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1 Introduction

Supersymmetry is undoubtedly one of the main ingredients of string theory. Although,

historically, the development of string theory and supergravity originated from somewhat

different paths, the strong connection between the two has become essential for our under-

standing and investigating their rich structure. Over the last four decades, supergravity

theories [1, 2] in D ≥ 4 dimensions have been studied in great detail (for overviews see,

for instance, [3, 4]). Moreover, this discussion has been extended in [5], where a full clas-

sification of all possible number of supercharges has been obtained for the case of D = 3.

The main purpose of the present work is to fill a gap in the landscape of D = 2 extended

supergravity theories by investigating superstring vacua with an “exotic” number of su-

persymmetries. Extending previous results [6–9] we will present novel two-dimensional

string constructions obtained as asymmetric T 8/Zn or T 8/Zn × Zm orbifold compactifica-

tions [10, 11] with chiral (P,Q) supersymmetry, namely, with P positive and Q negative

helicity supercharges.

In particular, we will construct new asymmetric Z4 orbifold compactifications1 of type

IIA, IIB or heterotic string theory in which a very interesting phenomenon occurs. As is

well known from the familiar case of four dimensions, requiring the absence of massless

states of spin higher than two, constrains the maximal number of supersymmetries of the

theory to N ≤ 8. Despite the absence of such a no-go theorem in the more exotic case

of two spacetime dimensions no examples of consistent 2d string or supergravity theories

1Similar left-right asymmetric string constructions were considered in the context of non-geometric flux

compactifications [12, 13], from the point of view of exactly solvable worldsheet CFTs, realized as freely-

acting asymmetric orbifolds. Closely related theories were also obtained in the framework of double field

theory in [14], while generalizations realised as Gepner models in four, six and eight dimensions were

presented in [15–18].

– 1 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
6

with more than 32 supercharges have been presented in the literature. As we will show

explicitly in this work, twisted sectors of asymmetric orbifolds in 2d may actually give rise

to additional supercharges and, hence, lead to consistent string theories with more than

32 supercharges. These are, to our knowledge, the first examples of such theories in the

literature.

We have organized this work as follows. In section 2 we will recall the structure of

the chiral (P,Q) supersymmetry algebra in two space-time dimensions and emphasize that

for chiral theories the massless spectrum of the positive and negative helicity states is

different. This fact is especially prominent for chiral models with (P, 0) supersymmetry,

where the negative helicity sector is non-supersymmetric with a different number of space-

time bosons and fermions. In section 3 we discuss the type II and Heterotic strings on a

symmetric Z4 orbifold of T 8. This section is mostly a systematic elaboration on known

results, but is nevertheless useful as an introduction to the formalism. In section 4 we

move on to the analysis of asymmetric Z4 orbifolds, where we encounter our first examples

of exotic superalgebras. In section 5 we analyze various asymmetric Z4 × Z4 orbifolds

with the peculiarity that the resulting two dimensional spacetime theory has more than 32

gravitinos. The appendices contain various technical results we use in the main text.

2 Chiral (P,Q) theories in two dimensions

Here let us recall some basic facts of supersymmetric field theories in two dimensions and

their supersymmetry algebras [19, 20]. First we introduce lightcone coordinates Y ± =
1√
2
(Y 0 ± Y 1) in the (1+1) dimensional uncompactified Minkowski space-time. Then a

massless particle Φ+(Y
+) or Φ−(Y +) is either left- or right moving in target space with

either P+ = 0 or P− = 0. In particular, massless spin-1/2 fermions Ψ+ or Ψ− can have he-

licity +1/2 or −1/2 in two space-dimensions. For the supercharges, this possibility is made

manifest by representing the supersymmetry algebra by P positive chirality supercharges,

denoted by QI
+ (I = 1, . . . ,P) and Q negative chirality supercharges QI′

− (I ′ = 1, . . . ,Q).

The extended (P,Q) supersymmetry algebra then takes the following form:

{QI
+, Q

J
+} = 2δIJP+ , {QI′

−, Q
J ′

− } = 2δI
′J ′

P− , {QI
+, Q

J ′

− } = 0 . (2.1)

In string theory one can represent the supersymmetry algebra in terms of the vertex

operators of the supercharges (see e.g. [21]). Specifically in ten space-time dimensions,

space-time supersymmetry transformations in type II (heterotic) string theories are gen-

erated by 32 (respectively 16) supercharges, coming from left- and right-moving sectors of

the world-sheet superconformal field theory.

Upon compactifying, the number of preserved supercharges is generically reduced.

However, in later sections, we shall be considering asymmetric 2d orbifolds with additional

supercharges arising from the twisted sectors, such that the total number of supercharges

can be even higher than in the ten-dimensional theory. Consider first the left-moving

supercharges, which are identical in type IIA,B and heterotic string theories. All (PL,QL)

space-time supercharges in two dimensions are realized on the world-sheet by covariant

weight-1 vertex operators that necessarily contain the spin fields S±(z) = e±
iH0(z)

2 . Here,
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ψ± = (ψ0 ± iψ1)/
√
2 = e±iH0(z) is the complex world-sheet fermion in the light-cone

directions, that may be bosonized in terms of the current J0(z) = i∂H0. In addition,

we need the internal spin fields SI(z) (I = 1, . . . ,PL) and SI′(z) (I ′ = 1, . . . ,QL) with

conformal dimension h = 1/2 of the internal eight-dimensional space. In terms of these,

the vertex operators of the supercharges in the (non-canonical) +1/2 ghost picture take

the form:

QI
+ =

∮

dz

2πi
SI(z)e

φ(z)+iH0(z)
2 ,

QI′

− =

∮

dz

2πi
SI′(z)e

φ(z)−iH0(z)
2 . (2.2)

Here, φ(z) is the bosonised superghost field.

Upon dimensional reduction from ten to two dimensions on T 8, the 16 right moving

supercharges transform in the 16-dimensional spinor representation2 16c of SO(10), which

decomposes under SO(2)× SO(8) as

16Lc →
(

+
1

2
,8s

)L

+

(

−1

2
,8c

)L

. (2.3)

The IIA, IIB and heterotic vertex operators of the corresponding 16 supercharges QI
+ and

QI′
− with (QL,PL) = (8, 8) are explicitly:

QI
+ =

∮

dz

2πi
eiw

I
s ·H(z)e

φ(z)+iH0(z)
2 ,

QI′

− =

∮

dz

2πi
eiw

I′
c ·H(z)e

φ(z)−iH0(z)
2 . (2.4)

where the four chiral bosons HK(z) originate from the bosonization of the internal com-

plexified world-sheet fermions ψK . The eight different 4-vectors wI
s =

(

±1
2 ,±1

2 ,±1
2 ,±1

2

)

(even number of minus signs) are the spinorial weight vectors of the 8Ls spinor represen-

tation of the internal automorphism group SO(8). Similarly the eight 4-vectors wI′
c =

(

±1
2 ,±1

2 ,±1
2 ,±1

2

)

(odd number of minus signs) are the spinorial weight vectors of the 8Lc
spinor representation.

