
J
H
E
P
0
2
(
2
0
1
8
)
1
6
2

Published for SISSA by Springer

Received: December 22, 2017

Accepted: February 20, 2018

Published: February 26, 2018

Three dimensional view of arbitrary q SYK models

Sumit R. Das,a Animik Ghosh,a Antal Jevickib and Kenta Suzukib

aDepartment of Physics and Astronomy, University of Kentucky,

Lexington, KY 40506, U.S.A.
bDepartment of Physics, Brown University,

182 Hope Street, Providence, RI 02912, U.S.A.

E-mail: das@pa.uky.edu, animik.ghosh@uky.edu, antal jevicki@brown.edu,

kenta suzuki@brown.edu

Abstract: In [15] it was shown that the spectrum and bilocal propagator of SYK model

with four fermion interactions can be realized as a three dimensional model in AdS2×S1/Z2

with nontrivial boundary conditions in the additional dimension. In this paper we show that

a similar picture holds for generalizations of the SYK model with q-fermion interactions.

The 3D realization is now given on a space whose metric is conformal to AdS2 × S1/Z2

and is subject to a non-trivial potential in addition to a delta function at the center of

the interval. It is shown that a Horava-Witten compactification reproduces the exact SYK

spectrum and a non-standard propagator between points which lie at the center of the

interval exactly agrees with the bilocal propagator. As q → ∞, the wave function of one

of the modes at the center of the interval vanish as 1/q, while the others vanish as 1/q2, in

a way consistent with the fact that in the SYK model only one of the modes contributes

to the bilocal propagator in this limit.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence, 2D Gravity, 1/N

Expansion

ArXiv ePrint: 1711.09839

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2018)162

mailto:das@pa.uky.edu
mailto:animik.ghosh@uky.edu
mailto:antal_jevicki@brown.edu
mailto:kenta_suzuki@brown.edu
https://arxiv.org/abs/1711.09839
https://doi.org/10.1007/JHEP02(2018)162


J
H
E
P
0
2
(
2
0
1
8
)
1
6
2

Contents

1 Introduction 1

2 q fermion SYK model 3

3 The three dimensional model 6

3.1 The spectrum 7

3.2 The two point function 8

4 Comparison of the 3d and SYK propagator 8

5 The large q limit 10

6 Conclusions 12

1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1–5] has in recent intensive studies [6–16] (for a

review see [17]), emerged as a useful toy model for holography. An important aspect

of this model, which is absent from other such models of holography is the presence of

quantum chaos [18–27], which indicates that a finite temperature version of this model

describes black holes. Related models have been studied [28–30] with extensions [31–45]

and generalizations in the form of tensor type models [46–72]. Interesting random matrix

theory interpretations have been realized in [73–80].

The original SYK model has a four fermion interaction with a random coupling which

has a gaussian probability distribution with width J . Averaging over the couplings gives rise

to a theory with eight fermi interactions with coupling J2 and an O(N) symmetry, where

N is the number of fermions, making this similar to other vector models. Like other vector

models, this is most easily solved at large N by making a change of variables to bilocal

fields [81, 82]. For such O(N) models it was proposed in [83] that these bi-local fields in fact

provide a bulk construction of the dual higher spin theory [84], with the pair of coordinates

in the bi-local combining to provide the coordinates of the emergent AdS space-time. In

d ≥ 2, the proposal of [83] was implemented, with additional nonlocal transformations on

external legs [85–87] providing a map between the bi-local and conventional Vasiliev higher

spin fields in AdS4. For d = 1 case (as in the SYK model) the simplest identification of the

center of mass coordinate and the relative coordinate of the two points of the bilocal indeed

provides coordinates of a Poincare patch of lorentzian AdS2. In [8, 9] the collective field

theory of the bilocals was developed, providing a transparent way of obtaining both the

bilocal propagator and interactions as well as the Schwarzian theory of the low energy mode.
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The precise bulk dual of the SYK model and its q fermion coupling generalization

are still not well understood. It has been conjectured in [88–91] that the gravity sector

of this model is the Jackiw-Teitelboim model [92, 93] of dilaton-gravity with a negative

cosmological constant, studied in [94], while [95] provides strong evidence that it is actually

Liouville theory. (See also [96–100]).

