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1 Introduction

Effective Field Theory (EFT) provides a powerful calculational tool to study multi-scale

processes in quantum field theory. In an EFT, the theory is defined so that only the

degrees of freedom with energies and momenta below some cutoff Λ are included in the

theory, while degrees of freedom above the cutoff are integrated out of the theory and their

effects replaced with a series of operators in the effective Lagrangian. Familiar examples

of this approach are four-fermi theory and Heavy Quark Effective Theory (HQET).

By construction, the infrared physics of the full theory is reproduced in a correspond-

ing low-energy effective theory. In its usual formulation, soft-collinear effective theory

(SCET) [1–7], an EFT appropriate for describing the dynamics of jets of particles with in-

variant mass much less than their energies, differs from the two previous examples because

this feature is not manifest. In addition to integrating out degrees of freedom above the

cutoff of the EFT, the low-energy degrees of freedom are then split into various modes,

which are differentiated by the scaling of the components of their four-momenta.1 In SCETI

processes (for example, deep inelastic scattering [8–10], thrust [11–14], and the endpoint of

the photon spectrum in B → Xsγ [1, 15–18]) the low-energy degrees of freedom consist of

collinear modes with large momenta directed along the direction of each hadronic jet and

small invariant mass, and ultrasoft modes, whose momentum components scale isotrop-

ically and whose invariant mass is parametrically smaller than that of collinear modes.

Defining the usual light-like vectors n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1) and working in

light-cone coordinates

aµ =
1

2
n · a n̄µ +

1

2
n̄ · a nµ + aµ⊥ ≡

1

2
a+n̄µ +

1

2
a−nµ + aµ⊥ (1.1)

1A similar splitting of the low energy degrees of freedom into modes occurs in non-relativistic QCD

(NRQCD).
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the momentum components of collinear modes in the n direction are defined to scale as

pn ∼ (p+
n , p

−
n , pn⊥) ∼ Q(λ2, 1, λ), whereas the momenta of ultrasoft modes scale as pus ∼

Q(λ2, λ2, λ2). This defines the small parameter λ, and the effective theory is defined by

expanding QCD amplitudes in powers of λ. Other processes — SCETII observables —

[12, 19–22] require soft modes, ps ∼ Q(λ, λ, λ). More complex processes with additional

scales require additional modes [9, 23–25]. By describing ultrasoft and collinear degrees

of freedom by separate fields, soft-collinear factorization theorems which are valid in the

collinear limit of QCD (see also [26, 27]) are manifest in SCET at leading order in λ.

Since ultrasoft modes just correspond to the infrared limit of collinear modes, by

treating them as separate fields with distinct interactions, SCET does not manifestly treat

infrared physics in the same way as full QCD. Ultrasoft and collinear modes are instead

handled very differently in the formalism: ultrasoft quark fields are described by four-

component QCD quark fields, while collinear quark fields are described by two-component

spinors with complicated nonlocal interactions [2]. To avoid double counting the effects

of ultrasoft modes must be subtracted from graphs containing collinear modes, a process

known as “zero-bin subtraction” [28]. Furthermore, expanding QCD amplitudes in powers

of λ corresponds to expanding in the ratios of several scales simultaneously:
√
p2
n/Q ∼ λ,

pµus/Q ∼ λ2 and pµus/
√
p2
n ∼ λ. This makes SCET quite different from more familiar

EFT’s such as four-fermi theory and HQET, where multi-scale problems are handled by

a sequence of EFT’s: at the highest scale Q, fields with invariant masses above Q are

integrated out of the theory and amplitudes are expanded in powers of Λi/Q where the

Λi’s represent infrared scales which are parametrically smaller than Q. The theory is then

run down to the next scale (in this case λQ), at which point particles with invariant mass

above the cutoff are again integrated out of the theory, amplitudes are expanded in powers

of Λ′i/(λQ), a new EFT is matched onto, and so on. No subdivision of the low-energy

degrees of freedom in the effective theory into separate modes is required at any point.

Subdividing infrared degrees of freedom into modes is also a frame-dependent proce-

dure, since the momentum scaling for collinear and ultrasoft modes only holds in certain

reference frames. In general, the mode decomposition introduces a privileged frame (typ-

ically the centre of mass frame) which may have no physical significance in the problem,

and breaks manifest Lorentz invariance. While physical results should be independent of

this choice — for example, it was shown in [10] that deep inelastic scattering (DIS) could

be analyzed in SCET in either the target rest frame, where only ultrasoft and n-collinear

modes were required, or the Breit frame, where n-collinear, n̄-collinear and ultrasoft modes

were required — the degrees of freedom may differ in different reference frames, so the the-

ory is not manifestly frame independent. Finally, since there are an infinite number of

ways that momenta can be defined to scale, it is not always clear what modes are required

to describe a given process, and there have been disagreements in the literature over the

counting of modes [9, 10].

In this paper we present a simple formulation of SCET2 which avoids the complica-

tions discussed above. In a previous paper [29], it was shown that ultrasoft and collinear

2Despite the fact that it has no explicit ultrasoft degrees of freedom, we will continue to call the effective

theory with distinct low invariant mass sectors SCET.
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modes in SCET may each be described by separate copies of the full QCD Lagrangian,

coupled through an external current which is expanded in powers of λ. Here we extend

this formalism to demonstrate that ultrasoft modes do not need to be explicitly included as

separate degrees of freedom; as expected from the above discussion, they are included in the

infrared of collinear degrees of freedom. The theory is therefore defined by different sectors

which are differentiated by the fact that the invariant mass of each sector is small while the

invariant mass of particles in different sectors is large, with no reference to the scaling of

different momentum components. We therefore do not have to introduce a small parameter

λ to define power counting, but instead power-counting is in powers of ki/Q, where the

ki are infrared scales in the EFT. In addition, the formalism is manifestly invariant under

boosts along the n and n̄ directions. This is in contrast to the usual formulation of SCET,

where the momentum mode scalings are only valid in one particular reference frame.

The formalism presented here is a simple extension of that in [29]. The effective theory

below the hard scale Q consists of separate n and n̄ sectors coupled via an external current.

Each sector is described by QCD, and interactions between the sectors are described by

Wilson lines. The theory therefore looks like that presented in [29], but with no explicit

ultrasoft modes. Ultrasoft modes were originally introduced into SCET to allow the theory

to eliminate ultraviolet divergences which were sensitive to the infrared regulator [1], so it

might be expected that eliminating ultrasoft modes in SCET would leave loop graphs ill-

defined. However, we show that when the overlap between the n and n̄ sectors is subtracted

from loop graphs, analogously to the familiar zero-bin subtraction in SCET, the theory

correctly reproduces the infrared of QCD, and explicitly including ultrasoft modes is not

required.

In this paper we restrict our attention to process with two sectors, such as DIS, al-

though it may be generalized to processes with multiple sectors (such as three-jet events

or qq → qqX scattering). In section 2 we discuss the matching of the external current

relevant for DIS near x = 1 onto SCET at the scale Q. We discuss tree-level matching at

leading and subleading orders, and illustrate that the power counting is given by dimen-

sional analysis. We illustrate that the theory is manifestly boost-invariant. In section 3 we

discuss the theory at the loop level, and show that SCET may be renormalized without

including explicit ultrasoft modes, as long as the overlap between the two collinear modes

of the theory is consistently removed, a procedure which we refer to as “overlap subtrac-

tion”. Finally, in section 4, we illustrate the necessity of overlap subtraction in the operator

product expansion for DIS and match SCET onto the parton distribution function at one

loop. We present our conclusions in section 5.

2 The effective theory for DIS at tree level

For concreteness, consider DIS near the endpoint x = 1, where

x ≡ − q2

2P · q
, (2.1)

qµ is the momentum transfer by the external current, and P is the momentum of the

incoming proton. The incoming state consists of low invariant mass partons with p2
I ∼
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Figure 1. Deep inelastic scattering kinematics.

Λ2
QCD, while the outgoing state consists of low invariant mass partons with p2

F ∼ Q2(1 −
x) � Q2, where Q2 = −q2 � Λ2

QCD, as illustrated in figure 1. There are thus two scales

which are parametrically smaller than Q: ΛQCD and Q
√

1− x. DIS in this kinematic

region has been extensively studied in the framework of SCET, and provides an instructive

example to illustrate our formalism.

At renormalization scales µ < Q, the renormalization scale of the theory is lower than

the invariant mass |pI+pF | of the total hadronic state, and QCD is matched onto SCET. In

our formalism, this theory consists of two distinct sectors coupled via an external current

with an expansion in inverse powers of Q. When the scale is run down below µ = Q
√

1− x,

the invariant mass of the final state is larger than the renormalization scale, and so the final

state is integrated out of the theory by performing an operator product expansion (OPE)

of the T -product of two currents onto a series of bilocal operators, consisting of the familiar

parton distribution functions (PDF’s) [30] and their higher-twist counterparts [31]. This

sequence of EFT’s is standard; our approach differs only in how the intermediate theory

for Q > µ > Q
√

1− x is defined, so in the next few sections of the paper we will focus on

this theory.

