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functional method to theories that saturate such bounds, and in several cases we find the

resulting prediction for the occupation numbers are precisely integers. Because such theo-

ries sometimes do not saturate a bound on the full space of states but do saturate a bound
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method to solve for some partition functions that would not be accessible to it otherwise.
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1 Introduction

Modular invariance is a powerful tool for studying two-dimensional Conformal Field Theo-

ries (CFTs). It is also a special case of crossing symmetry of CFT correlation functions [1],

so aside from its intrinsic interest it is useful as a simpler setting in which to explore many

conformal bootstrap ideas and techniques [2–4].

A particularly appealing generalization of the conformal bootstrap equations is to

consider correlation functions in the presence of nonlocal operators, since this enlarges

the set of CFT data that can be studied. In general, including nonlocal operators is

a difficult problem, since their behavior under conformal transformations may be quite

complicated. However, one case where the problem remains tractable is when we consider

modular invariance in the presence of a chemical potential in 2d CFTs. A chemical potential

corresponds to inserting the nonlocal operator yJ0 ≡ e2πizJ0 into the partition function,

Z(τ, z) ≡ tr
(
qL0− c

24 q̄L̄0− c
24 yJ0

)
, (1.1)

where J0 is the zero mode of a conserved current and L0, L̄0 are Virasoro generators. The

resulting partition function is no longer modular invariant, but nevertheless has a well-

defined and theory-independent transformation law [5]:

Z

(
aτ + b

cτ + d
,

cz

cτ + d

)
= e

πik
(
cz2

cτ+d
− cz̄2

cτ̄+d

)
Z(τ, z). (1.2)

This transformation law was used to constrain the spectrum of charges in general 2d CFTs

in [6]. Proofs of (1.2) so far [5–8] either are fairly complicated and technical or else apply

to special cases such as free boson constructions, and so it is not clear what if any general

lessons might be learned from them.1 However, the very simple form of (1.2) suggests it

should have an equally simple derivation. Moreover, inserting the nonlocal operator yJ0

is equivalent to turning on a background gauge field Aµ coupled to the conserved current

Jµ, which suggests that one might be able to prove (1.2) by studying the CFT’s effective

action for Aµ. We will begin this paper in section 2 by providing such a proof, and its

generalization to a non-abelian symmetry current Jaµ.

Starting in section 3, we perform several analyses of the constraints that follow

from (1.2) and its non-abelian generalization using linear programming and semi-definite

programming methods. Our main results are as follows.

Abelian bounds. We begin by reproducing, and improving the results of [6], bounding

properties of theories with an abelian current. We place an upper bound on the dimension

of the lightest charged state,

∆∗ =
c

α
+O(1) , α > 8 . (1.3)

This bound is qualitatively similar to than the bounds in [4, 10] of non-charged states.

1We emphasize that we do not assume supersymmetry; additional techniques are available to proof the

transformation law for the elliptic genus in the case of supersymmetric theories, see e.g. [9].
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We also improve the bound on the smallest “mass-to-charge” ratio in the theory. These

bounds are qualitatively related to the Weak Gravity Conjecture (WGC), though gauge

fields in the gravity duals are Chern-Simons fields rather than Maxwell fields. Provocatively,

we find numerical evidence for a bound on the mass-to-charge ratio that scales at large c as√
c, consistent with the bulk gravity expectation. This is stronger than the bounds in [6],

which scale as c. The improvement again comes from increasing the number of derivatives

of the characters used in the analysis.

Then, we discuss the bound on the charge gap Q∗. Without any further assumptions,

the numerical bound of charge gap is always Q∗ = 1 for all c. We study two examples of

c = 2 and 8 by turning on both a gap in dimension ∆∗ and in charge Q∗. There are kinks

in the ∆∗ and Q∗ plots which can potentially be associated with full CFTs.

Lastly, we consider in detail spectra that extremize various gaps. We use the extremal

functional method, as well as extra information contained in the charged spectra to study

candidate theories at c = 1 and 8. At c = 8 we find that the level 1 E8 Sugawara theory

saturates both the gap in dimension (as was found in [10]) and in charge. Using this, we

are able to reproduce the full low lying spectrum, including charge assignments.

Non-abelian bounds. When the symmetry current Ja is non-abelian, it is more appro-

priate to consider bounds on the dimensions of different representations in the theory. We

will mainly focus for specificity on the case where the gauge group G is SU(2) and the level

k is 1, though our methods easily generalize to any algebra and level; the main advantage

of k = 1, G = SU(2) is that convergence is fastest here, so our numerical results are most

precise.

We first obtain bounds on the gap to all non-vacuum states in non-abelian theories.

As the extended symmetry imposes additional relations on the spectrum, one may have

hoped for stronger bounds. The results, however, are similar to those found in the abelian,

or even non-flavored case. In particular, at large c we find a bound of the form,

∆∗ =
c

α
+O(1) , α > 8 . (1.4)

The real power of the modular constraints on the flavored partition function come

from the ability to impose constraints independently on different representations. Taking

advantage of this, we search for a bound on the gap to non-vacuum states transforming

in the trivial representation, with no constraints imposed for other representations. At

small c, there are interesting “kinks” at values of c where the bounds on the gap in the

neutral sector is minimized. We focus on the case c = 3, and use the extremal functional

methods to find the low lying degeneracies at this kink. Reassuringly, we find integer

degeneracies. This numerical spectral information allows us to guess an exact partition

function saturating the bound in the neutral sector. In fact we find multiple partition

functions are allowed if we are somewhat liberal in what spins are allowed for states in the

theory.2 If all states must have integer or half-integer spins, we find a unique partition

2The partition functions found are not strictly modular invariant, but invariant under a subgroup gen-

erated by S and Tn for n = 2 or n = 4.
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function,

Z(τ, τ̄ , z, z̄) =
1

4

1∑
a,b,a′,b′=0

(−1)ab
′+a′b

∣∣∣θ [ab ]
(
τ,
z

2

)∣∣∣4 |θ[a′b′ ](τ, 0)|2 . (1.5)

Allowing quarter-integer spins leads to multiple allowed partition functions that maximize

the gap.

Perhaps the most interesting aspect of this analysis however is not the specific partition

function for this case, but rather that fact that searching for constraints in a representation

dependent manner yields structure hidden to a flavor-blind analysis. This means that the

extremal functional analysis allows one to “discover” a larger class of partition functions

when flavored information is included than when it is not. Moreover, uncovering flavored

information can potentially split the degeneracy between theories with the same spectrum

and therefore the same partition function, allowing us to address the age-old question of

whether one can “taste the shape of a drum.”

Finally, we continue to refine our representation dependent analysis. For the case

of SU(2)1 we prove analytically that the theory either contains all representation, or the

partition function splits into a product of the diagonal Sugawara partition function and a

neutral, modular invariant partition function.

After this work was completed, the paper [11] appeared on arXiv also considering mod-

ular bootstrap constraints on theories with conserved currents, though the analysis there did

not use the flavored partition function.

2 Partition function transformation and background gauge fields

In this section, we will present an argument for the transformation law (1.2) based on the

effective action obtained upon integrating out the CFT in the presence of a background

gauge field Aµ. Previous treatments have pointed out that in the present context there

are two different notions of the partition function that are natural. One of these is the

canonical partition function Z(τ, z) defined by (1.1). Following [5], we will refer to an

alternate definition as the “path integral” ZPI(τ, z):

ZPI(τ, z) ∼ eπkB(τ,z)Z(τ, z), B(τ, z) ≡ z2 + z̄2

2Im(τ)
. (2.1)

Under z′ = z
cτ+d , τ

′ = aτ+b
cτ+d , the factor B is easily seen to transform as

B(τ ′, z′) = B(τ, z)− i
(

cz2

cτ + d
− cz̄2

cτ̄ + d

)
. (2.2)

The important point about the extra factor B(τ, z) is that its transformation cancels the

transformation of Z(τ, z), leaving ZPI invariant. The basic idea is that ZPI should be the

result of performing a path integral over the torus, and so should be modular invariant.

In free boson constructions, one can explicitly see how this factor is generated by the

Legendre transform from the Lagrangian to the Hamiltonian [5]. However, we would like

to see how this arises in a general CFT, without making any reference to a specific form

of a Lagrangian. We will begin with the case of an abelian current, and then consider the

generalization to a non-abelian symmetry.
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2.1 Modular transformation and the ground state energy

First, let us discuss in more detail how to define the “path integral” function Z(τ, z), what

ambiguities are allowed in this definition, and why they do not affect the transformation

law (1.2). In order to be invariant under modular transformations, we will need to define

the path integral to be invariant under diffeomorphisms and rigid rescalings w → λ−1w:

dΨe−Sτ [Ψ] = dΨ′e−Sτ ′ [Ψ
′]. (2.3)

Here, Ψ are all the fields of the CFT. As we review in appendix A, these two symmetries

are sufficient to imply that the path integral defined as an integral over this measure,

ZPI(τ, z) ≡
∫
dΨe−Sτ [Ψ]− i

2π

∫
τ Aw̄J

w̄
, Aw̄ = −i z

2Im(τ)
, (2.4)

is invariant under modular transformations:

ZPI

(
aτ + b

cτ + d
,

cz

cτ + d

)
= ZPI(τ, z). (2.5)

Different choices of regulators will change logZPI by local terms. However, the local terms

allowed by diffeomorphism invariance and scale invariance do not affect the transformation

law. For instance, one can shift the effective action by a local term proportional to∫
τ
d2x
√
gAµA

µ ∼
∫
τ
dwdw̄AwAw̄ ∼

zz̄

4Im(τ)
. (2.6)

This term arises in the difference between a regulator that preserves the vector current

Jµ symmetry and one that preserves the axial current εµνJν . However, it is easily seen

to be both Weyl invariant and diffeomorphism invariant, and is invariant under modular

transformations. So its coefficient is irrelevant for our purposes, and from now on we will

neglect such terms without loss of generality.