The spectrum of the SYK model is highly nontrivial. The matter sector of these

theories contains an infinite tower of particles [6–8]. This is clear from the quadratic action

for the bilocal fluctuations and the resulting bilocal propagator. The kinetic term in the

action contains all powers of the AdS2 laplacian which gives rise to rather complicated

form of the residues at the poles of the propagator. The couplings of these particles are

likewise very complicated, as is clear from the higher point functions computed in [13, 14].

In [15] it was shown for the q = 4 model that the exact spectrum and the bilocal

propagator follows from a three dimensional model. In this 3D realization (where the

additional third dimension is used to parametrize the spectrum as in the KK scheme and

HS theories), a scalar field with a conventional kinetic energy term is defined on AdS2× I,

where I = S1/Z2 is a finite interval with a suitable size. The mass of the scalar field

is at the Breitenlohner-Freedman bound [101] of AdS2. The scalar field satisfies Dirichlet

boundary conditions at the ends and feels an external delta function potential at the middle

of the interval. However, as we will see below, the odd parity modes do not play any role

in our construction. This means that one can consider half of the interval with Dirichlet

condition at one end, and a nontrivial boundary condition determining the derivative of

the field at the other end.1 The background can be thought of as coming from the near-

horizon geometry of an extremal charged black hole which reduces the gravity sector to

Jackiw-Teitelboim model with the metric in the third direction becoming the dilaton of

the latter model [89]. The strong coupling limit of the SYK model corresponds to a trivial

metric in the third direction, while at finite coupling this acquires a dependence on the

AdS2 spatial coordinate. At strong coupling a Horava-Witten compactification then leads

to a spectrum of masses in AdS2 which is in exact agreement with the SYK spectrum.

More significantly, a non-standard propagator with the end points at the location of the

delta function exactly reproduces the SYK bilocal propagator, if the two coordinates in the

Poincare patch AdS2 are identified with the center of mass and the relative coordinate of

the two points of the bilocal. The nontrivial factors which appear in the SYK propagator

from residues at the poles now appear as the values of the wave function at the center of I.

As expected, this strong coupling propagator is divergent due to the divergent contri-

bution of a mode which can be identified with a reparametrization invariance zero mode in

the SYK model. At finite coupling the zero mode is lifted and gives rise to an “enhanced

contribution” proportional to J . In the three dimensional model [15] we adopted the pro-

posal of [89, 90], and show that to order 1/J , the poles of the propagator shift in a manner

consistent with the explicit results in [7] and the enhanced propagator is reproduced as well.

In this paper we show that such a three dimensional picture holds for generalizations of

the SYK model with arbitrary q. As shown below, the three dimensional metric on which

1We thank Edward Witten for a clarification on this point.
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the scalar lives is now conformal to AdS2 × I. The scalar field is subject to a non-trivial

potential in addition to a delta function at the center of the interval. This reproduces the

spectrum exactly. Furthermore, the three dimensional propagator whose points lie at the

center of I reproduce the arbitrary q SYK propagator up to a factor which depends only

on q. We also discuss the large q limit in this picture. In the SYK model the spectrum

becomes evenly spaced in this limit. However only one mode - the zero mode - contributes

to the propagator since the residues at the other poles vanish. In the three dimensional

picture, the different modes appear as KK modes. However in the large q limit we find

that the normalized wave function at the center of the interval is nonzero for only one of

these modes, in a way consistent with the SYK result.

In section 2 we describe the bilocal collective formulation of the model for arbitrary q.

In section 3 we describe our three dimensional model. Section 4 contains the comparison

of the propagator of the three dimensional model with the SYK bilocal propagator. In

section 5 we comment on the large q limit. Section 6 contains some concluding remarks.

2 q fermion SYK model

The model is defined by a hamiltonian, with any even q,

H = (i)
q
2

∑
1≤i1<i2<···<iq≤N

ji1i2···iq χi1 χi2 · · ·χiq , (2.1)

where χi are Majorana fermions, which satisfy {χi, χj} = δij . The random coupling has a

gaussian distribution with

< j2
i1i2···iq >=

J2(q − 1)!

N q−1
(2.2)

One way to perform the averaging is to use the replica trick. At large N , one does not

expect a spin glass state in this model [5] so that we can restrict to the replica diagonal

subspace [8]. The large N this model is efficiently solved by re-writing the theory in terms

of replica diagonal bilocal collective fields [8, 9].

