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1 Introduction

Despite being non-renomalizable, five-dimensional supersymmetric field theories have a

history of study via string and M-theory [1–3]. A plethora of five-dimensional gauge the-

ories can be realized by utilizing brane constructions in type IIA [4, 5] as well as type

IIB string theory [6–8]. In contrast to theories in other dimensions, five-dimensional su-

perconformal field theories (SCFTs) have a unique superalgebra F (4) [9–11] with SO(2, 5)

conformal symmetry, SU(2)R R-symmetry, and sixteen supercharges (eight Poincare and

eight conformal supercharges).

Though difficult to study directly, holography can be used to study five-dimensional

SCFTs in the large N limit. Supergravity solutions containing an AdS6 factor had pre-

viously been found in massive type IIA supergravity [4, 5, 12] as well as in type IIB

supergravity [13–15]. In the last year,1 new type IIB supergravity solutions were found

using an ansatz with AdS6 × S2 warped over a two-dimensional Riemann surface Σ with

boundary [19–22]. Aside from isolated points on the boundary of Σ, these solutions are

completely regular. At these isolated points the harmonic functions which determine the

solutions have poles. These poles can be given a physical interpretation as the remnants

of semi-infinite (p, q) five-branes resulting from the conformal limit of (p, q) five-brane

webs [6–8]. However, these solutions are technically involved.

A simpler setting for AdS6/CFT5 duality is given by six-dimensional F (4) gauged

supergravity. F (4) gauged supergravity was first constructed in [23]. The theory can be

coupled to any number of six-dimensional vector multiplets, with the resulting Lagrangian,

supersymmetry transformations, and possible gaugings found in [24]. These theories admit

supersymmetric AdS6 vacua, and determining the spectrum of linearized supergravity fluc-

tuations dual to primary operators is straightforward [25–27]. For some additional work

on the use of F (4) gauged supergravity in holography, see e.g. [28–32]. To our knowledge,

it is not yet known how to lift general solutions of six-dimensional gauged supergravity

to ten dimensions, and hence a microscopic understanding of the CFT described by the

AdS vacua is still lacking. On the other hand, obtaining and studying solutions for the

six-dimensional theory is relatively simple, and general lessons also applicable to more com-

plicated theories can be learned. An example of such solutions is the 6d supersymmetric

Janus solution constructed recently in [33].

In this paper, we will be interested in studying certain deformations of 5d SCFTs

via holography. The superconformal symmetry of a SCFT can be broken by turning on

relevant operators, some of which may keep (some) Poincáre supersymmetries unbroken.

Well known cases of such deformations include the N = 2∗ and N = 1∗ theories obtained

by mass deformations of N = 4 super Yang-Mills. A systematic classification of operators

which break superconformal symmetry but leave Poincare supersymmetry unbroken was

recently obtained in [34]. In order to make use of localization results, we will furthermore

be interested in deformed SCFTs on S5. Conformal field theories defined on R
d can be put

on other conformally flat manifolds such as the d-dimensional sphere in a unique fashion.

However, for non-conformal theories this is not the case, though for many theories it is

1For earlier work in this direction, see [16–18].
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possible turn on additional terms in the Lagrangian which preserve supersymmetry on the

curved space. For N = 2∗ these terms were found in [35] and for gauge theories on S5 such

terms were given in [36, 37].

In the context of the AdS/CFT correspondence, such deformations on spheres have

been studied for four-dimensional N = 2∗ [38], four-dimensional N = 1∗ [39], and three-

dimensional ABJM theories [40]. The method used to study these theories holographically

is as follows. For a field theory in d-dimensions, one considers a gauged supergravity

with an AdSd+1 vacuum corresponding to the undeformed superconformal field theory.

The ansatz for the metric corresponding to the deformed theory is given by a Euclidean

RG-flow/domain wall, where a d-dimensional sphere is warped over a one-dimensional

holographic direction. The scalars which are dual to the mass deformations, as well as

the additional terms which are necessary for preserving supersymmetry on the sphere, are

sourced in the UV. The preservation of supersymmetry in the supergravity demands the

vanishing of fermionic supersymmetry variations and provides first-order flow equations for

the scalars. The integrability conditions for the gravitino variation determine the metric.

For generic scalar sources, the flow will lead to a singular solution, but demanding that the

sphere closes off smoothly in the IR provides relations among the UV sources and leads to a

nonsingular supersymmetric RG flow. Using holographic renormalization, the free energy

of the theory on the sphere is determined by calculating the renormalized on-shell action

of the supergravity solutions. The continuation of the supergravity theory from Lorentzian

to Euclidean signature, the precise mapping of supergravity fields to field theory operators,

and the choice of finite counterterms preserving supersymmetry are among the subtle issues

which the papers [38–40] address in five- and four-dimensional gauged supergravity.

The goal of this paper is to apply these techniques to matter-coupled six-dimensional

gauged supergravity [23, 24] in order to study mass deformations of a five-dimensional

SCFT on S5. The structure of the paper is as follows: in section 2, we review features of the

Lorentzian matter-coupled F (4) gauged supergravity theory. In section 3, we discuss the

continuation of the supergravity to Euclidean signature and construct the ansatz describing

the RG flow on S5. Vanishing of the fermionic variations leads to the Euclidean BPS

equations. We solve these equations numerically and obtain a one parameter family of

smooth solutions. In section 4, we use holographic renormalization to evaluate the on-

shell action as a function of the mass parameter. In the process, we deal with the subtle

issue of identification of finite counterterms needed to preserve supersymmetry on S5. In

section 5, we compare the holographic sphere free energy with the corresponding result

obtained via localization in the large N limit of a USp(2N) gauge theory with one massless

hypermultiplet in the antisymmetric representation and one massive hypermultiplet in the

fundamental representation of the gauge group. In section 6, we close with a discussion of

our results and future directions for research.

2 Lorentzian matter-coupled F (4) gauged supergravity

The theory of matter-coupled F (4) gauged supergravity was first studied in [24, 26], with

some applications and extensions given in [27–29]. Below we present a short review of this

theory, similar to that given in [33].

– 3 –
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2.1 The bosonic Lagrangian

We begin by recalling the field content of the 6-dimensional supergravity multiplet,

(eaµ, ψ
A
µ , A

α
µ, Bµν , χ

A, σ) (2.1)

The field eaµ is the 6-dimensional frame field, with spacetime indices denoted by {µ, ν}
and local Lorentz indices denoted by {a, b}. The field ψA

µ is the gravitino with the index

A,B = 1, 2 denoting the fundamental representation of the gauged SU(2)R group. The

supergravity multiplet contains four vectors Aα
µ labelled by the index α = 0, . . . 3. It will

often prove useful to split α = (0, r) with r = 1, . . . , 3 an SU(2)R adjoint index. Finally,

the remaining fields consist of a two-form Bµν , a spin-12 field χA, and the dilaton σ.

The only allowable matter in the d = 6, N = 2 theory is the vector multiplet, which

has the following field content

(Aµ, λA, φ
α)I (2.2)

where I = 1, . . . , n labels the distinct matter multiplets included in the theory. The

presence of the n new vector fields AI
µ allows for the existence of a further gauge group G+

of dimension dimG+ = n, in addition to the gauged SU(2)R R-symmetry. The presence

of this new gauge group contributes an additional parameter to the theory, in the form of

a coupling constant λ. Throughout this section, we will denote the structure constants of

the additional gauge group G+ by CIJK . However, these will play no role in what follows,

since we will be restricting to the case of only a single vector multiplet n = 1, in which

case G+ = U(1).

In (half-)maximal supergravity, the dynamics of the 4n vector multiplet scalars φαI is

given by a non-linear sigma model with target space G/K; see e.g. [41]. The group G is

the global symmetry group of the theory, while K is the maximal compact subgroup of G.

As such, in the Lorentzian case the target space is identified with the following coset space,

M =
SO(4, n)

SO(4)× SO(n)
× SO(1, 1) (2.3)

where the second factor corresponds to the scalar σ which is already present in the gauged

supergravity without added matter. In the particular case of n = 1, explored here and

in [33], the first factor is nothing but four-dimensional hyperbolic space H4. When we

analytically continue to the Euclidean case, it will prove very important that we analytically

continue the coset space as well, resulting in a dS4 coset space. This will be discussed more

in the following section.

In both the Lorentzian and Euclidean cases, a convenient way of formulating the coset

space non-linear sigma model is to have the scalars φαI parameterize an element L of G.

The so-called coset representative L is an (n+4)×(n+4) matrix with matrix elements LΛ
Σ,

for Λ,Σ = 1, . . . n+4. Using this representative, one may construct a left-invariant 1-form,

L−1dL ∈ g (2.4)

where g = Lie(G). To build a K-invariant kinetic term from the above, we decompose

L−1dL = Q+ P (2.5)
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where Q ∈ k = Lie(K) and P lies in the complement of k in g. Explicitly, the coset vielbein

forms are given by,

P I
α =

(

L−1
)I

Λ

(

dLΛ
α + fΛ

ΓΠA
ΓLΠ

α

)

(2.6)

where the f Γ
ΛΣ are structure constants of the gauge algebra, i.e.