Now, the next question is how do we relate the “path integral” ZPI to the partition

function Z? The key point is that turning on a background field Aµ not only turns on a

chemical potential, but it can also shift the ground state energy, since at fixed β such a

shift affects only the overall normalization of the path integral.

In the example of the free boson, this energy shift is seen explicitly by doing a Legendre

transform, but we can see it in full generality by considering the effective action for Aµ. To

see the shift, it is sufficient to calculate the ground state energy, so we can take the limit

of the torus where τ = i β2π , β � 1. In this limit, the torus becomes a cylinder, and the

effective action is conformally related to that in flat space, where it is universal and known

in closed form. Including the action for a background metric as well, we can write

logZ =

∫
d2x
√
−g
(

c

48π
R�−1R+

k

8π
Fµν�−1Fµν

)
. (2.7)

Because of the inverse Laplacians, the mapping to the cylinder is a bit subtle. For the

metric contribution, it is easiest to work with the Wess-Zumino anomaly action directly,

SWZ = c
24π

∫
d2x
√
−g
(
σR+ (∂σ)2

)
, and take σ(w) = w+w̄, which reproduces the standard
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ground state energy shift − c
12 from the Schwarzian derivative. By contrast, the gauge field

term in (2.7) is invariant under Weyl transformations, and its contribution to the ground

state energy just comes from evaluating the non-local term on the cylinder. To avoid

ambiguities associated with the inverse Laplacian, it is clearest to use the fact that the

effective action is the generating functional for the Jµ correlators, so we know that we can

equivalently write the gauge field part of logZ as

WA[Aµ] =

∫
d2xd2x′

(2πi)2
Aµ(x)Aν(x′)〈Jµ(x)Jν(x′)〉. (2.8)

On the plane, 〈J w̄(w)J w̄(w′)〉 = k
(w−w′)2 . Mapping to the cylinder and taking Aw̄ to be

constant, we have3

WA[Aµ]→ k

(2πi)2

∫
d2wd2w′

A2
w̄(

e
w−w′

2 − e
w′−w

2

)2 = βkA2
w̄. (2.11)

Combining the above with a symmetric combination from Aw, we put everything together

to obtain the ground state energy:

E0 = − lim
β→∞

β−1 logZPI = − c

12
+ δE, δE = −k(A2

w +A2
w̄). (2.12)

Therefore, the path integral differs from the canonical partition function by an extra factor

e−β δE , which in turn produces the factor −πkB(τ, z) in (2.1), (2.2). So at last we see that

this factor is universally the contribution to the partition function from the shift in the

ground state energy due to the background gauge field.

Summarizing, the canonical partition function Z(τ, z) in (1.1) is defined to have a

ground state energy − c
12 . However, any path integral over the torus using a regulator that

preserves diffeomorphisms and rescalings will have a ground state energy equal to − c
12 −

k(A2
w +A2

w̄), plus possible terms that do not affect the modular transformation of Z(τ, z).

2.2 Non-abelian current transformation

The generalization to the case of a non-abelian is straightforward, and can be made as

follows. Unlike in the abelian case, the effective action is not quadratic. However, we can

write it formally as the sum over all connected diagrams:

WA[Aaµ] =
∞∑
n=1

(
n∏
i=1

∫
d2wi
2πi

Aaiw

)
〈Ja1(w1) . . . Jan(wn)〉conn. (2.13)

3We performed this integration as follows. First, shift w → w + w′ to eliminate w′ and immediately do

the d2w′ integral, producing just a factor of the volume 2πβ of the torus. Passing to t, θ coordinates:

WA[Aµ] = −βkA
2
w̄

2π

∫ β/2

−β/2
dt

∫ 2π

0

dθ
1

(e
t+iθ

2 − e
−t−iθ

2 )2
. (2.9)

If we do the θ integral first, this vanishes, except when t = 0 where it is divergent; the integral over θ is

proportional to δ(t). We avoid this subtlety if we do the t integral first, in which case we obtain

WA[Aµ] = −βkA
2
w̄

2π

∫ 2π

0

dθ
sinh β

2

cos θ − cosh β
2

= βkA2
w̄. (2.10)

– 6 –
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As before, we want to set Aaw, A
a
w̄ to be constant on the cylinder and integrate over d2wi.

For the part quadratic in A, the computation proceeds just as in the abelian case, we simply

have an extra index for the different components of Jaw. The background field couples as

−i
2π

∫
τ
AaµJ

µa, Aaw = −i z̄a

2Im(τ)
. (2.14)

A’s contribution to the ground state energy is

δE ∼= −k((Aaw)2 + (Aaw̄)2), (2.15)

which transforms under modular transformations as

− βδE → −βδE − iπk
(
c(za)2

cτ + d
− c(z̄a)2

cτ̄ + d

)
. (2.16)

That leaves the contribution from the higher-point functions. We can always write

these in terms of lower-point function by using the recursive formula

Ja(w)Jb(0) ∼ kδab

w2
+
fabcJc(0)

w
, (2.17)

where ∼ means ‘up to non-singular terms’. The kδab

w2 piece manifestly generates discon-

nected diagrams - it produces the two-point function times the (n− 2)-point function - so

it does not contribute to the effective action for higher-point correlators. But, since we mul-

tiply the correlator by Aaw in the effective action, the fabc term also gives no contribution

for constant Aaw:

AawJ
a(w)AbwJ

b(0) ∼ kA2
w

w2
+AawA

b
wf

abcJ
c(0)

w
=
kA2

w

w2
(2.18)

since AaAbfabc = 0. Therefore only the two-point functions contribute.

3 Modular bootstrap with chemical potentials

3.1 Basic setup

In all the cases we consider, we will assume the presence of a conserved current Ja in the

theory. In general, it is convenient to separate the stress tensor T of the theory into a

Sugawara stress tensor piece and a residual piece:

T (0) ≡ T − T sug, T sug =
1/2

k + h̃G

|G|∑
a=1

: JaJa :, (3.1)

where h̃G is the dual Coxter number, because the modes of T (0) commute with the modes

of Ja. Furthermore among themselves they form a Virasoro algebra with central charge

c(0) = c− csug, csug =
k|G|
k + h̃G

. (3.2)

– 7 –
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Similarly, we can separate the Virasoro generators Ln = L
(0)
n + Lsug

n and the weights

h = h(0) + hsug into a part that comes from T (0) and a part that comes from T sug. For

most representations, the distinction between T and T (0) will not make much difference,

since the partition function just counts states at each level. However, for the special cases

with shortening conditions, some descendants becomes null and do not contribute to the

partition function, and this is easier to see using the modes of T (0).

The characters of the Kac-moody algebra

Xµ,k(τ, z) = TrVµ,kq
Lsug

0 − c
sug

24 e2πiz·H0 (3.3)

are constructed by acting modes of Ja on some highest weight state which has weight µ.4

Here, H0 is the vector of Cartan generators of the algebra. In the case of an abelian sym-

metry, H0 = J0 and the characters for a generic primary are simply q−
csug−1

24 e2πizQ/η(τ).

In the case of a non-abelian symmetry, the characters are more complicated. Some descen-

dants of such a highest weight state may be null so it is non-trivial to write down its form.

However, for the purpose of the modular bootstrap, the only property of such characters

we use is that the characters transform covariantly

Xµ,k
(
−1

τ
,
z

τ

)
= e

iπkz2

τ

∑
µ′

Skµµ′Xµ′,k(τ, z), (3.4)

where the matrix S depends on the symmetry group and level k. These characters do not

include the modes of T (0) yet. Since the algebra generated by modes of Ja is completely

orthogonal to that generated by modes of T (0), the character generated by the full extended

algebra simply factorizes into a Kac-Moody character and a Virasoro character

Xµ,k,h(τ, z) = Xµ,k(τ, z)Xh(0)(τ) . (3.5)

Like the simple Virasoro character, the character is different if the primary saturates the

unitarity bound:

Xh(0)(τ) =


qh

(0)− c
(0)−1

24

η(τ) h(0) > 0

(1−q)q−
c(0)−1

24

η(τ) h(0) = 0

. (3.6)

The same goes for the anti-holomorphic part. The full partition function is

Z(τ, τ̄ , z, z̄) =
∑

µ,µ̄,h,h̄

dµ,µ̄,h,h̄Xµ,k(τ, z)Xµ̄,k(τ̄ , z̄)Xh(0)(τ)Xh̄(0)(τ̄) . (3.7)

In the above equation the µ̄ means the representation of the anti-holomorphic part.

