ω(α, `α)ω(β, `β)[

ĥ132({α1}, ∅, {β2})1 ĥ124({α2}, {β1}, ∅)2

ĥ142({α3}, ∅, {β4})3 ĥ123({α4}, {β3}, ∅)4

ĥ132({α5}, ∅, {β6})5 ĥ124({α6}, {β5}, ∅)6

ĥ142({α7}, ∅, {β8})7 ĥ123({α8}, {β7}, ∅)8

] }
, (5.4)

where we have indexed the hexagons with a subscript corresponding to the labelling of

α-partitions in figure 6. Notice the combinatorial factor of 1/n, where n is the length of

the longest cycle in the string (`A `C `E `G). This avoids overcounting configurations due

to cyclic symmetry; consider for instance A8
1111. In this case the sum over partitions yields

four identical terms, so that n = 4; similarly, for e.g. A8
2121, n = 2. The double sum over

partitions might seem daunting at first. Fortunately, the hexagon operator is constant

whenever it contains zero or one magnon; hence in the above formula only at most two ĥ

factors can give a non-trivial dependence.

The amplitude A8
ijkl has almost the same symmetry properties as the colour factors

Tijkl: with one, two or three non-vanishing edge-widths the amplitude is totally symmetric

under the exchange of the labels. Furthermore, all amplitudes with only two non-vanishing
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edge widths are equal to the A8
`000 case, which in turn coincides with the usual Gaudin

norm on the sphere. One difference is that, while the colour factor Tijkl is invariant under

S4 permutations, the hexagon amplitude A8
ijkl is not; rather, it is invariant under Z4 cyclic

permutations, as for instance A8
2211 6= A8

2121; this ensures self-consistency of the definition

of the cycle length n. Finally, we emphasise again that we only sum over genuine torus

diagrams, i.e. those where at least three edge-widths are non-zero. Note that, due to the

presence of the colour factors, this has leading order 1/N2. We have listed in table 5 the

torus contribution to the norm of the first few BMN operators — those listed in table 1 in

section 2. Again, we find perfect matching between the field-theory construction and the

integrability one.

5.2 Single-trace–double-trace correlators

As we described around eq. (5.1), part of the O(1/N2) result comes from the two-point

function of the single-trace part of each BMN operator with its double-trace admixtures.

These contributions can also be calculated by hexagons. In particular, let us consider the

four-hexagon tessellation of topology (42) in figure 3. We want to compute the overlap

between a single trace operator BL and a double-trace operator BL′OL′′ . Firstly, notice

that this correlator can be represented on a tessellation of topology (42) with BL at position

a1, BL′ in position a2 and OL′′ in position a4, cf. figure 3. By doing this, we implicitly

introduce a point-splitting regularisation. However, notice that OL′′ and BL′ are always

placed on distinct hexagons. Therefore, we can safely and straightforwardly take the limit

a4 → a2 in our result.

The hexagon amplitude therefore gives

〈BL;BL′OL′′〉 =

√
LL′ L′′

GLGL′S12S1′2′
A(42)

00L′ , (5.5)

where the S matrices S12 and S1′2′ scatter the two magnons on BL and BL′ , respectively.

The color dressing of the hexagon in this case is trivial, as the leading-order term is universal

and equal to 1/N . We find

〈B6∓;B4O2〉 =
7∓
√

5√
6N a4

12

+ . . . , 〈B′7;B4O3〉 =

√
2

N a4
12

+ . . . ,

〈B′7;B5O2〉 =
5√

2N a4
12

+ . . . , 〈B′′7 ;B4O3〉 = − 2
√

6

N a4
12

+ . . . ,

〈B′′7 ;B5O2〉 = − 3
√

3√
2N a4

12

+ . . . ,

(5.6)

in full agreement with free-field theory.

For the admixtures of operator B′7 of equation (4.8), we therefore find a contribution

for the single-trace–double-trace overlap which reads

2

〈
B′7
(
− 3

2
√

2N
O3B4 −

2
√

2

N
O2B5

)〉
= − 23

N2a4
12

+ . . . . (5.7)
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correlator Field theory Tijkl hexagon amplitude

〈B4 B4〉 N4a4
12 −2 ∗ T2110 −N2 + . . . A8

2110 = −2

+1 ∗ T1111 +N2 + . . . A8
1111 = +1

〈B5 B5〉 N5a4
12 +1 ∗ T3110 −N3 + . . . A8

3110 = +1

+1 ∗ T2111 +N3 + . . . A8
2111 = +1

+(1±
√

5) ∗ T4110 −N4 + . . . A8
4110 = +(1±

√
5)

+(3∓
√

5) ∗ T3111 +N4 + . . . A8
3111 = +(3∓

√
5)

〈B∓6 B
∓
6 〉 N6 a4

12 +1
2(1∓

√
5) ∗ T2220 +N4 + . . . A8

2220 = +1
2(1∓

√
5)

−1
2(1∓

√
5) ∗ T2211 +N4 + . . . A8

2211 = −1
2(1∓

√
5)

+1 ∗ T2121 +N4 + . . . A8
2121 = +1

+5 ∗ T5110 −N5 + . . . A8
5110 = +5

+2 ∗ T4111 +N5 + . . . A8
4111 = +2

〈B′7 B′7〉 N7a4
12 −1 ∗ T3220 +N5 + . . . A8

3220 = −1

+1 ∗ T3211 +N5 + . . . 2 ∗ A8
3211 = +1

+2 ∗ T3121 +N5 + . . . A8
3121 = +2

+3
2 ∗ T2221 +N5 + . . . A8

2221 = +3
2

+1 ∗ T5110 −N5 + . . . A8
5110 = +1

+4 ∗ T4111 +N5 + . . . A8
4111 = +4

〈B′′7 B′′7〉 N7a4
12 +1 ∗ T3220 +N5 + . . . A8

3220 = +1

−1 ∗ T3211 +N5 + . . . 2 ∗ A8
3211 = −1

+4 ∗ T3121 +N5 + . . . A8
3121 = +4

+5
2 ∗ T2221 +N5 + . . . A8

2221 = +5
2

Table 5. The torus part of two-point functions of single-trace operators with SU(N) gauge group.