As discussed previously, the standard formulation of SCET is frame-dependent, which

leads to different descriptions in different reference frames. In [10], DIS was analyzed in

the framework of SCET in two different frames of reference, the target rest frame and the

Breit frame. In the target rest frame, the incoming partons were treated as ultrasoft and

the outgoing partons as n-collinear, so only ultrasoft and n-collinear modes were needed

in the calculation. In contrast, in the Breit frame the incoming partons were treated as

n̄-collinear and the outgoing partons as n-collinear, so three modes, n-collinear, n̄-collinear

and ultrasoft, were required. The results in both frames were consistent, although the

calculation also illustrated that the concept of scaling used was not entirely satisfactory,

as there was no choice of λ which corresponded to the DIS kinematics, since the invariant

masses of the incoming and outgoing states are independent.

In contrast, ref. [9] argued that in order to treat the two infrared scales ΛQCD and

Q
√

1− x correctly, three distinct modes were required in both the Breit and target rest

frames, with momenta scaling in the Breit frame as pc̄ ∼ Q(1, λ2, λ), phc ∼ Q(ε, 1,
√
ε) and

psc ∼ Q(ε, λ2,
√
ελ), where ε = 1 − x and λ = ΛQCD/Q. However, this description was

also not entirely satisfactory, as graphs in which anti-collinear gluons were emitted by the

incoming parton into the final state, and which by power counting produced large invariant

mass final states, had to be excluded by hand.

– 4 –
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In this paper we argue that at a renormalization scale µ < Q, this process may be

most simply described in a boost-invariant manner by the effective Lagrangian

Leff = LnQCD + Ln̄QCD + J (2.2)

where LnQCD and Ln̄QCD are two copies of the QCD Lagrangian with quark fields ψn,n̄ and

gluon fields Aµn,n̄. The SCET expansion arises through the interactions between the sectors,

which are mediated by an external current with a large O(Q) momentum transfer,

J = J (0) +
1

Q
J (1) + . . . (2.3)

This differs from other formulations of SCET in several ways:

• Rather than being defined by scaling, the sectors are defined by a cutoff in their

invariant masses: p2
n � Q2, p2

n̄ � Q2, while pn · pn̄ ∼ Q2, where pn and pn̄ are

the total momenta in the n and n̄ sectors.3 Since the concept of collinear modes is

frame-dependent — the degrees of freedom in one sector only have large energies in

the frame in which the other sector is soft — we will henceforth simply refer to these

as the n and n̄ sectors, to distinguish them from the familiar collinear modes in SCET.

• As in [29], there is no collinear expansion within the n and n̄ sectors. Partons interact

with one another via QCD: there is no small expansion parameter in the EFT within

a sector. The only source of 1/Q corrections is in the interaction between the sectors,

which is mediated by the external current J .

• The current J has an expansion in powers of 1/Q, not λ. J is constructed out of

separately n and n̄ gauge-invariant quantities, and as usual in SCET each sector sees

the other as a Wilson line (or higher dimensional operators constructed from Wilson

lines) — fields in the two sectors do not directly couple in J .

• Ultrasoft degrees of freedom are not explicitly included as different fields in (2.2) —

different modes below the cutoff in a given sector are not described by different fields.

In SCET, the interactions between the ultrasoft and collinear modes were expanded

in a multipole expansion in pus/
√
p2
n,n̄; here no such expansion is performed since it is

an expansion in two infrared scales of the theory. (In contrast with [29], here we only

introduce separate sectors when the invariant mass of those two sectors is of order Q.)

• The theory is manifestly boost invariant: that is, it is invariant under the rescaling

n → αn, n̄ → α−1n̄. Thus, there is no distinction in the EFT description of the

process between frames which differ by a boost along the n-axis, such as the Breit

and target rest frames.

Note that in contrast with collinear and ultrasoft modes, particles in one sector typically

have energy of order Q with respect to particles in the other sector, and therefore are

3We distinguish between pn,n̄ and the momenta in the initial and final states pI and pF because, as will

be discussed, partons in either sector may be present in both the initial and final states.
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above the cutoff of the EFT and hence are integrated out of the effective Lagrangian for

the other sector. Thus, describing the n and n̄ sectors with different fields does not in

general corresponding to double-counting infrared physics. However, there is an important

caveat here: if an individual parton has momentum p such that both p · pn � Q2 and

p · pn̄ � Q2, there is an ambiguity in assigning it to a sector, which will lead to a double-

counting which must be subtracted. This will be discussed in the next section. In the

remainder of this section, we illustrate the formalism by considering tree-level matching

onto SCET up to subleading order in 1/Q.

To match onto SCET at µ = Q we calculate corresponding matrix elements in QCD

and SCET. It is convenient to consider matrix elements of states of definite helicity; this

allows us to use standard spinor-helicity techniques [32] to evaluate the matrix elements.

In addition, matching directly onto helicity eigenstates illustrates that it is unnecessary

to assign power counting in λ to different components of polarization vectors as is usually

done in SCET; power counting in 1/Q in this theory is purely dimensional analysis.

Consider the on-shell matrix element in QCD of an external electromagnetic current

Jµ = ψ̄γµψ with momentum transfer q between an incoming quark with momentum p1

and an outgoing quark with momentum p2 with ± helicity,

Mq± ≡ 〈p2 ± |Jµ|p1±〉 (2.4)

(since the quarks are massless, for a vector current the helicities of the incoming and out-

going quarks are the same). We choose our coordinates such that ~q⊥ = 0. This matrix

element is straightforward to evaluate using standard spinor-helicity methods; the calcula-

tion is described in appendix A. We obtain

Mq± =
√

2p−1 p
+
2 e
∓iϕpξµ∓ +

√
2p+

1 p
−
2 e
±iϕpξµ± +

√
p+

1 p
+
2 n̄µ +

√
p−1 p

−
2 nµ (2.5)

where

ξµ± = (0, 1,∓i, 0) (2.6)

are transverse basis vectors and ϕp is the polar angle of ~p⊥ in the xy plane,

e±iϕp ≡ p1 ± ip2√
(p1)2 + (p2)2

=
p1 ± ip2

|~p⊥|
(2.7)

and we have used the fact that ~p1⊥ = ~p2⊥ ≡ ~p⊥. The coordinates p±i are frame-dependent,

so there is no obvious small parameter in which to expand (2.5) which is valid in all frames.

In the SCET literature, one chooses a frame (typically the centre of mass frame), assigns

power-counting in λ to momenta and expands amplitudes in powers of λ. However, each

term in the expression (2.5) is boost-invariant along the ~n direction: under a change of

reference frame, nµ → αnµ, n̄µ → α−1n̄µ, we have p±i → α±1p±i , while the transverse basis

vectors ξµ± are unchanged, so each term inMq± is invariant. It is convenient, then, to make

boost invariance explicit by defining a new set of four-vectors η and η̄ by rescaling n and n̄:

ηµ =

√
−q · n̄
q · n

nµ, η̄µ =

√
−q · n
q · n̄

n̄µ (2.8)

– 6 –
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These vectors are manifestly boost-invariant, and so pX ·η
Q = (1− x)/x ∼ (1− x) whether n

and n̄ were constructed in the target rest frame or the Breit frame, or indeed any other frame

related to these by boosts along the ~n axis. Similarly, p·η̄
Q ∼

Λ2
QCD

Q2 , pX ·η̄
Q ∼ p·η

Q ∼ 1, q · η =

−Q, and q ·η̄ = Q in any frame boosted along the ~n axis. We can therefore define SCET in a

manifestly boost-invariant way by expanding in pi·η
Q and ~pi⊥

Q for particles in the n sector and
pi·η̄
Q and ~pi⊥

Q for particles in the n̄ sector. We thus can write (2.5) in the boost-invariant form,

Mq± =
√

2p1 · η̄ p2 · η e∓iϕp ξµ∓ +
√

2p1 · η p2 · η̄ e±iϕp ξµ± +
√
p1 · η p2 · η η̄µ

+
√
p1 · η̄ p2 · η̄ ηµ.

(2.9)

To match onto SCET, we must identify the states in the effective theory corresponding

to the full theory states. SCET power counting is defined such that the incoming quark is

properly described by the n̄ sector and the outgoing quark by the n sector, so we can then

expand (2.9) and (2.27) in powers of p⊥/Q and pi · η/Q to obtain

Mq± = Q

(
√

2e±iϕpξµ± −
√

2

Q
e±iϕpξα±p⊥α (η̄µ + ηµ) + . . .

)
(2.10)

where the ellipses denote terms of higher order in 1/Q.