When we are dealing with a non-abelian symmetry, it will be convenient to define a

matrix Mµ,µ̄ whose components are the coefficients of the contributions to the partition

function from the different representations:

M(τ, τ̄)µ,µ̄ =
∑
h,h̄

dµ,µ̄,h,h̄Xh(0)(τ)Xh̄(0)(τ̄)

Z(τ, τ̄ , z, z̄) =
∑
µ,µ̄

M(τ, τ̄)µ,µ̄Xµ,k(τ, z)Xµ̄,k(τ̄ , z̄) .
(3.8)

4See e.g. [12] for a standard introduction.
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Modular transformations on the partition function translates into a specific modular trans-

formation of the matrix Mµ,µ̄. To see this transformation law, simply separate out the

transformation law of Z into its irrep constituents:

0 = Z

(
−1

τ
,−1

τ̄
,
z

τ
,
z̄

τ̄

)
− eiπk

(
z2

τ
− z̄2

τ̄

)
Z(τ, τ̄ , z, z̄)

=
∑
µ,µ̄

M

(
−1

τ
,−1

τ̄

)
µ,µ̄

Xµ,k
(
−1

τ
,
z

τ

)
X̄µ̄,k

(
−1

τ̄
,
z̄

τ̄

)
− eiπk

(
z2

τ
− z̄2

τ̄

)
M(τ, τ̄)µ,µ̄Xµ,k(τ, z)X̄µ̄,k(τ̄ , z̄)

=
∑
µ,µ̄

∑
µ′,µ̄′

Skµ′µM

(
−1

τ
,−1

τ̄

)
µ′,µ̄′

S̄kµ̄′µ̄ −M(τ, τ̄)µ,µ̄


× eiπk

(
z2

τ
− z̄2

τ̄

)
Xµ̄,k(τ̄ , z̄)X̄µ̄,k(τ̄ , z̄) ,

(3.9)

where we have used the transformation rule, (3.4), and the definition (3.8). Stripping off the

characters, the above crossing equation is equivalent to a crossing equation for the matrix

0 = M(τ, τ̄)µ,µ̄ − STµ,µ′M
(
−1

τ
,−1

τ̄

)
µ′,µ̄′

S̄µ̄′,µ̄ . (3.10)

For the constraints on theories with non-abelian currents, equation (3.10) is the form

of the constraint that we will use. For each bootstrap question we will input the symmetry

group and level k.

3.2 Semidefinite projective functionals and the extremal method

To be self-contained, we will briefly review linear and semidefinite programming methods

as applied to the modular bootstrap; for more thorough reviews and some examples of

applications, see e.g. [4, 10, 13–18], or [19–25] for reviews and some of the original papers

developing methods in the standard bootstrap that we will adopt directly. The starting

point is equation (3.9), which can be written

0 =
∑

h,h̄,µ′,µ̄′

dµ,µ̄,h,h̄
(
Fµ,µ̄,h,h̄

)
µ′,µ̄′

(τ, τ̄), (3.11)

(
Fµ,µ̄,h,h̄

)
µ′,µ̄′

(τ, τ̄) ≡
[
δµµ′δµ̄µ̄′Xh(0)(τ)Xh̄(0)(τ)

−Sµ′µSµ̄′,µ̄Xh(0)(−1/τ)Xh̄(0)(−1/τ̄)
]
. (3.12)

The occupation numbers dµ,µ̄,h,h̄ are all non-negative, and include in particular the vacuum

dvac = 1. One is generally interested in proving that there exist states in the theory with

various properties, for instance that there exists a state with ∆ < ∆max for some value

of ∆max. Let us abstractly call a choice of such properties “P”. Then, one can prove

that there is at least one state in the theory with properties P as long as one can find a

linear functional ρ that maps the characters to real numbers such that it is positive on the

vacuum and also positive on all states not satisfying P . In equations,

ρ(vac) = 1, and ρ(Fµ,µ̄,h,h̄) ≥ 0 unless (µ, µ̄, h, h̄) satisfies P. (3.13)
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The normalization ρ(vac) = 1 is conventional. If such a linear functional ρ exists, then there

must be a state in the theory with the properties P , otherwise ρ acting on equation (3.11)

would imply 0 ≥ 1.

Usually we will be interested in not just one choice of P but a continuous family of

choices Ps parameterized by a continuous variable (or variables) s. Typically, s will be

something like the bound ∆max in the example above, so that as one decreases s the set of

states with property Ps grows and therefore the set of linear functionals that are positive

on all such states shrinks. Critical values s∗ of s where the set of such linear function-

als vanishes are especially interesting: aside from giving the best possible bounds, at these

points one can use the “extremal functional method” [19] to determine all of the occupation

numbers dµ,µ̄,h,h̄. The basic idea behind this is that for any s, the space of functions Fµ,µ̄,h,h̄
spanned by states satisfying Ps is a polytope where −Fvac is inside the polytope for s < s∗
and outside the polytope for s > s∗. At exactly s∗, −Fvac passes through one of the faces of

the polytope, so there is a unique positive semidefinite linear combination of the states sat-

isfying Ps∗ that cancels the contribution from the vacuum in (3.11). In practice, we have to

work with finite-dimensional projections of the full space of functions Fµ,µ̄,h,h̄, but one op-

timistically expects to converge to a unique solution as the dimensionality of the projected

space increases. We will encounter some exceptions that we will discuss as we come to them.

4 Abelian bounds

In this section, we perform a systematic numerical analysis on the bounds on the gap in

dimensions and charges, as well as on the smallest charge-to-mass ratio allowed in a theory

with a U(1) current.

4.1 Semi-definite programming with continuous charge Q

For the abelian case, for simplicity we will not use the full Kac-Moody characters, but

rather just the Virasoro characters χh(q):

Z(τ, z) =
∑

h,h̄,Q,Q̄

dQ,Q̄,h,h̄y
QȳQ̄χh(q)χh̄(q̄). (4.1)

where q = e2πiτ , q̄ = e−2πiτ̄ , y = e2πiz, ȳ = e−2πiz̄.

We will consider left-right symmetric theories with c = c̄, and for simplicity we set

z̄ = 0.

As in [4], we reduce the characters using the S invariant factor |τ |
1
2 |η(τ)|2. Furthermore

we reduce the partition function as

Ẑ(τ, z) ≡ |e
iπz2

2τ |2|τ |
1
2 |η(τ)|2Z(τ, z), (4.2)

so that Ẑ(τ, z) is invariant under
(
τ 7→ − 1

τ , z 7→
z
τ

)
. The characters are reduced into

χ̂0(q) = e
iπz2

2τ τ
1
4 q−

c−1
24 (1− q), χ̂h(q)yQ = e

iπz2

2τ τ
1
4 q−

c−1
24 qhyQ. (4.3)
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We consider linear functionals of the form

ρ ≡
∑

m+n+k/2 odd, k even

αm,n,k(τ∂t)
m(τ∂t̄)

n(∂w)k
∣∣∣
t=t̄=w=0

, (4.4)

where the change of variable τ = iet and z = we
t
2 is made so that t 7→ −t and w2 7→ −w2

under S transformations.5

We arrive at a two variable functional

ρl(∆, Q) ≡ ρ
[
χ̂∆−l

2
(τ) ˆ̄χ∆+l

2
(τ̄)yQ + χ̂∆+l

2
(τ) ˆ̄χ∆−l

2
(τ̄)
]
,

ρ(vac) ≡ ρ
[
χ̂0(τ) ˆ̄χ0(τ̄)

]
, (4.5)

where we assume the spectrum is parity symmetric.

Part of the challenge of the abelian analysis is that we do not assume charge quantiza-

tion, i.e. technically we allow the gauge group to be R instead of U(1), which means that we

have to deal with not just one but two continuous parameters, ∆ and Q. This complicates

the application of positive semi-definite approaches, since these are based on constructing

positive functionals of the characters and in general the space of such functionals is more

complicated for multiple variables than for a single variable. In particular, for a single

variable, positive semi-definite functionals can be written without loss of generality as a

sum of squares plus a linear term times a sum of squares. For multiple variables, such a

parameterization is no longer completely general. One way to deal with this issue is simply

to discretize in, say, Q, but we find that such an approach becomes difficult to implement

in practice since the discretization needs to become very fine to prevent the numeric search

from picking functionals that become negative in between the discretization points. The

approach we take is instead to limit the search space to functionals that are still a sum of

squares plus a linear term times sums of squares. In the limit of very high order polyno-

mials, one might expect that such functionals can approximate the extremal functionals

arbitrarily well. In any case, while such functionals might not give the best possible bounds,

they nevertheless produce valid bounds.

Even restricting to polynomial functionals, there remains a practical problem of how

to implement the search over such functionals using available software for semi-definite

programming analyses. In appendix B, we discuss how to massage this problem into an

appropriate form for use with SDPB.

4.2 Bound on dimension of lightest charged state

With the flavored partition function we can bound the dimension ∆∗ of lightest charged

state in any theory with a U(1). The bound for different c is summerized in table. 1. We

extrapolate the bound values to nD →∞ using a linear function of 1
nD

similar to what is

done in [10] for c ≤ 100 where the convergence of the bound values is significant. Then we

5In this expression for ρ, we have not used any z̄ derivatives and so do not use information about the

anti-holomorphic charge Q̄. This is mainly for simplicity and efficiency; it is in principle straightforward,

though more computationally intensive, to use Q̄ information as well. Later in this section we will in fact

perform one analysis where we keep z̄ derivatives to demonstrate this point.
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nD c = 1 c = 2 c = 3 c = 4 c = 5

5 0.60000 0.77500 0.95000 1.2000 1.3000

7 0.58750 0.76250 0.93750 1.1000 1.2750

9 0.58047 0.73438 0.88750 1.0375 1.2000

11 0.58037 0.73281 0.88125 1.0312 1.1750

13 0.57988 0.72969 0.87187 1.0188 1.1625

15 0.57983 0.72812 0.87031 1.0125 1.1500

17 0.57958 0.72734 0.86875 1.0062 1.1437

19 0.57958 0.72656 0.86719 1.0047 1.1406

21 0.57957 0.72637 0.86641 1.0031 1.1375

23 0.57956 0.72627 0.86602 1.0023 1.1367

25 0.57956 0.72617 0.86563 1.0016 1.1352

27 0.57956 0.72615 0.86553 1.0012 1.1344

29 0.57956 0.72610 0.86533 1.0008 1.1336

nD c = 101 c = 10
3
2 c = 102 c = 10

5
2 c = 103

5 2.40 6.40 19.2 102. 179.2

9 2.00 5.60 16.0 51.2 166.4

13 1.90 5.00 15.6 49.6 160.0

17 1.85 4.90 15.2 48.8 158.4

21 1.80 4.80 14.8 47.2 155.2

25 1.79 4.70 14.4 46.4 153.6

29 1.79 4.60 14.0 46.0 152.0

33 1.78 4.55 13.8 45.2 150.4

37 1.78 4.53 13.6 44.8 148.8

41 1.77 4.50 13.5 44.4 148.0

Table 1. Bounds on the dimension of lightest charged state assuming the theory has U(1) symmetry,

as a function of c and the number nD of derivatives used in the bootstrap functionals.

extrapolate the bounds to nD →∞ and c→∞ by fitting the finite nD and c results to a

linear function of 1
c and 1/nD and extrapolating, as shown in figure 1. In this test we take

τ = iβ
2π with β real to avoid the complication of spin. It is not understood a priori why the

form of this fit works, but empirically it agrees well with the data at large c and nD.