For type IIA and IIB string theories, there is also a certain number (QR,PR) of su-

percharges originating from the right-moving world sheet sector. In type IIB, the 16 right-

moving supercharges follow the same group-theoretic decomposition as the left-moving

ones. E.g. for compactification on T 8, one derives the following vertex operators for the

16 supercharges Q̃I
+ and Q̃I′

−

Q̃I
+ =

∮

dz̄

2πi
eiw

I
s ·H̃(z̄)e

φ̃(z̄)+iH̃0(z̄)
2 ,

Q̃I′

− =

∮

dz̄

2πi
eiw

I′
c ·H̃(z̄)e

φ̃(z̄)−iH̃0(z̄)
2 . (2.5)

2We choose a convention where the SO(10) spinor weights
(

± 1
2
,± 1

2
,± 1

2
,± 1

2
,± 1

2

)

with even (resp. odd)

number of minus signs correspond to the 16c (resp. 16s) representation.
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The two sets of supercharges correspond to the decomposition of the ten-dimensional spinor

16Rc to two dimensions in the same way as in eq. (2.3).

For type IIA on T 8 however, the right-moving supercharges originate instead from the

16s spinor representation of SO(10). In this case one obtains

Q̃I
+ =

∮

dz̄

2πi
eiw

I
c ·H̃(z̄)e

φ̃(z̄)+iH̃0(z̄)
2 ,

Q̃I′

− =

∮

dz̄

2πi
eiw

I′
s ·H̃(z̄)e

φ̃(z̄)−iH̃0(z̄)
2 , (2.6)

corresponding to the decomposition

16Rs →
(

+
1

2
,8c

)R

+

(

−1

2
,8s

)R

. (2.7)

We see that in both cases for type IIA and type IIB on T 8 we have in total 32 super-

charges in two dimensions corresponding to the (P,Q) = (PL + PR,QL +QR) = (16, 16)

non-chiral supersymmetry algebra, whereas the heterotic string on T 8 is characterized by

a total of 16 supercharges realizing the (PL,QL) = (8, 8) non-chiral supersymmetry alge-

bra. In the next section we will discuss how the various orbifold projections act on the

supercharges, which will result in several chiral, as well as non-chiral superalgebras in two

dimensions.

In general, the spectrum will fall into appropriate supermultiplets of the relevant

(P,Q) supersymmetry algebra. The generic supermultiplet is of course the supergrav-

ity multiplet, with (P,Q) supersymmetry. However the graviton and all P + Q gravitini

are non-propagating in 2d. Therefore all supergravity multiplets in two dimensions only

non-propagating states, which do not contribute to the one-loop partition function of the

theory. Notice, however, that even though the gravitino and spin-1/2 fermions in the

gravity multiplet are non-propagating, they still contribute to gravitational anomalies [22].

Although there should exist an off-shell formulation of the chiral (P,Q) supergravity action

in two-dimensions, we will not display it here.

We now turn to the matter fields, which arise from the compactification from ten

to two space-time dimensions. In addition to left- and right moving string excitations

on the two-dimensional string world-sheet, also the space-time spectrum is split into left-

or right moving states with respect to the two-dimensional target space. In particular,

massless fermions Ψ+ or Ψ− can have chirality +1/2 or −1/2 in two space-dimensions.

For non-chiral theories with (P,P) space-time supersymmetry in two dimensions, the left-

and right-moving spectra match. However, for chiral theories with (P,Q) supersymmetry

(P 6= Q) the positive and negative chirality sectors are in general different from each other.

For example, in chiral theories with (P, 0) supersymmetry the target-space left-movers are

supersymmetric, i.e. there is the same number of positive chirality fermions and bosons,

whereas the right-moving states are non-supersymmetric with different numbers of negative

chirality fermions and bosons.

In conclusion, the target-space left- and right-movers are associated with two different

sectors, which we will label by a parameter µ: the target space left-movers, i.e. the positive
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helicity states, correspond to the choice µ = 0 and the right-movers with negative helicity

belong to µ = 1. From the string point of view, the two different cases µ = 0, 1 are

related to the two different possibilities for the “internal” part of the GSO projection on

the transverse string spectrum, as we shall discuss in the following section. While these

are equivalent in dimensions D = 4k, this is not so in dimensions D = 4k + 2, where the

supersymmetry algebra is chiral.

3 Symmetric T 8/Z4 orbifold

3.1 Symmetric T 8/Z4 orbifold in type IIB with (12, 0) supersymmetry

Before dealing with the asymmetric orbifold constructions advertised in the introduction,

it will be instructive to first revisit the symmetric Z4 case, involving the rotation of all eight

coordinates of the internal 8-torus. Although these orbifolds have already been mentioned

in [9], the present analysis will serve as an opportunity to set up the notation and encounter

some of the central ingredients that will be useful later on when we turn to the asymmetric

cases. In particular, we will consider IIA, IIB and Heterotic string theories compactified on

T 8/Z4 orbifolds, with the orbifold action rotating all 8 internal super-coordinates as follows

X1 → X2 , X2 → −X1 ,

X3 → −X4 , X4 → X3 ,

X5 → X6 , X6 → −X5 ,

X7 → −X8 , X8 → X7 .

(3.1)

Although we display here only the Z4 action on the bosonic left and right moving coordi-

nates XI , worldsheet supersymmetry requires the exact same action also for the left and

right moving worldsheet fermion superpartners, ψI . This orbifold action may be easily

diagonalised by complexifying the corresponding super-coordinates.

In this section, we shall focus on type IIB case. Upon compactifying the 10d IIB

string theory on the T 8/Z4 orbifold, one obtains a two dimensional theory with chiral

supersymmetry. The full spectrum of the theory can be straightforwardly extracted from

the one-loop partition function

Z =
1

4

∑

h,g∈Z4





1

2

∑

a,b=0,1

(−1)a+b+µab
ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2

η4
e−iπhg/2





Γsym
8,8 [hg ]

η8η̄8

×





1

2

∑

ā,b̄=0,1

(−1)ā+b̄+µāb̄
ϑ̄[

ā+h/2

b̄+g/2
]2ϑ̄[

ā−h/2

b̄−g/2
]2

η̄4
e+iπhg/2



 .