Ψ(t1, t2) ≡ 1

N

N∑
i=1

χi(t1)χi(t2) , (2.3)

where we have suppressed the replica index. The corresponding path-integral is

Z =

∫ ∏
t1,t2

DΨ(t1, t2) µ(Ψ) e−Scol[Ψ] , (2.4)

where Scol is the collective action:

Scol[Ψ] =
N

2

∫
dt
[
∂tΨ(t, t′)

]
t′=t

+
N

2
Tr log Ψ − J2N

2q

∫
dt1dt2 Ψq(t1, t2) . (2.5)

Here the second term comes from a Jacobian factor due to the change of path-integral

variable, and the trace is taken over the bi-local time. One also has an appropriate order
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O(N0) measure µ. This action being of order N gives a systematic G = 1/N expansion,

while the measure µ found as in [102] begins to contribute at one-loop level (in 1/N). As

is well known, in the IR, i.e. at strong coupling the kinetic term can be ignored. There

is now an emergent reparametrization invariance. In this limit the saddle point equation

which follow from Scol[Ψ] has the solution

Ψ0(t1, t2) =
b

|t12|
2
q

sgn(t12) bq =
tan(πq )

J2π

(
1

2
− 1

q

)
(2.6)

where we defined tij ≡ ti − tj .
In the following it will be useful to use the center of mass and relative coordinates

t =
1

2
(t1 + t2) , z =

1

2
(t1 − t2) , (2.7)

The conformal transformations on t1, t2 then give rise to transformations on t, z which are

identical to the isometries of AdS2 with a metric ds2 = 1
z2

[−dt2 + dz2].2 Fluctuations

around this critical IR solution, Ψ0(t, z) defined by

Ψ(t1, t2) = Ψ0(t1, t2) +

√
2

N
η(t, z) (2.8)

can be expanded as

η(t, z) =

∫
dω

2π

∫
dν

Nν
Φ̃ν,ωuν,ω(t, z) (2.9)

where

uν,ω(t, z) = sgn(z) eiωt Zν(|ωz|) (2.10)

with Zν are a complete set of modes which diagonalizes the quadratic kernel [6],

Zν(x) = Jν(x) + ξν J−ν(x) , ξν =
tan(πν/2) + 1

tan(πν/2)− 1
, . (2.11)

Their normalization and completeness relations are given by∫ ∞
0

dx

x
Z∗ν (x)Zν′(x) = Nν δ(ν − ν ′)∫

dν

Nν
Z∗ν (|x|)Zν(|x′|) = x δ(x− x′) (2.12)

where the normalization factor Nν is

Nν =

{
(2ν)−1 for ν = 3/2 + 2n

2ν−1 sinπν for ν = ir ,
(2.13)

In all of the above expressions the integral over ν is a shorthand for an integral over the

imaginary axis and a sum over the discrete values ν = 3/2 + 2n. The necessity of both the

continuous and the discrete spectrum follows from SL(2,R) representation theory [103].

2Note that this could very well be dS2 [7].
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The quadratic part of the fluctuation action then becomes

S(2) ∝ J
∫
dν

∫
dωΦ̃?

ν,ω

[
k̃c(ν, q)− 1

]
Φ̃ν,ω (2.14)

where

k̃c(ν, q) =
1

kc(h, q)
h =

1

2
+ ν (2.15)

and kc(h, q) is the eigenvalue of the bilocal kernel derived in [7],

kc(h, q) = −(q − 1)
Γ
(

3
2 −

1
q

)
Γ
(

1− 1
q

)
Γ
(
h
2 + 1

q

)
Γ
(

1
2 + 1

q −
h
2

)
Γ
(

1
2 + 1

q

)
Γ
(

1
q

)
Γ
(

3
2 −

1
q −

h
2

)
Γ
(

1− 1
q + h

2

) (2.16)

The spectrum is then given by solving kc(h, q) = 1. Note that pm = 3/2 is an exact solution

for all q.