Similarly to the results of [10], extrapolating in nD and then c provides a parametrically

stronger bound than the finite nD analysis.

∆∗ =
c

α
+O(1) , α > 8 . (4.6)
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Figure 1. Bounds of the dimension of lightest charged state assuming the theory has U(1) sym-

metry. The extrapolated gaps at nD →∞ with the trend line.

This bound (4.6) is similar to the bounds on the non-charged state found in [4, 10],

though quantitatively different. The bound in [4] is parametrically weaker, which is not

surprising since that analysis did not use the spins of the characters, and did not perform

any extrapolation in the number of derivatives. The bound in [10] is more analogous

since spins and extrapolations were used; the result there is very slightly stronger (α ∼ 9)

than (4.6) for the charged spectrum.

4.3 Bound on charge-to-mass ratio

In this section, we will present results that there must be a state in the theory with a

charge-to-mass ratio

r ≡ Qc

12∆
=

Q

8GNm
, (4.7)

above some critical value r∗, whose value we will determine numerically.6

We try to find the linear functional that7

ρ(vac) ≥ 0,

ρ(∆, Q) ≥ 0, |Q| ≤ Q∆ ≡
12r∆

c
. (4.8)

We drop the spin index l by only taking functionals of the form

ρ ≡
∑

m+k/2 odd, k even

(∂t + ∂t̄)
m∂kw . (4.9)

6The value of r∗ increases as the number nD of derivatives used increases and the numeric accuracy

improves, though we emphasize that even for low number of derivatives the values of r∗ are a valid bound

proving that a state must exist in the theory with Q
8GNm

> r∗.
7We also impose a dimension cutoff ρ(∆, Q) ≥ 0, ∆ > 100c

12
, because we want the constraint to be a

little stronger that not only a state which saturates the ratio bound exists but also the state must have

finite dimension. Different dimension cutoffs do not result in significantly different functionals and bounds.

It just helps the algorithm to find a functional that only is negative at finite ∆.
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Figure 2. Bound of mass-to-charge ratio as a function of c; a trend line ∝ c−1/2 is shown for

comparison. The extrapolation (“nD = ∞” points) and error bars are computed by performing a

fit as a function of nD and extrapolating to nD →∞ as described in the text.

For the functional to be positive in a bounded region we make a change of variables of the

form

Q2 =
Q̃2Q2

∆

Q̃2 + 1
. (4.10)

|Q̃| ≥ 0 means |Q| ≤ Q∆, inspired by [10].

First, we show in figure 2 the bound on r∗ as a function of c. By inspection, one can

see that the larger c is, the longer it takes for the bounds to converge. To see how the

bound depends on the number nD of derivatives in more detail, in figure 3 we focus on a

specific value of c, c = 105 and show the resulting bound on r as a function of the number

nD of derivatives allows in the functional ρ. The best fit as power law suggests that the

optimal bound on r∗ might be significantly better, i.e. (r∗)−1 � 1. For comparison, the

result in [6] was
(

8GNm
Q

)
∗

= (r∗)
−1 < 4

√
π = 7.1.

In [6], it was also shown that even with a small number nD of derivatives, one could

obtain a bound on ∆
Q at large c that scaled like ∼ c. There is an intriguing possibility

however that the true bound scales like c1/2, and that this is obscured because it takes

more and more derivatives to reach this optimal bound as c increases. The basic idea

for why one might expect a c1/2 scaling is that in higher dimensions, the scaling of the

WGC limit can easily be read off by demanding that the binding energy from gravity and

a Coulomb force cancel each other out. In the AdS3 case, one can think of the binding

energy from gravity as 3∆2

c , whereas from a k = 1 Chern-Simons gauge field exchange it is

Q2; demanding equality would set ∆
Q ≈

√
c/3, i.e. 8GNm

Q ≈ 6.9c−1/2.8

For comparison, in figure 2 we have also shown a trend line at c−1/2, which becomes

further below our best numeric bound with nD = 29 derivatives as c increases. We can try

8One can read off the coefficients by looking at the vacuum conformal block for Virasoro and Kac-Moody

algebras in the limit z ∼ 1 [26, 27].
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Figure 3. Upper bound on 8GNm
Q (that is, there exists a state below the bound) as the number nD

of derivatives used in the semidefinite programming analysis increases, for the specific case c = 105.

The bound value is still changing rapidly at nD = 41.

to estimate the optimal bound by taking our result at each c as a function of nD and ex-

trapolating to nD =∞. The “nD =∞” points we show in figure 2 fit our results starting at

nD ≥ 15 in order to get the extrapolation. However, there is significant uncertainty in the

resulting estimate, as can be gauged by the fact that performing the fit starting at smaller or

larger values of nD gives different answers. In figure 3 we have shown the bound as a func-

tion of nD, where one can explicitly see that the bound is still changing rapidly as a function

of nD even at the upper range of what we have been able to achieve numerically. In figure 2,

the error bars we have shown indicate the range over all the different positive values we ob-

tain if we perform the fit over nD ≥ 11, nD ≥ 13, . . . nD ≥ 19. With better numerical accu-

racy at large values of c, it should be possible to more firmly establish this scaling behavior.

4.4 Bound on lowest charge

Next we will focus on bounds on the lowest charge Q∗ of all charged states in the theory. We

will first consider the charge Q only, and then see how to do better by including information

on dimensions and spins.

To determine the upper bound on the gap to the smallest |Q| of all the charged states,

we want to find a linear functional satisfying the following conditions:

ρ(vac) ≥ 0,

ρ(∆, 0) ≥ 0, ∆ ≥ 0

ρ(∆, Q) ≥ 0, ∆ ≥ 0 And |Q| ≥ Q∗ (4.11)

The resulting bound on Q∗ is shown in figure 4. The result is somewhat surprisingly

always just Q∗ = 1. This may be because in some theories with c ≤ 1 a state of Q = 1

saturates the bound and theories of larger c can be constructed as a direct product of such

theories and other algebras.
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Figure 4. We obtain an upper bound, shown here, on the smallest nonzero charge Q∗; the bound

is Q∗ ≤ 1 for all c.
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Figure 5. Bound on the charge gap Q∗ and the scalar dimension gap ∆∗ at c = 2. The region

near the kink in the left plot is magnified and shown in the right plot.

In any case, we next turn to including information on dimensions by bounding gaps in

both Q and ∆ simultaneously — Q∗ as the lowest charge of charged states and ∆∗ as the

lowest dimension of all non-vacuum states. To obtain such a bound, the linear functional

ρ should satisfy

ρ(vac) ≥ 0,

ρ(∆, 0) ≥ 0, ∆ ≥ ∆∗

ρ(∆, Q) ≥ 0, ∆ ≥ ∆∗ And |Q| ≥ Q∗ (4.12)

We take the linear functional to have no spin information.

At each individual c, the bound carves out a region in a two-dimensional parameter

space. The exclusion curve of an c = 2 example is shown in figure 5. There is a kink at

∆∗ ≈ 0.5 which has a bound Q∗ ≤ 1. It would be interesting to identify what if any theory

lives at this kink.

Finally, the simutaneous ∆∗ and Q∗ approach can be even more powerful if we turn

on spin. For this case the example we choose is c = 8. In [10] the Sugawara theory E8
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Figure 6. Bound on the charge gap Q∗ and the scalar dimension gap ∆∗ at c = 8.

lattice shows up as a kink of bounds on lowest dimension of scalar primaries. We seek a

linear functional ρ satisfying

ρ(vac) ≥ 0,

ρ0(∆, 0) ≥ 0, ∆ ≥ ∆∗

ρl(∆, 0) ≥ 0, ∆ ≥ |l|
ρ0(∆, Q) ≥ 0, ∆ ≥ ∆∗ And |Q| ≥ Q∗
ρl(∆, Q) ≥ 0, ∆ ≥ |l| And |Q| ≥ Q∗ (4.13)

for all l ∈ Z≥0.

The two parameter plot of ∆∗ and Q∗ is shown in figure 6. Note that we find that

Q∗ at ∆∗ = 0 is smaller than 1, better than the bound obtained without Q∗ information.9

More interestingly, we see a sharp kink at ∆∗ = 2. In the next subsection we will analyze

the extremal functional of this kink and see that this kink is the E8 lattice CFT, and we

will obtain the dimension and charge spectrum of the low lying states.

4.5 Extremal functional analysis

In this subsection, we will use extremal functional analyses to determine the partition

function saturating various bounds.

4.5.1 Maximal r∗ at c = 1

Our first application of extremal function methods will be to the bound on the charge-to-

mass ratio r. Since our bounds have converged for c = 1 and we can consider the extremal

functional ρ for this case; by design, ρ is non-negative on the space of states we allow, and

so the states in the theory must be at the places where ρ vanishes. The functional depends

on both ∆ and Q, so the extremal spectrum contains more data as shown by figure 7.