(3.2)

We denote by ϑ[αβ ] ≡ ϑ[αβ ](0, τ) the Jacobi theta constants, where we adopt the convention

ϑ[αβ ](z, τ) =
∑

n∈Z
q

1
2
(n−α/2)2 e2πi(z−β/2)(n−α/2) , (3.3)

in terms of the nome q = e2πiτ . They are holomorphic with respect to the complex

structure parameter τ of the worldsheet torus Σ1 and encode the boundary conditions
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α, β of worldsheet fermions ψI along the a- and b- cycles of Σ1, respectively. Similarly,

the Dedekind η-functions are conventionally defined as η(τ) =
∏

n>0(1 − qn). The spin

structures a = 0, 1 and ā = 0, 1 are associated to the left- and right- moving fermion

numbers, respectively, while summing over b, b̄ = 0, 1 imposes the corresponding left- and

right- moving GSO projections. Similarly, the orbifold sectors are labelled by h = 0, 1, 2, 3

while summing over g = 0, 1, 2, 3 enforces the Z4-invariance projection. The additional

phases e∓iπhg/2, while cancelling each other in the total partition function, are inserted

for later convenience in organising the various character blocks in a language that will

be particularly useful once we turn to the asymmetric orbifold case. The contribution of

the internal bosonic coordinates is encoded in the symmetrically twisted lattice Γsym
8,8 [hg ]

carrying Lorentzian signature (8,8), and is defined as

Γsym
8,8 [hg ] =







28 sin8
(

π
4Λ[

h
g ]
) η12η̄12

∣

∣

∣
ϑ[

1−h/2
1−g/2

]2 ϑ[
1+h/2
1+g/2

]2
∣

∣

∣

2 , (h, g) 6= (0, 0)

Γ8,8(G,B) , (h, g) = (0, 0)
. (3.4)

Here Γ8,8(G,B) is the usual (untwisted) Narain lattice of T 8, as a function of the constant

metric and antisymmetric tensor fields. The parameter Λ[hg ] is equal to 2 for elements in

the Γ0(2) orbit [
0
2], [

2
0], [

2
2], and equal to 1 otherwise.

Let us now comment on the particular choice of GSO phases (−1)a+b+µab and

(−1)ā+b̄+µāb̄ appearing in the left- and right- moving RNS fermion blocks. The factor

(−1)a+b+ā+b̄ is standard, and present already in 10d. It is required by one-loop modular

invariance and may be derived by imposing unitarity and cluster decomposition of higher

loop amplitudes. It actually automatically implies the correct spin-statistics assignments.

The additional phase factor (−1)µ(ab+āb̄), with µ = 0, 1 is more subtle and particular to

twisted 2d constructions. In two dimensions, spacetime can be thought of as longitudinal,

in the sense that it entirely spans the lightcone directions. States such as the graviton

or the gravitini, which are constructed using string oscillators in spacetime directions are

non-propagating and are, therefore, not captured by the simple one-loop partition function

given above. This is because the longitudinal contribution ϑ[ab ]/η is exactly cancelled by

that of the (super)ghosts η/ϑ[ab ] and a full covariant treatment [23] is needed for the proper

analysis of longitudinal states.3 Consider, for instance, the left moving RNS sector. In the

full covariant treatment and for a fixed superghost picture, the GSO projection is imposed

at the full SO(10) level, and comes with an ambiguity concerning the choice of the SL(2)

vacuum. Once this ambiguity is lifted by a choice of convention, the chirality of SO(10)

spinors is completely fixed by the GSO projection. The lightcone partition function, on

the other hand, can effectively see only the transverse SO(8) part of these spinors. Upon

decomposing the 16 spinorial representation under SO(10) → SO(2)× SO(8) we have, for

instance, 16 →
(

+1
2 ,8s

)

⊕
(

−1
2 ,8c

)

, with SO(2) being the “Euclideanised” Lorentz group

3Notice that it is actually possible to appropriately deform the longitudinal theta function contribution

to the partition function by a Jacobi parameter ϑ[ab ](0, τ) → ϑ[ab ](z, τ) such that we can keep track of all

states, including longitudinal ones. Although we have checked our results also using this method, we shall

not employ it explicitly in this work, since it is more convenient to work with the lightcone partition function

and revert to the full covariant formalism whenever needed.
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in 2d. Specifically, the lightcone gauge treatment sets X+ = x+ + p+t and ψ+ = 0, with t

being the worldsheet proper time and, therefore, the partition function does not reproduce

the full massless spectrum for chiral theories in 2d where the target space involves both

left-moving and right-moving massless states. Massless propagating NS states (a = 0)

carry no SO(2) charge and a µ-phase ambiguity does not arise. States in the R sector

(a = 1), however, do carry non-trivial SO(2) charge and the light cone gauge will select

either the 8s or the 8c spinor, depending on the choice of µ = 0, 1. For this reason, in our

writing of the partition function (3.2), we keep µ unspecified, with the understanding that

a full analysis of the spectrum will require considering both the µ = 0 as well as the µ = 1

spectra, which will correspond to (propagating) states of positive and negative spacetime

chirality, respectively.

The analysis of the full string spectrum in such Z4 orbifolds, and even more so in the

asymmetric versions we shall be considering in later sections, can be quite tedious and

requires the construction of SU(4) characters which are eigenmodes of the orbifold action.

Anticipating this, it is instructive and convenient to first describe the massless sector of

the theory from a geometric perspective and then verify that these results are indeed

reproduced from the purely CFT orbifold analysis. The singularities in the T 8/Z4 orbifold

cannot be smoothed out in a Calabi-Yau way, so there are no twisted sectors, and thus

the cohomology generators for the orbifold can be computed to be those of T 8 which are

left invariant by the orbifold action. Alternatively, the cohomology may be computed from

the knowledge of the internal CFT by exploiting the isomorphism between the cohomology

ring and the chiral ring of the N = (2, 2) worldsheet SCFT. The most straightforward way

to do this is by first computing the modified elliptic genus

Ẑ(q, t, q̄, t̄) = TrRR

[

(−1)f qL0−c/24 q̄L̄0−c̄/24 tJ0 t̄J̄0
]

, (3.5)

where f = J0 − J̄0 in terms of the U(1) currents of the SCFT. From this, one may readily

extract the Poincaré polynomial P (t, t̄) = (tt̄)c/6Ẑ(0,−t, 0,−t̄) of the associated smooth

manifold. Applying this to the T 8/Z4 orbifold at hand, we find the following Hodge square















h0,0 h0,1 h0,2 h0,3 h0,4
h1,0 h1,1 h1,2 h1,3 h1,4
h2,0 h2,1 h2,2 h2,3 h2,4
h3,0 h3,1 h3,2 h3,3 h3,4
h4,0 h4,1 h4,2 h4,3 h4,4















=















1 0 4 0 1

0 8 0 8 0

4 0 188 0 4

0 8 0 8 0

1 0 4 0 1















, (3.6)

with Euler number χ(X) = 240. In terms of the Hodge numbers, one computes the number

of self-dual and anti-self-dual 4-forms

b+4 = 2h1,3 + h1,1 − 2h0,2 − 1 = 15 ,

b−4 = 47 + 22h0,2 + 4h1,3 + 3h1,1 − 2h1,2 = 191 ,
(3.7)

and also the Hirzebruch signature of the manifold

τ(X) = b−4 − b+4 = 176 . (3.8)
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A 10d M-W spinor 16c of SO(10) decomposes under SO(2)×SO(8) as (+1
2 ,8s)⊕ (−1

2 ,8c).