The bilocal propagator in (t, z) space can be now derived following the same steps as

in [8, 15] by substituting the expansion (2.9) and using the (ν, ω) space propagator which

follows from (2.14),

G(t, z; t′, z′) ∼ − 1

J

∑
m

∫ ∞
−∞

dω

2π
e−iω(t−t′)

∫
dν

Nν

Z∗ν (|ωz|)Zν(|ωz′|)
ν2 − p2

m

(2pm)R(pm) (2.17)

where pm denote the solutions of the spectral equation kc(pm+ 1
2 , q) = 1. The factor R(pm)

is the residue of the propagator at the poles ν = pm,

R(pm) =
1(

∂k̃c(ν,q)
∂ν

)
ν=pm

(2.18)

and
∂k̃c(ν, q)

∂ν
= Nh

[
H−1+h

2
+ 1

q
+H 1

2
−h

2
− 1

q
−Hh

2
− 1

q
−H− 1

2
−h

2
+ 1

q

]
(2.19)

where Hn denotes the Harmonic number, and

Nh =

(
sinπh+ sin 2π

q

)
Γ
(

2
q

)
Γ
(

2− h− 2
q

)
Γ
(

1 + h− 2
q

)
πqΓ

(
3− 2

q

) (2.20)

The symbol
∫
dν is as usual a shorthand notation for an integral over the imaginary axis

and a sum over discrete values ν = 3
2 + 2n. As in the q = 4 case, when one performs the

ν integral over the imaginary axis there are two sets of poles, the ones at ν = ±pm and at

ν = 3
2 + 2n. The contribution from those latter poles exactly cancel the contribution from

the discrete values , and one is finally left with an expression

G(t, z; t′, z′) ∼ − 1

J
|zz′|

1
2

∑
m

∫ ∞
−∞

dω

2π
e−iω(t−t′)Z−pm(|ω|z>)Jpm(|ω|z<)

Npm

Rpm (2.21)

where z<(z>) is the smaller (larger) of z, z′.

As expected, the expression (2.21) is divergent since this is a strong coupling proagator.

This comes from the mode at pm = 3/2 which is a solution for all q. At this value Z−3/2

diverges because ξ−3/2 diverges. For finite J this mode is corrected by a term which is

O(1/J) and this leads to a contribution to the propagator which is O(J) compared to the

contribution from the other solutions of kc(pm + 1/2, q) = 1.
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3 The three dimensional model

We will now write down a model which reproduces the above spectrum exactly and the

above propagator up to a function of q. The model is that of a single scalar field Φ with

an action
1

2

∫
dtdzdx

√
−g
[
−gµν∂µΦ∂νΦ− V (x)Φ2

]
(3.1)

where the background metric is given by

ds2 = |x|
4
q
−1
[
−dt2 + dz2

z2
+

dx2

4|x|(1− |x|)

]
(3.2)

and the direction x lies in the interval −1 < x < 1. The space-time is then conformal to

AdS2 × S1/Z2. The potential which appears in (3.1) is given by

V (x) =
1

|x|
4
q
−1

[
4

(
1

q
− 1

4

)2

+m2
0 +

2V

J(x)

(
1− 2

q

)
δ(x)

]
(3.3)

where V is a constant to be determined below and

J(x) =
|x|

2
q
−1

2
√

1− |x|
(3.4)

The action can be now re-written as

S =
1

2

∫
dtdzdxJ(x)

[
(∂tΦ)2 − (∂zΦ)2 − m2

0

z2
Φ2 (3.5)

− 4

z2

{
|x|(1− |x|)(∂xΦ)2 +

(
1

q
− 1

4

)2

Φ2 +

(
1− 2

q

)
V

2J(x)
δ(x)Φ2

}]
We will impose Dirichlet boundary conditions at x = ±1,

Φ(t, z,±1) = 0 (3.6)

while the delta function discontinuity in the potential determines the discontinuity at x = 0

to be

Limε→0

[
|x|2/q

√
1− |x|∂xΦ

]ε
−ε

=

(
1− 2

q

)
V Φ(t, z, 0) (3.7)

In the following we will be interested in fields which are even under x → −x. For such

fields (3.7) implies [
x2/q∂xΦ

]
x=0

=

(
1− 2

q

)
V

2
Φ(t, z, 0) (3.8)

Once we impose this we can restrict to 0 < x < 1 and forget about the delta function. This

is what we will do in the rest of the paper.