SCET is constructed to reproduce the QCD result by expanding the current in powers

of 1/Q via (2.3). Since the n and n̄ sectors just correspond to the n and n̄ collinear modes

in refs. [29, 33], the current will take the same form as in those papers. At leading order

in 1/Q, the SCET current is [29]

J (0) = C2(µ)Oµ2 (µ) = C2(µ)
[
ψ̄nWn

]
Pn̄γ

µPn̄

[
W †n̄ψn̄

]
(2.11)

where

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
(2.12)

are projection operators, ψn,n̄ and Aµn,n̄ are full QCD fields in the given sector, and we have

defined the Wilson lines (using the convention in [26])

W †n̄(x) = P exp

(
ig

∫ ∞
0

n ·Aan̄(x+ ns)T ae−εsds

)
(2.13)

for outgoing Wilson lines in the n̄ sector, and

Wn(x) = P exp

(
ig

∫ 0

−∞
n̄ ·Aan(x+ n̄s)T aeεsds

)
(2.14)

for incoming Wilson lines in the n sector. (Note that the subscript on the W ’s denotes the

sector with which the Wilson line interacts, not the direction of the Wilson line.) Note that

the Wilson lines Wn,n̄ are invariant under rescaling n → αn, n̄ → α−1n̄, so the effective

theory is manifestly boost invariant.

– 7 –
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Following [34], it is convenient to rewrite O2 so that its helicity structure is manifest.

We define gauge invariant quark operators with definite helicity4

χ±n (x) = W
†
n(x)P±Pnψn(x)

χ±n̄ (x) = W †n̄(x)P±Pn̄ψn̄(x)
(2.15)

where P± = (1± γ5)/2 and a = n or n̄. Using the relation

γµ =
/̄n

2
nµ +

/̄n

2
nµ − ξµ−/ξ+ − ξ

µ
+/ξ−, (2.16)

(2.11) becomes

Oµ2 = −ξµ+J iinn̄+ − ξ
µ
−J

ii
nn̄− (2.17)

where

J ijnn̄± = χ̄i±n /ξ∓χ
j±
n̄ (2.18)

and i and j are colour indices. We will often abbreviate Jnn̄± ≡ J iinn̄±. Using these

fields will simplify the construction of operators subleading in the 1/Q expansion (see [34]

and [36]); in addition, matrix elements of operators between massless fields take a compact

form when their helicity is specified so this is a natural operator basis.

Taking the matrix elements of (2.17), we find

〈p2(n)± |Oµ2 |p1(n̄)±〉 = ξµ±
√

2p1 · η p2 · η̄ e±iϕp1 =
√

2Qe±iϕp1 ξµ±

(
1 +O

(
p2
⊥
Q2

))
, (2.19)

where we have explicitly labelled the particles in SCET by their sector. Comparing

with (2.10), this reproduces the leading term with C2(µ) = 1 + O(αs). The subleading

term in (2.10) is reproduced by the operator5

J (1⊥) =
1

Q
C(1⊥)(µ)O

(1⊥)
2 (µ) (2.20)

where

O
(1⊥)
2 = −∂αn

(
χ̄nγ

⊥
α

/̄n

2
γµχn̄

)
+ ∂αn̄

(
χ̄nγ

µ /n

2
γ⊥α χn̄

)
= −η̄µ (i (ξ+ · ∂n) Jnn̄+ + i (ξ− · ∂n) Jnn̄−)

+ ηµ (i (ξ+ · ∂n̄) Jnn̄+ + i (ξ− · ∂n̄) Jnn̄−) ,

(2.21)

which we have written in the usual form with Dirac matrices on the first line and in the

helicity basis on the second. The subscripts on the derivatives ∂i indicate that the derivative

only acts on fields in the i-sector; for example,

(ξ± · ∂n) J±nn̄ = (ξµ±∂µχ̄
±
n )/ξ∓χ

±
n̄ . (2.22)

4For processes with additional sectors, quarks in a given sector will couple to multiple Wilson lines in

different directions, so the corresponding operators will not simply be constructed out of the χn,n̄ fields.

This is in contrast with collinear modes in SCET, which couple to a single Wilson line [35].
5O

(1⊥)
2 and O

(1a)
2 (below) are linear combinations of the subleading operators introduced in [29, 33].
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Since the χn,n̄ fields are gauge singlets, the derivatives in (2.21) are regular, not covariant,

derivatives. Taking matrix elements of (2.21) gives

〈p2(n)± |O(1⊥)
2 |p1(n̄)±〉 = −

√
2e±iϕpξα±p⊥α (η̄µ + ηµ) (2.23)

which reproduces the second term in (2.10) if C(1⊥)(µ) = 1 + O(αs). We note that since

O
(1⊥)
2 may be absorbed into O2 by a small perpendicular rotation of n and n̄, the relation

C(1a)(µ) = C2(µ) is determined by reparameterization invariance and will be true to all

orders in αs.

At O(1/Q), the effective current also contains operators of the form

J ∼ C(µ)

Q
Bi±Jnn̄± (2.24)

where [34, 37, 38]

Bijn± = ξµ∓(W
†
niDµWn)ij

Bijn̄± = ξµ∓(W †n̄iDµWn̄)ij
(2.25)

is a gauge invariant gluon field with definite helicity, which only contribute to states with

external gluons. We note that the power counting of this operator is just determined by

dimensional analysis. Thus, to match at subleading order we also must consider matching

states with external gluons. We define the matrix element with a gluon of momentum k

and polarization ±′ in the final state

Mq±g±′ ≡ 〈p2±; k ±′ |Jµ|p1±〉. (2.26)

To simplify the amplitude, we choose the incoming state to have ~p1⊥ = 0, so that the total

perpendicular momentum in the final state vanishes, since we have already determined the

coefficient of O
(1⊥)
2 . As shown in appendix A, the one-gluon result can then be written in

a boost-invariant form as

Mq±g± = −
√

2T ag

√
p2 · η̄√
p1 · η

(
η̄µ + ηµ +

√
2e∓iϕk

√
p2 · η√
p2 · η̄

ξµ∓ +
√

2e±iϕk

√
p2 · η̄√
p2 · η

ξµ±

)
Mg±q∓ = −2gT ae∓iϕk

√
p1 · η√
p2 · η

ξµ±.

(2.27)

At leading order, the amplitude (2.27) is reproduced by the one-gluon matrix element

of O2, given by the diagrams in figure 2, where the dashed line indicates an n-collinear gluon

emitted from the nonlocal vertex of O2. This may be evaluated using the spinor-helicity

formalism to give

〈p2(n)±, k(n)± |O2|p1(n̄)±〉 = −2gT a
√
p1 · η
Q

p2 · η̄√
p2 · η

eiϕkξµ±

〈p2(n)±, k(n)∓ |O2|p1(n̄)±〉 = −2gT ae∓iϕk

√
p1 · η√
p2 · η

ξµ±.

(2.28)

Using the on-shell conditions p1 · η̄ = 0, (p2 + k) · η̄ = Q and p1 · η = Q + (p2 + k) · η =

Q+ (p2 + k)2/(p2 + k) · η̄ = Q+ (p2 + k)2/Q, so to the order we are working we can take
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Figure 2. One-gluon matrix element of O2. The dashed line represents a Wilson line Wn.

Figure 3. n̄ sector gluons emitted into the final state. The dashed line indicates the Wilson line

W †
n̄.

p1 · η = Q. The first matrix elements in (2.28) therefore reproduce to relative order 1/Q

the corresponding terms proportional to ξµ± in (2.27).

Note that the QCD amplitude to produce a final state gluon has been reproduced by

the amplitude in SCET to produce an n sector gluon: this is consistent with the power

counting in the theory, where the invariant mass of the final state is much less than Q, and

hence is described by the n sector. However, SCET also allows n̄ sector gluons to be emitted

into the final state, through the diagrams in figure 3. If the gluon is hard and n̄-collinear,

the invariant mass of the final state will be large and the gluon will not contribute to the

final state near x = 1, but if the gluon momentum is soft, it can contribute to the final state

amplitude. Since the probability to produce an outgoing gluon has already been properly

accounted for, this contribution is spurious and must be subtracted. We will discuss this

procedure in the next section.

Continuing to match the QCD amplitude to produce a final state gluon with the SCET

amplitude to produce an n sector gluon to O(1/Q), we note that is no contribution from

O
(1⊥)
2 since we have chosen the total perpendicular momentum in each sector to vanish.

The O(1/Q) terms in (2.10) are reproduced by the subleading current

J (1a) =
1

Q
C(1a)(µ)O

(1a)
2 (µ) (2.29)

where

O
(1a)
2 (α) = χ̄n(x)Bαn

(
γµ
/n

2
γ⊥α − γ⊥α

/̄n

2
γµ
)
χn̄(x)

= (η̄µ + ηµ)
(
Bijn−J

ij
nn̄+ + Bijn+J

ij
nn̄−

)
.

(2.30)
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The matrix elements of J (1a) to produce an n-collinear gluon are easily calculated,

〈p2(n)±, k(n)± |O(1a)
2 |p1(n̄)±〉 = −C(1a)

2

√
2g

√
p2 · η̄
Q

(ηµ + η̄µ)

〈p2(n)±, k(n)∓ |O(1a)
2 |p1(n̄)±〉 = 0

(2.31)

which gives C
(1a)
2 = 1 + O(αs). Thus, the QCD amplitude to produce final state gluons

is reproduced order by order in 1/Q by the effective theory amplitude to produce n sector

gluons. Similarly, amplitudes with additional gluons in the initial state will be reproduced

in SCET by amplitudes with n̄ sector gluons. The leading amplitudes will be reproduced

by the n̄ sector gluon matrix elements of O2, while at O(1/Q) SCET will also include

contributions from operators with Bn̄ fields, whose coefficients may be determined by con-

sidering incoming states with n̄ sector gluons. The complete set of operators to O(1/Q2)

relevant for dijet production in SCET is renormalized in [36].