On Kähler fourfolds, the SO(8) spinors can, in turn, be decomposed under the SU(4)

holonomy in terms of gamma matrices acting on covariantly constant spinors, according to

the group-theoretic decomposition

8s → 1+ 6+ 1 , 8c = 4+ 4̄ . (3.9)

The coefficients of this decomposition correspond to (0, q)-forms. Hence, the singlets in

the decomposition of 8s are associated to (0, 0) and (0, 4) forms. To obtain the number of

supersymmetries preserved by this compactification, one counts the zero modes of the Dirac

operator arising from the above decomposition of the 10d gravitini. The latter correspond

to those (0, q) forms which are also harmonic. From h0,0 = h0,4 = 1 and h0,2 = 4 we see

that there are 6 such zero modes. Since both 10d gravitini have the same SO(10) chirality,

the reduction on the above fourfold gives rise to a 2d theory with chiral (N, 0) = (12, 0)

supersymmetry. More generally, for type IIB4 on a fourfold with h0,1 = h0,3 = 0 and

h0,2 6= 0, one finds (N, 0) chiral supersymmetry with N = 2(2 + h0,2).

We may proceed with the analysis of the rest of the massless spectrum in a similar

fashion. For brevity, we will mention here only the results which will, anyway, be re-

derived below from the orbifold perspective. We have 4(h1,1 + h1,3) = 64 spacetime spin

1/2 fields ψ+ of positive chirality that will fit into chiral (12, 0) multiplets and 4h1,2 = 0

spinors of negative chirality which would have been supersymmetry singlets. In other

words, all massless fermions come with positive chirality. The supergravity multiplet is

(gµν , φ,Nψ−
µ , Nψ+) and contains also the dilaton. Aside from the dilaton, there are 3h1,1+

2h1,3 + 2h0,2 + 1 + b−4 = 240 negative chirality scalars (susy singlets), and 3h1,1 + 2h1,3 +

2h0,2 +1+ b+4 = 64 positive chirality scalars. There are 64/16 = 4 chiral matter multiplets

of negative chirality (16φ+, 16ψ+), since for N = 12 supercharges, the massless matter

multiplets actually have the same structure as in the (16, 0) case, even though the gravity

multiplet does not.

Since the theory is chiral, it is important to check how the gravitational anomaly

cancels in this case. The gravity multiplet contributes only through its fermionic states

(Nψ−
µ , Nψ+), while chiral multiplets are of the form (N ′φ+, N ′ψ+). Here, N = 12 which

is the number of supercharges and N ′ = 16 since the matter content of chiral multiplets for

a (12, 0) theory in two spacetime dimensions is enlarged. The gravity multiplet contributes

23N

48
trR2 +

N

48
trR2 =

N

2
trR2 , (3.10)

while the chiral multiplet contributes

N ′

24
trR2 +

N ′

48
trR2 =

N ′

16
trR2 . (3.11)

The 240 negative chirality scalars φ− which are susy singlets contribute similarly

−240/24 trR2 and there are no negative chirality fermions. Adding together these con-

4In the type IIA case one finds instead that the theory has non-chiral (N,N) supersymmetry with

N = 2 + h0,2.
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tributions one has
(

N

2
+

N ′

4
− 240

24

)

trR2 = 0 , (3.12)

which indeed vanishes for N = 12 and N ′ = 16, as desired. This is in accordance with

the more general result in [7], in which the type IIB anomaly cancellation condition for

a compactification on a fourfold may be expressed directly in terms of the number of

supercharges N and topological numbers of the fourfold

24N − 3τ(X) + χ(X) = 0 . (3.13)

The analogous condition for anomaly cancellation is much less straightforward in cases of

asymmetric orbifolds, where no geometric interpretation is possible.

We are now ready to move on to the analysis of the IIB theory in the orbifold theory.

The CFT approach is exact to all orders in α′ and enables one to access not only the massless

spectrum, but also the full tower of massive excitations. Indeed, the vertex operator of

any state in the theory may be straightforwardly constructed from the expansion of the

partition function (3.2) in terms of characters. In the rest of the section, we set up the

techniques necessary for deriving the character decomposition of the partition function

and recover the same massless spectrum as the one obtained above using the geometry

of the fourfold. Since these techniques will set the basis for the analysis of the much less

intuitive asymmetric orbifold constructions of subsequent sections, we will discuss them in

some detail.

In all orbifolds that we shall construct, all 8 RNS fermions spanning the transverse

(internal) directions are twisted. By simple redefinitions, it is actually convenient to group

them all together, such that the relevant contribution to the partition function becomes

ϑ[
a+h/2
b+g/2 ]

2 ϑ[
a−h/2
b−g/2 ]

2 = (−1)bh ϑ[
a+h/2
b+g/2 ]

4 . (3.14)

Out of these, we can construct characters with definite transformation under the internal

GSO parity projection, associated to the transverse SO(8) charges,

Φ[a,h+,g] =
1

2

∑

b=0,1

ϑ[
a+h/2
b+g/2 ]

4

η4
(−1)bh e−iπhg/2 ,

Φ[a,h−,g] =
1

2

∑

b=0,1

ϑ[
a+h/2
b+g/2 ]

4

η4
(−1)bh+b e−iπhg/2 ,

(3.15)

but not under the orbifold action. In this way, Φ[a,h+,g] is invariant under GSO, while Φ[a,h−,g]

picks a minus sign. This relation can be inverted if we identify ξ = 0 with the + (even)

GSO parity and ξ = 1 with the − (odd) one as follows

ϑ[
a+h/2
b+g/2 ]

4

η4
(−1)bhe−iπhg/2 =

∑

ξ=0,1

(−1)bξ Φ[a,hξ,g ] . (3.16)
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We next define the characters with a definite eigenvalue under the Z4 action