Performing an integration by parts and ignoring the boundary term the action becomes

S =
1

2

∫ ∞
−∞

dt

∫ ∞
0

dz

∫ 1

0
dx J(x) ΦD0Φ (3.9)

where

D0 = −∂2
t + ∂2

z −
m2

0

z2
+

4

z2

[
x(1− x)∂2

x +

[
2

q
− x

(
1

2
+

2

q

)]
∂x −

(
1

q
− 1

4

)2 ]
(3.10)

This operator is hermitian with the measure dxJ(x).
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3.1 The spectrum

To diagonalize D0 we first find solve the eigenvalue problem for the operator inside the

square bracket in (3.10) in the domain 0 < x < 1,[
x(1− x)∂2

x +

[
2

q
− x

(
1

2
+

2

q

)]
∂x −

(
1

q
− 1

4

)2 ]
φk(x) = −k

2

4
φk(x) (3.11)

The general solution of this equation is

φk(x) = A 2F1(a, b; c, x) + x1−cB 2F1(a− c+ 1, b− c+ 1; 2− c;x) (3.12)

where 2F1 denotes the usual Hypergeometric function and

a =
1

q
− 1

4
− k

2
b =

1

q
− 1

4
+
k

2
c =

2

q
(3.13)

Imposing the boundary condition (3.8) gives

B =
V

2
A (3.14)

while imposing (3.6) gives

A2F1(a, b; c, 1) +B2F1(a− c+ 1, b− c+ 1; 2− c; 1) = 0 (3.15)

Using

2F1(a, b; c, 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(3.16)

and combining (3.15) and (3.14) we get

Γ
(

5
4 −

1
q −

k
2

)
Γ
(

2
q

)
Γ
(

5
4 −

1
q + k

2

)
Γ
(

2− 2
q

)
Γ
(

1
4 + 1

q −
k
2

)
Γ
(

1
4 + 1

q + k
2

) = −V
2

(3.17)

where we have used the values of a, b, c in (3.13).

Remarkably if we choose

V = 2(q − 1)
Γ
(

3
2 −

1
q

)
Γ
(

1− 1
q

)
Γ
(

2
q

)
Γ
(

1
2 + 1

q

)
Γ
(

2− 2
q

)
Γ
(

1
q

) (3.18)

and define h = k + 1/2 the condition (3.17) becomes

kc(h, q) = 1 (3.19)

where kc(h, q) is precisely the SYK spectrum for arbitrary q given by (2.16). The significant

point of course is that V given by (3.18) depends only on q.
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3.2 The two point function

Using the eigenfunctions in the previous subsection we can now expand the three dimen-

sional field in terms of a complete basis as follows

Φ(t, z, x) =

∫
dkdνdω

Nν
e−iωt|z|1/2Zν(|ωz|)ϕk(x) χ(ω, ν, k) (3.20)

where the combinations of Bessel functions Zν have been defined in (2.11) and ϕk(x) are

ϕk(x) =2 F1(a, b; c, x) + x1−cV

2
2F1(a− c+ 1, b− c+ 1; 2− c;x) (3.21)

where a, b, c are given in (3.13) and V is given in (3.18). The functions ϕk(x) are orthogonal

with the measure factor J(x)∫ 1

0
dxJ(x)ϕk(x)ϕk′(x) = C1(k)δk,k′ (3.22)

The action now becomes

S =
1

2

∫
dkdνdω

Nν
C1(k)(ν2 − ν2

0)χ(ω, ν, k)χ(−ω, ν, k) (3.23)

where

ν2
0 = k2 +m2

0 +
1

4
(3.24)

Let us now choose

m2
0 = −1/4 (3.25)

so that one finally has ν0 = k. The two point function of χ(ωνk) is then given by

〈χ(ω, ν, k)χ(−ω, ν, k)〉 =
Nν

C1(k)(ν2 − k2)
(3.26)

The position space 3d propagator is then given by

〈Φ(t, z, x)Φ(t′, z′, x′)〉 = |zz′|
1
2

∑
m

C(pm, x, x
′)

∫
dω

2π
e−iω(t−t′)

∫
dν

Nν

Z?ν (|ωz|)Zν(|ωz′|)
ν2 − p2

m

(3.27)

where

C(pm, x, x
′) =

ϕpm(x)ϕpm(x′)

C1(pm)
(3.28)

This can be regarded as a sum of AdS2 propagators. However it is important to note that

these are non-standard propagators.