9It is also possible that by assuming integer spins we throw away the theory that saturates the Q∗ = 1

bound.
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Figure 7. Projection functional ρ of c = 1 as a function of ∆ and Q computed at N = 29. The

black regions are where ρ ≤ 0; according to our criterion (4.8), ρ is ≥ 0 in the allowed region

Q ≤ 12r∗∆
c , so the extremal spectrum comprises states where ρ = 0 in this region. There is a line

of small black dots where ρ = 0 along the Q = 0 axis that are difficult to see and so we plot ρ along

this line in figure 8.

The zeros of ρ occur at points and can be difficult to see in figure 7. In figure 8, we

show ρ along two particularly relevant lines: the neutral (Q = 0) states, and the states

that saturate the mass-to-charge ratio, i.e. Q = 12r∗∆
c .

4.5.2 Sequential ∆∗ and Q∗ approach — revisiting the E8 lattice

In section 4.4 we found a kink in the simultaneous ∆∗ and Q∗ approach with spin informa-

tion at c = 8. In order to show that the kink is indeed the level 1 E8 lattice, we can look

for extremal flavored partition functions by using a “two-step” approach where we first

solve for the spectrum of dimensions and then solve for the spectrum of charges. The idea

is that we can use the extremal functional method on the unflavored partition function,

maximizing the gap in dimensions of operators. This step is just the standard extremal

functional method and it will just reproduce previous results [10]. Then, having fixed the

weights of the states in the theory, we can impose a gap in the charge of the states in the

theory, allowing only the weights (h, h̄) found previously.

For concreteness, we will focus on the case c = 8 as a representative example. As shown

in [10], the gap in dimensions is maximized at ∆∗ = 2 by the E8 theory at k = 1 (this theory

can be described as 8 free bosons on an E8 lattice), and the extremal functional method al-
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Figure 9. Extremal functional of c = 8 theory, at nD = 35.

lows one to independently derive the partition function of this theory. We have reproduced

the extremal functionals ρ`(∆) at each spin ` in figure 9, which implies the spectrum is{
∆ = 2, 4, 6, . . . , l = 0,

∆ = l, l + 2, l + 4, . . . , l 6= 0.
(4.14)

Moving on to the spectrum of charges, we find that the gap Q∗ is maximized at

Q∗ = 1√
2
. The corresponding extremal functionals ρ∆,`(Q) at each dimension ∆ and

spin ` are plotted in figure 10. We note that this is not the flavored partition function

that one obtains if one turns on a chemical potential for the charge J = ∂φ in the E8

lattice description; that choice corresponds to the spectrum of charges 1
2Z rather than
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∆ ` |Q| |Q̄| d∆,`,Q

1 1 0 0 134

1 1 1√
2

0 112

1 1
√

2 0 2

1 -1 0 0 134

1 -1 0 1√
2

112

1 -1 0
√

2 2

∆ ` |Q| |Q̄| d∆,`,Q

1 1 0 0 92

1 1 1
2 0 128

1 1 1 0 28

1 -1 0 0 92

1 -1 0 1
2 128

1 -1 0 1 28

Table 2. Occupation numbers from a linear programming analysis. The left table assumes states

at Q ∈ 1√
2
Z, whereas the right assumes Q ∈ 1

2Z.

1√
2
Z. Instead, if one chooses one of the length-2 vectors ~α in the E8 lattice, then

J ≡ V~α ≡
1√
2

(
e~α·

~φ + e−~α·
~φ
)

(4.15)

has k = 1, and the lowest charged states include for instance V2~α, with charge 1√
2
.

One can see in figure 10 that the extremal functional has zeros at around 0,± 1√
2

and

± 2√
2

for all ∆, `, and we expect that this would continue to be true at n√
2

for all n ∈ Z
as the number nD of derivatives used in the analysis approaches infinity. Because these

dimensions and charges appear to follow such a simple pattern, we will proceed by assuming

this pattern continues. Then, with the allowed weights ∆, ` and charges Q fixed in the

theory, solving the modular bootstrap equation reduces to a linear programming problem,

which is much more efficient numerically.10 We obtain the occupation numbers indicated

in table 2, where we have flavored separately by both holomorphic and anti-holomorphic

charges Q and Q̄. We show the occupation numbers of the conserved ` = 1 currents

assuming the extremal charge spectrum Q = n
2 (right). In addition, it is straightforward

to repeat the analysis assuming Q = n√
2

(left) for comparison. In both cases, we obtain a

total of 248 currents each in the holomorphic and anti-holomorphic part, but distributed

differently among different charges in the two cases.

5 Non-abelian bounds

5.1 Bounds on gaps in operator dimensions

Next we turn to a numeric analysis of gaps in non-abelian theories. In some cases, the

results are somewhat stronger or weaker depending on whether or not we allow for states

that saturate the unitarity bound 2kh ≥ Q2, which we will refer to as “extremal states”,

and whether or not we impose gaps in all charge sectors. We will present results starting

with the strongest assumptions first.

10Furthermore, since this linear programming analysis fixes the partition function for us to be a particular

flavoring of the E8 theory, by uniqueness it will be the correct one, justifying the original Ansatz.
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Figure 10. Extremal functional of Q at nD = 19 when the gap on Q is maximized at 1√
2
.

In all cases, we will present only the results for SU(2) gauge group at level k = 1.

We have analyzed larger gauge groups and higher levels and the results are qualitatively

similar, though the rate of numeric convergence is worse; some preliminary results for SU(2)

with k = 2 are shown in appendix C.

To begin, we will set the gap in all representations to be the same and restrict to the

partition function at q = q̄; the resulting gap value will be the lowest dimension of the

primary operators. This “uniform bound” is shown in figure 11.

We have actually done two slightly different analysis, which are compared to each other

on the right in figure 11. These analyses differ in whether or not we allow states in the non-

trivial representations with h(0) = h̄(0) = 0, which saturate the unitarity bound in both the

holomorphic and anti-holomorphic sectors and which we will refer to as “extremal states;”

in the analysis where such states are included, the “gap” for each representation is defined as

the smallest ∆(0) among the non-extremal states. As one can see, the difference between the

results of the two analyses is significant at small c but becomes negligible as c approaches∞.

Ultimately, this result does not tell us much more than one learns from previous similar

analyses without flavored information; all we learn here is that there must be some state

in the theory with ∆(0) below some value, which is very similar to the bound on the same

quantity from the unflavored modular bootstrap.

Next, however, we will turn to an analysis that maximizes the bounds separately

in different sectors, and this is where we will start to find something qualitatively new

compared with what is possible with the unflavored modular bootstrap.

In particular, we will maximize the gap in the trivial representation, and not impose

any constraint on the gaps in the other representations. In equations, our conditions are

ρλ,λ̄(∆(0)) ≥ 0 when

{
∆(0) ≥ ∆∗, λ = (0) and λ̄ = (0),

∆(0) ≥ 0, λ or λ̄ 6= (0),
(5.1)
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Figure 11. Bound on SU(2) k = 1 gaps in ∆ universal for all representations for 1 ≤ c ≤ 100.

Left: bounds obtained with different values of nD when extremal states are not allowed. Dashed

lines from blue to red are computed data of 3 ≤ nD ≤ 29. The solid black line is extrapolated from

data of 11 ≤ nD ≤ 29 using a function linear in 1/nD. Right: bounds extrapolated to nD =∞ for

the analysis without extremal states compared to the result when extremal states are allowed. The

difference is negligible at large c but significant at small c.

1 2 3 4 5

1.0

1.1

1.2

1.3

1.4

c
(0)

Δ
*

nD = 5

nD = 11

nD = 17

nD = 23

nD = 29

extrapolated

●

●

●

●

● ●

●

●

●

1.85 1.90 1.95 2.00 2.05 2.10 2.15

0.9964

1.0000

0.9980

0.9990

0.9970

c
(0)

Δ
*

Figure 12. Left: the upper bound on the gap in the dimension of primaries, ∆∗, in the trivial

representation obtained at increasing derivative order of the linear functional (from blue to red, up

to nD = 29). The black curve is the extrapolated value. Right: blown-up plot of the-near minimal

∆∗ region. The minimal is expected at 2.00 ≤ c ≤ 2.04, ∆∗ ≈ 0.995.

in SU(2) k = 1, weight λ (or λ̄) takes values (0) or ( 1
2). The resulting bound on the neutral

sector gap is shown as a function of c in figure 12.11 Notably, there is a minimum of about

∆∗ = 1 near c ≡ c(0) + 1 = 3. We next turn to a more detailed study of this point.

5.2 Extremal functional analysis at c = 3

5.2.1 Spin-independent analysis

Our q = q̄ analysis in subsection (5.1) found a minimum gap bound at c = 3. Using the

extremal functional method [19], the dimensions and the degeneracies of states at this point

can be extracted, with numerical accuracy being best for the lowest dimension states. The

dimensions of states occur at the zeros of the extremal functional, plotted in figure 13.

11By contrast with the previous subsection, here we find that the bound is exactly the same whether or

not we allow extremal (h(0) = h̄(0) = 0) states in the non-trivial representations.
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Figure 13. Extremal functional of SU(2) k = 1, c = 3 spectrum.