[TΛ, TΣ] = f Γ
ΛΣ TΓ (2.7)

We may then use P to build the kinetic term for the vector multiplet scalars as,

Lcoset = −1

4
ePIαµP

Iαµ (2.8)

where e =
√

|det g| and we’ve defined P Iα
µ = P Iα

i ∂µφ
i, for i = 0, . . . , 4n − 1. With this

formulation for the coset space non-linear sigma model, we may now write down the full

bosonic Lagrangian of the theory. We will be interested in the case in which only the metric

and the scalars are non-vanishing. In this case the Lorentzian theory is given by

e−1L = −1

4
R+ ∂µσ∂

µσ − 1

4
PIαµP

Iαµ − V (2.9)

with the scalar potential V given by

V = −e2σ
[

1

36
A2 +

1

4
BiBi +

1

4
(CI

t CIt + 4DI
tDIt)

]

+m2e−6σN00

−me−2σ

[

2

3
AL00 − 2BiL0i

]

(2.10)

The scalar potential features the following quantities,

A = ǫrstKrst Br = ǫrstKst0

Ct
I = ǫtrsKrIs DIt = K0It (2.11)

with the so-called “boosted structure constants” K given by,

Krsα = g ǫℓmnL
ℓ
r(L

−1) m
s Ln

α + λCIJKLI
r(L

−1) J
s LK

α

KαIt = g ǫℓmnL
ℓ
α(L

−1) m
I Ln

t + λCMJKLM
α(L

−1) J
I LK

t (2.12)

We remind the reader that r, s, t = 1, 2, 3 are obtained from splitting the index α into a 0

index and an SU(2)R adjoint index. Also appearing in the Lagrangian is N00, which is the

00 component of the matrix

NΛΣ = L α
Λ

(

L−1
)

αΣ
− L I

Λ

(

L−1
)

IΣ
(2.13)

2.2 Supersymmetry variations

We now review the supersymmetry variations for the fermionic fields in the Lorentzian

theory. In the following section, we will discuss the continuation of this theory to Euclidean

signature, which is complicated by the necessary modification of the symplectic Majorana

condition imposed on the spinor fields.
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In order to write the fermionic variations, it is first necessary to introduce a matrix γ7

defined as

γ7 = iγ0γ1γ2γ3γ4γ5 (2.14)

and satisfying (γ7)2 = −1. With this, the supersymmetry transformations of the fermions

in the Lorentzian case can be given as

δχA =
i

2
γµ∂µσεA +NABε

B

δψAµ = DµεA + SABγµε
B

δλI
A = iP̂ I

riσ
r
AB∂µφ

iγµεB − iP̂ I
0iǫAB∂µφ

iγ7γµεB +M I
ABε

B (2.15)

where we have defined

SAB =
i

24
[Aeσ+6me−3σ(L−1)00]εAB− i

8
[Bte

σ − 2me−3σ(L−1)t0]γ
7σt

AB

NAB =
1

24
[Aeσ−18me−3σ(L−1)00]εAB+

1

8
[Bte

σ+6me−3σ(L−1)t0]γ
7σt

AB

M I
AB = (−CI

t + 2iγ7DI
t)e

σσt
AB − 2me−3σ(L−1)I 0γ

7εAB, (2.16)

In the above, the matrix σr
AB defined as σr

AB ≡ σrC
BεCA is symmetric in A,B. For more

details, see our previous paper [33].

2.3 Mass deformations

In the following, we consider the coset (2.3) with n = 1, i.e. a single vector multiplet. The

coset representative is expressed in terms of four scalars φi, i = 0, 1, 2, 3 via

L =
3
∏

i=0

eφ
iKi

(2.17)

where Ki are the non compact generators of SO(4, 1); see [33] for details. Note that φ0

is an SU(2)R singlet, while the other three scalars φr form an SU(2)R triplet. The scalar

potential for this specific case can be obtained from (2.10) and takes the following form

V (σ, φi) = −g2e2σ +
1

8
me−6σ

[

− 32ge4σ coshφ0 coshφ1 coshφ2 coshφ3 + 8m cosh2 φ0

+m sinh2 φ0

(

− 6 + 8 cosh2 φ1 cosh2 φ2 cosh(2φ3) + cosh(2(φ1 − φ2))

+ cosh(2(φ1 + φ2)) + 2 cosh(2φ1) + 2 cosh(2φ2)

)]

(2.18)

The supersymmetric AdS6 vacuum is given by setting g = 3m and setting all scalars to

vanish. The masses of the linearized scalar fluctuation around the AdS vacuum determine

the dimensions of the dual scalar operators in the SCFT via

m2l2 = ∆(∆− 5) (2.19)

– 6 –
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where l is the curvature radius of the AdS6 vacuum. For the scalars at hand, one finds

m2
σl

2 = −6 m2
φ0 l

2 = −4 m2
φr l2 = −6 , r = 1, 2, 3 (2.20)

Hence the dimensions of the dual operators are

∆Oσ = 3, ∆O
φ0

= 4, ∆Oφr
= 3 , r = 1, 2, 3 (2.21)

In [25] these CFT operators were expressed in terms of free hypermultiplets (i.e. the

singleton sector). The case of n = 1 corresponds to having a single free hypermultiplet,

consisting of four real scalars qIA and two symplectic Majorana spinors ψI . Here I = 1, 2 is

the SU(2)R R-symmetry index and A = 1, 2 is the SU(2) flavor symmetry index. The gauge

invariant operators appearing in (2.21) are related to these fundamental fields as follows,

Oσ = (q∗)AIq
I
A, Oφ0 = ψ̄Iψ

I , Oφr = (q∗)AI(σ
r) B

A qIB , r = 1, 2, 3 (2.22)

Note that the first two operators correspond to mass terms for the scalars and fermions,

respectively, in the hypermultiplet. The third operator is a triplet with respect to the

SU(2)R R-symmetry. As argued in [25], the field φ0 is the top component of the global

current supermultiplet. Therefore a deformation by Oφ0 will break superconformal sym-

metry but preserve all Poincare supersymmetry [34]. However, deformation by Oφ0 alone

is inconsistent. Poincare supersymmetry demands that we also turn on the scalar masses

Oσ. Moreover, supersymmetry on S5 requires an additional operator in the action that

breaks the superconformal SU(2)R symmetry to U(1)R symmetry [36]. Without loss of

generality, we may choose this operator to be Oφ3 .

3 Euclidean theory and BPS solutions

In this section we will obtain the six-dimensional holographic dual of a mass deformation of

a 5D SCFT on S5. Such a dual is given by S5-sliced domain wall solutions of matter-coupled

Euclidean F (4) gauged supergravity. In order to obtain such solutions, we must first con-

tinue the Lorentzian signature gauged supergravity outlined above to Euclidean signature,

which has subtleties for both the scalar and fermionic sectors. Once the Euclidean theory

is obtained, we turn on relevant scalars necessary to support the domain wall. As discussed

in the previous section, at least three scalars must be turned on to obtain supersymmetric

solutions. The ansatz for the domain wall solutions takes the following form

ds2 = du2 + e2f(u)ds2S5 , σ = σ(u), φi = φi(u), i = 0, 3 (3.1)

with the remaining fields set to zero. Next we will obtain a consistent set of BPS equations

on the above ansatz, and then solve them numerically. When solving them, we will demand

as an initial condition that for some finite u the metric factor e2f vanishes, so that the

geometry closes off smoothly.

– 7 –
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3.1 Euclidean action

The Euclidean action may be obtained from the Lorentzian one by first performing a simple

Wick rotation of Lorentzian time t → −ix6. This makes the spacetime metric negative

definite, since the metric in the Lorentzian theory was taken to be of mostly negative

signature. However, we will choose to work with the Euclidean theory with positive definite

metric. Making this modification involves a change in the sign of the Ricci scalar. Then

noting that the Euclidean action is related to the Lorentzian action by exp
(

iSLor
)

=

exp
(

−SEuc
)

, the final result of the Wick rotation is the following Euclidean action,

S6D =
1

4πG6

∫

d6x
√
GL , L =

(

−1

4
R+ ∂µσ∂

µσ +
1

4
Gij(φ)∂µφ

i∂µφj + V (σ, φi)

)

(3.2)

where the spacetime metric G is positive definite and G6 is the six-dimensional Newton’s

constant. By abuse of notation, Gij(φ) with indices refers to the metric on the scalar

manifold, which for the coset representative (2.17) is given by

Gij = diag
(

cosh2 φ1 cosh2 φ2 cosh2 φ3, cosh2 φ2 cosh2 φ3, cosh2 φ3, 1
)

(3.3)

In addition to performing the above Wick rotation, we also perform a Wick rotation

on the sigma model [44–46]

SO(4, 1)

SO(4)
→ SO(4, 1)

SO(3, 1)
≃ dS4 (3.4)

The metric on the sigma model is now that of dS4, as opposed to the H4 that we had in the

Lorentzian case [33]. This can be obtained by making the following change to the H4 coset,

φr → iφr r = 1, 2, 3 (3.5)

It would be interesting to understand this analytic continuation from first principles and its

relation to Euclidean supersymmetry, possibly along the lines of [47, 48]. For now, we just

note that such a Wick rotated model seems necessary to obtain regular, supersymmetric

solutions.