4 Comparison of the 3d and SYK propagator

We now show that the propagator (3.27) evaluated at x = x′ = 0 agrees with the SYK

propagator (2.17) multiplied by a factor of (zz′)1/2, up to an overall factor which depends

on q. The values of pm over which the two expressions need to be summed have been

– 8 –
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q pm C(pm, 0, 0) 2pmR(pm) C(pm,0,0)
2pmR(pm)

6 1.5 0.415724 1.09987 0.377976

3.07763 0.566693 1.49928 0.377976

4.95427 0.474406 1.25512 0.377976

6.90849 0.409177 1.08255 0.377976

8.88613 0.366967 0.970874 0.377976

8 1.5 0.344227 1.27788 0.269374

2.95416 0.357211 1.32608 0.269374

4.835 0.241026 0.894764 0.269374

6.79849 0.188249 0.698838 0.269374

8.78225 0.159144 0.590793 0.269374

12 1.5 0.256089 1.47882 0.173171

2.81505 0.175464 1.01324 0.173171

4.71763 0.0925242 0.534294 0.173171

6.69343 0.0660067 0.381165 0.173171

8.68356 0.0529405 0.305712 0.173171

20 1.5 0.169337 1.66312 0.101819

2.69405 0.0678495 0.666375 0.101819

4.62734 0.0287883 0.28274 0.101819

6.61348 0.0192516 0.189077 0.101819

8.60817 0.0148617 0.145963 0.101819

50 1.5 0.0745898 1.85438 0.0402235

2.57914 0.0115317 0.286691 0.0402235

4.54971 0.00396415 0.0985529 0.0402235

6.54453 0.00251532 0.0625335 0.0402235

Table 1. Comparison of factors appearing in the 3d and SYK propagators.

already seen to be identical, so we need to compare the coefficients which appear. To

compare (2.17) and (3.27) we need to compute the quantity

C(pm, 0, 0)

2pmR(pm)
(4.1)

and show that this is independent of pm. Here

C1(pm) =

∫ 1

0
dxJ(x)ϕpm(x)ϕpm(x) (4.2)

We have not been able to evaluate this integral analytically, but have performed this

numerically to high precision. In table 1 we tabulate the values of the relevant quantities

for various values of q and pm which solve the spectrum equation, and compare them with

the corresponding factors which appear in (2.17)

For a given value of q the value of the ratio (4.1) is independent of pm upto 13 decimal

places. This shows that this ratio is only a function of q which we denote by f(q). These

results show that for any given q, the non-standard propagator of the 3d model with the
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two points at x = 0 is proportional to the SYK propagator. The data also shows that f(q)

decreases with q.

As for q = 4, the propagator (3.27) is actually divergent from the contribution of the

pm = 3/2 mode, as expected from the SYK propagator at infinite coupling. We expect

that a modification of the three dimensional background would reproduce the enhanced

propagator of this mode, as happened for q = 4 [15].

5 The large q limit

In the q →∞ limit, pm = 3/2 remains a solution, while the other solutions of the spectral

equation (2.16) become very simple,

pm = 2m+
1

2
+

2

q

2m2 +m+ 1

2m2 +m− 1
+ · · · m = 1, 2, · · · (5.1)

To calculate the contribution to these poles to the SYK propagator consider the residue

R(pm) in (2.18). In a 1/q expansion we find that for pm = 3/2

R(3/2) =
2

3
− 1

q

(
5

2
+
π2

3

)
+O(1/q2) (5.2)

while for the other solutions we get3

R(pm)→ 1

q

4(2m2 +m)

(2m2 +m− 1)2
+O(1/q2) (5.3)

Thus only the pole at pm = 3/2 has a non-vanishing residue in the large q limit. Of

course the strong coupling propagator is infinite from contribution of the pm = 3/2 mode.

However a finite J correction would lead to a nonzero contribution proportional to J [7].

In the three dimensional picture this happens because of the different large q behavior

of the wave function at x = 0 for pm = 3/2 compared to the other values of pm. For

large enough q we can use pm = 2m + 1 as a good approximation to the solution of the

spectral equation. In table 2 we tabulate the values of the square of the wave function at

x = x′ = 0, i.e. C(pm, 0, 0), the value of the quantity 2pmR(pm) which appears in the SYK

propagator and the quantity qf(q) where

f(q) =
C(pm, 0, 0)

2pmR(pm)
(5.4)

for large values of q, for different values of m. We have checked that for the values of q

which we have used, pm = 2m+1 is indeed a very good approximation to the exact solution

of kc(h, q) = 1. We then tabulate this quantity for given m for various values of q. The

results show that qf(q) is a constant to very high accuracy. Using (5.2) and (5.3) we then

conclude that the wave function at x = 0 for pm 6= 3/2 modes vanishes as 1
q2

, while that

for the pm = 3/2 this vanishes as 1
q .