χ[a,h±,λ] =
1

4

∑

g∈Z4

Φ[a,h±,g] e
2πiλg/4 . (3.17)

This transforms by a phase e2πiλ/4 under a Z4 action (g → g + 1). This relation may be

inverted as follows

Φ[a,h±,g] =
∑

λ∈Z4

χ[a,h±,λ] e
−2πiλg/4 . (3.18)

By expressing the theta functions in the definition of χ in terms of their U(1) charges

Qi = ni − a/2 − h/4, where ni ∈ Z, we may explicitly sum over b and g, i.e. perform the

GSO and Z4 projections, and derive constraints on the corresponding charges. As before,

we let ξ = 0 denote the GSO even case, and ξ = 1 the GSO odd case. One then finds

n1 + n2 + n3 + n4 = ξmod 2 ,

n1 + n2 + n3 + n4 = (λ+ 2a)mod 4 .
(3.19)

These conditions must be satisfied simultaneously for states in χ which transform as (−1)ξ

under GSO and as eiπλ/2 under Z4. These states are associated with vertex operators of

the form eiQ·H

|Q〉 = ei
∑

i(ni−a
2
−h

4 )Hi |0〉 , (3.20)

where Hi(z) are the chiral bosons arising from the bosonization of the RNS fermions.

Under the GSO transformation Hi → Hi + π, this state transforms with a phase eiπ(ξ−h).

Similarly, under the (redefined) Z4 action, Hi → Hi + π/2, it acquires a phase eiπ(λ−h)/2.

Notice that the conditions (3.19) imply ξ = λmod 2, regardless of whether the χ character

is bosonic a = 0 or fermionic a = 1. Because of this, the transformation of the χ characters

under GSO is essentially the square of the corresponding Z4 transformation, i.e.

GSO : Hi → Hi + π , |Q〉 → eiπ(λ−h) |Q〉 ,
Z4 : Hi → Hi +

π

2
, |Q〉 → eiπ(λ−h)/2 |Q〉 .

(3.21)

With these tools at our disposal, it is now possible to construct the characters χ for

all orbifold sectors, as well as the corresponding vertex operators. The characters relevant

for the purposes of the present work are collected in appendix A.

For the extraction of the spectrum and the decomposition of the partition function in

terms of characters, it will be convenient to define also the projected lattice characters,

with definite eigenvalues under the Z4 orbifold. These eigenvalues will be parametrized

again by λ = 0, 1, 2, 3,

Γ̂sym[hλ] =
1

η8η̄8
1

4

∑

g∈Z4

Γsym
8,8 [hg ] e

2πiλg/4 . (3.22)

The q-expansions of the symmetrically twisted lattice characters can be found in ap-

pendix B.
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3.1.1 Positive chirality spectrum (µ = 0 states)

We will first describe the spectrum in the µ = 0 case. The first step is to decompose

the partition function (3.2) in terms of the characters introduced above. For the generic

sector h = 0, 1, 2, 3 we arrange the various contributions into NS-NS, R-R, NS-R and R-NS

sectors as follows

ZNS−NS
h =

(

χ[0,h−,1]χ̄[
0,h
−,1] + χ[0,h−,3]χ̄[

0,h
−,3]

)

Γ̂sym[h0 ] +
(

χ[0,h−,1]χ̄[
0,h
−,3] + χ[0,h−,3]χ̄[

0,h
−,1]

)

Γ̂sym[h2 ]

ZR−R
h =

(

χ[1,h−,1]χ̄[
1,h
−,1] + χ[1,h−,3]χ̄[

1,h
−,3]

)

Γ̂sym[h0 ] +
(

χ[1,h−,1]χ̄[
1,h
−,3] + χ[1,h−,3]χ̄[

1,h
−,1]

)

Γ̂sym[h2 ]

ZNS−R
h = −

(

χ[0,h−,1]χ̄[
1,h
−,1] + χ[0,h−,3]χ̄[

1,h
−,3]

)

Γ̂sym[h0 ]−
(

χ[0,h−,1]χ̄[
1,h
−,3] + χ[0,h−,3]χ̄[

1,h
−,1]

)

Γ̂sym[h2 ]

ZR−NS
h = −

(

χ[1,h−,1]χ̄[
0,h
−,1] + χ[1,h−,3]χ̄[

0,h
−,3]

)

Γ̂sym[h0 ]−
(

χ[1,h−,1]χ̄[
0,h
−,3] + χ[1,h−,3]χ̄[

0,h
−,1]

)

Γ̂sym[h2 ]

(3.23)

This contains all information about the massless spectrum as well as the full tower

of massive excitations. For our purposes, we will only extract the spectrum of massless

propagating states. Using the explicit expansions in appendices A and B, one may see

that all twisted sectors are massive for µ = 0, and therefore, we can focus only on the

untwisted one (h = 0). We also need to remember that the right-moving characters χ̄ have

opposite charges and transformation under Z4 with respect to the left-moving ones. From

the NS-NS sector we have 32 states

χ[0,0−,1]χ̄[
0,0
−,1] : Ψi ˜̄Ψj , 41 × 4̄−1 ,

χ[0,0−,3]χ̄[
0,0
−,3] : Ψ̄i Ψ̃j , 4̄−1 × 41 .

(3.24)

From the R-R sector we find

χ[1,0−,1]χ̄[
1,0
−,1] :

1

2











− + + +

+ − + +

+ + − +

+ + + −











× 1

2











− − − +

− − + −
− + − −
+ − − −











, 4̄1 × 4−1 ,

χ[1,0−,3]χ̄[
1,0
−,3] :

1

2











− − − +

− − + −
− + − −
+ − − −











× 1

2











− + + +

+ − + +

+ + − +

+ + + −











, 4−1 × 4̄1 .

(3.25)

In this and subsequent expressions, whenever convenient, we adopt a notation according to

which we use a matrix Mαj to denote the vertex operators Vα = exp (iMαjH
j) associated

to the Cartan weights of each state in the spinorial (or other) representations. In this way,

the index α labels the states making up the representation, whereas j = 1, . . . , 4 spans the

Cartan directions of SO(8).
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From the NS-R sector, we obtain

−χ[0,0−,1]χ̄[
1,0
−,1] : Ψi × 1

2











− − − +

− − + −
− + − −
+ − − −











, 41 × 4−1 ,

−χ[0,0−,3]χ̄[
1,0
−,3] : Ψ̄i × 1

2











− + + +

+ − + +

+ + − +

+ + + −











, 4̄−1 × 4̄1 ,

(3.26)

Finally, the R-NS sector gives

−χ[1,0−,1]χ̄[
0,0
−,1] :

1

2











− + + +

+ − + +

+ + − +

+ + + −











× ˜̄Ψi , 4̄1 × 4̄−1 ,

−χ[1,0−,3]χ̄[
0,0
−,3] :

1

2











− − − +

− − + −
− + − −
+ − − −











× Ψ̃i , 4−1 × 41 ,

(3.27)

These are indeed all the propagating massless states with positive spacetime chirality.