3.2 Euclidean supersymmetry

The next task is to identify the form of the Euclidean supersymmetry variations. Moti-

vation for the form of these variations may be obtained by analysis of the free differential

algebra (FDA) of the F (4) gauged supergravity theory with H6 vacuum, as discussed in

appendix B. The final result for this FDA is given in (B.6), and is noted to be of the

same form as the FDA for the theory with dS6 background (identified in [49]), with two

differences. The first obvious difference is that the metrics differ — the space considered

in [49] was dS6 with mostly minus signature, whereas we are currently focused on positive

definite H6. However, both of these spaces have Rµν = −20m2gµν . The second difference

is in the definition of Dirac conjugate spinors. However, once the difference in definition of

the gamma matrices is accounted for, the only difference is a factor of i, i.e.

ψ̄
(H6)
A = iψ̄

(dS6)
A (3.6)

– 8 –
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Because of these similarities, the supersymmetry variations in the current case are expected

to be of a similar form to that of [49]. In particular, the variations of the fermions are

expected to be of the form

δχA = −1

2
γµ∂µσεA +NABε

B + . . .

δψAµ = DµεA + iSABγµε
B + . . .

δλI
A = −P̂ I

riσ
r
AB∂µφ

iγµεB + P̂ I
0iǫAB∂µφ

iγ7γµεB +M I
ABε

B + . . . (3.7)

where NAB, SAB, and M I
AB are again given by (2.16), but now with the appropriate

redefinition of the coset representative as per (3.5). It should be noted that while the FDA

analysis presented in appendix B is a strong motivation for the form of the supersymmetry

variations presented above, it is not a proof. To actually derive the form of these variations,

one must first introduce curvature terms representing deviations from zero of each line in

the free differential algebra. An application of the exterior derivative to the resulting

expressions then gives rise to Bianchi identities, which must be solved before obtaining the

explicit form of the fermion variations. This is a rather involved process, and so for the

moment we will content ourselves with the motivating comments provided by the FDA.

We will take the eventual presence of smooth supersymmetric solutions consistent with the

equations of motion as a posteriori evidence for the legitimacy of these variations.

A nice property of the variations above is the fact that they are consistent with the

following SO(6)-invariant symplectic Majorana condition,

ψ̄A = ǫABψT
BC (3.8)

The consistency of such a condition allows us to work with symplectic Majorana spinors

just as in the Lorentzian case, though the symplectic Majorana condition utilized here is

different than that of the Lorentzian case.2

As mentioned before, we will be concerned with only the simplest case of a single

non-zero SU(2)R-charged vector multiplet scalar φ3, i.e. we take φ1 = φ2 = 0. It can be

easily verified that this is a consistent truncation, and is in fact the most general choice of

non-vanishing fields that can preserve SO(4, 2) × U(1)R. With this consistent truncation,

the functions NAB, SAB, and M I
AB appearing in the supersymmetry variations reduce to

SAB = iS0ǫAB + iS3γ
7σ3

AB

NAB = −N0ǫAB −N3γ
7σ3

AB

M I
AB = M0γ

7ǫAB +M3σ
3
AB (3.9)

2The fact that the symplectic Majorana condition must be different in the current case follows from

SO(6) invariance. The condition used in the Lorentzian case [33] was expressed in terms of γ0, which

explicitly breaks SO(6) symmetry.
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where we have defined

S0 =
1

4

(

g cosφ3eσ +me−3σ coshφ0
)

S3 =
1

4
im e−3σ sinhφ0 sinφ3

N0 = −1

4

(

g cosφ3eσ − 3me−3σ coshφ0
)

N3 = −3

4
ime−3σ sinhφ0 sinφ3

M0 = 2m e−3σ cosφ3 sinhφ0

M3 = −2i g eσ sinφ3 (3.10)

Importantly, note that S3, N3, and M3 are now purely imaginary, in contrast to the

Lorentzian case [33]. In all that follows we will set m = −1/2 η such that the radius

of AdS6 is one.

3.3 BPS equations

We now use the vanishing of the fermionic variations (3.7) to obtain BPS equations for the

warp factor and the three non-zero scalars.

3.3.1 Dilatino equation and projector

We begin by imposing the vanishing of the dilatino variation, δχA = 0, which implies

1

2
γ5σ′εA = N0εA +N3γ

7(σ3)BAεB (3.11)

This equation can be interpreted as a projection condition on the spinors εA. Consistency

of this projection condition then requires that

σ′ = 2η
√

N2
0 +N2

3 (3.12)

where η = ±1. Plugging this BPS equation back into (3.11) then yields a second form of

the projection condition,

γ5εA = G0εA −G3γ
7(σ3)BAεB (3.13)

which is more useful in the derivation of the other BPS equations. In the above, we have

defined

G0 = η
N0

√

N2
0 +N2

3

G3 = −η
N3

√

N2
0 +N2

3

(3.14)

3.3.2 Gravitino equation

The analysis of the gravitino equation δψAµ = 0 proceeds in exactly the same way as for

the Lorentzian case studied in [33]. The procedure gives rise to a first-order equation for

the warp factor f and an algebraic constraint. To avoid excessive overlap with that paper,

we simply cite the result,

f ′ = 2(G0S0 +G3S3) e−2f = 4(G0S0 +G3S3)
2 − 4(S2

0 + S2
3) (3.15)
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3.3.3 Gaugino equations

Finally, we turn toward the gaugino equation δλI
A = 0. Again the analysis of this equation

proceeds in an exactly analogous manner to the Lorentzian case [33]. The result is

cosφ3(φ0)′ = −(G0M0 +G3M3) (φ3)′ = i(G3M0 −G0M3) (3.16)

The right-hand sides of both equations are real, and thus give rise to real solutions when

appropriate initial conditions are imposed.

3.3.4 Summary of first-order equations

To summarize, the first-order equations for the warp factor f and the scalars σ, φ0, φ3 are

found to be

f ′ = 2 (G0S0 +G3S3)

σ′ = 2η
√

N2
0 +N2

3

cosφ3
(

φ0
)′

= − (G0M0 +G3M3)
(

φ3
)′

= i (G3M0 −G0M3) (3.17)

Furthermore, for consistency these were required to satisfy the algebraic constraint

e−2f = 4 (G0S0 +G3S3)
2 − 4

(

S2
0 + S2

3

)

(3.18)

The various functions featured in these equations were defined in (3.10) and (3.14).

3.4 Numeric solutions

In order to get acceptable numerical solutions from these equations, we must choose ap-

propriate initial conditions. It is easy to check that the following initial conditions ensure

smoothness of all three scalars, as well as the vanishing of e2f at the origin,

φ3
0 = sin−1

[

1

8 tanhφ0
0

(

−3 +
√

9 + 16 tanh2 φ0
0

)]

σ0 =
1

4
log













coshφ0
0

(

5 +
√

9 + 16 tanh2 φ0
0

)

√
6

√

8 + coth2 φ0
0

(

−3 +
√

9 + 16 tanh2 φ0
0

)













(3.19)

We have defined for notational convenience φα
0 ≡ φα(0) and σ0 ≡ σ(0). For these initial

conditions to be real, we must ensure that

|f(φ0
0)| ≤ 1 f(φ0

0) ≡
1

8 tanhφ0
0

(

−3 +
√

9 + 16 tanh2 φ0
0

)

(3.20)

Noting that

lim
φ0

0
→−∞

f(φ0
0) = −1

4
lim

φ0

0
→+∞

f(φ0
0) =

1

4
(3.21)
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Figure 1. Smooth solutions for the four scalar fields in the Euclidean theory. We take η = −1 and

have chosen the following values for the initial conditions: φ0

0
= {0.25, 0.5, 1, 1.5, 2} (light to dark

blue). Importantly, we see that e2f vanishes at the origin — signaling a smooth closing off of the

spacetime — and asymptotes to a constant e2fk .

and also that f(φ0
0) is monotonically increasing, i.e.

df

dφ0
0

> 0 ∀φ0
0 ∈ R (3.22)

allows us to conclude that this is always the case for real initial conditions φ0
0. Thus we

have a one parameter family of real smooth solutions, labeled by the IR parameter φ0
0.

With this in mind, we may choose any value of φ0
0 and solve the BPS equations in (3.17)

numerically. In figure 1, we plot the solutions obtained for the following choices of initial

condition: φ0
0 = {0.25, 0.5, 1, 1.5, 2}. In order to get smooth solutions for u > 0, we must

take η = −1. It is straighforward to verify that the resulting solutions are completely

smooth and have the expected vanishing of e2f at the origin, implying that the spacetime

smoothly pinches off. Furthermore, e2f/e2u is seen to asymptote to a constant, which we

denote by e2fk .

3.5 UV asymptotic expansions

As in the holographic Janus solutions in Lorentzian signature [33], the BPS equations may

also be used to obtain the UV asymptotic behavior of the solutions. To do so, we begin by

defining an asymptotic coordinate z = e−u, where the asymptotic S5 boundary is reached

by taking u → ∞. Consequently, an asymptotic expansion is an expansion around z = 0.

The coefficients in the UV expansions of the non-zero fields may now be solved for order-

by-order using the BPS equations. One finds explicitly that all coefficients are determined
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in terms of only three independent parameters α, β, and fk, in accord with the fact that

there are three independent first-order differential equations. The first few terms in the

expansions are

f(z) = − log z + fk −
(

1

4
e−2fk +

1

16
α2

)

z2 +O(z4)

σ(z) =
3

8
α2 z2 +

1

4
efkαβ z3 +O(z4)

φ0(z) = α z −
(

5

4
α e−2fk +

23

48
α3

)

z3 +O(z4)

φ3(z) = e−fkαz2 + β z3 +O(z4) (3.23)

We have obtained the expansions up to O(z8), but we display only the first few terms here.