For the two-point functions in the first column, we first list the result of Wick contractions for

each given colour structure Tijkl, cf. eq. (5.2). We also write down the leading-order term for the

1/N expansion of Tijkl. Notice that we have rescaled the correlators to make more natural the

field-theory N -counting; all the torus contributions we consider are O(NL−2). We do not write

sphere contributions from TL000, which are of order NL, and subleading contributions such as

Tij10, i, j > 1, see appendix C. The last column is the hexagon amplitude, and it matches field

theory. Notice that in two cases there happens to be more than one way to embed one graph on

the hexagon, similarly to what happened for four-point functions; we highlight this by writing e.g.

2 ∗A8
3211. Note that with U(N) gauge group the sphere colour factors become monomials +1 ∗NL,

where L is the length of the operator. Further, the torus factors of this table all go to +1 ∗NL−2,

and so do Tij10 with i, j > 1. Again, the match between free field theory and hexagon computation

is perfect.
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The only remaining contribution we need in order to find the 1/N2 order of eq. (5.1) is

the double-trace–double-trace term, which is dominated by the disconnected contribution.

This can be easily found, and reads

9

8N2
〈O3O3〉〈B4B4〉+

8

N2
〈O2O2〉〈B5B5〉+ . . . =

73

8

1

N2a4
12

+ . . . . (5.8)

6 Hexagons, Lüscher corrections and Feynman graphs

We have seen that colour-ordering is necessary to correctly reproduce generic four-point

functions as well as the torus part of the norm. We need this prescription both to exclude

certain tree-level graphs which are sub-leading (or vanishing) in the 1/N expansion, as well

as to account for non-trivial minus signs in other graphs. Based on this experience, it is

natural to wonder whether the empirical rule to exclude the wrapping contribution of “edge

reducible” graphs proposed in ref. [39] (see also section 3.5) might also be understood in

terms of colour factors. In the section below we show that this is indeed the case, at least

at one loop and for 1
2 -BPS operators. We will also highlight a rather direct link between

N = 2 Feynman graphs and the Lüscher-like corrections which encode finite-size effects in

the hexagon formalism.

To begin with, we briefly review how to rephrase N = 4 SYM in terms of N = 1 and

N = 2 supermultiplets, which will allow us to formulate the Drukker-Plefka kinematics [46]

in terms N = 2 multiplets.

6.1 N = 2 superfields for N = 4 SYM

Here we give a brief account at the linearised level of how the components of the N = 4 field-

strength multiplet can be arranged into N = 1 and N = 2 multiplets in the Wess-Zumino

gauge. To obtain an off-shell quantum formalism the multiplets have to be enlarged in both

cases by further components (“subcanonical” and “auxiliary” fields). For a full account

of the superfield formulations we refer the reader to ref. [50] for N = 1 diagrams and to

ref. [51] for N = 2 supergraphs.

The list of elementary fields of the N = 4 model comprises three complex scalars, four

Majorana-Weyl fermions, and the field strength of the gauge potential Aµ:

Fµν , ψIα, ψ̄Iα̇ φ[IJ ] , φ[KL] = φ[KL] =
1

2
εKLIJφ

[IJ ] , I, J,K,L = 1, . . . 4 (6.1)

All of these transform in the adjoint representation of a non-abelian gauge group; inte-

grability arises in the case of SU(N). Introducing Grassmann parameters θIα, θ̄Iα̇ for the

on-shell supersymmetry of the multiplet we might try to construct a superfield

ϕ[IJ ] = φ[IJ ] + θ[I
αψ

J ]α +
1

2
εIJKLθ̄Kα̇ψ̄

α̇
L + θ[I

α θ
J ]
β Fαβ +

1

2
εIJKLθ̄Kα̇θ̄Lβ̇F

α̇β̇ . (6.2)

Unfortunately, till now there is no superspace formulation that makes the entire N = 4 su-

persymmetry manifest (i.e., that realises it on the coordinates of an extension of Minkowski

space) because the supersymmetry transformations close only on shell, i.e. up to equations

of motion. For subsets of the supersymmetry generators this goal can be achieved, though.
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One frequently-employed approach is to keep only θ1, θ̄1. Then ϕIJ from the last

equation breaks into

Φi = ϕ1i = φ1i +
1

2
θ1ψi , i ∈ {2, 3, 4} , (6.3)

which gives three complex chiral fields (and their conjugates). The leftover components ψ1

and Fαβ are put into

Wα = ψ1
α + θ1βFβα , (6.4)

and its conjugate — the N = 1 Yang-Mills multiplets. Introducing additional “auxiliary”

fields these multiplets can be extended to superfields with N = 1 off-shell supersymme-

try [50].

Alternatively, we can keep θi, θ̄i with i = 1, 2. This yields a complex doublet

qi = ϕi4 = φi4 +
1

2
θiαψ

4α +
1

2
εi4j3θ̄jα̇ψ̄

α̇
3 , (6.5)

the “hypermultiplet”, and a complex singlet

W = ϕ12 = φ12 +
1

2
θiαψiα +

1

2
θiαθiβF

αβ , (6.6)

the N = 2 Yang-Mills multiplet. In passing we have introduced an antisymmetric symbol

εij that can be used to lower and raise internal i indices. Obviously, these fields are not

real; rather, they are supplemented by their complex conjugates.

The problem of introducing auxiliary fields for the N = 2 multiplets was resolved in

refs. [52–54] (see also the references therein w.r.t. alternative approaches) by resorting to

“harmonic superspace”, which has an additional bosonic variable u±i ∈ SU(2)/U(1). Here

the row index is written as ± to denote the charge under the U(1) group in the coset.