3 One loop matching and overlap subtraction

At the loop level, näıvely applying the Feynman rules of the previous section leads to

difficulties with the effective theory. Matching onto O2 at one loop is equivalent to matching

onto standard SCET with only n and n̄ collinear modes but no ultrasoft modes, which is

known to be inconsistent: ultrasoft modes were originally introduced in SCET in [1] in order

to remove mixed ultraviolet-infrared divergences at one loop that cannot be absorbed in a

process-independent counterterm. Subsequently, it was shown in [28] that to consistently

reproduce the infrared physics of QCD, the contribution to SCET loop integrals from

the region where collinear modes overlapped with ultrasoft modes must be subtracted, a

procedure known as zero-bin subtraction. Zero-bin subtracted graphs were then shown to

be equivalent to subtracting the ultrasoft contribution to loop integrals [8, 39]. In [35] it

was shown that this procedure allowed SCET to be regulated in the infrared with a gluon

mass. Individual Feynman diagrams renormalizing the two-jet current with a massive gluon

are not separately well-defined, but it was shown in [35] that the sum

R = In + In̄ − I0 (3.1)

where In, In̄ and I0 are the n-collinear, n̄-collinear and zero-bin subtracted diagrams (the

latter quivalent to the ultrasoft contribution), is well-defined and reproduces the correct

mg dependence in the amplitude.

We argue here that the formula (3.1) arises naturally in our formulation of SCET,

where now In and In̄ are the one-loop diagrams renormalizing O2 with n and n̄ sector

gluons, while the subtracted term I0 subtracts the double-counting between the n and n̄

sectors, rather than the zero-bin. To distinguish this from zero-bin subtraction, we refer to

this procedure as “overlap subtraction.” In the one-loop renormalization of O2, for example,

both n and n̄ sector gluons propagate through the corresponding loops in figure 4. This

includes gluons with momentum k for which both k · n� Q and k · n̄� Q,6 and so these

6Ultrasoft gluons, for example, meet these criteria.
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(a) (b) (c)

Figure 4. Renormalization of O2. Diagram (c) is the overlap subtraction. In (a), the gluon is in the

n sector; in (b), it is in the n̄ sector. In (c), the dashed lines represent Wilson lines Yn,n̄, depending

on their direction. The divergences in (a) and (b) cannot be absorbed by a counterterm in SCET.

gluons are included in both loop integrals, and therefore double-counted. Subtracting the

double-counting gives the formula (3.1).

This double-counting is already visible at tree level. Cutting the graphs in figure 4 (a,b)

gives graphs in which n and n̄ sector gluons are emitted into the final state, respectively.

As discussed in section 2, the matrix element (2.28) of O2 with an n sector gluon correctly

reproduces the QCD amplitudes to emit a gluon into the final state at leading order. The

emission of an n̄ sector gluon in the final state, illustrated in figure 3, therefore double

counts the degrees of freedom and must be subtracted from the EFT to reproduce QCD.

If the emitted gluon is hard and n̄-collinear, with k · η ∼ O(Q), the invariant mass of the

final state will be large the gluon won’t contribute to the final state near x → 1, but a

gluon with momentum k · η � Q will be present in the final state in SCET. Thus, without

a subtraction, SCET will not correctly reproduce the infrared physics of QCD.

The spurious amplitude to produce an n̄ sector gluon in the final state is easily calcu-

lated:

〈p2(n)±, k(n̄)± |O2|p1(n̄)±〉 =

= −2gT a
(√

p1 · η
p2 · η

eiϕkξµ+ +
p2 · η̄

(p2 − q) · η̄

√
p2 · η
p1 · η

eiϕkξµ+ +

√
p2 · η
p1 · η

eiϕkξµ−

)
(3.2)

and

〈p2(n)±, k(n̄)∓ |O2|p1(n̄)±〉 = −2gT a
√
p1 · η
p2 · η

e−iϕkξµ+. (3.3)

Since the gluon is in the final state, SCET is constructed to reproduce QCD expanded in

powers of k⊥/Q and k · η/Q, so the second and third terms in (3.2) are subleading and

may be neglected at leading order. The leading order amplitude is precisely that given by

the diagrams in figure 5, where the dashed lines are light-like Wilson lines

Y †n (x) = P exp

(
ig

∫ ∞
0

n ·Aa(x+ ns)T ads

)
Y n̄(x) = P exp

(
ig

∫ 0

−∞
n̄ ·Aa(x+ n̄s)T ads

)
.

(3.4)

The notation in (3.4) is defined in analogy with ultrasoft Wilson lines in standard SCET,

and so the subscript indicates the direction of the Wilson line (which is unfortunately
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Figure 5. Overlap subtraction graphs for producing a final-state gluon.

opposite to the convention in (2.13) and (2.14)). Unlike the Wn,n̄ Wilson lines, the gluon

fields in Yn and Yn̄ do not carry sector labels. The gluons in (3.4) and figure 5 are distinct

final states from the gluons in figure 2 and figure 3, and so the corresponding amplitudes do

not interfere; instead, the contribution from the overlap graphs must be subtracted at the

probability level. Thus, the overlap gluons are similar to ghost fields in gauge theories. As

we have presented it at this stage, overlap subtraction is simply a prescription for avoiding

double-counting, which doesn’t come from the effective Lagrangian itself. Schematically,

for any sum over states, we make the subtraction∫
Ind

4kn +

∫
In̄d

4kn̄ →
∫
Ind

4kn +

∫
In̄d

4kn̄ −
∫
I0d

4k (3.5)

where the integrand I0 is obtained by taking the n limit of the n̄ sector, or equivalently, the

n̄ limit of the n sector. At tree level, where the sum over states is a phase space integral,

this corresponds to subtracting the rate for emission of gluons from the overlap sector from

the näıve SCET result, and so cancelling the effects of n̄ sector gluon emission into the

final state.

At one loop, the gluons in figure 5 are joined into a loop, which gives the contributions

of double-counted gluons to the one-loop renormalization of O2 to leading order. The sum

over states in (3.5) is then a loop integreal, which leads to the prescription to subtract the di-

agram in figure 4(c) from the one-loop renormalization, which is identical to the usual zero-

bin subtraction prescription. Regulating the effective theory with a gluon mass mg, the one-

loop renormalization of O2 is then identical to that presented in [35]. As shown by those au-

thors, the unsubtracted graphs In,n̄ with a massive gluon are not well defined in dimensional

regularization, again indicating that the theory is not well-defined without overlap subtrac-

tion. Including the overlap subtraction graph I0, the sum (3.1) is well-defined, and gives

In + In̄ − I0 −
1

2
wn −

1

2
wn̄ =

CFαs
4π

 2

ε2
+

3− 2 log Q2

µ2

ε
− log2

m2
g

µ2

+2 log
Q2

µ2
log

m2
g

µ2
− 3 log

m2
g

µ2
− 5π2

6
+

9

2

] (3.6)

where In,n̄ are the results of diagrams (a) and (b) in figure 4, and the wn,n̄’s are the wave-

function renormalization contributions from the n and n̄ sectors. This result reproduces
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the nonanalytic dependence of the full QCD graph on mg, and gives the counterterm

Oc.t.2 = −CFαs
4π

 2

ε2
+

3− 2 log Q2

µ2

ε

 (3.7)

which is independent of the infrared regulator and in agreement with the usual ultraviolet

divergence in SCET.

It is also instructive to perform the calculation by including a ∆ regulator [35], which

corresponds to modifying the Wilson line Feynman rules in W †n̄ and Wn,

1

k · n+ i0+
→ 1

k · n− δn + i0+
,

1

k · n̄+ i0+
→ 1

k · n̄− δn̄ + i0+
(3.8)

where δn,n̄ are infrared regulators, which then makes the individual graphs well-defined.

The graphs in figure 4 (a,b) then give

In + In̄ −
1

2
wn −

1

2
wn̄ =

CFαs
4π

[
1

ε

(
3 + 2 log

δnδn̄
Q2

)
+

1

2
log2 δn

δn̄

−1

2
log

δnδn̄
Q2

(
3 log

δnδn̄
Q2

+ 4 log
Q2

µ2
+ 3

)
− 3 log

Q2

µ2
− 2π2

3
+

7

2

]
.

(3.9)

This result contains an ultraviolet divergence which depends on the infrared regulators

δn,n̄ and therefore cannot therefore be absorbed by a process-independent counterterm,

illustrating that the EFT is not correctly reproducing the infrared behaviour of QCD.