4 Holographic sphere free energy

The goal of this section is to obtain the holographic free energy, i.e. the renormalized

on-shell action. We begin by writing the full action,

S = S6D + SGH

S6D =

∫

du d5x
√
GL SGH = −1

2

∫

d5x
√
γK (4.1)

where S6D is the six-dimensional Euclidean action given in (3.2) and SGH is the Gibbons-

Hawking term.3 The γ appearing in SGH is the determinant of the induced metric on the

boundary (located at some cutoff distance u = Λ), while K is the trace of the extrinsic

curvature Kij of the radial S5 slices. The latter is defined as

Kij =
1

2

d

du
γij (4.2)

In general, the on-shell action is divergent and requires renormalization. The addition

of infinite counterterms is standard in holographic renormalization [50–52], but in the cur-

rent case we must also add finite counterterms in order to preserve supersymmetry [53].

We will begin our exploration of counterterms in this section by first considering the finite

counterterms in the limit of a flat domain wall, after which we move onto infinite countert-

erms in the more general case of a curved domain wall. Finally, appropriate curved space

finite counterterms will be fixed by demanding finiteness of the one-point functions of the

dual operators.

4.1 Finite counterterms

In order to obtain finite counterterms, we will make use of the Bogomolnyi trick [38–40].

To do so, we will first need to identify a superpotential W . Though we will find that

no exact superpotential can be found for our solutions — in the sense that there is no

3We have set 4πG6 = 1 to avoid clutter in the formulas. We will restore this factor in the final expression

for the free energy.

– 13 –



J
H
E
P
0
2
(
2
0
1
8
)
1
6
5

superpotential which can recast all of the BPS equations in gradient flow form — we will

be able to identify an approximate superpotential. By “approximate” here, we mean that

it does yield gradient flow equations up to terms of order O(z5), where the asymptotic

coordinate z was defined earlier as z = e−u. This is useful since, as we will see later, we

will only need terms up to O(z5) to obtain all divergent and finite counterterms. Terms of

higher order will all vanish in the ǫ → 0 limit, i.e. when the UV cutoff is removed. Thus

the approximate superpotential will yield all finite counterterms.

4.1.1 Approximate superpotential

In order to identify a candidate superpotential, we begin by recalling the form of the scalar

potential V . With the choice of coset representative and consistent truncation outlined in

section 3, one finds that

V (σ, φi) = −9m2e2σ −12m2e−2σ coshφ0 cosφ3+m2e−6σ cosh2 φ0+m2e−6σ cos 2φ3 sinh2 φ0

This scalar potential can in fact be rewritten as

V = 4(N2
0 +N2

3 ) +
1

4
(M2

0 +M2
3 )− 20(S2

0 + S2
3) (4.3)

Then for BPS solutions, (3.17) implies that

V = (σ′)2 +
1

4

(

−(φ3′)2 + cos2 φ3(φ0′)2
)

− 20(S2
0 + S2

3) (4.4)

This motivates us to define a superpotential W as

W =
√

S2
0 + S2

3 (4.5)

Unfortunately, this superpotential does not allow one to write the BPS equations for both

φ0 and φ3 as gradient flow equations. The reason for this failure is that the integrability

condition required to convert the BPS equation into a gradient flow form is not satisfied; see

e.g. appendix C.2.1 of [38].4 We thus follow the strategy of [38] to construct an approximate

superpotential. Our model consists of two consistent truncations that admit flat domain

walls and an exact superpotential. These are the φ3 = 0, φ0 6= 0 truncation and the φ0 =

0, φ3 6= 0 truncation. The corresponding flow equations are (we set η = −1 henceforth)

φ0′ = −8 ∂φ0W |φ3=0 φ3′ = 8 ∂φ3W |φ0=0 (4.6)

respectively. In either truncation, the BPS equations for the warp factor and dilaton σ can

be put in the following form,

f ′ = 2W σ′ = 2 ∂σW (4.7)

An important fact is that, though the gradient flow equations of (4.6) do not hold exactly

in the full model with φ0 6= 0, φ3 6= 0, they do hold up to and including O(z5). Looking

4See however [42, 43] where an effective superpotential involving the warp factor was derived, in terms

of which the first-order equations take the form of a gradient flow.
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at the form of the UV asymptotics of the scalar fields, one may expand the superpotential

of (4.5) keeping only terms contributing up to this order. This gives

W =
1

2
+

3

4
σ2 +

1

16
(φ0)2 − 3

16
(φ3)2 +

1

192
(φ0)4 − 3

16
(φ0)2σ + . . . (4.8)

where the dots represent terms of order O(z6). This is the approximate superpotential we

will use in what follows.

4.1.2 Bogomolnyi trick

We now use the Bogomolnyi trick [38–40] to get the finite counterterms needed to preserve

supersymmetry in the case of a flat domain wall. The central idea of the Bogomolnyi trick

is that for a BPS solution, the renormalized on-shell action must vanish. In order to make

use of this fact, we will first want to recast the on-shell action in a simpler form.

To do so, we begin by inserting (4.4) into (2.9). We find that

L = −1

4
R− 20W 2 + 2Lkin (4.9)

where we’ve defined

Lkin = (σ′)2 +
1

4

[

−(φ3′)2 + cos2 φ3(φ0′)2
]

(4.10)

The non-zero components of the Ricci tensor are

Ruu = −5
(

f ′′ + (f ′)2
)

Rmn = −gmn

(

f ′′ + 5(f ′)2
)

(4.11)

while the Ricci scalar is given by

R = −10f ′′ − 30(f ′)2 (4.12)

Furthermore, we have that
√
G = e5f

√
g, where g is the determinant of the unit S5 metric.

Upon integration by parts, part of the Einstein-Hilbert term cancels with the Gibbons-

Hawking term to give the following simple expression

S =

∫

du

∫

d5x
√
g e5f

[

−5
(

(f ′)2 + 4W 2
)

+ 2Lkin

]

(4.13)

The restriction to the flat case was not strictly necessary so far, but it will be crucial in

the next step. The gradient flow equations (4.6) and (4.7), together with the chain-rule,

allows us to rewrite

Lkin = −2W ′ (4.14)

Plugging this into (4.13) and using the BPS equation of the warp factor, we find

S = −4

∫

d5x
√
g e5fW

∣

∣

∣

Λ

0
(4.15)

where Λ is the UV cutoff. Only the Λ part of the action contributes, since e5fW |0 vanishes

due to the close-off of the geometry.
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Removing the UV cutoff Λ → ∞ is equivalent to removing the cutoff ε on our asymp-

totic coordinate z, i.e. ε → 0. From the UV asymptotics (3.23) we find that in this limit

the factor e5f diverges like

e5f ∼ 1

ε5
(4.16)

This is the reason for the previous claims that only the terms up to O(z5) in the superpo-

tential are relevant for obtaining counterterms. All the higher-order terms vanish as the

cutoff is removed. We may thus legitimately insert the approximate superpotential (4.8)

into (4.15) to get the counterterms,

S
(W )
ct = 4

∫

d5x
√
γ

[

1

2
+

3

4
σ2 +

1

16
(φ0)2 − 3

16
(φ3)2 +

1

192
(φ0)4 − 3

16
(φ0)2σ

]

(4.17)

where γ is the induced metric on the z = ε boundary. All fields are evaluated at z = ε.

This gives all finite and infinite counterterms for the flat domain wall solutions.

4.2 Infinite counterterms

We now turn towards the identification of the infinite counterterms in the more general

curved domain wall case. We may first solve for all of the infinite counterterms via the

usual holographic renormalization procedure. Once we have these, we will

1. Check that in the flat limit, they reduce to the divergent pieces of the flat countert-

erms (4.17) found above.

2. Add to them the finite pieces found in (4.17) but missing in the holographic renor-

malization procedure.

For simplicity, we will perform holographic renormalization on supersymmetric solutions

only, and thus the infinite counterterms we obtain are universal for supersymmetric solu-

tions only.