3.1.2 Negative chirality spectrum (µ = 1 states)

We now turn to the µ = 1 case, corresponding to states with negative spacetime chirality.

For the generic sector h = 0, 1, 2, 3 we arrange the various contributions into NS-NS, R-R,

NS-R and R-NS sectors as follows

ZNS−NS
h =

(

χ[0,h−,1]χ̄[
0,h
−,1] + χ[0,h−,3]χ̄[

0,h
−,3]

)

Γ̂sym[h0 ] +
(

χ[0,h−,1]χ̄[
0,h
−,3] + χ[0,h−,3]χ̄[

0,h
−,1]

)

Γ̂sym[h2 ]

ZR−R
h =

(

χ[1,h+,0]χ̄[
1,h
+,0] + χ[1,h+,2]χ̄[

1,h
+,2]

)

Γ̂sym[h0 ] +
(

χ[1,h+,0]χ̄[
1,h
+,2] + χ[1,h+,2]χ̄[

1,h
+,0]

)

Γ̂sym[h2 ]

ZNS−R
h = −

(

χ[0,h−,1]χ̄[
1,h
+,2] + χ[0,h−,3]χ̄[

1,h
+,0]

)

Γ̂sym[h1 ]−
(

χ[0,h−,1]χ̄[
1,h
+,0] + χ[0,h−,3]χ̄[

1,h
+,2]

)

Γ̂sym[h3 ]

ZR−NS
h = −

(

χ[1,h+,2]χ̄[
0,h
−,1] + χ[1,h+,0]χ̄[

0,h
−,3]

)

Γ̂sym[h1 ]−
(

χ[1,h+,0]χ̄[
0,h
−,1] + χ[1,h+,2]χ̄[

0,h
−,3]

)

Γ̂sym[h3 ]

(3.28)
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Consider first the untwisted sector h = 0. The NS-NS sector is identical to the µ = 0 case.

The R-R sector contains 40 massless states with SO(8) charges

χ[1,0+,0]χ̄[
1,0
+,0] :

1

2



















− − + +

− + − +

− + + −
+ − − +

+ − + −
+ + − −



















× 1

2



















− − + +

− + − +

− + + −
+ − − +

+ − + −
+ + − −



















, 36 ,

χ[1,0+,2]χ̄[
1,0
+,2] :

1

2

[

+ + + +

− − − −

]

× 1

2

[

+ + + +

− − − −

]

, 4 .

(3.29)

The h = 1 twisted sector contributes 16 massless states from the R-R sector

χ[1,1+,2]χ̄[
1,1
+,2] Γ̂[

1
0] :

1

4
(+,+,+,+)× 1

4
(−,−,−,−) , 16 . (3.30)

The h = 2 twisted sector contributes 136 massless states from the R-R sector

χ[1,2+,2]χ̄[
1,2
+,2] Γ̂[

2
0] : (0, 0, 0, 0)× (0, 0, 0, 0) , 136 . (3.31)

Finally, the h = 3 twisted sector contributes 16 massless states from the R-R sector

χ[1,3+,2]χ̄[
1,3
+,2] Γ̂[

3
0] :

1

4
(−,−,−,−)× 1

4
(+,+,+,+) , 16 . (3.32)

By taking into account all states (namely, both chiralities µ = 0 and µ = 1) and

computing the U(1) charges of R-R states with the definition J = i∂H1 + i∂H2 − i∂H3 −
i∂H4, as required due to the fusion ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2 → ϑ[
a+h/2
b+g/2 ]

4, one correctly reproduces

the Hodge numbers given in (3.6).

From the above spectrum of massless propagating fields, it is clear that only the states

with positive spacetime chirality (µ = 0) are supersymmetric, whereas the negative chi-

rality states are SUSY singlets. This is possible in two spacetime dimensions, where su-

persymmetry may be chiral. In what follows, we shall elaborate on the counting of (N, 0)

supercharges, and how the spectrum of massless propagating states organizes itself into

(enhanced) chiral multiplets.

3.1.3 Supersymmetry charges

Let us consider first the left-moving (untwisted) sector. There are six Z4 invariant left-

moving supercharges in the theory, which may be written in the −1/2 ghost picture as

Q−1/2 = e−φ/2−iH0/2 ⊗ 1

2



















− − + +

− + − +

− + + −
+ − − +

+ − + −
+ + − −



















, 60 . (3.33)
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In accordance with the notation of the previous subsection, the six SO(8) charge vectors

Qi simply stand for the vertex operators eiQiHi with i = 1, . . . 4, which are left invariant

under the Z4 action. They have GSO eigenvalue G = +1, according to the following choice

of GSO parity

G = eiπ(−Qφ+Q0+Q1+Q2+Q3+Q4) , (3.34)

which fixes the left-moving SL(2) vacuum convention. This is so, such that when the super-

charges act on physical states in the spectrum, which themselves have G = +1 eigenvalue

under the GSO operator, they produce superpartner states which are also physical states.

Its BRST equivalent operator in the +1/2 picture reads

Q+1/2 = eφ/2+iH0/2 ⊗ 1

2



















− − + +

− + − +

− + + −
+ − − +

+ − + −
+ + − −



















, 60 . (3.35)

Similarly, there are 6 more invariant supercharges arising from the right-movers, which

have the same spacetime chirality as the left-moving ones, i.e. Q0 = Q̄0 = −1/2 in the

−1/2 canonical superghost picture.5 Therefore, the theory enjoys chiral (N, 0) = (12, 0)

supersymmetry. For the same reason, when Q+1/2 acts on an NS-NS boson in the −1 ghost

picture in order to create a fermion in the canonical −1/2 ghost picture, it will produce a

spacetime fermion with positive chirality ψ+.

Therefore, since the supersymmetry is chiral, aside from the gravity multiplet, only the

states of positive chirality (described in the partition function by µ = 0) will be arranged

into supersymmetry multiplets, while the negative chirality states will be SUSY singlets.

A convenient way of constructing the supersymmetry multiplets is to first identify

the decomposition of the SO(8) characters V8, S8, C8 under the R-symmetry SO(8) →
SU(4)×U(1). One has

8v → 41 + 4−1 ,

8s → 12 + 1−2 + 60 ,

8c → 4−1 + 4̄1 .