Furthermore, we find that the occupation numbers of the lowest-energy states of the

partition function are uniquely determined to be

M(0),(0)(β) ≈ χ0(β) + 28χ1(β) + 76χ2(β) + 274χ3(β) + . . . (5.2)

M(0),( 1
2

)(β) = M( 1
2

),(0)(β) ≈ 8χ0.5(β) + 48χ1.5(β) + . . . (5.3)

M( 1
2

),( 1
2

)(β) ≈ 8χ0.5(β) + 48χ1.5(β) + . . . (5.4)

The subscript on χ∆(0) denotes the non-Sugawara dimension of the state. At this point,

the analysis takes τ ≡ iβ
2π to be pure imaginary, so no information on spins is used:

χ∆(0) = q−
c
12

{ ∏∞
n=2(1− qn)−2, ∆(0) = 0,

q∆(0) ∏∞
n=1(1− qn)−2, ∆(0) > 0

(5.5)

We find that a manifestly modular invariant partition function that reproduces this is

Z(β)z=z̄ =
1

2η6

((
θ2

3 − θ2
4

)
θ4

2

(z
2

)
+
(
θ2

2 + θ2
4

)
θ4

3

(z
2

)
+
(
θ2

3 − θ2
2

)
θ4

4

(z
2

))
(5.6)

=
1

2η6

(
θ2

2θ
4
2

(z
2

)
+ θ2

3θ
4
3

(z
2

)
+ θ2

4θ
4
4

(z
2

)
+
(
θ2

3 − θ2
2 − θ2

4

)
θ4

1

(z
2

))
, (5.7)

where θi ≡ θi(z = 0). It is straightforward to check that the occupation numbers are

non-negative, so that this partition function is unitary, modular invariant, and extremizes

the scalar gap. Therefore (5.7) is the correct partition function by uniqueness.

5.2.2 Spin-dependent analysis

In the previous subsection, we used extremal functional techniques to determine a unique

partition function on the subspace q = q̄ when the gap in the scalar sector was maximized

for c = 3. We can gain much more information about the theory by relaxing the constraint

q = q̄ and varying q, q̄ independently; in particular, the analysis becomes sensitive to the

spins h− h̄ of the spectrum. We could continue to use semi-definite programming methods,
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but they converge less quickly for independent q, q̄ than they do for q = q̄. Instead, we can

use the fact that we know the spectrum of dimensions from the q = q̄ analysis, and the

fact that spin is quantized. This allows us to fix the allowed values of h, h̄ to a discrete set,

turning the problem into a linear programming problem and thereby making the analysis

much more efficient.

There is a remaining ambiguity, however, which is that we have to make a choice about

what spins are allowed. We find that if we allow only integer spins, there is no allowed

partition function and in fact we can reduce the bound on the gap somewhat to about 2/3.

If instead we allow fractional spins, then we find a few different possibilities depending on

what spins we allow.

We will begin with the conventional case where we allow integer and half-integer total

spins, h− h̄. The SU(2) Sugawara characters are such that M(0),(0) only has integer spins,

M(0),(1/2) and M(1/2),(0) only has quarter spins and M(1/2),(1/2) can have integer and half

integer spins. Then to meet the requirement M(0),(0) and M(1/2),(1/2) can only have spins 2n
4

and M(0),(1/2) and M(1/2),0 can only have spins 2n+1
4 . Performing the linear programming

analysis for such a spectrum (and continuing to maximize the gap in the neutral sector)

leads to the following unique set of weights and occupation numbers d:12

(µ, µ̄)
(
∆(0), |`(0)|

)
d

(0, 0) (0, 0) 1

(1, 0) 4(
1, 1

2

)
16

(1, 1) 8

(2, 0) 16(
2, 1

2

)
16

(2, 1) 24(
2, 3

2

)
16

(2, 2) 12

(3, 0) 36(
3, 1

2

)
16

(3, 1) 48(
3, 3

2

)
80

(3, 2) 32(
3, 5

2

)
48

(3, 3) 26

(µ, µ̄)
(
∆(0), |`(0)|

)
d(

1
2 , 0
) (

1
2 ,

1
4

)
8(

3
2 ,

1
4

)
0(

3
2 ,

3
4

)
32(

3
2 ,

5
4

)
16(

5
2 ,

1
4

)
64(

5
2 ,

3
4

)
0(

5
2 ,

7
4

)
56(

5
2 ,

9
4

)
32

(µ, µ̄)
(
∆(0), |`(0)|

)
d(

1
2 ,

1
2

) (
1
2 , 0
)

4(
1
2 ,

1
2

)
4(

3
2 , 0
)

16(
3
2 ,

1
2

)
16(

3
2 , 1
)

8(
3
2 ,

3
2

)
12(

5
2 , 0
)

4(
5
2 ,

1
2

)
48(

5
2 , 1
)

32(
5
2 ,

3
2

)
24(

5
2 , 2
)

40(
5
2 ,

5
2

)
16

12The reader may notice that the numbers at each dimension in eq. (5.2) do not match the total number

of states in the table. The reason is that without knowledge of spin, there are null states that could not

be taken into account in (5.2). For instance, at level 2, there are a total of 84 states, as compared with 76

in (5.2), because of the 8 conserved currents at spin 1 that consequently have 8 “null” descendants at ∆ = 2.

At ∆ ≥ 3, the presence of such null states causes states to get reorganized in increasingly complicated ways

and it is easiest to check the number of states is the same by constructing the full partition function.
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The non-Sugawara dimensions ∆(0) and spins `(0) are just ∆(0) = h(0) + h̄(0), `(0) =

h(0) − h̄(0). States are evenly divided between `(0) = +|`(0)| and `(0) = −|`(0)| at each

weight, and the occupation numbers for the (µ, µ̄) = (0, 1
2) representations are the same as

for (1
2 , 0). To get the full characters one multiplies the non-Sugawara Virasoro characters

χh(τ) (i.e. generated by the modes of T (0) = T − T (sug)) by the Weyl characters χ
(k)
λ (τ, z),

which in this case are13

χ
(1)
λ (τ, z) =

1

η

∑
m∈Z+λ

qm
2
ym. (5.8)

After some trial and error, we find that the corresponding flavored partition function

is reproduced by

Z(τ, τ̄ , z, z̄) =
1

4|η|6
1∑

a,b,a′,b′=0

(−1)ab
′+a′b

∣∣∣θ [ab ]
(
τ,
z

2

)∣∣∣4 |θ[a′b′ ](τ, 0)|2, (5.9)

in Jacobi/Erderlyi notation θ1 = θ[1
1 ], θ2 = θ[1

0 ], θ3 = θ[0
0 ], θ4 = θ[0

1 ]. As this candidate

partition function is half integrally modded, it is a little unfamiliar. A natural guess is

that it arises as a Z2 orbifold of a fully modular invariant theory.14 Indeed it is possible

to project this onto a fully modular invariant partition function. Taking the unflavored

expression for simplicity,

Z(inv)(τ, τ̄) =
1

2
(Z(τ, τ̄ , 0, 0) + Z(τ + 1, τ̄ + 1, 0, 0) + Z(−1/(τ + 1),−1/(τ̄ + 1), 0, 0))

(5.10)

Unfortunately, we have not been able to identify a theory corresponding to (5.10). It is

straightforward to check by exhausting the possibilities that the central charge and the

number of spin-1 conserved currents (11) is not consistent with this partition function

being associated with a pure Sugawara theory for some Lie algebra.

While other choices for the quantization of spin are less conventional, they are still

of some interest.15 Another possibility we have considered is that the non-Sugawara part

of the spin, i.e. h(0) − h̄(0), is an integer or a half-integer. Because of the contribution to

the weight from the Sugawara part of the stress tensor, in this case the states in the ( 1
2 , 0)

and (0, 1
2) representations have quarter-integer spins. Performing the linear programming

analysis making this Ansatz for the spins, we find not just a unique solution but in fact a

family of solutions given by the following occupation numbers:

(µ, µ̄)
(
∆(0), |`(0)|

)
d

(0, 0) (0, 0) 1

(1, 0) 16

(1, 1) 12

(2, 0) 36

(2, 1) 32

(2, 2) 20

(µ, µ̄)
(
∆(0), |`(0)|

)
d(

1
2 , 0
) (

1
2 , 0
)

4 + x(
1
2 ,

1
2

)
4− x(

3
2 ,

1
2

)
24 + 6x(

3
2 , 1
)

24− 6x(
3
2 ,

3
2

)
4− x

(µ, µ̄)
(
∆(0), |`(0)|

)
d(

1
2 ,

1
2

) (
1
2 , 0
)

8− 2x(
1
2 ,

1
2

)
2x(

3
2 ,

1
2

)
12x(

3
2 , 1
)

48− 12x(
3
2 ,

3
2

)
2x

13See eg [12], eqs (14.176) and (15.244).
14There is actually a history of extremal theories arising in such a fashion [28–30].
15For instance [31].
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Figure 14. The linear programming analysis finds a range of possible partition functions if we

allow the physical spins to take quarter integer values. When we fix one of the degeneracies d by

hand, in this case that of the weight (µ, µ̄, h(0), h̄(0)) = ( 1
2 , 0,

1
4 ,

1
4 ), all other degeneracies become

uniquely determined, so that we find a one-parameter family of solutions. The degeneracy on the

x-axis here is 4 + x in the notation used in the text.

These partition functions satisfy crossing for all x. This one-parameter family is shown

graphically in figure 14, where we perform the linear programming analysis with the degen-

eracy d of the (µ, µ̄) = (1
2 , 0), (h(0), h̄(0)) = (1

4 ,
1
4) chosen by hand and look at how several

other degeneracies depend on this choice. By inspection of the above table, demanding

that all occupation numbers be non-negative integers imposes x ∈ {0, 1, . . . , 4}. It would

be interesting to know if all or any of these partition functions correspond to underlying

physical CFTs.

The different values of x here correspond to partition functions that have the same

spectrum of dimensions ∆ = h+ h̄, but which can be distinguished by their representation

content, i.e. through the “flavored” partition function.16

5.3 Constraints on representation content

In this final subsection, we will consider the question of what representations are forced to

be present in a theory. The gravitational AdS dual of any such constraints would imply

that even if certain representations were not present among the perturbative degrees of

freedom in some theory, they would have to be present non-perturbatively. The strongest

condition one might try to prove is that all theories have all representations present. This

would however be too ambitious since there are simple counter-examples, but one might

still try to prove restrictive constraints on which representations can be absent. We will

only be able to take a very modest step in this direction and prove some simple results

16They are similar in this respect to multiple different CFTs at c = 24 that have the same spectrum but

different underlying symmetries [32].
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for SU(2). For instance, without referring to numerical methods, we will prove that an

SU(2), k = 1 partition function either has all representations, or else its flavored partition

function factorizes into a Sugawara theory partition function times a non-flavored partition

function, assuming left-right symmetry.