Subtracting the overlap contribution I0 in figure 4(c) with the same regulators in the

Yn,n̄’s gives

In+In̄−I0−
1

2
wn−

1

2
wn̄ =

CFαs
4π

[
2

ε2
+

3−2log Q2

µ2

ε
− 1

2
log2 Q

2δnδn̄
µ4

+
1

2
log2 δn

δn̄

+
1

2

(
4log

Q2

µ2
−3

)
log

Q2δnδn̄
µ4

− log2 Q
2

µ2
− π

2

6
+

7

2

] (3.10)

in which the ultraviolet divergence is no longer infrared sensitive, and is cancelled by the

standard SCET counterterm (3.7). This is, of course, exactly the same result as would be

obtained in the usual formulation of SCET using the ∆ regulator and a massless gluon.

As we have noted, the prescription (3.5), like the zero-bin subtraction, is a prescription

for avoiding double-counting, not arising from the effective Lagrangian itself. However, it

was shown in [8, 39, 40] that the zero-bin subtracted renormalization of O2 is equivalent to

dividing out the unsubtracted matrix element by a soft form factor given by the VEV of

ultrasoft Wilson lines.7 An analogous formula expresses the effect of overlap subtraction

in our formalism:

〈p2(n)|O2|p1(n̄)〉subtracted =
〈p2(n)|O2|p1(n̄)〉

1
Nc

Tr〈0|Y †nY n̄|0〉
. (3.11)

7This formula is also equivalent to the QCD factorization formula derived in [26, 27] after identifying

soft and collinear Wilson lines and removing the soft sector from the current.
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Note that, formally, the numerator and denominator of (3.11) cannot be renormalized

separately without including an additional infrared regulator such as the ∆ regulator; only

the sum of individual diagrams divided by the overlap term is well-defined in the effective

theory. This definition of the subtraction also works for the renormalization of subleading

dijet operators in SCET as well, as is demonstrated in [36], with the only modification

being for certain operators the Wilson lines in the denominator must be in the adjoint

rather than fundamental representation.

The overlap subtraction prescription is more complicated than (3.11) for T -products

of currents (this is also true for zero-bin subtraction). As we will show explicitly in the

next section, diagrammatically performing the overlap subtraction for the T -product of

two currents is necessary to correctly perform the phase-space integral in DIS, and is

implemented by

〈pn|TO†2(x)O2(0)|pn〉subtracted =
〈pn|TO†2(x)O2(0)|pn〉

1
Nc

Tr〈0|TY †n̄(x)Yn(x)Y †n (0)Y n̄(0)|0〉
(3.12)

Comparing (3.12) to (3.11), we see that each factor of O2 in the numerator comes with

a corresponding Y †nYn̄ in the denominator. However, it is not sufficient to simply define

an “overlap subtracted” current O2 → O2/〈0| 1
Nc
Y †nYn̄|0〉 or overlap subtracted fields, since

that does not correctly reproduce the sum over states in the denominator of (3.12). For

more complicated observables, such as event shapes which are defined by a measurement

function, the overlap subtraction would have to be convoluted with the measurement func-

tion for the observable.

Finally, we note that this subtraction procedure only cancels the leading overlap in

1/Q overlap in (3.2). Cancelling the subleading terms will require including subleading

operators in the overlap subtraction or, equivalently, in the denominators of eqs. (3.11)

and (3.12). This can be formally accomplished by matching tree-level probabilities with

external gluons (note that probabilities, rather than amplitudes, must be matched since

overlap graphs with external gluons have distinct final states in SCET from n and n̄ gluons).

Ensuring that the tree-level probabilities are correctly reproduced in the EFT also provides

a procedure to generalize overlap subtraction to situations with more than two sectors, such

as three-jet events or qq̄ → qq̄ processes.

4 Matching onto the PDF

To obtain the familiar factorization theorem for DIS into hard, jet and parton distribution

functions, we run the operators in SCET to the scale of the invariant mass of the final

state, µ ∼ Q
√

1− x. At this stage we perform an OPE to integrate out the n sector and

match onto an EFT containing only the n̄ sector (which is just QCD). The corresponding

bilocal operators in the EFT are the familiar parton distribution functions (PDF’s) [30]

and their higher-twist counterparts [31]. The matching at the scale Q corresponds to the

hard function, the matching condition at Q
√

1− x the jet function and the PDF’s are the

soft function. This is the procedure followed in [9, 10], but we will present it in some detail

here because the SCET calculation differs somewhat in our formalism.
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The hadronic tensor is defined as the totally inclusive DIS scattering cross section, and

so by the optical theorem we can compute it by taking the discontinuity of the forward

scattering amplitude. We therefore consider matrix elements of the discontinuity of the

T-product of SCET currents,

Tµν = Disc
1

2π

∫
d4x e−iq·xTJ µ(x)†J ν(0)

= Disc
1

2π

∫
d4x e−iq·xTJ (0)µ(x)†J (0)ν(0) +O (1/Q)

≡ T (0)µν +O (1/Q) ,

(4.1)

where we have indicated that subleading currents, discussed in the previous sections, can

be included to incorporate corrections due to the matching onto SCET at Q. At tree

level, and leading order in the SCET expansion, we can compute the spin-averaged matrix

elements between quark states, corresponding to the quark structure function:

1

2

∑
spins

〈p|T (0)µν |p〉 =
1

2π
Disc

1

2

Tr/pPnγ
νPn

(
/p+ /q

)
Pn̄γ

µPn̄

(p+ q)2 + i0+

= −gµν⊥
1

y

(
1 +

y~p2
⊥

Q2

)
Disc

1

1−y
y −

y~p2
⊥

Q2 + i0+

(4.2)

where

gµν⊥ ≡ g
µν − 1

2
(nµn̄ν + n̄µnν) . (4.3)

and

y ≡ −q+/p+ (4.4)

is the partonic equivalent of the x variable in DIS. At the scale Q2(1−y) the invariant mass

of the final state becomes larger than the invariant mass of incoming state, so perform an

OPE by expanding the SCET result (4.2) in powers of ~p2
⊥/Q

2(1− y):

1

2

∑
spins

〈p|T (0)µν |p〉 = −gµν⊥
1

y

(
1 +

y~p2
⊥

Q2

)[
δ(1− y)−

y3~p2
⊥

Q2
δ′(1− y) + . . .

]
(4.5)

where the omitted terms are suppressed by more powers of p⊥/Q
√

1− y, making explicit

that this class of power corrections is proportional to inverse powers of the intermediate

scale.

The leading term in (4.5) matches onto the bilocal quark distribution function

T (0)µν → −gµν⊥
∫
dw

w
CS(w)φ(−q+/w) + . . . (4.6)

where

φ(r+) =
1

4π

∫ ∞
−∞

dte−ir
+tχ̄n̄(nt)/nχn̄(0)

=
1

4π

∫ ∞
−∞

dte−ir
+tψ̄(nt)W (nt, 0)/nψ(0),

(4.7)
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and in the second line we have dropped the n̄ subscripts since there is only one QCD

sector in the theory. We have also made explicit the fact that the outgoing and incoming

semi-infinite Wilson lines partially overlap and leave a finite Wilson line, which gives the

usual Collins-Soper definition of the PDF [30].

At tree-level, the spin-averaged matrix element of (4.7) is

1

2

∑
spins

〈p|φ(−q+/w)|p〉 = δ
(

1− y

w

)
, (4.8)

which combined with the leading order term in (4.5) gives the matching condition

CS(w) = δ(1− w) +O(αs). (4.9)

There are two sources of power corrections to (4.6). As already mentioned, we can add

subleading currents J (1a), etc. to the hadronic tensor Tµν . These are corrections at the hard

scale matching Q, and will give corrections proportional to powers of Q2(1−y)/Q2 = 1−y
and ΛQCD/Q. In addition, the OPE (4.2) can be carried out to higher orders, which will

give corrections proportional to powers of ΛQCD/Q
√

1− y.

The rate for DIS at one loop in SCET is given by the diagrams in figure 6. Diagrams

figure 6 (g) and (h) indicate the overlap subtraction graphs corresponding to the pairs

figure 6 (a, f) and figure 6 (b,f). As we will show below, the overlap graphs, along with

their relative minus signs, are reproduced by the formula

〈pn|Tjµ†(x)jν(0)|pn〉 →
〈pn|TJ (0)µ†(x)J (0)ν |pn〉

1
Nc

Tr〈0|TY †n̄(x)Yn(x)Y †n (0)Y n̄(0)|0〉
. (4.10)

To see this, first note that the denominator, evaluated to one-loop, is

1

Nc
Tr〈0|TY †n̄(x)Yn(x)Y †n (0)Y n̄(0)|0〉

= 1 + 2

∫
d4k

(2π)4

2ig2CF
(k2 + iε) (k− + iε) (−k+ + iε)

− eik·x
∫

d4k

(2π)4

2ig2CF
(k2 + iε) (k− + iε) (−k+ + iε)

− eik·x
∫

d4k

(2π)4

2ig2CF
(k2 + iε) (−k− + iε) (k+ + iε)

+O(g4),

(4.11)

while the numerator at tree-level is given by

∑
spins

〈p1|TJ (0)µ†(x)J (0)ν(0) |p1〉 = −
∫

d4p2

(2π)4

4ip−2 p
+
1 e
−i(p1−p2)·x

p2
2 + iε

gµν⊥ +O(g2). (4.12)
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Figure 6. One loop corrections to the product of two electromagnetic currents in SCET. Figures

(g) and (h) are the overlap subtractions. The angle of the Wilson line indicates whether it is in the

n or n̄ direction.