(3.36)

As usual, the subscript denotes the U(1) charge. In terms of components, the decomposi-

5Notice that, going from the −1/2 to the +1/2 ghost picture, the spacetime chirality is flipped. We shall

adopt a convention according to which the spacetime chirality of states in the Ramond sector is always read

in the +1/2 ghost picture.
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tion reads

C8 =































1
2











+ + + −
+ + − +

+ − + +

− + + +











: 4̄1

1
2











− − − +

− − + −
− + − −
+ − − −











: 4−1































, (3.37)

and similarly,

S8 =





































1
2

[

+ + + +
]

: 12

1
2

[

− − − −
]

: 1−2

1
2



















+ + − −
+ − − +

+ − + −
− − + +

− + + −
− + − +



















: 60





































, (3.38)

while, for the vector of SO(8) we have

V8 =









































1

1

1

1











: 41











−1

−1

−1

−1











: 4̄−1































. (3.39)

Notice that the U(1) charge is also related to the Z4 charge via QU(1)/4 = QZ4 , with the

eigenvalues of the states under the orbifold transformation being e2πiQZ4 .

We can now arrange the states of positive chirality (µ = 0) as follows

NS−NS : 41 × 4̄−1 + 4̄−1 × 41 ,

R− R : 4−1 × 4̄1 + 4̄1 × 4−1 ,

NS− R : 41 × 4−1 + 4̄−1 × 4̄1 ,

R−NS : 4−1 × 41 + 4̄1 × 4̄−1 .

(3.40)

There are in total 64 massless bosons of positive chirality, and an equal number of fermions,

of the same chirality, as expected by supersymmetry. To see the action of the supersym-
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metry transformations, note the OPEs (or, fusion rule)

60 · 4−1 → 4̄−1 ,

60 · 4̄1 → 41 ,
(3.41)

and, clearly, also the inverse transformations exist.

For chiral (N, 0) supersymmetry in 2 dimensions, one would expect the massless states

to be arranged into chiral multiplets (Nφ+, Nψ+), where φ+, ψ+ are scalars and spin

1/2 fermions of positive chirality, respectively. There are n+/N such multiplets, with n+

being the total number of scalars of positive chirality. In the IIB theory we are analysing,

n+ = 64 and therefore, naively, n+/N = 16/3, which is not an integer number. Actually,

the structure of two dimensional N = 12 supersymmetry is more subtle and the chiral

matter multiplets become enlarged and arrange themselves as if they were multiplets of

N = 16. As we will explicitly see below, there are indeed 64/16 = 4 chiral multiplets in

the theory.

To obtain the explicit multiplet structure, one needs to observe that NS-NS and R-R

scalars are connected by 2 supersymmetry transformations (one from the left, and one from

the right) and, hence, must lie in the same multiplet. This is achieved by taking linear

combinations of the NS-NS and R-R states for the bosons and similarly NS-R and R-NS

states for the fermions, as follows

(16φ+, 16ψ+)(1) = (41 × 4̄−1 + 4̄1 × 4−1 , 4̄1 × 4̄−1 + 41 × 4−1) ,

(16φ+, 16ψ+)(2) = (41 × 4̄−1 − 4̄1 × 4−1 , 4̄1 × 4̄−1 − 41 × 4−1) ,

(16φ+, 16ψ+)(3) = (4̄−1 × 41 + 4−1 × 4̄1 , 4−1 × 41 + 4̄−1 × 4̄1) ,

(16φ+, 16ψ+)(4) = (4̄−1 × 41 − 4−1 × 4̄1 , 4−1 × 41 − 4̄−1 × 4̄1) .

(3.42)

And indeed, we find 4 chiral multiplets containing 16 scalar and 16 fermion compo-

nents each.

3.2 Symmetric T 8/Z4 orbifold in type IIA with (6, 6) supersymmetry

In this section we consider the compactification of type IIA string theory on the same

symmetric orbifold T 8/Z4, defined in (3.1).6 Its partition function is given by

Z =
1

4

∑

h,g∈Z4





1

2

∑

a,b

(−1)a+b+µab
ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2

η4
e−iπhg/2





Γsym
8,8 [hg ]

η8η̄8

×





1

2

∑

ā,b̄

(−1)ā+b̄+(µ+1)āb̄
ϑ̄[

ā+h/2

b̄+g/2
]2ϑ̄[

ā−h/2

b̄−g/2
]2

η̄4
e+iπhg/2



 .

(3.43)

The main difference between this partition function and the IIB case (3.2), lies in the

phase (−1)(µ+1)ab phase, which ensures that the left- and right- moving spinors come with

6A specific limit in moduli space of this compactification, in the presence of D2 branes, gives rise to one

of the N = 3 theories discussed in [24, 25].
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opposite Weyl chirality already at the 10d level. Contrary to the type IIB case, the IIA

theory is not chiral and it is, therefore, sufficient to extract the physical spectrum by

analysing only the µ = 0 case. The internal manifold is, of course, identical to the one

derived previously in the IIB case and, therefore, so are the elliptic genus and topological

numbers ascribed to it.

The IIA theory enjoys (6, 6) supersymmetry. From the µ = 0 and µ = 1 cases,

one obtains an equal number 2(h1,1 + h1,3 + h1,2) = 32 of positive and 32 negative chi-

rality Majorana-Weyl modulini. Similarly, there are 32 + 32 supersymmetric partners,

namely, chiral/anti-chiral scalars of positive/negative chirality (or, alternatively, 32 non-

chiral scalars). These scalars arise as follows. There are h1,1 + 2h1,3 − 2h0,2 = 16 real

(non-chiral) scalars from the reduction of the metric, h1,1 + 2h0,2 = 16 from the NS-NS

B-field, and 2h1,2 = 0 from the R-R 3-form. The R-R 1-form gives no dynamical fields.

The dilaton goes into the gravity multiplet, together with 6 dilatini of positive and negative

chirality, and together with the non-dynamical metric and gravitini. In two dimensional

(N,N) = (6, 6) supersymmetry, the matter multiplets are the same as for (8, 8) and, there-

fore, there are 2(h1,2 + h1,3)/8 = 2 chiral multiplets and 2h1,1/8 = 2 vector multiplets,

but the content of the vector multiplets in 2d is the same as for chiral multiplets, plus a

non-dynamical vector. Furthermore, type IIA theory in 2d generically has a B-field tadpole

term which, however, can be cancelled without introducing extra fluxes simply by adding

χ/24 = 10 fundamental strings [6, 26]. Each fundamental string has the matter content of

its light-cone worldsheet fields, namely 8 real scalars and 8 positive and 8 negative chirality

Majorana-Weyl fermions. In our case, this introduces χ/3N additional chiral multiplets.