We begin by proving this k = 1 result. The flavored partition function splits into four

representations

M(τ, τ̄) =

M(0),(0)(τ, τ̄) M( 1
2

),(0)(τ, τ̄)

M( 1
2

),(0)(τ, τ̄) M( 1
2

),( 1
2

)(τ, τ̄)

 . (5.11)

Modular invariance requires

M

(
−1

τ
,−1

τ̄

)
= SM(τ, τ̄)S , (5.12)

with S matrix

S =
1√
2

(
1 1

1 −1

)
. (5.13)

Because there are only two (assuming ( 1
2 , 0) and (0, 1

2) are symmetric) different nontriv-

ial representations, and the modular transformation manifestly forces at least one to be

present, we can delete only one of them. What if we set M( 1
2

),(0)(τ, τ̄) = M(0),( 1
2

)(τ, τ̄) = 0?

In this case, the (1, 2) entry of matrix equation (5.12) is

1

2

(
M(0),(0)(τ, τ̄)−M( 1

2
),( 1

2
)(τ, τ̄)

)
= 0. (5.14)

The two diagonal representations have to be the same and therefore the “non-Sugawara” τ -

dependence of the flavored partition function is just an overall flavor-independent prefactor

M(0),(0)(τ, τ̄) that factors out.

Similarly, if we set M( 1
2
, 1
2

)(τ, τ̄) = 0, then the (2, 2) entry of (5.12) is M( 1
2

),(0)(τ, τ̄) =
1
2M(0),(0)(τ, τ̄), so again the non-Sugawara τ -dependence factors out completely. In

this case, the residual “Sugawara” matrix is just a symmetric holomorphic plus anti-

holomorphic matrix, i.e.
(

2 1

1 0

)
=

(
1 1

0 0

)
+

(
1 0

1 0

)
.

Beyond SU(2) k = 1, similar arguments can be used to somewhat narrow down the

possible combinations of representations in any partition function with non-abelian cur-

rents. Speficially, we can prove for SU(2) any k, the partition function factorizes into a

Sugawara partition function times a flavor-independent partition function if only diagonal

representations are allowed.

We again begin with the transformation rule

M

(
−1

τ
,−1

τ̄

)
= SM(τ, τ̄)S , (5.12)

where now the transformation matrix is

S(l)(l′) =

√
2

k + 2
sin

(
π

k + 2
(l + 1)(l′ + 1)

)
. (5.15)
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Since we allow only diagonal representations, we can write

M(l)(r)(τ, τ̄) = δ(l)(r)fl, (5.16)

M(l)(r)

(
−1

τ
,−1

τ̄

)
= δ(l)(r)gl , (5.17)

for some arbitrary functions fl and gl. The matrix equation can be written as

gαSαβ = Sαβfβ . (5.18)

For β = 0,

gα sin

(
π

k + 2
(α+ 1)

)
= f0 sin

(
π

k + 2
(α+ 1)

)
(5.19)

so gα = f0 for all α unless sin
(

π
k+2(α+ 1)

)
= 0. But the unitary bound α < k + 1 does

not allow this to happen. So all gα should be equal. Therefore, all diagonal representations

M(l)(l)(τ, τ̄) have to be equal, and the τ -dependence f0(τ) of M(τ, τ̄) completely factors out.

6 Discussion and future directions

One of the main goals of this paper has been to demonstrate how systematic numeric

bootstrap techniques can be applied to flavored partition functions. We have considered

several specific analyses, but there are many more that could be done. Here we will discuss

a few potential future directions.

Some of the analyses we have discussed raise questions that could be answered with

improved numeric efficiency so that the results could converge to the optimal bound. One

such case is the bound on the charge-to-mass ratio, where improved accuracy at large c

could more firmly establish the large c scaling of the bound. Another case is the application

of our nonabelian extremal methods to larger k and larger symmetry groups. As either

of these gets larger, the convergence rate becomes slower and so we have focused on the

most efficient case, SU(2) at level k = 1, to demonstrate that here the extremal functional

method can be used to determine the full partition function of the theory maximizing the

gap in the neutral sector. It is interesting that the point maximizing the gap has integer

occupation numbers, and it would be interesting to know if this is part of a general pattern

or just an exceptional case. Our preliminary analysis of SU(2) at level k = 2 has not

converged well enough to answer this question, but perhaps this would be possible with

additional innovations or more computing power. Of course, if it turns out that integer

occupation numbers is a generic feature of maximal gap spectra, it would be interesting to

understand the underlying reason. As part of this question, one might consider whether

the gap should be maximized in just the neutral sector or in several charged sectors.

Having integer occupation numbers is a necessary but not sufficient condition for a par-

tition function to have an underlying CFT. Generally, it would be interesting to develop

more techniques for determining a CFT once its partition function is known. One way is

simply to use the regular bootstrap but restricting all dimensions to those that appear in

the partition function. Usually, this is a significant improvement since it reduces the regu-

lar bootstrap problem to a linear programming problem; however, for rational theories, the
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large degeneracy at each level severely mitigates how helpful this additional information is.

Another possible approach one could try would be to use the partition function formulated

as the four-point function of twist operators, Z ∝ 〈σ2σ2σ2σ2〉, to include the partition func-

tion together with 〈φφφφ〉 and the “mixed” correlator 〈φφσ2σ2〉 for some local operator φ.

One could also try to make contact at c = 24 with the Schellekens classification [32]

in terms of Neimeier lattices, by rederiving this constraint using only the flavored modular

bootstrap. The modular bootstrap alone cannot constrain the number of currents, since

they simply contribute a constant to the partition function, but a constant no longer

satisfies the correct transformation law after flavoring.

Looking farther afield, one of the main motivations for developing a proof of the trans-

formation law (1.2) in terms of background fields was that this might be easier to gener-

alize. There are many theories in 2d with higher spin currents, and one could generalize

our derivation to such cases. The correlators of higher spin currents do not have a simple

universal generating functional like spin-one currents do, but their correlators are severely

constrained by holomorphicity and crossing, and recursion relations are known in many

cases. Potentially, one could work out the transformation rule in a case-by-case fashion.

More ambitiously, one could try to generalize to d > 2. The very interesting recent work [33]

on a sort of modular invariance for lens spaces in higher dimension is tantalizing from this

point of view. Again, one would face the issue that correlators of currents in d > 2 are not

universal, but one could nevertheless try to obtain a constraint on the partition function

in terms of the data in the 〈J(x1) . . . J(xn)〉 correlators.

Somewhat more abstractly, one of the appealing features of understanding the flavored

partition function better is that, by turning on background fields, we are exploring con-

straints beyond the class of those that can be seen by inserting local operators. There are

many such constraints on CFTs that are invisible in the standard bootstrap; the parti-

tion function itself can be though of as one such generalization since mapping to the torus

(equivalently, inserting twist operators σ2) involves imposing new boundary conditions, and

adding background fields is another kind of generalization. It would be very interesting to

understand what additional constraints could be obtained by imposing crossing symme-

try of correlators in the presence of background fields. Understanding the transformation

law (1.2) as a statement about crossing symmetry for the four-point function 〈σ2σ2σ2σ2〉
would be a useful warm-up case and could potentially give insight into how to think about

more general correlators.
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A Path integral modular transformation

In this appendix, we review how diffeomorphism invariance and rigid rescalings imply the

relation

ZPI

(
aτ + b

cτ + d
,

cz

cτ + d

)
= ZPI(τ, z). (A.1)

We begin with invariance of the path integral measure:

dΨe−Sτa,τb [Ψ] = dΨ′e
−Sτ ′a,τ ′b

[Ψ′]
. (A.2)

Here, Ψ are all the fields of the CFT, and to keep track of the torus before and after

conformal transformations we have introduced τa, τb for two of its corners (i.e. the four

corners are at 0, τa, τb, and τa + τb). Under rescalings, the operators O and parameters

τa, τb transform as

O(w, w̄)→ O′(w, w̄) = λ−hλ̄−h̄O(λ−1w, λ̄−1w̄), (τa, τb)→ (τ ′a, τ
′
b) = (λτa, λτb). (A.3)

In particular, for a conserved current Jµ, we have∫
τa,τb

dwdw̄Jw(w) =

∫
τa,τb

dwdw̄
(
λ̄J ′w(λw)

)
= λ−1

∫
τ ′a,τ

′
b

dwdw̄J ′w(w). (A.4)

and consequently

dΨe
−Sτa,τb [Ψ]− i

2π

∫
τa,τb

dwdw̄AwJw = dΨ′e
−Sτ ′a,τ ′b

[Ψ′]− i
2π

∫
τ ′a,τ ′b

dwdw̄λ−1AwJw

. (A.5)

Integrating both sides obtains the relation (Aw, τa, τb) ∼= (λ−1Aw, λτa, λτb).