We begin by using the expression for the on-shell Ricci scalar,

R = 4(σ′)2 +
[

−(φ3′)2 + cos2 φ3(φ0′)2
]

+ 6V (4.18)

to rewrite the action (4.1) as

S6D = −1

2

∫

du d5x
√
g e5fV (4.19)

We have not included the Gibbons-Hawking term yet, but will do so later. The first step of

holographic renormalization is to isolate the divergent terms. We may do so by expanding

all fields using their UV asymptotics, then integrating over small z and evaluating on the

cutoff ǫ. Doing so, we find

S6D = −1

2

∫

d5x
√
ge5fk

[

1

ǫ5
+

1

3ǫ3

(

25f2 +
(

φ0
1

)2
)

+
1

24ǫ

(

1500f2
2 + 600f4 + 120f2

(

φ0
1

)2 −
(

φ0
1

)4

+48φ0
1φ

0
3 + 36

(

−
(

φ3
2

)2
+ 4σ2

2

))

]

(4.20)
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where we’ve thrown out all non-divergent contributions. Note that the integration would

naively give a log ǫ, but this vanishes on the BPS equations since they constrain the UV

asymptotic expansion coefficients in the following way,5

25f5 + 2φ0
1φ

0
4 − 3φ3

2φ
3
3 + 12σ2σ3 = 0 (4.21)

The absence of the logarithmic term is to be expected, since any dual five-dimensional field

theory is anomaly-free. The Gibbons-Hawking term is

SGH = −5

2

∫

d5x
√
g e5ff ′ (4.22)

We again use the asymptotic expansions to write

SGH = −5

2

∫

d5x
√
ge5fk

[

1

ǫ5
+

3f2
ǫ3

+
1

2ǫ

(

5f2
2 + 2f4

)

]

(4.23)

Adding the two together, we find in total that

S6D + SGH = −
∫

d5x
√
ge5fk

[

2

ǫ5
+

1

6ǫ3

(

20f2 −
(

φ0
1

)2
)

− 1

48ǫ

(

1200f2
2 + 480f4

+120f2
(

φ0
1

)2 −
(

φ0
1

)4
+ 48φ0

1φ
0
3 − 36(φ3

2)
2 + 144σ2

2

)

]

(4.24)

We must now undergo the task of inverting all of the UV modes to rewrite the action in

terms of induced fields at the cut-off surface (since it is the latter which transform nicely

under bulk diffeomorphism). Before quoting the result, we note that at the cut-off z = ǫ,

the induced metric γij is given by

γij = e2f
∣

∣

z=ǫ
g
(S5)
ij (4.25)

The Ricci tensor and Ricci scalar are given by

Rij [γ] = 4e−2fγij
∣

∣

z=ǫ
R[γ] = 20 e−2f

∣

∣

z=ǫ
(4.26)

In terms of these quantities, we find that the inverted form of the divergent part of the

on-shell action is

S = −
∫

d5x
√
γ

[

2 +
1

4

(

φ0
)2

+
3

4

(

φ3
)2 − 3σ2 +

7

12

(

φ0
)4

+
1

12
R[γ]− 1

320
R[γ]2 − 3

32
R[γ]

(

φ0
)2
]

(4.27)

We may now address the two points mentioned at the start of this subsection. To begin,

we check that in the flat limit, we reproduce the divergent terms obtained in (4.17). In

particular, we expect that the first line of (4.27) should be equal to −S
(W )
ct up to and

including order O(z4). Though the expressions look different at first sight, it can be checked

5We have shown this using the solutions of the BPS equations, but it must hold for general solutions of

the equations of motion as well.
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via the relationships between expansion coefficients in (3.23) (along with their higher order

counterparts) that in the limit e−2f → 0 the two expressions indeed are equivalent up to

O(z4). Thus all of their divergent contributions are the same in the flat limit. However,

even in this limit the two differ at order O(z5), which means that they have different finite

contributions. As mentioned earlier, the finite terms we must work with are those coming

from (4.17). An action which has both the required finite and infinite counterterms is6

Sct =

∫

d5x
√
γ

[

2 +
1

4

(

φ0
)2

+
3

4

(

φ3
)2

+ 3σ2 +
1

48

(

φ0
)4 − 3

4

(

φ0
)2

σ

+
1

12
R[γ]− 1

320
R[γ]2 − 3

32
R[γ]

(

φ0
)2
]

(4.28)

The three gravitational counterterms 2, R[γ], and R[γ]2 match with the ones obtained

in [54, 55]. On our S5 domain-wall ansatz, the term proportional to the square of the Ricci

tensor simplifies in terms of the square of the Ricci scalar Rij [γ]R[γ]ij = 1
5R[γ]2.

Note that there is still a question of curved space finite counterterms, which we have

not yet fixed. If we insist on including only terms even under

ϕ0 → −ϕ0 and ϕ3 → −ϕ3 (4.29)

(which is a symmetry of the action) it can be shown that the only way to add terms which

change the curved space finite counterterms but leave the other counterterms unchanged

is to add a combination of the form

(φ3)2 − 1

20
R[γ](φ0)2 = 2 e−fkβα z5 +O(z6) (4.30)

This freedom is fixed by demanding that the vevs of the dual operators stay finite. We will

simply quote the result here,

Sct =

∫

d5x
√
γ

[

2 +
1

4

(

φ0
)2 − 1

2

(

φ3
)2

+ 3σ2 +
1

48

(

φ0
)4 − 3

4

(

φ0
)2

σ

+
1

12
R[γ]− 1

320
R[γ]2 − 1

32
R[γ]

(

φ0
)2
]

(4.31)

and postpone showing that this gives finite vacuum expectation values to the next subsec-

tion.

At this level, everything has seemed unique. However, when thinking in terms of the

induced fields instead of the modes appearing in asymptotic expansions, the counterterms

of (4.31) are just one of many possible sets of counterterms that can be written down. In

particular, since on-shell we have the relationship

I0 ≡ 5σ2 +
45

64
(ϕ0)4 − 15

4
(ϕ0)2σ = O(z6) (4.32)

we may add I0 freely to (4.31) without changing either finite or infinite contributions.

However, the inclusion of this term will have an impact on some of the one-point functions,

which we calculate next.
6Note the sign of the (φ3)2 term, which is different than the sign in (4.17).
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4.3 Vevs and free energy

The renormalized on-shell action is given by

Sren = S6D + SGH + Sct +Ω

∫

d5x
√
γ I0 (4.33)

where the counterterm action Sct is given by (4.31), Ω is a constant parameterizing choice

of scheme, and I0 is given in (4.32). Note that the free energy is independent of the choice

of Ω, since I0 is O(z6) and hence vanishes in the ǫ → 0 limit. However, some of the

one-point functions will depend on Ω. It may be the case that only certain choices of Ω

correspond to supersymmetric schemes, but since the final free energy will be independent

of Ω we will not worry about this choice.

While in principle (4.33) gives us the free energy, its evaluation on our numerical

solutions is complicated by the integration over u in S6D. As such, we will take a slightly

roundabout approach to the calculation of the free energy, first calculating its derivative

dF/dα and then integrating over the UV parameter α. This will allow us to circumvent the

integration over u. In order to get dF/dα, it will first be necessary to calculate the one-point

functions of the dual field theory operators. This is the topic of the following subsection.

4.3.1 One-point functions

By the usual AdS/CFT dictionary, the one-point functions of the operators dual to the

three scalar fields and the metric are given by

〈Oσ〉 = lim
ǫ→0

1

ǫ3
1√
γ

δSren

δσ
〈Oφ0〉 = lim

ǫ→0

1

ǫ4
1√
γ

δSren

δφ0

〈Oφ3〉 = lim
ǫ→0

1

ǫ3
1√
γ

δSren

δφ3
〈T i

j〉 = lim
ǫ→0

1

ǫ5
1√
γ
γjk

δSren

δγik
(4.34)

We may obtain the explicit values of these vacuum expectation values by varying the on-

shell action (4.33). The variation of the counterterm action Sct is straightforward. The

variation of S6D gives rise to one piece which vanishes on the equations of motion, as well

as a boundary term which must be accounted for. We find

〈Oσ〉 = lim
ǫ→0

1

ǫ3

[

−2z∂zσ + 6σ − 3

4
(ϕ0)2 +Ω

(

10σ − 15

4

(

φ0
)2
)]

〈Oφ0〉 = lim
ǫ→0

1

ǫ4

[

− 1

2
cos2 φ3z∂zφ

0 +
1

2
φ0 +

1

12

(

φ0
)3 − 3

2
φ0σ − 1

16
Rφ0

+Ω

(

45

16

(

φ0
)3 − 15

2
φ0σ

)]

〈Oφ3〉 = lim
ǫ→0

1

ǫ3

[

1

2
z∂zφ

3 − φ3

]

〈T i
j〉 = lim

ǫ→0

1

ǫ5

[

1

2

(

Kγij −Kij
)

+
2√
γ

δSct

δγij

]

(4.35)
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Evaluating the limits, we get the following one-point functions

〈Oσ〉 =
5

2
efkαβ Ω 〈Oφ0〉 = 3

2
e−fkβ − 15

8
efkα2β Ω

〈Oφ3〉 = 1

2
β 〈T i

i〉 = −5

2
e−fkαβ (4.36)

The expectation values of the operator Oφ3 and the trace of the energy-momentum tensor

are independent of Ω. As a check, we note that the four one-point functions satisfy the

following operator relation, which is associated to the violation of conformal invariance by

non-zero classical beta functions,

〈T i
i〉 = −

∑

O

(d−∆O)φO 〈O〉 (4.37)

Here φO is the source for the operator O and is obtained from the asymptotic solutions

given in (3.23).

4.3.2 Derivative of the free energy

Following [38], we may now compute the derivative of F with respect to α as follows. First

we note that
dF

dα
=

dSren

dα
= lim

ǫ→0

∫

d5x
∑

fields Φ

δ
(√

γLren

)

δΦ

dΦ

dα

∣

∣

∣

∣

z=ǫ

(4.38)

In our case, the terms appearing in the sum over fields are

δ
(√

γLren

)

δσ
=

√
γ 〈Oσ〉ǫ3 + . . .

δ
(√

γLren

)

δφ0
=

√
γ 〈O0

φ〉ǫ4 + . . .