We will not need the details of the formalism since we will simply import the result we

need from ref. [55]. What we will exploit, though, is that the doublet qi and its complex

conjugate q̄i are both projected by the first row of the matrix u, yielding

q+ = u+
i q

i , q̃+ = u+i q̄i . (6.7)

Last, the field W can be written as a superspace derivative of a pre-potential V ++

which is the second dynamical field in the formulation of refs. [52–54]. The N = 4 SYM

action is then

S = −
∫
d4xAd

2θ−d2θ̄−duTr
[
q+(D++q̃+ + i [V ++, q̃+])

]
+

1

4g2

∫
d4xLd

4θTr[W 2] . (6.8)

Here, the coordinates xA are shifted by Grassmann parameters with respect to the Min-

kowski ones [55]; this is similar to what happens for coordinates xL in the chiral basis [50,

52–54]. Notice that, even if the whole Lagrangian is fairly intricate due to the presence of

the pre-potential V , the matter sectors have simple interactions. This makes the N = 1

and N = 2 formulations useful for describing correlators that have only matter fields at

the external points — i.e., that have chiral fields in N = 1 or hypermultiplets in N = 2 at
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external points. Let us focus on the latter case; observe that in N = 2 the only relevant

interaction is the cubic vertex Tr
[
q [V, q̃]

]
at one loop. Generically, for correlators with

external hypermultiplet fields, the N = 2 Feynman rules amount to decorating skeleton

graphs with virtual particles—Yang-Mills (YM) lines, which propagate the V ++ field from

the Yang-Mills multiplet. This is similar in spirit to the what happens in the integrability

picture, where one decorates a tree-level diagram by mirror particles [19, 39]. Below we

make this correspondence explicit at one loop.

Finally, remark that the conformal invariance of N = 4 SYM is not manifest in indi-

vidual diagrams. It only arises in the sum over graphs after skilful handling of numerator

algebra [56–59]. A convenient way to compute one-loop interactions in correlators of com-

posite operators built out of hypermultiplets is to differentiate the path integral [55]:

∂

∂g2
〈O1 . . .On〉 =

−i
4g4

∫
d4xL0d

4θ0〈Tr(W 2(x0, θ0)O1 . . .On〉 . (6.9)

In particular, this directly yields the “one-loop box”, i.e. the only one-loop conformal

integral. We refer the reader to the original paper ref. [55]; here we will only make use of

a result of that paper, cf. eq. (6.15) below.

6.2 The Drukker-Plefka vacuum as a sum of hypermultiplets

We have seen in section 2 that the Drukker-Plefka vacuum Tr[ZL] can be parametrised as

in eq. (2.2). The R-symmetry coordinate dependence can be written in terms of the six

scalars of N = 4 SYM, Φ = (ϕi)i=1,...6 and of a vector η,

Z = η · Φ , η =

(
1 + αᾱ

2
, i

1− αᾱ
2

, i Imα, iReα, 0, 0

)
. (6.10)

We reproduce this in the N = 2 language by assembling the complex scalars Z, Y into

hypermultiplets. This can be done in two ways: either

qi = (Z, Y ), q̄i = (Z̄, Ȳ ), u+
i = (1, α), Z = q+ + ᾱ q̃+ , (6.11)

or alternatively,

qi = (Z, Ȳ ), q̄i = (Z̄, Y ), u+
i = (1,−ᾱ), Z = q+ + α q̃+ . (6.12)

We will adopt the first choice, but it is clear from the existence of the second scheme that

N = 4 results will have to be α ↔ ᾱ symmetric. Notice that (1, α) can be completed to

an element u of SU(2)/U(1),

u =

(
u+

u−

)
=

1√
1 + αᾱ

(
1 α

−ᾱ 1

)
. (6.13)

The normalisation factor
√

1 + αᾱ is irrelevant in what follows, as our formula eq. (6.15)

below is homogeneous in u. Finally, notice that in the above construction we did not

consider the “transverse excitation” X and its conjugate X̄. In fact, X is the lowest

component of the N = 2 YM multiplet.
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Figure 7. We depict the exchange of a N = 2 Yang-Mills multiplet as a wavy line; the straight,

directed lines are hypermultiplet propagators.

6.3 One-loop diagrams

We now want to consider four-point functions of 1
2 -BPS operators OL = Tr[ZL]. At tree

level (and θ, θ̄ = 0) the graphs are simply products of hypermultiplet propagators9

〈q̃1 q2〉 =
(12)

x2
12

, (12) = ui+1 u+
2i = α1 − α2 . (6.14)

This propagator is antisymmetric under the point exchange 1 ↔ 2 because of its numerator.

At one loop, a single Yang-Mills line is inserted in all possible ways into the tree graphs.

We will show that this is exactly equivalent to the exchange of virtual magnons in the

integrability picture.

The simplest diagram we need to compute, which will be the building block for the

rest of our analysis, is thus given by two hypermultiplet lines between points (12) and

(34), connected by a Yang-Mills exchange, cf. figure 7. Evaluating this supergraph by a

Lagrangian insertion [55] yields:

f12;34 = T12;34

[
(12)

x2
12

(34)

x2
34

(x2
14x

2
23 − x2

13x
2
24) + (13)(24) + (14)(23)

]
g1234 + . . . , (6.15)

with the colour factor

T12;34 = Tr([T1, T2][T3, T4]), (6.16)

which is a double commutator of the gauge group generators T1, . . . , T4 in the adjoint

representation carried by the hypermultiplets at the outer points. Moreover, in eq. (6.15)

we have the finite and conformal one-loop box integral

g1234 =

∫
d4x5

x2
15x

2
25x

2
35x

2
45

. (6.17)

Finally, the ellipsis in eq. (6.15) indicates three-point and two-point integrals that must

(and will) cancel in complete BPS correlators due to conformal invariance. Notice that the

one-loop box g1234 is fully symmetric under point exchange, while the rational expression

in the square brackets in (6.15) is symmetric under both 1 ↔ 2 and 3 ↔ 4 separately.

Due to the colour factor, the complete block f12;34 works out to be antisymmetric under

these exchanges. Hence it has the same point-flip properties as the corresponding tree-level

graph — a pair of free hypermultiplet propagators without any YM line.

9We introduce the intuitive short-hand notation q̃1 to indicate that the fields are at position x1 in

Minkowski space and have internal coordinate α1, and so on.
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Figure 8. We depict the four N = 2 YM exchanges which add up to the full one-loop exchange in

N = 4 SYM.