Combining these results and performing the integral over x, we find∫
d4xe−iq·x

∑
spins 〈p1|TJ (0)µ†(x)J (0)ν(0) |p1〉

1
Nc

Tr 〈0|TY †n̄(x)Yn(x)Y †n (0)Y n̄(0) |0〉

= −4i(q− − p−1 )p+
1

(q − p1)2 + iε
gµν⊥

− 2
8g2CF g

µν
⊥ (q− − p−1 )p+

1

(q − p1)2 + iε

∫
d4k

(2π)4

1

(k2 + iε) (k− + iε) (−k+ + iε)

+ 8g2CF g
µν
⊥

∫
d4k

(2π)4

(q− − p−1 − k−)p+
1

(q − p1 − k)2 + iε

1

(k2 + iε) (k− + iε) (−k+ + iε)

+ 8g2CF g
µν
⊥

∫
d4k

(2π)4

(q− − p−1 − k−)p+
1

(q − p1 − k)2 + iε

1

(k2 + iε) (−k− + iε) (k+ + iε)
.

(4.13)

The first term on the r.h.s. of (4.13) is the amplitude for the tree level graph, the second

line is the amplitude from figure 6(g) and its mirror image, while the third and fourth lines

correspond to the amplitudes for figure 6(h) and its mirror.

We now procede to compute all of the graphs in figure 6. Figure 6(a) is scaleless and

vanishes in dimensional regularization, as does the wavefunction graph (d); figure 6(b)

gives for the spin-averaged matrix element

Ib = Disc 2αsCF fε

∫
ddk

(2π)d
1

2

Tr /pPnγ
νPn(/p−/k+/q)Pn̄γ

µPn̄(/p−/k)/n

((p−k)2 + i0+)((p−k+q)2 + i0+)(k2 + i0+)n ·k

=−αsCF
4π

gµν⊥

√
π22ε−1eγεθ(1−y)Q−2ε(1−y)−ε−1yε(y(1−ε)−ε)Γ(−ε)µ2ε

Γ(1−ε)Γ
(

3
2−ε

)
=−αsCF

2π
gµν⊥

(
δ(1−y)

ε2
− 1

ε

(
δ(1−y) log

(
Q2

µ2

)
+yθ(1−y)

[
1

1−y

]
+

)
(4.14)
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+
1

4
δ(1−y)

(
2log2

(
Q2

µ2

)
−π2

)
+θ(1−y)

[
1

1−y

]
+

(
y log

(
Q2

yµ2

)
−y+1

)
+yθ(1−y)

[
log(1−y)

1−y

]
+

)
where we have used the identity

θ(y − x)

(y − x)1+ε
= −1

ε
δ(y − x) + θ(y − x)

[
1

(y − x)+
− ε
(

log(y − x)

(y − x)

)
+

+O(ε2)

]
(4.15)

to expand the results in ε. We have also used the relation∫
d4−2εk

(2π)4−2ε
δ(k2)δ

(
(p+ q − k)2

)
=

2θ(1− y)

(4π)3−εΓ (1− ε)Q

×
∫ Q

0
dk · n̄

∫
dk · n (k · n̄)−ε(k · n)−εδ

(
k · n− 1− y

y
(Q− k · n̄)

)
.

(4.16)

to evaluate the imaginary parts of the various loop integrals. Similarly, we find for fig-

ure 6(c)

Ic = Disc
g2fε
2π

∫
ddk

(2π)d
1

2

Tr /pγα(/p−/k)Pnγ
νPn(/p−/k+/q)Pn̄γ

µPn̄(/p−/k)γα

((p−k)2 + i0+)2(k2 + i0+)((p−k+q)2 + i0+)

=
αsCF

4π
Tµν

(y−1)eγε(ε−1)θ(1−y)Q−2ε(1−y)−εyεΓ(3−ε)Γ(−ε)µ2ε

Γ(3−2ε)Γ(1−ε)
(4.17)

=
αsCF

4π
Tµν

(
− (1−y)θ(1−y)

ε
+

1

2
(1−y)θ(1−y)

(
2log

(
Q2

yµ2

)
+2log(1−y)−1

))
The n̄-collinear graphs, figures 6(e) and (f) are also easily evaluated and give, respec-

tively,

Ie =
αsCF

4π
Tµν

eγεθ(1−y)Q−2ε(1−y)−ε−1yεΓ(2−ε)Γ(−ε)µ2ε

Γ(2−2ε)Γ(1−ε)

=
αsCF

2π

(
δ(1−y)

ε2
+

1

ε

(
δ(1−y)

(
1− log

(
Q2

µ2

))
−θ(1−y)

[
1

1−y

]
+

)
+

1

4
δ(1−y)

(
2log2

(
Q2

µ2

)
−4log

(
Q2

µ2

)
−π2 +8

)
+θ(1−y)

[
1

1−y

]
+

(
log

(
Q2

yµ2

)
−1

)
+θ(1−y)

[
log(1−y)

1−y

]
+

)

If =
αsCF

4π
Tµν

π3/24ε−1eγεθ(1−y)Q−2ε(1−y)−ε−1yε(1−ε)csc(πε)µ2ε

Γ(1−ε)Γ
(

3
2−ε

)
Γ(ε)

=
αsCF

2π
Tµν

(
− δ(1−y)

2ε
+

1

2
δ(1−y)

(
log

(
Q2

µ2

)
−1

)
+

1

2
θ(1−y)

[
1

1−y

]
+

)

(4.18)

Note that there are also virtual contributions from figure 6(e) (and its mirror) when the cut

crosses right-hand quark propagator (left-hand in the mirror), and wavefunction contribu-

tions from figure 6(f) when the cut crosses either of the outer quark propagators. Naively,
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Figure 7. One loop corrections to the bilocal PDF distribution function.

these integrals are all sensitive to the scale (p+q)2 ∼ Q2(1−y), but in each case the cut sets

(p+q)2 = 0, or y = 1, and thus they are scaleless and vanish in dimensional regularization.

Finally, we compute the overlap subtractions, figures 6(g) and (h). Figure 6(g) is

scaleless and vanishes, while (h) gives

Ih = Disc
g2fε
2π

∫
ddk

(2π)d
Tr /pPnγ

νPn(/p+ /q − /k)Pn̄γ
µPn̄

(k2 + i0+)((p− k + q)2 + i0+)(−n̄ · k)(n · k)

=
αsCFT

µνeγE

4π

yεΓ(−ε)
(1− y)1+εΓ(1− 2ε)

(
µ2

Q2

)ε
=
αsCF

2π
Tµν

(
δ(1− y)

ε2
− 1

ε

(
log

Q2

µ2
δ(1− y) +

(
1

1− y

)
+

))
+

1

4
δ(1− y)

(
2 log2

(
Q2

µ2

)
− π2

)
+ θ(1− y)

[
1

1− y

]
+

log

(
Q2

yµ2

)
+ θ(1− y)

[
log(1− y)

1− y

]
+

(4.19)

Combining these results with the relevant mirror image graphs gives the final result

I =
αsCF

2π

 2

ε2
+

3− 2 log µ2

Q2

ε

 δ(1− y)− 1

ε

(
1 + y2

(1− y)+
+

3

2
δ(1− y)

)

+ δ(1− y)

(
log2

(
Q2

µ2

)
− 3

2
log

(
Q2

µ2

)
− π2

2
+ 7

)
− 1

2
(1− y)θ(1− y)

+
1

2
θ(1− y)

[
1

1− y

]
+

(
2
(
y2 + 1

)
log

(
Q2

yµ2

)
− (2y2 + 1)

)
+
(
y2 + 1

)
θ(1− y)

[
log(1− y)

1− y

]
+

(4.20)

The first two terms are cancelled by the ultraviolet counterterm in the effective theory,

eq. (3.7). The remaining divergences are infrared, and are related to the Altarelli-Parisi

splitting kernel.

Having computed the structure functions at one loop in SCET, we compute the cor-

responding diagrams for the PDF so that we can determine CS in (4.6) at one-loop. The

relevant diagrams are shown in figure 7. These graphs are all scaleless and vanish in dimen-

sional regularization. Thus, the matching condition CS at order αs is given by (4.20) after

the ultraviolet divergences have been removed by the counterterms for the effective theory.
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As noted in the previous section, the first divergences in (4.20) are removed by the coun-

terterms for the currents appearing in Tµν ; the remaining divergences, which are infrared

in the effective theory above Q2(1 − x), have been converted to ultraviolet divergences of

the PDF and can be removed by an ultraviolet counterterm via the convolution

φ(B)(−q+u) =

∫
dv

v
Z
(u
v

)
φ(R)(−q+v) (4.21)

where

Z(z) = δ(1− z) +
αs
4π

1

ε

(
1 + z2

(1− z)+
+

3

2
δ(1− z)

)
, (4.22)

As is well-known, this counterterm corresponds to the standard Alterelli-Parisi splitting

kernel.