δ
(√

γLren

)

δφ3
=

√
γ 〈O3

φ〉ǫ3 + . . .
δ
(√

γLren

)

δγij
=

1

2

√
γ 〈Tij〉ǫ5 + . . . (4.39)

The dots represent terms of strictly lower order in ǫ. Furthermore, from the form of the

UV asymptotic expansions (3.23), we have

dσ

dα
=

3

4
αǫ2 +O(ǫ3)

dφ0

dα
= ǫ+O(ǫ3)

dφ3

dα
=

(

1− α
dfk
dα

)

e−fkǫ2 +O(ǫ3)
dγij

dα
= −2

dfk
dα

e−2fkǫ2 +O(ǫ2) (4.40)

Combining the pieces (4.39), (4.40) with the results for the one-point functions in (4.36),

we find that the contribution of the metric in (4.38) is suppressed by ǫ2 compared to other

terms. The derivative of the free energy is then

dF

dα
= lim

ǫ→0

∫

d5x
√
γ ǫ5

[

3

2
βe−fk +

1

2
βe−fk

(

1− α
dfk
dα

)

+O(ǫ)

]

= vol0
(

S5
) 1

2
β e4fk

(

4− α
dfk
dα

)

(4.41)
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Figure 2. Plots of β vs. α and fk vs. α. The relationships between the three parameters α, β,

and fk may be used to express (4.42) in terms of only a single parameter α.
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G6(F(α)-F(0))

Figure 3. Plot of G6(F (α) − F (0)) obtained by numerical integration of the holographic re-

sult (4.42) in the range |α| ≤ 1.

where vol0(S
5) = π3 is the volume of a unit S5. The Ω dependence in the one-point

functions cancels out, consistent with the fact that F itself is independent of Ω. We thus

obtain the final result
dF

dα
=

π2

8G6
β e4fk

(

4− α
dfk
dα

)

(4.42)

Note that we’ve reintroduced the six-dimensional Newton’s constant G6, which had been

previously set to 4πG6 = 1. This factor is important for the identification with the free

energy on the field theory side.

Treating β(α) and fk(α) as functions of α, this gives us an expression which may be

numerically integrated to obtain the free energy F (α) − F (0) of the domain wall. The

functional forms of β(α), fk(α) are obtained by fitting curves to the numerical data, as

shown in figure 2. Integrating to obtain F (α)− F (0) gives the result shown in figure 3.

5 Field theory calculation

Localization [35] is a powerful tool used to obtain exact results in supersymmetric quantum

field theories. In the large N limit, results obtained via localization calculations can be

compared with results obtained via holography. The goal of this section is to calculate the
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sphere free energy for a five-dimensional mass-deformed SCFT using localization, and then

to compare it to the holographic result obtained in the previous section.

A potential complication is that the five-dimensional field theory dual to the matter-

coupled six-dimensional gauged supergravity described in section 2 has not been fully

identified. This is because the full gauged supergravity has not been shown to arise as a

consistent truncation of any ten-dimensional theory. In the following, the tentative field

theory dual we will use for the localization calculation in the IR is a USp(2N) gauge theory

coupled to Nf fundamental representation hypermultiplets, and a single hypermultiplet in

the anti-symmetric representation. As we will review below, this theory is believed to be

obtained from the D4-D8 system [4] in type I’ string theory/massive type IIA supergravity.

One fundamental limitation in our comparison between field theory and holographic

results is that our holographic RG flow is completely numerical, and there is no analytic

formula for the free energy that can be derived from it. Nevertheless, we will find quali-

tative similarities between the holographic free energy and the localization result for the

free energy of the aforementioned USp(2N) gauge theory with mass deformation. For

completeness, we will review the origin of the field theory from the brane system before

presenting the localization calculation.

5.1 The D4-D8 system

The original D4-D8 system [4] is a brane configuration in type I’ string theory involving N

D4 branes on R
1,8 × S1/Z2. The D4 branes have their worldvolume along R

1,8 and sit at

points along the interval S1/Z2. There is an O8− plane living at each of the two ends of

the interval. These orientifold planes carry −16 units of D8 brane charge, and thus require

the inclusion of 16 D8 branes at points along the interval for tadpole cancellation. The

usual construction is to stack Nf D8 branes atop one of the O8− planes and to stack the

remaining (16 − Nf ) D8 branes atop the other O8− plane. One then considers the case

in which the N D4 branes are very near to the former stack, in which case the second

boundary may be neglected. We are thus left with a consistent string theory configuration

involving N D4 branes probing Nf D8 branes and a single O8− plane.

This string theory setup allows for an AdS/CFT interpretation. On the closed string

side of the correspondence, the near-horizon geometry of the brane configuration is found to

be AdS6×S4 with N units of 4-form flux passing through the S4 [4]. This is a background

of massive type IIA supergravity. While ten-dimensional uplifts of general solutions to F (4)

gauged supergravity are not known, pure Roman’s supergravity does have a known uplift

to massive type IIA supergravity [59]. In that case, the AdS6 × S4 background may be

interpreted as an AdS6 background of the six-dimensional pure Roman’s theory.7 With this

as motivation, we will be optimistic and assume that the solution of the six-dimensional

F (4) gauged supergravity theory being studied in the present case also has some uplift to

massive type IIA, even though the details have not been worked out.

7The reduction to six dimensions is done in two steps. One first integrates over one of the coordinates

of the sphere, leaving a nine-dimensional space of the form AdS6 × S3. Then one reduces on the S3 to six

dimensions, while gauging an SU(2) subgroup of the sphere’s SO(4) isometry group [4].
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On the open string side of the correspondence, the worldvolume theory of the N D4

branes (together with their images) is a strongly-coupled 5D SCFT which does not admit

a Lagrangian description. However, one may deform this theory by a relevant operator to

flow to a 5D N = 1 Yang-Mills-matter theory in the IR [1]. In the setup described above,

the resulting flow is to a 5D N = 1 USp(2N) gauge theory, where the relevant deformation

has an interpretation as the gauge theory kinetic operator TrF 2. The gauge theory is also

accompanied by Nf hypermultiplets in the fundamental representation and a single hy-

permultiplet in the antisymmetric representation. The fundamental hypermultiplets arise

from D4-D8 strings, while the antisymmetric hypermultiplet arises from strings stretched

between the D4 branes and their images.

The UV SCFT has a moduli space of vacua, and this maps in the IR to the Coulomb

branch of the Yang-Mills theory. The Coulomb branch is parameterized by vevs of the

vector multiplet scalars, which correspond in the string theory picture to the location of

the D4 branes along the interval. The locations of the D8 branes along the interval tune the

masses of the fundamental hypermultiplets, while leaving the mass of the antisymmetric

hypermultiplet unchanged.

From the two points of view outlined above, one is led to conjecture a duality between

the fluctuations around the AdS6 × S4 background of massive type IIA supergravity on

one hand, and the non-Lagrangian worldvolume theory of the N D4 branes on the other.

Though the non-Lagrangian nature of the field theory would naively make checking the

duality extremely difficult, the fact that the UV SCFT admits a deformation to a 5D

N = 1 Yang-Mills theory coupled to matter allows for the following crucial simplification.

Given the Lagrangian description of the IR gauge theory, we may add an infinite number

of gauge-invariant, supersymmetric irrelevant operators to deform the theory back to the

UV fixed point with arbitrary precision. If one assumes these irrelevant operators to be

Q-exact, then their coefficients can be tuned freely without changing the path integral

on S5. Thus the sphere partition function, and hence the free energy, calculated in the

IR Yang-Mills theory is expected to be equivalent to that calculated in the original non-

Lagrangian theory, allowing one to test the conjectured duality. This reasoning was used

in [56] to calculate the free energy on both sides of the above duality. Comparison of the

two results showed a perfect match.

We may now offer a microscopic description of the supergravity solutions described in

this paper. Under the previous assumption that the solutions of the F (4) gauged super-

gravity theory being studied here can be uplifted to an AdS6 × S4 background of massive

type IIA, our solutions should be captured by the D4-D8 brane framework. To identify

the details of the relevant brane configuration, we first recall from section 2.1 that the

group which is gauged in the supergravity theory is SU(2)R × G+, where G+ is the addi-

tional gauge group arising from the presence of vector multiplets. Indeed, the presence of

n vector fields AI
µ allows for the existence of a gauge group G+ of dimension dimG+ = n.

The gauge group G+ in the bulk corresponds to a flavor symmetry group ENf+1 of the

boundary SCFT [25]. The RG-flow triggered by the gauge coupling breaks this symmetry

group to SO(2Nf ) × U(1) in the IR. Deformation by the relevant mass parameters will

generically break SO(2Nf ) further. For the solution studied in this paper, an SO(2) sym-

– 23 –



J
H
E
P
0
2
(
2
0
1
8
)
1
6
5

metry survives, which suggests that a minimal choice for the dual field theory would be

one with Nf = 1 (i.e. a single D8 brane).

However, even in this minimal case the enhanced gauge group E2
∼= SU(2) × U(1)

of the conformal fixed point is found to have dimension dimE2 = 4, which suggests that

the holographic dual to such a theory should contain at least four bulk vector multiplets.