Next, with the assignment (6.11) for Z we find

〈Z1Z2〉 = ᾱ1
(12)

x2
12

+ ᾱ2
(21)

x2
21

=
α12ᾱ12

x2
12

=
y2

12

x2
12

, (6.18)

where αij = αi−αj , yij = yi−yj , and the four-vector yi is given by the last four components

of the six-vector η in eq. (6.10) evaluated at αi. The r.h.s. y2/x2 is the correct free-

field theory two-point function for an N = 4 field strength multiplet; indeed, even if our

formalism only explicitly preserved N = 2 supersymmetry off-shell, our final result is

compatible with full on-shell supersymmetry as it must.

Using eq. (6.15), we can compute the one-loop contribution to the graph with matter

lines 〈Z1Z2〉 and 〈Z3Z4〉, see figure 8. The four diagrams of that figure combine to give

F12;34 = ᾱ12ᾱ34 f12;34 , (6.19)

due to the antisymmetry of f12;34 under 1 ↔ 2 and 3 ↔ 4. The expression we found for

F12;34 cannot be written in terms of y2/x2 propagators. By elementary manipulations we

can recast it as

F12;34 = T12;34

[
y2

12

x2
12

y2
34

x2
34

(x2
14x

2
23 − x2

13x
2
24) + y2

13y
2
24 − y2

14y
2
23 + w

]
g1234 , (6.20)

where

w = ᾱ13 ᾱ24 α14 α23 − ᾱ14 ᾱ23 α13 α24 . (6.21)

Notice that the function w is still not expressed in terms of y2
ij ; moreover, it is antisymmetric

under α↔ ᾱ, rather than symmetric as expected. Indeed if we take into account that the

field Z contains both q and q̃ and sum over all diagrams, we always find the combination

F12;34 + F13;24 + F14;23. Using the Jacobi identity T12;34 − T13;24 + T14;23 = 0, we conclude

that w cancels in the final result due to its antisymmetry. Hence we can write our result

for F12;34 as

F12;34 = T12;34 Π12Π34 g1234 F̃12;34 , (6.22)

where

Πij =
y2
ij

x2
ij

, F̃12;34 = x2
14x

2
23 − x2

13x
2
24 − x2

12x
2
34

(
y2

14y
2
23

y2
12y

2
34

− y2
13y

2
24

y2
12y

2
34

)
. (6.23)

This seems like an odd choice — we could have multiplied in the factor x−2
12 x

−2
34 and mani-

festly obtained a function of the cross ratios. However, this splitting highlights that F12;34

corresponds to inserting a line inside a tree-level graph with propagators Π12Π34.
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Figure 9. Four classes of one-edge reducible graphs; each graph can be disconnected by cutting a

single edge with however many propagators.

6.4 Edge-reducible graphs

Let us now evaluate the corrections for the “edge-reducible” graphs of section 3.5. We can

group them in four categories, which we represent in figure 9. In terms of the propagators

Πij = y2
ij/x

2
ij , at tree level we have10

(i) Π`12
12 Π`34

34 disconnected ,

(ii) Π`12
12 Π`13

13 Π`14
14 extremal ,

(iii) Π`12
12 Π`23

23 Π`34
34 sausages ,

(iv) Π`12
12 Π`13

13 Π`14
14 Π`34

34 subextremal .

(6.24)

These graphs can be disconnected by cutting one edge. The claim of ref. [39] is that

contributions of mirror magnons due to these graphs should not be included in the hexagon

formalism. Below, we argue that at one-loop all the colour factors of these diagrams vanish.

This is obvious for the disconnected graphs, i.e. for case (i). The YM line can only be

inserted between the two strands of (13) and (24) propagators as in figure 10 if we want

to find the four-point block F13;24. Then at one loop the colour factor vanishes much like

it was the case for the one-particle reducible graph discussed in section 4.2. Case (ii) also

does not contribute to the four-point function at this order. In fact, the YM line always

gives the structure of a three-point function, see figure 10. Such contributions cancel as

required by conformal invariance. The remaining cases (iii) and (iv) are more subtle. Let

us start from case (iii). From the structure of the matter propagators, notice that the

only expression of the type Fij;kl which may arise is F12;34. There are two ways to attach

a YM line to the tree level graph, and they are depicted in figure 10. As remarked, both

graphs will be proportional to F12;34, up to their colour factors. As we depict graphically

in figure 11, the sum of the two colour factors actually vanishes. Hence, for (iii) planar

one-loop quantum corrections cancel; the same happens in case (iv) by a similar argument.

Notice that this argument does not make use of any properties of the function F12;34.

We conclude that, at one-loop, the “edge-reducibility” criterion of ref. [39] is repro-

duced by our colour-dressing procedure for the case of four-point functions of 1
2 -BPS op-

10We call the graphs of type (iv) “subextremal” because they have the same topology as the ones we

studied in section 4.3, possibly with different bridge-lengths.
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Figure 10. Structure of the one-loop diagrams for the four “edge-reducible” graphs. We planarly

attach a YM line to the matter propagators in all possible ways. As described in the text, the colour

factor of (i) is zero for each diagram. For (ii), there is no contribution to the four-point integral,

since only three-point topologies arise. For case (iii) the colour factors only cancel between the two

diagrams depicted, and similarly for case (iv).

erators at one loop.11 In fact, since we never used the explicit form of F12;34, it is easy to

extend these arguments to the case where the operators contain sl(2) excitations. However,

it is worth emphasising that the two criteria are different beyond one-loop: not only this

is the case at tree level, as discussed at length above, but we also expect discrepancies

at two loops. For instance, if we decorate a disconnected graph by two Yang-Mills lines

like in figure 12, we expect to find a contribution in field theory, cf. ref. [30]. It would be

interesting to analyse the structure of two- and possibly higher-loops graph and compare

it with the hexagon approach.