CS can now be read off from the finite parts of (4.20):

CS(w) = δ(1−w)+
αsCF

2π

(
δ(1−w)

(
log2

(
Q2

µ2

)
− 3

2
log

(
Q2

µ2

)
− π

2

2
+3

)
− 1

2
(1−w)θ(1−w)+

1

2
θ(1−w)

[
1

1−w

]
+

(
2
(
w2 +1

)
log

(
Q2

wµ2

)
−(2w2 +1)

)
+
(
w2 +1

)
θ(1−w)

[
log(1−w)

1−w

]
+

)
(4.23)

We can thus write down the full factorization formula for DIS in the endpoint region

by including the matching conditions C2 that relate the SCET currents J (0) to the QCD

currents, i.e. for J µ = ψ̄γµψ and

Tµν = Disc
1

2π

∫
dxe−iq·xTJ †µ(x)J ν(0), (4.24)

we have

Tµν = gµν⊥ HCS ⊗ φ+ · · · , (4.25)

where H = |C2(µ)|2 is the hard function, and we have used to shorthand CS ⊗ φ =∫
dw/w CS(w)φ(−q+/w). The ellipses denote subleading structure functions and sublead-

ing SCET operators.

It is useful to compare our calculation with other analyses of DIS in SCET. In [10],

our calculation is most directly comparable to the calculation performed in the target rest

frame. In that reference, it was argued that the graphs 7(b) and 7(c) (corresponding to

figure 6(a), (b) and (c) in this paper) had the same value as the corresponding graphs in

the PDF calculation below Q2(1−x). This is because in that reference the propagator used

for a collinear quark interacting with a ultrasoft gluon was the same as a gluon interacting

with a Wilson line. In this work the quark propagator is a regular QCD propagator, and

is therefore sensitive to the scale (p + q)2 ∼ Q2(1 − y), and so the contribution is not the

same as the equivalent PDF graph figure 7(a).

This discrepancy is resolved by the overlap subtraction. We noted in section 3 that the

effect of the overlap subtraction is to remove the erroneous contributions of the incoming
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sector gluons being emitted into the final state. Indeed, graphs figure 6(b) and (c) involve

incoming sector gluons being emitted into the final state and so we expect this effect to

be cancelled by the overlap subtraction. Although this cancellation is not immediately

evident in the results above, we can consider the y → 1 limit of graphs figure 6(b) and (c):

lim
y→1

Ib + Ic =
αsCF

2π
Tµν

(
δ(1− y)

 2

ε2
−

2 log
(
Q2

µ2

)
+ 1

ε
log2

(
Q2

µ2

)
− π2

2


+ 2 log

(
Q2

µ2

)[
1

1− y

]
+

+ 2

[
log(1− y)

1− y

]
+

)
,

(4.26)

and compare them to the same limit of the overlap graph figure 6 (h),

lim
y→1

Ih =
αsCF

2π
Tµν

(
δ(1− y)

 2

ε2
−

2 log
(
Q2

µ2

)
+ 1

ε
log2

(
Q2

µ2

)
− π2

2


+ 2 log

(
Q2

µ2

)[
1

1− y

]
+

+ 2

[
log(1− y)

1− y

]
+

)
,

(4.27)

and so they do indeed cancel in the y → 1 limit. Thus the net contribution from these

graphs vanishes in this limit and is therefore equal to the contribution to the corresponding

PDF graph figure 7(a), as was the case in [10]. The fact that this cancellation is not exact

is related to the fact that the overlap subtraction was only defined to remove the overlap at

leading order in the SCET expansion. A subleading overlap prescription would presumably

be able to reproduce the O(1− y) corrections to the cancellation. The remaining graphs

in figure 7 from [10] correspond exactly with the corresponding graphs in figure 6 and the

results are the same. Although we use different methods to regulate and extract the UV

counterterm for the PDF, our final results also agree.

In addition to the target rest frame, ref. [10] also performed the calculation in the

Breit frame, where the incoming states were now treated as collinear. For the consistency

of that formalism of SCET, an additional ultrasoft mode needed to be included in the

Breit frame, and the author showed that the new effects of treating the incoming states as

collinear were compensated by the effects of the additional ultrasoft sector, leading to the

same results. We have showed in previous sections that this choice of reference frame has

no effect on the sectors that must be included in the theory using our formalism, and we

have deliberately not specified which frame our calculations were performed in.

We can also compare to [8], in which this calculation was performed by matching

directly onto a factorization formula involving a soft function, jet function, and PDF. The

jet function in that reference contains graphs equivalent to figure 6 (e) and (f), and since

the remaining graphs in figure 6 sum to zero in the y → 1 limit in our calculation, we

expect that the matching condition CS(y) in (4.23) should be equal to the jet function in
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that limit. Indeed, we find

lim
y→1

CS(y) = δ(1− y) +
αsCF

4π

(
δ(1− y)

(
2 log2

(
Q2

µ2

)
− 3 log

(
Q2

µ2

)
− π2 + 7

)

+

(
4 log

(
Q2

µ2

)
− 3

)[
1

1− y

]
+

+ 4

[
1

1− y

]
+

)
,

(4.28)

which is exactly equal to the renormalized jet function in [8].

The soft function in [8] is similar to the object we defined in the overlap subtrac-

tion (4.10). A crucial difference is that in [8] the soft function is only convoluted with

the external momentum along the light cone directions of the Wilson lines, whereas in our

formula we convolute them in all directions. In that reference it was shown that the net

effect of the soft function combined with the zero-bin subtractions in the jet function and

PDF was to subtract the contribution from the soft function. In our formalism the overlap

is subtracted directly, and while the contribution of the overlap is different form the soft

contribution in [8], our overlap contribution is cancelled in the y → 1 limit by the graphs

figure 6(b, c), as discussed above, while the soft contribution in [8] is scaleless and vanishes,

so our results are ultimately equivalent.

Finally, in [9], the authors describe a two-step matching procedure that is very similar

to the procedure we use here, where one first matches onto the SCET currents at the hard

scale, and then matches onto the PDF at the intermediate scale, integrating out the final

states and identifying the second matching coefficient with the jet function. These authors

also identify two sources of power corrections coming from the insertion of subleading SCET

currents and the inclusion of subleading parton distribution functions, agreeing with our

analysis. The distinction between our approaches is in the identification of modes, as they

describe new hard-collinear and soft-collinear modes in addition to the standard SCET

anti-collinear modes which all must be included when matching onto SCET. The Feynman

rules generated by the SCET Lagrangian thus constructed introduce diagrams in the one-

loop computation of the hadronic tensor that must be removed by hand to maintain a

consistent power-counting. These graphs are precisely the graphs figure 6(b) and (c) in our

formalism, and as shown above their effects are removed automatically at leading order in

(1− y) by the overlap subtraction.

5 Conclusions

In this paper we have shown that SCET may be written as a theory of decoupled sectors,

where the invariant mass of particles in each sector is much less than the hard scale Q, while

the invariant mass of any pair of sectors is of order Q. Fields in each sector are described

by the QCD Lagrangian, and interactions are mediated by an external current, which

has an expansion in powers of Λi/Q, where the Λi’s are the infrared scales in the theory.

We demonstrated that in order to consistently match probabilities from the full theory to

SCET, the effects of overlapping degrees of freedom in each sector must be subtracted from

loop and phase space integrals. Once these effects are properly subtracted, the sum of loop

graphs is well defined in the effective theory.

– 23 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
7

In this work we restricted ourselves to the simplest situation in which there are only two

sectors in the theory, and illustrated our results in the context of deep inelastic scattering;

however, they will apply to any SCETI process — in particular, B → Xsγ and thrust

distributions in the relevant kinematic regions. In the former, SCET will take the form of

a heavy (static) sector coupled to a final state n-sector through the external current, which

matches at a lower scale onto light-cone distribution functions. In the latter case, SCET

will consist of n and n̄ sectors in the final state, which is then matched onto the usual

SCET soft function. The example of thrust is slightly complicated by the fact that the

integration over final states is not inclusive, and so the usual cutting rules from the optical

theorem must be modified, as described in [12]. We expect that the overlap subtraction

formula proposed in this paper will reproduce the correct results for thrust when this

modified cutting prescription is used. It is also straightforward to extend this formalism

to processes with multiple sectors, such as multi-jet events or qq → qqX scattering. With

multiple sectors, each sector will couple to multiple Wilson lines in different directions,

similar to the way a soft field in the usual SCET formalism couples to multiple collinear

fields. The overlap subtraction procedure then generalizes to eliminate double-counting

between the various sectors. Work on these examples is ongoing.