Fortunately, it is possible to embed our n = 1 solution in a theory with n = 4, which can

accommodate the extended flavor symmetry in the UV. Setting the fields of the three ad-

ditional vector multiplets to vanish then reproduces exactly the solutions explored in this

paper. In fact, such an embedding is possible for any value of n > 1. This suggests that our

holographic solutions are generic enough to capture the behavior of all single-mass deforma-

tions of ENf+1 theories for any Nf . As such, we will carry out the localization calculation

in section 5.3 for generic Nf . We will find that for every choice of 1 ≤ Nf ≤ 7, one obtains a

good match between the analytic field theory expression and our previous numerical results.

Having addressed the identification of flavor symmetries, it is natural to interpret the

holographic solutions of this paper as dual to RG flows emanating from the same UV SCFTs

that were found to be the duals of pure Roman’s supergravity. The flow is driven by three

relevant operators of dimension ∆ = 3, 4, 3, in addition to the gauge coupling deformation

which brings the non-Lagrangian UV SCFT to an IR Yang-Mills-matter theory. In the

IR, the three relevant deformations are interpreted respectively as a mass term for the

hypermultiplet scalars, a mass term for the hypermultiplet fermions, and a dimension

three operator needed to preserve supersymmetry on the five-sphere [36, 37]. The explicit

form of these deformations is shown in (2.22).

To support this interpretation, we now calculate the free energy of the mass-deformed

USp(2N) gauge theory and compare it to the holographic result displayed in figure 3. For

the unfamiliar reader, we will first reproduce the results of [56], where the USp(2N) theory

without mass deformation was studied. The techniques used for the mass-deformed theory

will be the same, and the new calculation is presented in section 5.3.

5.2 Undeformed USp(2N) gauge theory

In [37], localization techniques were used to find the perturbative partition function of

N = 1 five-dimensional Yang-Mills theory with matter in a representation R on S5, with

the result given by

Z =
1

|W|

∫

Cartan
[dσ] e

− 8π3r

g2
Y M

Tr(σ2)
detAd

(

sin(iπσ)e
1

2
f(iσ)

)

×
∏

I

detRI

(

(cos(iπσ))
1

4 e−
1

4
f( 1

2
−iσ)− 1

4
f( 1

2
+iσ)

)

+O

(

e
−16π3r

g2
Y M

)

(5.1)

where r is the radius of S5, σ is a dimensionless matrix, and f is defined as

f(y) =
iπy3

3
+ y2 log

(

1− e−2πiy
)

+
iy

π
Li2

(

e−2πiy
)

+
1

2π2
Li3

(

e−2πiy
)

− ζ(3)

2π2
(5.2)

The quotient by the Weyl group in (5.1) amounts to division by a simple numerical factor

|W| = 2NN !. The integral over σ is not restricted to a Weyl chamber. Though this
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localization result was obtained in the IR theory, it is expected to hold in the UV due to

the assumed Q-exactness of the irrelevant UV completion terms.

One may rewrite the partition function in terms of the free energy as

Z =
1

|W|

∫

Cartan
[dσ] e−F (σ) +O

(

e
−16π3r

g2
Y M

)

F (σ) =
4π3r

g2YM

Trσ2 +TrAdFV (σ) +
∑

I

TrRI
FH(σ) (5.3)

The definitions of FV (σ) and FH(σ) follow simply from (5.1), and using (5.2) one may

obtain the following large argument expansions

FV (σ) ≈
π

6
|σ|3 − π|σ| FH(σ) ≈ −π

6
|σ|3 − π

8
|σ| (5.4)

It was argued in [56] that in the large N limit, the perturbative Yang-Mills term — i.e. the

first term in the expression for F (σ) in (5.3) — can be neglected, as can be the instanton

contributions. Thus in our evaluation of the free energy, we will only concern ourselves

with the contributions coming from FV (σ) and FH(σ).

The first step in the evaluation of (5.3) is recasting the matrix integral in a simpler

form. The integral over σ in (5.3) is an integration over the Coulomb branch, which is

parameterized by the non-zero vevs of σ. One may write

σ = diag{λ1, . . . , λN ,−λ1, . . . ,−λN} (5.5)

since USp(2N) has N elements in its Cartan. The integration variables are these N λi.

Normalizing the weights of the fundamental representation of USp(2N) to be ±ei with ei
forming a basis of unit vectors for RN , it follows that the adjoint representation has weights

±2ei and ei ± ej for all i 6= j, whereas the anti-symmetric representation has only weights

ei±ej for all i 6= j. The free energy in the specific case of a vector multiplet in the adjoint,

a single antisymmetric hypermultiplet, and Nf fundamental hypermultiplets then is

F (λi) =
∑

i 6=j

[FV (λi − λj) + FV (λi + λj) + FH(λi − λj) + FH(λi + λj)]

+
∑

i

[FV (2λi) + FV (−2λi) +NfFH(λi) +NfFH(−λi)] (5.6)

The next step is to look for extrema of this function in the specific case of λi ≥ 0 for all i.

Extrema in the case of non-positive λi can be obtained from these through action of the

Weyl group.

To calculate the extrema, one first assumes that asN → ∞, the vevs scale as λi = Nαxi
for α > 0 and xi of order O(N0). One then introduces a density function

ρ(x) =
1

N

N
∑

i=1

δ(x− xi) (5.7)
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which in the continuum limit should approach an L1 function normalized as
∫

dx ρ(x) = 1 (5.8)

In terms of this density function, one finds that

F ≈ −9π

8
N2+α

∫

dxdy ρ(x)ρ(y) (|x− y|+ |x+ y|) + π(8−Nf )

3
N1+3α

∫

dx ρ(x) |x|3

(5.9)

where the large argument expansions (5.4) have been used, and terms subleading in N

have been dropped. This only has non-trivial saddle points when both terms scale the

same with N , which demands that α = 1/2 and gives the famous result that F ∝ N5/2.

Extremizing the free energy over normalized density functions then gives

F ≈ −9
√
2πN5/2

5
√

8−Nf

(5.10)

This value of the free energy is to be identified with the renormalized on-shell action of the

supersymmetric AdS6 solution. This identification yields the following relation between the

six-dimensional Newton’s constant G6 and the parameters N and Nf of the dual SCFT,

G6 =
5π

√

8−Nf

27
√
2

N−5/2 (5.11)

5.3 Mass-deformed USp(2N) gauge theory

As discussed previously, we now give a mass to a single hypermultiplet in the fundamental

representation. This amounts to making a shift σ → σ + m in the relevant functional

determinant. The result of this shift may be accounted for in (5.6) by writing

F (λi,m) =
∑

i 6=j

[FV (λi − λj) + FV (λi + λj) + FH(λi − λj) + FH(λi + λj)]

+
∑

i

[FV (2λi) + FV (−2λi) + FH(λi +m) + FH(−λi +m)

+(Nf − 1)FH(λi) + (Nf − 1)FH(−λi)] (5.12)

As before, we assume that λi = Nαxi for α > 0 and introduce a density ρ(x) satisfying (5.8).

Using the expansions (5.4), we find the analog of (5.9) to be

F (µ) ≈ −9π

8
N2+α

∫

dxdy ρ(x)ρ(y) (|x− y|+ |x+ y|) + π

3
(9−Nf )N

1+3α

∫

dx ρ(x) |x|3

−π

6
N1+3α

∫

dx ρ(x)
[

|x+ µ|3 + |x− µ|3
]

(5.13)

where for convenience we have defined µ ≡ m/Nα. As in the undeformed case, there

is a non-trivial saddle point only when α = 1/2. A normalized density function which

extremizes the free energy is

ρ(x) =
1

(8−Nf )x2∗ − µ2
( 2(9−Nf )|x| − |x+ µ| − |x− µ| ) x∗ =

√

9 + 2µ2

2(8−Nf )
(5.14)
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Figure 4. The free energy obtained by a holographic computation (solid blue), together with the

free energy obtained by a field theory localization calculation (dashed red).

with ρ(x) having support only on the interval x ∈ [0, x∗]. Inserting this result back

into (5.13) then gives our final result,8

F (µ) =
π

135

(

(Nf − 1)|µ|5 −
√

2

8−Nf
(9 + 2µ2)5/2

)

N5/2 (5.15)

We may check that when µ = 0, we reobtain the result of the undeformed case (5.10).

With this result and G6 given by (5.11), we may now try to compare G6(F (µ)−F (0))

to the same result calculated holographically in figure 3. Importantly, since µ scales as

N−1/2, we see that in the large N limit the first term of (5.15) is subleading and may be

neglected. Thus to leading order in N , the combination G6F (µ) is in fact independent

of Nf . Since comparison with the holographic result requires taking the large N limit,

our supergravity solutions will be unable to capture information about the precise flavor

content of the SCFT dual. This agrees with the previous comments that, from the point

of view of six-dimensional supergravity, the n = 1 solutions we are considering can be

consistently embedded into theories with any number of bulk vector multiplets.

To proceed with the comparison between field theory and holographic results, we re-

quire a relation between the holographic deformation parameter α and the field theory mass

parameter µ, i.e. α = A−1µ for some A, whose numerical value can be obtained by fitting

the two results. The result of this one parameter fit is given by the red curve in figure 4.

To the numerical accuracy of the holographic result, we see that the behavior of the

holographic free energy as a function of the deformation parameter agrees with the field

theory result obtained via localization. The value of A furnishing the fit in the range

|α| ≤ 1 is found to be A ≈ 0.81.