6.5 Mirror magnons as Yang-Mills lines

So far we have focussed on the diagrams that do not contribute to the four point function

of BPS operators. Let us now look at those that give non-zero contributions. One class of

diagrams is the one where all six bridge-lengths are non-zero, cf. figure 3. These diagrams

do contribute to wrapping effects, but only at two or more loops [39]. Therefore, they will

not be important in our discussion.

We are left with four-point functions given by a square, or a square with one diago-

nal. Let us start from the former case — four non-vanishing edges arranged as a square.

Furthermore, to compare with ref. [39], let three of the four 1
2 -BPS operators be placed at

distinguished points,12

α1 = ᾱ1 = z1 = z̄1 = 0, α3 = ᾱ3 = z3 = z̄3 = 1, α4 = ᾱ4 = z4 = z̄4 =∞, (6.25)

11Here and in appendix C we take the gauge group to be SU(N); considering U(N) leads to the same

selection rules due to the commutator structure of the cubic matter/YM vertex.
12In what follows, all squared distances involving point 4 will be scaled away.

– 31 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
0

Figure 11. We sketch the cancellation of the leading large-N term for diagrams of type (iii). We

start on the top left diagram, which corresponds to part of the first graph in panel (iii) of figure 10.

Looking at operator 4, we have a number of matter lines to which colour generators are attached;

to the first of those lines, a YM line is attached. The vertex carries a commutator of the colour

generators. Below, we have a similar structure, with the exception that the YM line is now attached

to the bottom matter line; this corresponds to the second diagram in panel (iii) of figure 10. By

using the colour-trace identities of appendix C, we can eliminate the trace corresponding to operator

four. We are left with four contributions that cancel each other.

while the remaining operator is at a generic point

α2 = α, ᾱ2 = ᾱ, z2 = z, z̄2 = z̄ . (6.26)

We therefore have

x2
12 = zz̄ , x2

13 = 1 , x2
23 = (1− z)(1− z̄) ,

y2
12 =αᾱ , y2

13 = 1 , y2
23 = (1− α)(1− ᾱ) .

(6.27)

We can rewrite our results for F̃ij;kl as

F̃12;34 = zz̄

[
1

α
+

1

ᾱ
− 1

z
− 1

z̄

]
,

F̃13;24 = α+ ᾱ− z − z̄ , (6.28)

F̃23;14 = −(1− z)(1− z̄)

[
1

1− α
+

1

1− ᾱ
− 1

1− z
− 1

1− z̄

]
.

In a square with consecutive corners 1243 there can be two planar Yang-Mills exchanges:

one from edges 12 to 34, i.e. F̃12;34, and the other between edges 13 to 24, i.e. F̃13;24. Their

sum yields

F̃12;34 + F̃13;24 = −2(z + z̄) +

(
1

α
+

1

ᾱ

)
(αᾱ+ zz̄) (6.29)

which is exactly the rational pre-factor of the box integral in formula (53) of ref. [39]. Note

that such a pre-factor is the contribution of twice the exchange of a mirror magnon. This

is the full integrability result, as mirror magnons can be exchanged on the “front” and

on the “back” of the square; the front and back contributions are identical. Let us also

remark that the contributions due to the exchange of a mirror magnon over a length-zero

diagonal (say, 14) or over the anti-diagonal (23) are also identical. This is readily seen as
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Figure 12. At two loops, we expect some of the graphs which did not contribute at lower orders to

appear, as they have a leading-order colour factor. One such example is the graph depicted, which

is disconnected at tree-level.

the cross ratios are invariant under the simultaneous exchange 1 ↔ 2 and 3 ↔ 4. The

result is graphically displayed in figure 13.

We have so far considered the case of the empty box. The computation for a diagram

with five non-vanishing bridge-lengths — a square with a diagonal — follows the same lines

and gives exactly the same result in field theory. This might be puzzling at first, as in the

integrability picture we have a single mirror magnon exchange — on the face of the square

which does not contain a diagonal. However, recall that we have a factor of two due to the

fact that there are two inequivalent ways to embed such a “chiral” graph in the tessellation

of topology (33), cf. figure 3. Hence, also for this case we find perfect agreement.

Finally, it is interesting to turn this picture around and see how a mirror-magnon

exchange can be interpreted in terms of Feynman graphs. Let us denote a mirror exchange

across the zero-length edge ij as Iij . We have seen that

I23 =
1

2

(
F̃12;34 + F̃13;24

)
, I13 =

1

2

(
F̃12;34 + F̃23;14

)
, I12 =

1

2

(
F̃13;24 + F̃23;14

)
. (6.30)

This system can be inverted to give

F̃12;34 = I13 + I23 − I12 . (6.31)

Notice that for the edge-reducible topologies, which we have excluded on the grounds of

colour scaling, it would not be easy to propose such a matching.

In conclusion integrability reproduces the field-theory structure graph by graph for one-

loop BPS four-point functions. We expect the same arguments to apply in the case of sl(2)

excitations. As for more general excitations, our arguments may need to be adapted; in

particular, as we remarked transverse excitations would be harder to study in the N = 2

formalism, since they are in the YM multiplet, rather than in the matter ones; still, it should

be possible to analyse them too, at least at one loop. Finally, it would very interesting to see

whether and how this picture can be extended to higher loops and higher-point functions.

7 Conclusions and outlook

One of the main outcomes of our investigation was the realisation that the hexagon pre-

scription used so far in the computation of correlation functions is incomplete. While this
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Figure 13. At one-loop, gluing over a width-zero edge (one of the two diagonals of the square in

the figure) is equal to the semi-sum of the two possible planar Yang-Mills exchanges in which the

virtual particle crosses that diagonal.

did not play a role for (non-extremal planar) three-point functions, it becomes an unavoid-

able issue for four-point functions and non-planar correlators. We proposed to amend the

hexagon prescription by dressing diagrams by SU(N) colour factors. We tested this idea

extensively, and found perfect agreement for tree-level field theory; moreover, this correctly

explains the empirical rule of ref. [39] for accounting for wrapping interactions at one loop

— though things look more non-trivial at two loops, which is so far unexplored territory.