In future work, we will investigate the application of this formalism to SCETII observ-

ables, such as the massive Sudakov form factor and jet broadening. We note in particular

that events with small thrust (τ) or jet broadening (bT ) are both dominated by dijet events

with low invariant masses, and so SCET with n and n̄ sectors has the correct degrees of

freedom to describe the final states in both cases. However, in standard SCET one must

decide when matching at the scale Q whether to match onto SCETI (collinear and ultrasoft

modes) or SCETII (collinear and soft modes), whereas in our formalism the theories are

identical at the scale Q. The issue of summing the rapidity logs which arise in SCETII

processes in this formalism is currently being investigated.
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A Matching onto helicity eigenstates

We first review some standard features of the spinor helicity formalism (see, for exam-

ple, [32]). We define spinors with momentum p with definite helicity,

|p+〉 ≡ p〉, |p−〉 ≡ p], 〈p+ | ≡ [p, 〈p− | ≡ 〈p. (A.1)
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These have the explicit form8

p〉 =
1√
2


√
p−√

p+eiφp√
p−√

p+eiφp

 , p] =
1√
2


√
p+e−iφp

−
√
p−

−
√
p+e−iφp√
p−

 , (A.2)

where the phase is defined

e±iφp =
p1 ± ip2√
p+p−

. (A.3)

Inner products of spinors obey

〈pq〉 = [qp]∗, 〈pq〉 = −〈qp〉, 〈pq] = [pq〉 = 0. (A.4)

and

p · q =
1

2
〈pq〉[qp]. (A.5)

For positive energy spinors p0
i , p

0
j > 0, we have the explicit expressions

〈pipj〉 =
√
p+
i p
−
j e

iφi −
√
p−i p

+
j e

iφj

[pipj ] = −
√
p+
i p
−
j e
−iφi +

√
p−i p

+
j e
−iφj

(A.6)

where the phases φj are defined in (A.3). Helicity spinors obey the Schouten identity

〈pipj〉〈pkpl〉 = 〈pipk〉〈pjpl〉+ 〈pipl〉〈pkpj〉 (A.7)

and Fierz rearrangement

[piγ
µpj〉[pkγµpl〉 = 2[pipk]〈plpj〉. (A.8)

Charge conjugation gives

[pγµq〉 = 〈qγµp]. (A.9)

We also have, for any null vector aµ,

/a = a〉[a+ a]〈a. (A.10)

Finally, polarization vectors εµ are written in terms of spinors as

εµ±(k, r) = ±〈r ∓ |γ
µ|k∓〉√

2〈r ∓ |k±〉
(A.11)

where rµ is an arbitrary lightlike reference momentum obeying r · p 6= 0, corresponding to

the gauge degree of freedom. From (A.11) and (A.8) we then obtain

[p|/ε−|q〉 = −
√

2
[pr]〈kq〉

[rk]
(A.12)

and similiar expressions for the other helicities.

8Note that the standard SCET convention of p± = p0 ∓ p3 is the opposite of that used in [32].
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We can use the above results to simplify Feynman amplitudes between states of definite

helicity. It is convenient to introduce the spinors |n±〉 and |n̄±〉, defined with vanishing

phase φn,n̄ = 0. The Schouten identity (A.7) then allows us to express inner products of

arbitrary spinors as inner products of spinors with n〉 and n̄〉:

〈pq〉 =
〈pn̄〉〈qn〉 − 〈pn〉〈qn̄〉

2
(A.13)

where

〈pn〉 =
√

2p+eiφ(p), 〈pn̄〉 = −
√

2p−. (A.14)

To evaluate matrix elements of the form 〈p ± |γµ|q±〉, we decompose γµ via (2.16), and

then from the definition [37]

ξµ± =
1

2
√

2
〈n± |γµ|n̄±〉 (A.15)

we have

[p/ξ+q〉 =
1

2
√

2
[pγµq〉[nγµn̄〉 =

1√
2

[pn]〈n̄q〉 (A.16)

and similarly for /ξ−, which therefore gives

[pγµq〉 =
nµ

2
[pn̄]〈n̄q〉+

n̄µ

2
[pn]〈nq〉 −

ξµ−√
2

[pn]〈n̄q〉 −
ξµ+√

2
[pn̄]〈nq〉. (A.17)

This immediately gives the zero-gluon matrix element

Mq± ≡ 〈p2 ± |γµ|p1±〉 (A.18)

= ±
√

2p−1 p
+
2 e
±iϕp1 ξµ∓ ∓

√
2p+

1 p
−
2 e
∓iϕp2 ξµ± +

√
p+

1 p
+
2 e
±i(ϕp2−ϕp1 ) n̄µ +

√
p−1 p

−
2 nµ.

The one-gluon matrix elements between different helicity states can be read off from the

corresponding Feynman diagrams and simplified using the above identities. For example,

Mq+g+ = −gT a
(

[p2/ε
∗
+(/p2

+ /k)γµp1〉
2p2 · k

−
[p2γ

µ(/p1
− /k)/ε∗+p1〉

2p1 · k

)

= −gT a
(

[p2/ε−p2〉[p2γ
µp1〉

2p2 · k
−

[p2γ
µp1〉[p1/ε−p1〉 − [p2γ

µk〉[k/ε−p1〉
2p1 · k

)
=
√

2gT a
([

[p2r]

[rk][p2k]
− [p1r]

[rk][p1k]

]
[p2γ

µp1〉 −
1

[p1k]
[p2γ

µk〉
)

=
√

2gT a
(

[p1p2]

[p2k][p1k]
[p2γ

µp1〉 −
1

[p1k]
[p2γ

µk〉
)

(A.19)

where dependence on the gauge parameter r has vanished. We can simplify this expression

further by again using (2.16) to decompose γµ,

Mq+g+ =
√

2gT a
(
− [p2n̄](〈n̄k〉[p2k]+〈p1n̄〉[p2p1])

2[p1k][p2k]
nµ− [p2n](〈n̄k〉[p2k]+〈p1n̄〉[p2p1])√

2[p1k][p2k]
ξµ−

− [p2n](〈nk〉[p2k]+〈p1n〉[p2p1])

2[p1k][p2k]
n̄µ− [p2n̄](〈nk〉[p2k]+〈p1n〉[p2p1])√

2[p1k][p2k]
ξµ+

)
(A.20)

=
√

2gT a
(

[p2n][p2n̄]n̄ ·q
2[p1k][p2k]

nµ− [p2n][p2n̄]n ·q
2[p1k][p2k]

n̄µ+
[p2n]2n̄ ·q√
2[p1k][p2k]

ξµ−−
[p2n̄]2n ·q√
2[p1k][p2k]

ξµ+

)
,
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where to get from the first to second line we’ve used a series of identities that can be derived

from total momentum conservation. For example, since pµ1 + qµ = pµ2 + kµ, we have

/p1
+
q · n

2
/̄n+

q · n̄
2

/n = /p2
+ /k, (A.21)

and we can sandwich (A.21) between arbitrary spinors, e.g. [p2 and n̄〉, to find

〈n̄k〉[p2k] + 〈p1n̄〉[p2p1] = −〈nn̄〉
2

q · n̄[p2n]. (A.22)

Equation (A.20) is now a particularly compact expression for the exact tree-level matrix

element in QCD; however, it is useful to further manipulate it into a form that is simple to

expand in the collinear limits of SCET. For example, let’s set p⊥1 = 0, so that k⊥+p⊥2 = 0.

This gives us

ξ± · k + ξ± · p2 =
1

2
√

2
(〈n̄∓ |k±〉〈n± |k∓〉+ 〈n̄∓ |p2±〉〈n± |p2∓〉) = 0, (A.23)

which, combined with the fact that k−+p−2 = q− when p−1 = 0, leads to the useful relation

〈p2 ∓ |k±〉 =
〈p2 ∓ |n±〉〈n̄∓ |k±〉 − 〈p2 ∓ |n̄±〉〈n∓ |k±〉

〈n̄∓ |n±〉
=

2q · n̄
〈n̄∓ |n±〉

〈p2 ∓ |n±〉
〈k ± |n̄∓〉

.

(A.24)

Also, on-shell conditions enforce that k+k− = p+
2 p
−
2 and 〈p1 ∓ |n̄±〉 = 0, a concequence of

the later being that

〈p1 ∓ |k±〉 =
〈p1 ∓ |n±〉〈n̄∓ |k±〉 − 〈p1 ∓ |n̄±〉〈n∓ |k±〉

〈n̄∓ |n±〉
=
〈p1 ∓ |n±〉〈n̄∓ |k±〉

〈n̄∓ |n±〉
(A.25)

These identities allow us to further manipulate (A.20) to

Mq+g+ =
√

2gT a
(
− 〈n̄k〉[p2n̄]

[n̄k][p1n]
nµ +

〈n̄k〉[p2n̄]n · q
[n̄k][p1n]n̄ · q

n̄µ

+

√
2〈n̄k〉[p2n̄]2n · q

[n̄k][p1n][p2n]n̄ · q
ξµ+ −

√
2〈n̄k〉[p2n]

[n̄k][p1n]
ξµ−

)
.

(A.26)

In terms of boost-invariant variables, we finally have

Mq+g+ = −
√

2T ag

√
p2 · η̄√
p1 · η

(
η̄µ + ηµ +

√
2e−iφ(k)

√
p2 · η√
p2 · η̄

ξµ− +
√

2eiφ(k)

√
p2 · η̄√
p2 · η

ξµ+

)
(A.27)

Similar manipulations for the other helicities give the results in (2.27).
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