6 Discussion

In the present paper, we used the simple setup of six-dimensional gauged supergravity

coupled to a single vector multiplet to study supersymmetric mass deformations of strongly

8The first term in the large N expansion of this result agrees with eq. (3.22) of [58], up to a factor of

Nf . This difference is due to the fact that we give mass to only a single fundamental hypermultiplet.
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coupled five-dimensional CFTs on a five-sphere. The numerical integration of the Euclidean

BPS equations and the careful treatment of holographic renormalization allowed us to

obtain the holographic free energy of the theory by calculating the on-shell action for the

supergravity solutions. Due to the regularity of the solutions, the free energy depends on

only one parameter, which can be interpreted as the supersymmetric mass deformation in

the boundary RG flow.

We were able to find good numerical agreement between the holographic result and a

localization calculation for a free USp(2N) field theory in the IR, at least in the case of

reasonably small deformation parameter. This may be an example of localization working

much better than expected, as we had to make unverified assumptions regarding the relation

between the gauged supergravity and the underlying microscopic theory. To understand

this better, one could next consider cosets with n > 1 and gaugings which realize larger

flavor symmetries at the UV fixed points. It would also be interesting to see whether the

six-dimensional solutions found here could be lifted to ten dimensions, both in the context

of massive type IIA supergravity [4] as well as type IIB supergravity [19, 20].

Furthermore, in obtaining our solutions we demanded that the five-sphere smoothly

closes off in the IR. It should also be possible to impose a different boundary condition

where at finite radius one side of the RG flow is glued to a second one, resulting in a

Euclidean wormhole configuration in AdS [60, 61]. It is likely that such a solution would

be related to the holographic defect solutions found in [33]. We leave the study of these

interesting questions for future work.
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A Gamma matrix and spinor conventions

For concreteness, we take the following basis of gamma matrices

γ1 = σ2 ⊗ 12 ⊗ σ3

γ2 = σ2 ⊗ 12 ⊗ σ1

γ3 = 12 ⊗ σ1 ⊗ σ2

γ4 = 12 ⊗ σ3 ⊗ σ2

γ5 = σ1 ⊗ σ2 ⊗ 12

γ6 = σ3 ⊗ σ2 ⊗ 12 (A.1)

These gamma matrices satisfy the Clifford algebra

{γµ, γν} = 2δµν (A.2)
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as appropriate for a positive definite Euclidean spacetime. All matrices are purely imagi-

nary and satisfy

(γµ)
† = γµ (γµ)

2 = 1 (A.3)

We will now be interested in a seven-dimensional Clifford algebra, which will require the

introduction of a new matrix γ7. The reason we are interested in this is that we would like

to represent hyperbolic space H6 as a hypersurface in a seven-dimensional ambient space.

This allows us to determine properties of the Dirac spinors in the Euclidean-continued F (4)

gauged supergravity theory with H6 background by first considering Dirac spinors in seven

dimensions and then performing a timelike reduction. In particular, we will choose a 7D

metric of signature (+,+,+,+,+,+,−) for the ambient space. Then hyperbolic space H6

is given by the following quadratic form

x21 + · · ·+ x26 − x27 = −L2 (A.4)

The seven-dimensional Clifford algebra is made up of the set of matrices {γ1, . . . , γ6, γ7},
with γ7 satisfying

(γ7)
2 = −1 {γµ, γ7} = 0 ∀µ 6= 7 (A.5)

As usual, we use the notation γ7 = (γ7)
−1, so that by the above we have γ7 = −γ7.

We now discuss Dirac spinors in d = 7. We define the Dirac conjugate of ψA to be

ψ̄A = ψ†
AG

−1 (A.6)

for some matrix G. There are two possible choices for G [49], which in the particular case

of the ambient space above are

G1 = γ7 G2 = γ1 . . . γ6 (A.7)

These will turn out to be the same, so we just work with the former. Thus we have that

ψ̄A = ψ†
Aγ7 (A.8)

If we choose γ7 such that

(γ7)
† = −γ7 (A.9)

we can express the Hermitian conjugates of our gamma matrices as9

γ†µ = η G−1γµG (A.10)

Importantly, with G = G1 in (A.7), we have

η = −1 (A.11)

9Note that the η used in this appendix has nothing to do with the η defined in (3.12), though they both

end up being given the value −1 in this paper.
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This will be important in appendix B when the consistency of the symplectic Majorana

condition is analyzed. For now, we just recall that the symplectic Majorana condition must

take the form

ψ̄A = ǫABψT
B C (A.12)

where

C2 = 1 CT = C γTµ = −C−1γµC (A.13)

We now want to reduce from d = 7 to d = 6. In particular, we reduce on the time-

like direction x7. This entails finding a Euclidean induced metric on the six-dimensional

surface (A.4). From the point of view of the Clifford algebra, we must remove the matrix γ7
to get a six-dimensional Clifford algebra. However, the properties of the matrix γ7 remain

the same. In fact, we may choose

γ7 = γ0γ1γ2γ3γ4γ5 (A.14)

which satisfies all of the properties (A.5), (A.9).

B Free differential algebra

In this appendix, we will construct the free differential algebra (FDA) of a supergravity

theory with H6 background in order to motivate the form of the supersymmetry variations

given in (3.7).

The first step of constructing the FDA is to write down the Maurer-Cartan equations

(MCEs), which may be thought of as the geometrization of the (anti-)commutation relations

of the superalgebra. In short, instead of defining the algebra via the (anti-)commutators of

its generators, the MCEs encode the algebraic structure in integrability conditions. In the

supergravity context, a nice introduction to the MCEs, as well as to the free differential

algebras to be introduced shortly, may be found in [62]. In the current case, the MCEs are

0 = DV a +
1

2
ψ̄Aγ

aγ7ψA

0 = Rab − 4m2V aV b +mψ̄Aγ
abψA

0 = dAr − 1

2
gǫrstAsAt − iψ̄AψBσ

r AB

0 = Dψa +mγaγ7ψAV
a (B.1)

Here a = 1, . . . , 6 and V a are the six-dimensional frame fields, given in terms of the seven-

dimensional spin-connection as V a = 1
2mωa7. These may be compared to the analogous

expressions in the dS/AdS cases of [49].

As a simple check, the second equation of (B.1) tells us that when ψA = 0,

Rµν = −20m2gµν (B.2)

which is precisely as expected for an H6 background.
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The next step is to enlarge the MCEs to a free differential algebra (FDA) by adding

the following equations for the additional vector and 2-form fields of the full d = 6 F (4)

supergravity theory,

dA−mB + αψ̄Aγ7ψ
A = 0 dB + βψ̄Aγaψ

AV a = 0 (B.3)

Above, α and β are two coefficients, which can be shown [49] to satisfy

β = −2α (B.4)

for our metric conventions. For the ambient space signature (t, s) = (1, 6), it is furthermore

found that β = 2i, and thus we have α = −i.

We would now like to compare the FDA above to the results of [24, 26, 49]. To do so,

we must first shift our notations by shifting

γa → γ7γa γa → −γ7γa (B.5)

This preserves the square of the gamma matrices, and hence the signature of the metric.

The definition of the Dirac conjugate spinor (A.8) remains the same under this change. So

the FDA for the H6 theory in these conventions is,

0 = DV a +
1

2
ψ̄Aγ

aψA

0 = Rab − 4m2V aV b +mψ̄Aγ
abψA

0 = dAr − 1

2
gǫrstAsAt − iψ̄AψBσ

r AB

0 = Dψa −mγaψAV
a

0 = dA−mB − iψ̄Aγ7ψ
A

0 = dB − 2iψ̄Aγ7γaψ
AV a (B.6)

We may now compare the FDA written above to that obtained in the AdS6 case, which

for convenience we reproduce below,

0 = DV a − i

2
ψ̄Aγ

aψA

0 = Rab + 4m2V aV b +mψ̄Aγ
abψA

0 = dAr − 1

2
gǫrstAsAt − iψ̄AψBσ

r AB

0 = Dψa − imγaψAV
a

0 = dA−mB − iψ̄Aγ7ψ
A

0 = dB + 2ψ̄Aγ7γaψ
AV a (B.7)

We see that formally, we may obtain the H6 FDA from the AdS6 FDA by exchanging

m → −im ψA → ψA ψ̄A → iψ̄A Ar → iAr g → −ig B → −B A → iA

These exchanges are compatible with the relation g = 3m.
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Finally, we will check that the H6 FDA is compatible with the symplectic Majorana

condition. This is a statement about the fourth equation of (B.6). We begin by defining

∇ψA ≡ DψA − qγaψAV
a (B.8)

where q = m for H6 and q = im for AdS6. We then find that

∇ψA = Dψ†
AG

−1 − q∗ψ†
AG

−1Gγ†aG
−1V a = Dψ̄A − q∗η ψ̄AγaV

a

ǫAB∇ψT
BC = ǫABDψT

BC − qǫABψT
BCC−1γTa CV a = Dψ̄A + qψ̄AγaV

a (B.9)

where η is defined implicitly in (A.10). We thus find that the symplectic Majorana condition

is consistent only when

− q∗η = q (B.10)

For H6, the consistency of the symplectic Majorana condition thus requires η = −1, which

we have already seen to be the case in (A.11). On the other hand, in the AdS6 case, one

would instead have required η = 1. Checking the results of [24, 26] confirms that this was so.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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