We also proposed to employ the hexagon approach to compute next-to-leading or-

der corrections in the 1/N expansion for correlation functions, and we tested this idea

for tree-level two-point functions finding perfect agreement between field theory and our

hexagon-based construction; once again, colour-dressing was crucial. It is a long-standing

question whether integrability of N = 4 SYM can be extended beyond the leading order in

the large-N expansion. Expecting integrability at finite N may indeed be far too optimistic;

yet there is some hope to systematically build over the large-N integrability to incorpo-

rate sub-leading terms. There are two facets to this issue: finding non-planar corrections

to conformal eigenstates, and computing correlators involving multi-trace operators and

higher-genus worldsheet. Our construction shows that the hexagon formalism can, in prin-

ciple, be used for the latter part of this problem. It would be important to further explore

these ideas, both going towards higher genus and incorporating wrapping corrections in the

formalism. Both tasks are in principle straightforward, though technically involved: in the

former case, we would need very many hexagons to tessellate an high-genus surface; in the

latter, due to the insertion of two identity operators to regularise the tessellation, we have

many mirror edges of null width. This would lead to a proliferation of wrapping interactions

already at one loop, as it is in a sense expected from the field theory intuition for wrapping

interactions that we developed in the N = 2 formalism; in figure 14 we sketch a possible

wrapping interaction on the torus. On top of this, the remaining issue of determining the

conformal eigenstates is of crucial importance, and it would be interesting to see if inte-

grability can help there too — at least in a 1/N expansion. Another interesting direction

would be to consider more general gauge groups than SU(N) on which we focussed such

as U(N) (which we briefly explored) as well as O(N) and Sp(2N). The choice of the gauge

group does not affect the computation of planar anomalous dimension, except for removing

some states from the spectrum; however, in higher-point functions at the non-planar level

it should play a substantial role, which would be interesting to understand.

Exploring non-planarity remains one of the outstanding challenges for the integrability

program. The hexagon might prove instrumental for tackling this problem and we expect

exciting developments in the near future.13

13We are grateful to P. Vieira for informing us about an upcoming work in this direction [60].
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Figure 14. We represent the torus as a square, and consider a two-point function in the tessellation

of section 5.1. By the intuition developed in section 6.5, attaching a YM line to a strand of

propagators should have an interpretation in terms of virtual magnons. For the usual planar

wrapping interactions, this appears straightforward in the spirit of figure 13. In the case of exchanges

that go around the torus’ cycles — in field theory, a YM line passing through the sphere — we

expect multi-magnon wrapping to appear. This is not surprising, as all dotted lines in the figure

are zero-length edges.
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A Hexagon form factor at tree level

The hexagon form factor [19] consists of a matrix part and a scalar “dressing” factor.

Physical magnons can sit on three edges, and accordingly we write

h123(α1, α2, α3) , (A.1)

to indicate a hexagon with edges 1, 2, 3 populated by excitations α1, α2, α3, respectively.

The hexagon is invariant under cyclic shifts of the three sets of physical magnons. The

empty hexagon is equal to 1, for one magnon we find

h({Y }, ∅, ∅) = −h({Ȳ }, ∅, ∅) = 1 , h({X}, ∅, ∅) = h({X̄}, ∅, ∅) = 0 , (A.2)

where we suppressed the subscript index 123, as we will do in the remainder of

this appendix.

Non-trivial dynamics can only arise when there are two or more magnons on the same

hexagon. Following ref. [19] (see also ref. [49]) we discuss the scattering in the string frame
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in order to better handle crossing transformations. The outcome is finally converted to the

spin chain frame. The formulae below were used for the evaluation of the amplitudes A(ij)

and A8 described in the main text. For the two-excitation BMN operators we can impose

the level-matching conditions u2 = −u1, u4 = −u3 from the start; this will simplify our

formulae. Furthermore, we will omit the form factors that can be found by substitution

such as u1 ↔ u2.

h({X1}, ∅, {X̄3}) =
i

u1 − u3
, (A.3)

h({X̄1}, ∅, {X3}) =
i

u1 − u3
, (A.4)

h({X1, X2}, ∅, {X̄3, X̄4}) =
u1u3(1 + 2u2

1 + 2u2
3)

(u1 + i
2)(u3 + i

2)(u1 − u3)2(u1 + u3)2
, (A.5)

h({X̄1, X̄2}, ∅, {X3, X4}) =
u1u3(1 + 2u2

1 + 2u2
3)

(u1 + i
2)(u3 + i

2)(u1 − u3)2(u1 + u3)2
; (A.6)

h({Ȳ1}, ∅, {Y3}) = − 1 , (A.7)

h({Y1}, ∅, {Ȳ3}) = − 1 , (A.8)

h({Ȳ1, Ȳ2}, ∅, ∅) =
u1

u1 + i
2

, (A.9)

h({Y1, Y2}, ∅, ∅) =
u1

u1 + i
1

, (A.10)

h({Ȳ1, Ȳ2}, ∅, {Y3}) =
u1

u1 + i
2

, (A.11)

−h({Y1, Y2}, ∅, {Ȳ3}) =
u1

u1 + i
2

, (A.12)

−h({Ȳ1}, ∅, {Y3, Y4}) =
u3

u3 + i
2

, (A.13)

h({Y1}, ∅, {Ȳ3, Ȳ4}) =
u3

u3 + i
2

, (A.14)

h({Ȳ1, Ȳ2}, ∅, {Y3, Y4}) =
u1u3

(u1 + i
2)(u3 + i

2)
, (A.15)

h({Y1, Y2}, ∅, {Ȳ3, Ȳ4}) =
u1u3

(u1 + i
2)(u3 + i

2)
, (A.16)

h({Ȳ1}, ∅, {Ȳ3}) =
u1 − u3 + i

u1 − u3
, (A.17)

h({Y1}, ∅, {Y3}) =
u1 − u3 + i

u1 − u3
, (A.18)