To obtain the transformation under U : τ → τ
τ+1 , we take

(τa, τb) = (τ, τ + 1) ∼= (τ, 1), (A.6)

where the congruence ∼= follows from a large diffeomorphism cutting the torus along the

line from 1 to τ + 1 and sewing it back to the line from τ + 1 to τ + 2. By inspection of

the chemical potential term 1
2πi

∫
τ,1 dwdw̄AwJ

w = 2πiIm(τ)AwJ̄0, we read off that

Aw = −i z̄

2Im(τ)
. (A.7)

Finally, we take λ = (τ + 1)−1, so (τ ′a, τ
′
b) = ( τ

τ+1 , 1) and A′w = (τ + 1)Aw. Therefore,

z̄′ = 2iIm(τ ′)A′w =
z̄

τ̄ + 1
. (A.8)

The transformation under T : τ → τ + 1 is trivial, since τ and τ + 1 are related by a large

diffeomorphism without any need for a rescaling, so λ = 1, and neither Aw nor z transform.

All other modular transformations are generated from T and U .
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B A “systematic” treatment to multivariate problems

The bootstrap of flavored partition function introduces another continuous quantum num-

bers Q in addition to the scaling dimension of ∆. Unlike the unflavored bootstrap where the

problem is rigorously converted to a semidefinite programming problem, bootstrap prob-

lems with more than one variables do not have a simple and rigorous conversion to semidef-

inite programming problems. One can choose to discretize the second variable Q and hope

that the bound converges at very small δQ. However, the bound obtained in this way is not

rigorous. The linear functional can be negative in between discrete Q’s or at large enough Q.

B.1 Multivariate positive definite functionals

Whether any real positive semidefinite polynomials (PSD) can be written as sum of squares

of real polynomials (SOS) is known as the Hilbert’s 17th problem. Hilbert himself proves

the special case for univariate polynomials is true. But for multivariate polynomials it is

later proven that PSD is a sum of squares of real rational functions. We do not like rational

functions because we have much less numerical control over them than polynomials.

Although we cannot find a clean SOS representation of multivariate PSD, if we only

consider the subset of strictly positive polynomials we can still represent them by SOS in

the following cases:

Workaround 1: multiply by a common denominator. p(x1, x2) is positive definite

polynomial (PD, also denote as p(x1, x2) > 0) then pg(x1, x2) = (1 + x2
1 + x2

2)gp(x1, x2) is

a sum of square of polynomial (SOS) for some g. [34]

Workaround 2: region is bounded. For a compact region S defined by fi(~x) ≥ 0 over

set of function fi, any polynomial strictly positive in S can be written as the following form

p =
∑
I

sI(~x)fi1fi2 . . . (B.1)

where sI(~x) are sum of squares. I denotes some combinations of fi’s. [35]

The hope is that PD can approximate PSD well enough so that in practise we can

still resort to SOS. Numerically, solvers like SDPB never give nonnegative polynomials

with exact zeros, so in practise we never actually encounter any counterexamples. Another

reason to be hopeful is from the proof that PSD can be approximated as closely as desired

by SOS [36].

There is a possible loophole — the positive region of the polynomial has to be bounded.

In unflavored case the region that is frequently used is ∆ > ∆?, which is a rare special

case of unbounded region. In practise, there is risk of not covering the full space of PD.

Although not rigorously, one can hope that by multiplying the (1 + x2
1 + x2

2)g factors of

higher and higher g we lose less and less.

B.2 Multivariate problems and SDPB

In this subsection we discuss how to rewrite the semidefinite polynomial programming with

2 variables into a form suitable for SDPB [37] solver. SDPB solves univariate “Polynomial
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Matrix Program” (PMP) question stated as follows:

maximize y0 +
∑
n

bnyn

such that M0
j (x) +

∑
n

ynM
n
j (x) ≥ 0

for all x ≥ 0 and 1 ≤ j ≤ J. (B.2)

where M matrices are symmetric matrices of polynomials of x.

In SDPB, the PMP question is internally mapped to an SDP question since M0
j (x) +∑

n ynM
n
j (x) ≥ 0 if and only if

M0
j (x) +

∑
n

ynM
n
j (x) = tr [YAQA(x)] + x tr [YBQB(x)] (B.3)

for some YA, YB ≥ 0.

We are instead trying to solve the problem for two variable cases. Here for modular

bootstrap we are in the special case where the symmetric matrices Mj are one by one,

in other words, single polynomials pj . For simplicity here we only deal with this one

dimensional case. Generalization to more dimensions and more variables is very easy. The

question is stated as follows:

maximize y0 +
∑
n

bnyn

such that p0
j (x1, x2) +

∑
n

ynp
n
j (x1, x2) ≥ 0

for all x1 ≥ 0 and all x2 and 1 ≤ j ≤ J. (B.4)

Since SDPB only allows one variable to be bounded we cannot add more constraints on

the variables. The x1 > 0 is needed in SDPB because we usually choose the input ∆ ≥ ∆∗.

The second variable can be the U(1) charge Q, which is not constrained to be positive

number. If one does want to bound the second variable one can make change of variable.

We use the symbol Fj to represent the linear functional

Fj(x1, x2) ≡ p0
j (x1, x2) +

∑
n

pnj (x1, x2)yn (B.5)

Similar to the univariate case, we assume that Fj ≥ 0 is equivalent to finding YA,j , YB,j ≥ 0,

so that

Fj(x1, x2) = tr [YA,jQA(x1, x2)] + x1tr [YB,jQB(x1, x2)] (B.6)

Here we introduce “bilinear basis” ~q(X) so that Q(X) = ~q~qT spans the space of polyno-

mials of X. An easy example of bilinear basis is ~q(x) = {1, x, x2, . . .}. The bilinear basis

of two or more variables can be factored out as a kronecker product of bilinear bases of

each single variables

QA(x1, x2) = QA1(x1)⊗Q2(x2)

QB(x1, x2) = QB1(x1)⊗Q2(x2) (B.7)
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We define di to be the xi degree of the polynomial F . the dimensions of the matrices Q are

dimQA1 = δA1 = [d1/2] + 1

dimQB1 = δB1 = [(d1 − 1)/2] + 1

dimQ2 = δ2 = [d2/2] + 1 (B.8)

After factoring out QA and QB the function Fj is written as

Fj(x1, x2) = tr
[
YA,j

(
QA1(x1)⊗Q2(x2)

)]
+ x1tr

[
YB,j

(
QB1(x1)⊗Q2(x2)

)]
(B.9)

Since a polynomial is fixed if we know its value at (d + 1) different points, we can simply

evaluate the above equation at (d2 + 1) values of x2 in order to reduce the equation to

have only one variable x1

Fj,k(x1) = Fj(x1, x2,k) = tr
[
YA,j

(
QA1(x1)⊗Q2(x2,k)

)]
+x1tr

[
YB,j

(
QB1(x1)⊗Q2(x2,k)

)]
(B.10)

The above (d2 + 1) equations are equivalent to (B.9). In the following we omit the j index

because the same equation works for all j. Now the form is already in single variable and

is very close to the form of (B.3). The only difference is the numerical matrices Q2(x2,k).

Here we can play a trick by shuffling the (d2 + 1) equations with linear combination∑
l

αklFl = tr

[
YA,j

(
QA1(x1)⊗

∑
l

αklQ2(x2,l)
)]

+ (B part) (B.11)

for some dimension (d2 +1) square matrix αkl. In fact, the space of symmetric Q2 matrices

is only (d2+1 = 2δ2−1) dimensional space since it spans the space (d2+1) dimensional poly-

nomials. That means we can always find some αkl which picks up the orthornormal basis

of the polynomial space. Further we can perform an arbitrary GLδ2 transformation on Q2

Y 7→ GY G−1∑
l

αklQ2(x2,l) 7→ G−1
∑
l

αklQ2(x2,l)G (B.12)

so that the orthornormal basis maps to the symmetric matrix basis

G−1
∑
l

αklQ2(x2,l)G = Er(k)s(k) (B.13)

where Ers = δri δ
s
j + δrj δ

s
i . Then∑

l

αklFl = tr
[
YAQ1A(x1)⊗ Er(k)s(k)

]
+ x1tr

[
YBQ1B(x1)⊗ Er(k)s(k)

]
(B.14)

Compared to (B.3), we can turn double variable programming of polynomial into single

variable programming of symmetric polynomial matrices by substitution

M0
j =

∑
k

∑
l

Er(k)s(k)αklP
0
j (x1, x2,l)

Mn
j =

∑
k

∑
l

Er(k)s(k)αklP
n
j (x1, x2,l) (B.15)
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Figure 15. Bound on the gap ∆∗ to the lightest neutral state for SU(2) at level k = 2. The bound

is minimized at c ≈ 2.715.
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Figure 16. Occupation numbers for the lightest neutral (left) and charged (right) states from the

extremal functional analysis with SU(2) at k = 2 as a function of c. The optimal bound is at

c ≈ 2.715, indicated by a vertical line; horizontal lines are shown at integers.

Since Q2 span a (d2 + 1 = 2δ2 − 1) dimension space it means only the diagonal and

next-to-diagonal elements will be nonzero. If further we only have even powers of x2, the

matrices will be diagonal.

C k = 2, SU(2) analysis

Here we present some preliminary results on our methods applied to the group SU(2) at level

k = 2. Our results are qualitatively similar to the k = 1 case, though with worse numeric

accuracy due to the slower convergence. In figure 15, we show the bound on the gap ∆∗ to

the lightest neutral state in the theory, which is minimized to be ∆∗ ≈ 1.344 at c ≈ 2.715.

Unfortunately, at the point where the bound is minimized, the occupation numbers

from our analysis for some of the lowest few states are not particularly close to integers. It

is not clear whether this indicates that such a point is not associated with an underlying

CFT or if we simply have not converged to sufficient precision. The occupation numbers

for the lightest neutral state and charged state are shown as a function of c in figure 16.

The lightest neutral state is close to d = 74, however the lightest charged state, which is
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even lighter is relatively far from the nearest integer, d ≈ 7. Another possibility is that one

ought to maximize the gap in not only the neutral sector but also in one or more charged

sectors; it would be interesting to pursue this or other conditions further.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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