A plot of f(q) for pm = 3/2 is given in figure 1.

3We thank Pranjal Nayak for this calculation.
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pm = 2m+ 1/2 q C1(pm, 0, 0) 2pmR(pm) qC(pm,0,0)
2pmR(pm)

3/2 500 125.908 1.98465 2.00093

600 150.908 1.9872 2.00077

800 200.908 1.99039 2.00058

1000 250.908 1.9923 2.00046

5/2 500 74442.2 0. 003356 2.00093

600 107330 0. 002794 2.00077

800 191107 0. 002092 2.00058

1000 298883 0. 00167 2.00046

9/2 500 137225 0. 00182 2.00093

600 198038 0. 00151 2.00077

800 352937 0.001133 2.00058

1000 552280 0. 000905 2.00046

21/2 500 321462 0.00077 2.00093

600 464316 0.000645 2.00077

800 828595 0.000484 2.00058

1000 1.279× 106 0.000385 2.00084

41/2 500 625414 0. 000399 2.00093

600 904123 0. 000331 2.00077

800 1.615× 106 0. 000247 2.00082

1000 2.52× 106 0. 000197 2.00065

Table 2. Large-q behavior of the wave function at x = x′ = 0 for different values of pm.

���������

100 200 300 400 500
q

-5

-4

-3

-2

-1

Log(Cpm/Rpm)

Figure 1. Plot of log f(q) for pm = 3/2. For large q the data fits well with the function f(q) ∼ 2
q .

This behavior provides an understanding of the decoupling of the other modes in the

tower at large q. Note that the other modes are still present, though they do not contribute

to the propagator. In fact the large q limit is subtle. If we perform a 1/q expansion of

the collective action for the bilocal field, (2.5), using the parametrization used in [7] one

ends up with a Liouville theory in the (t, z) space for all values of the suitably rescaled

coupling [104].4 This has a conventional kinetic term - so that one seems to get a single two

4The Dyson-Schwinger equation in the q → ∞ limit is already known to be akin to the Liouville

equation [7]. Here we are making a stronger statement about the bilocal field itself, not just about its

saddle point value.
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dimensional field, the corresponding pole of the propagator being precisely the pm = 3/2

mode. The other modes are simply absent in this treatment, and seem to be recovered due

to nonlocal 1/q interactions.

6 Conclusions

It is remarkable that the complicated tower of states which appear in the SYK model

can be understood as a KK tower in a fixed background for arbitrary q. We want to

emphasize that while reproducing the spectrum is already quite interesting, the agreement

of the propagator with the bilocal propagator is highly non-trivial. This gives a strong

evidence that a three dimensional space-time is an essential ingredient of the full dual to

the SYK model.

Unlike the q = 4 case we do not yet have a natural understanding of the three dimen-

sional background at arbitrary q in terms of a near horizon geometry of a black hole. In

fact we arrived at this background by “reverse engineering” (the clue was that ratios of

gamma functions come in trying to match hypergeometric functions). We hope to be able

to find a natural origin of this background. That will provide a natural way to understand

the finite J correction and in particular the enhanced propagator of the pm = 3/2 mode.

Furthermore the delta function potential can be possibly interpreted as a brane - it will be

interesting to see if such a brane model an be indeed constructed.

In this paper we have not addressed the question of interactions of the bilocals. These

have been considered in [13, 14] and are expected to follow from the cubic and higher order

terms in the collective field theory of [8]. It will be interesting to see what kind of interac-

tions in the three dimensional model reproduce these and investigate their locality (or lack

thereof) properties.5 An important aspect of the 3d picture is that while the propagator

can be written as a sum of AdS2 propagators, the latter are non-standard propagators.

While they do vanish at the boundary, they have different boundary conditions at the

Poincare horizon. A second unusual aspect is that the space of bilocals always gives rise

to Lorentzian AdS2 even if we start out with an euclidean theory. The issues raised above

require a better understanding of the bulk theory, we will address them in a forthcoming

publication [105].
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