−h({Ȳ1, Ȳ2}, ∅, {Ȳ3}) =
u1(u1 − u3 + i)(u1 + u3 − i)
(u1 + i

2)(u1 − u3)(u1 + u3)
, (A.19)

h({Y1, Y2}, ∅, {Y3}) =
u1(u1 − u3 + i)(u1 + u3 − i)
(u1 + i

2)(u1 − u3)(u1 + u3)
, (A.20)

−h({Ȳ1}, ∅, {Ȳ3, Ȳ4}) =
u3(u1 − u3 + i)(u1 + u3 + i)

(u3 + i
2)(u1 − u3)(u1 + u3)

, (A.21)
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h({Y1}, ∅, {Y3, Y4}) =
u3(u1 − u3 + i)(u1 + u3 + i)

(u3 + i
2)(u1 − u3)(u1 + u3)

, (A.22)

h({Ȳ1, Ȳ2}, ∅, {Ȳ3, Ȳ4}) =
u1u3

[
(u1 − u3)2 + 1

][
(u1 + u3)2 + 1

]
(u1 + i

2)(u3 + i
2)(u1 − u3)2(u1 + u3)2

, (A.23)

h({Y1, Y2}, ∅, {Y3, Y4}) =
u1u3

[
(u1 − u3)2 + 1

][
(u1 + u3)2 + 1

]
(u1 + i

2)(u3 + i
2)(u1 − u3)2(u1 + u3)2

. (A.24)

B More on spacetime dressing

In this appendix we match the spacetime dressing of ref. [38] reviewed in section 3.2 with

the one of ref. [39]. In that reference the authors derive a space-time dependent “twist”

due to moving a magnon of flavour χ from one hexagon to another via the mirror edge

with bridge length `. They derive such twists from the study of mirror magnons; they are

given by eip`Wχ where

Wχ = e−Eχ log |z|+JχϕeiLχφ+iRχθ. (B.1)

Here E, J,L,R are the U(1) charges of the magnons, and the various “chemical potentials”

are functions of the conformal cross-ratios corresponding to such charges. Moreover, the

overall result for a given partition is scaled by a factor fχ which depends on which hexagon

we choose as a starting point for distributing the magnons. In order to make contact with

that picture, let us take operators 1, 3 and 4 to be at positions 0, 1,∞, see eq. (6.25),

while operator 2 is at position z, z̄ in Minkowski space and α, ᾱ in R-symmetry space, see

eq. (6.26). By matching the conventions in this way, our results can be readily identified

with those of ref. [39]. To make contact with the notation of section 3.2, z and z̄ are related

to the holomorphic and anti-holomorphic part of the distance, e.g. x+
21 = z, x−21 = z̄, see

also eq. (6.27). Similar formulae hold for the R-symmetry cross ratios α, ᾱ and y±21, and so

on; by inserting the Drukker-Plefka kinematics in these formulae we find

z = z̄ = α = ᾱ = a , (B.2)

when the four operators are super-translated like in eq. (2.2) with a1 = 0, a2 = a, a3 = 1

and a4 =∞.

In what follows we will consider the case of sl(2) excitations, on which ref. [39] mostly

focuses. It is completely straightforward to repeat the arguments for scalar excitations.

Let us consider the set-up of figure 15, for instance, focussing for the time being only on

the red magnons in partitions αi. We start from considering α1 magnons on hexagon h134.

Then the “dressed” form factor reads

f
(134);α1

D h134(α1) =

(
x+

34

x+
13x

+
14

)|α1|( x+
34

x+
13x

+
14

x−34

x−13x
−
14

)E(α1)/2

h134(α1), (B.3)

where E(α) =
∑

j∈α1
γ(uj) is a sum of magnon energies (anomalous dimensions) and

we have used the explicit form of fχ for an sl(2) excitation. In what follows, we will

drop the “anomalous” term, E(αi) → 0, as it vanishes at tree level and can anyway be

– 37 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
0

Figure 15. One possible tessellation of the four-point function. The vertical black arrows denote

the direction in which we move the excitations. Originally all the red excitations are in partition

α1, and then we move them downwards by inserting suitable twists in front of the hexagon form

factors; similarly for the blue excitations on partitions βi.

easily reconstructed from the indices of the “classical” piece |αi|. Let us consider the next

hexagon. The magnons in α2, that have travelled across edge 14 down to hexagon h142,

have picked up the usual factor of (−1)|α2|eip2`14 (where p2 is the total momentum of the

magnons in α2) as well as a twist W(14). They contribute to the partition as

f
(134);α2

D (−1)|α2|eip2`14W(14);α2

D h142(α2)

=

(
x+

34

x+
13x

+
14

)|α2|(
−x

+
13x

+
24

x+
12x

+
34

)|α2|

eip2`14h142(α2) .
(B.4)

Notice that the twist can be expressed directly in terms of the cross-ratios, and in particular

W(14);α2

D = z−|α2|. Finally, the magnons α3 that made all the way down to hexagon h123

have crossed both edges 14 and 12. Accordingly, they picked up a factor of W(14)W(12),

yielding a contribution of

f
(134);α3

D eip3(`14+`12)W(14);α3

D W(12);α3

D h123(α3)

=

(
x+

34

x+
13x

+
14

)|α3|(x+
13x

+
24

x+
12x

+
34

x+
14x

+
23

x+
13x

+
24

)|α3|

eip3(`14+`12)h123(α3) .
(B.5)

In terms of the cross-ratios,W(12);α3

D = (1−z)|α3|. Indeed by multiplying various pre-factors

and taking care of the minus sings, we find that the sum of these three contributions is

(v−1;34)|α1|h134(α1) + eip2`14(v−1;42)|α2|h134(α2) + eip3(`14+`12)(v−1;23)|α3|h123(α3) . (B.6)

We can restore the “anomalous” part simply by multiplying each (v−i;jk)
|αl| by an additional

(v+
i;jkv

−
i;jk)

E(αl)/2. Noticing that in all three hexagons the excitations sit in the first edge,

i.e. h134(α1) = h134(α1, ∅, ∅), we find perfect matching with equation (3.9), and we can

recast the contribution of this partition simply as

ĥ134(α1) + eip2`14 ĥ134(α2) + eip3(`14+`12) ĥ123(α3) . (B.7)
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Now, including the blue excitations in partitions β1, . . . β3 would require a similar

exercise. A new feature is that some hexagons will have excitations on more than one

physical edge. It is interesting to check our construction in this more general case too. Let

us hence consider hexagon h142 in presence of both sets of excitations. Following the above

logic, we obtain

f
(134);α2

D (−1)|α2|eip2`14W(14);α2

D f
(243);β2
D (−1)|β2|eiq2`42W(42);β2

D h142(α2, ∅, β2)

= (v−1;42)|α2|eip2`14
(

x+
43

x+
23x

+
24

)|β2|(
−x

+
23x

+
41

x+
21x

+
43

)|β2|
eiq2`42 h142(α2, ∅, β2)

= (v−1;42)|α2|eip2`14 (v−2;41)|β2|eiq2`42 h142(α2, ∅, β2) ,

(B.8)

where once again we have discarded the anomalous part to lighten the notation. Again,

this is in perfect agreement with the prescription of eq. (3.9). The other hexagons, as well

as more general partitions and excitation flavours, can be worked out in a similar manner.

C Colour factors

In this appendix we work out how to evaluate the colour factors Tijkl relevant for the

hexagon tessellation of the torus. We start by recalling the contraction rules of SU(N)

generators in the adjoint representation,14

Tr
[
ATk

]
Tr
[
B Tk

]
= Tr

[
AB
]
− 1

N
Tr
[
A
]
Tr
[
B
]
,

Tr
[
ATk B Tk C

]
= Tr

[
B
]

Tr
[
AC
]
− 1

N
Tr
[
ABC

]
,

(C.1)

where A,B,C are any sequences of colour generators, i.e. A = Ti1 · · ·Tia , and so on.

Let
→
A denote a sequence of colour indices, and

←
A the same sequence reversed;

→
B and

←
B are similar sequences, and

→
A,
→
B have no element in common. We denote by a

→
A ′ the

→
A

sequence with one element at the end omitted. By the contraction rules (C.1) we have

aj ≡ Tr
[ →
A
←
A
]

= Tr
[ →
A
′ Tk Tk

←
A
′] = Tr

[
1
]

Tr
[ →
A
′ ←
A
′]− 1

N
Tr[
→
A
′ ←
A
′] = C aj−1 , (C.2)

where C is the quadratic Casimir of su(N) in the adjoint representation, up to the factor

of 1/2 of footnote 14,

C =
N2 − 1

N
. (C.3)

Clearly, a0 = N so that iteration of the last equation implies

aj = Cj N . (C.4)

14We have suppressed a factor of 1/2 on the r.h.s. of the two contraction rules, and we will not indicate it

in the rest of the formulae either. It can easily be re-instated by multiplying the final expressions by 1/2n,

where n is the number of Wick contractions.
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Further, for k > 0 consider

bj ≡ Tr
[ →
A
]

Tr
[ ←
A
]

= Tr
[ →
A
′ Tk
]
Tr
[
Tk
←
A
′]

= Tr
[ →
A
′ ←
A
′]− 1

N
Tr
[ →
A
′]Tr

[ ←
A
′] = aj−1 −

1

N
bj−1 ,

(C.5)

which can also be iterated with the boundary condition b1 = 0. We find

bj = C
(
Cj−1 − (−N)1−j) . (C.6)

Next, for j > 0 consider

ci,j ≡ Tr
[ →
B
]

Tr
[ →
A
←
A
←
B
]

= Tr
[
Tk
→
B
′]Tr

[ →
A
←
A
←
B
′ Tk
]

= Tr
[ →
A
←
A
←
B
′ →
B
′]− 1

N
Tr
[ →
B
′ ]

Tr
[ →
A
←
A
←
B
′ ]

= ai+j−1 −
1

N
ci,j−1 .

(C.7)

Iterating with ci,1 = 0 we obtain

ci,j = Ci+1
(
Cj−1 − (−N)1−j) . (C.8)

Finally, for i > 0

di,j ≡ Tr
[ →
A
→
B
←
A
←
B
]

= Tr
[ →
A
′ Tk

→
B Tk

←
A
′ ←
B
]

= Tr
[ →
B
]

Tr
[ →
A
′ ←
A
′ ←
B
]
− 1

N
di−1,j .

(C.9)

Repeated application with the boundary condition d0,j = Cj N yields

di,j =
Ci+j

N
+

(
−1

N

)i
Cj+1 +

(
−1

N

)j
Ci+1 −

(
−1

N

)i+j
C . (C.10)

After these preparations, let us evaluate Tij10 for i, j > 0.

Tij10 = Tr
[ →
A
→
B Tk

]
Tr
[ ←
A
←
B Tk

]
= Tr

[ →
A
→
B
←
A
←
B
]
− 1

N
Tr
[ →
A
→
B
]

Tr
[ ←
A
←
B
]

= di,j −
1

N
bi+j =

(
−1

N

)i
Cj+1 +

(
−1

N

)j
Ci+1 − 2

(
−1

N

)i+j
C .

(C.11)

This result comes about because the term Ci+j/N cancels between di,j and bi+j/N . When

i, j > 1 and for N � 1, that term is actually leading and goes as Ci+j/N = N i+j−1 + . . ..

Recall that Tij10 comes from a graph with i + j + 1 propagators, which at leading order

should go like N i+j+1 on the sphere and like N i+j−1 on the torus. Hence, a leading-order

torus contribution cancels. Moreover, the remaining terms are all subleading: since

i, j, > 1 ⇒ i+ 1− j < i < i+ j − 1 , j + 1− i < j < i+ j − 1 , (C.12)

the first and second term in the second line of (C.11) are suppressed by at least 1/N4 w.r.t.

to the sphere. Hence we should not consider Tij10 for i, j > 1.

Finally, assume j = 1:

Ti110 =

(
−1

N

)i
C2 − 1

N
Ci+1 − 2

(
−1

N

)i+1

(C.13)

and so

T1110 = −2N + . . . , and Ti110 = −N i + . . . for i > 1 . (C.14)
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