Since N = 6 and the structure of chiral multiplets in this case is the same as for N = 8, the

addition of the fundamental strings corresponds to χ/24 = 10 additional chiral multiplets.

3.2.1 Positive chirality spectrum (µ = 0 states)

We will first describe the spectrum in the µ = 0 case. For the generic sector h = 0, 1, 2, 3

we arrange the various contributions into NS-NS, R-R, NS-R and R-NS sectors as follows

ZNS−NS
h =

(

χ[0,h−,1]χ̄[
0,h
−,1] + χ[0,h−,3]χ̄[

0,h
−,3]

)

Γ̂sym[h0 ] +
(

χ[0,h−,1]χ̄[
0,h
−,3] + χ[0,h−,3]χ̄[

0,h
−,1]

)

Γ̂sym[h2 ]

ZR−R
h =

(

χ[1,h−,1]χ̄[
1,h
+,0] + χ[1,h−,3]χ̄[

1,h
+,2]

)

Γ̂sym[h3 ] +
(

χ[1,h−,1]χ̄[
1,h
+,2] + χ[1,h−,3]χ̄[

1,h
+,0]

)

Γ̂sym[h1 ]

ZNS−R
h = −

(

χ[0,h−,1]χ̄[
1,h
+,0] + χ[0,h−,3]χ̄[

1,h
+,2]

)

Γ̂sym[h3 ]−
(

χ[0,h−,1]χ̄[
1,h
+,2] + χ[0,h−,3]χ̄[

1,h
+,0]

)

Γ̂sym[h1 ]

ZR−NS
h = −

(

χ[1,h−,1]χ̄[
0,h
−,1] + χ[1,h−,3]χ̄[

0,h
−,3]

)

Γ̂sym[h0 ]−
(

χ[1,h−,1]χ̄[
0,h
−,3] + χ[1,h−,3]χ̄[

0,h
−,1]

)

Γ̂sym[h2 ]

(3.44)

The µ = 1 spectrum is the left-right mirror of this. We now extract the massless states.

In the untwisted h = 0 sector, we have 32 NS-NS scalars of positive chirality

χ[0,0−,1]χ̄[
0,0
−,1] : Ψi ˜̄Ψj , 41 × 4̄−1 ,

χ[0,0−,3]χ̄[
0,0
−,3] : Ψ̄i Ψ̃j , 4̄−1 × 41 .

(3.45)
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and an equal number of positive chirality R-NS fermions

−χ[1,0−,1]χ̄[
0,0
−,1] :

1

2











− + + +

+ − + +

+ + − +

+ + + −











× ˜̄Ψi , 4̄1 × 4̄−1 ,

−χ[1,0−,3]χ̄[
0,0
−,3] :

1

2











− − − +

− − + −
− + − −
+ − − −











× Ψ̃i , 4−1 × 41 ,

(3.46)

The twisted sectors are all massive.

3.2.2 Negative chirality spectrum (µ = 1 states)

The µ = 1 states are exactly the same as for the µ = 0 case but with left-right exchange and

negative chirality. The NS-NS sector gives again 32 massless scalars of negative chirality

χ[0,0−,1]χ̄[
0,0
−,1] : Ψi ˜̄Ψj , 41 × 4̄−1 ,

χ[0,0−,3]χ̄[
0,0
−,3] : Ψ̄i Ψ̃j , 4̄−1 × 41 .

(3.47)

and an equal number of negative chirality NS-R fermions

−χ[0,0−,1]χ̄[
1,0
−,1] : Ψi × 1

2











− − − +

− − + −
− + − −
+ − − −











, 41 × 4−1 ,

−χ[0,0−,3]χ̄[
1,0
−,3] : Ψ̄i × 1

2











− + + +

+ − + +

+ + − +

+ + + −











, 4̄−1 × 4̄1 ,

(3.48)

Again, the twisted sectors are all massive.

The 6 Q+1/2 supercharges of positive chirality act only on µ = 0 states, while the

6 Q̃+1/2 supercharges of negative chirality act only on µ = 1 states, and the the the-

ory has (N,N) = (6, 6) supersymmetry. The massless chiral multiplet has the structure

(Nφ+, Nφ−, Nψ+, Nψ−), and for N = 6 as in our case, the multiplets become enlarged

to the content of N = 8 ones. Thus, the perturbative spectrum gives a total of 4 chiral

multiplets, in agreement with the previous analysis based on the smooth geometry.
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3.3 Symmetric T 8/Z4 orbifold in heterotic with (6, 0) supersymmetry

We now consider heterotic E8 × E8 string theory compactified on the same symmetric

orbifold T 8/Z4

Z =
1

4

∑

h,g∈Z4





1

2

∑

a,b

(−1)a+b+µab
ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2

η4
e−iπhg/2





Γsym
8,8 [hg ]

η8η̄8

×





1

2

∑

k,ℓ

ϑ̄[kℓ ]
4

η̄4

ϑ̄[
k+h/2
ℓ+g/2 ]

2ϑ̄[
k−h/2
ℓ−g/2 ]

2

η̄4
e+iπhg/2



× 1

2

∑

ρ,σ

ϑ̄[ρσ]8

η̄8
.

(3.49)

As in the type IIB case, the chirality of the states is specified by the choice of µ = 0, 1.

Namely, the choice µ = 0 describes states of + chirality, while the choice µ = 1 describes

the states of opposite chirality. We will see below that the µ = 0 chirality states are

supersymmetric, while the µ = 1 ones are not. Since the compactification manifold is the

symmetric orbifold T 8/Z4 that we used before, the Hodge numbers are exactly the same

as the ones we obtained in the type IIB case.

Moreover, this construction uses standard embedding and will have a non-vanishing

tadpole or, equivalently, a non-vanishing coefficient in the corresponding anomaly poly-

nomial. As in the type IIA case, the tadpole may be cancelled by introducing a certain

number n of fundamental strings, given by [6, 26]

n =
1

8π

∫

F
dµA(q̄, 0, 0) , (3.50)

where µ = dτ1dτ2/τ
2
2 is the usual integration measure over the fundamental domain F of

the worldsheet torus and A(q̄, 0, 0) is simply the partition function of the internal CFT in

the Ramond sector. Holomorphy and modularity force A(q̄, 0, 0) to take the form

A(q̄, 0, 0) = αJ̄(τ̄) + β =
α

q̄
+ β + . . . , (3.51)

where α, β ∈ Z and J(τ) = 1/q+O(q) is essentially the usual invariant j-function with its

constant term subtracted, i.e. J(τ) = j(τ) − 744. After performing the modular integral,

we obtain

n =
β

24
− α . (3.52)

Let us note that this matches also with the results in [9]

nE8×E8 = 15(2 + h0,2) , nSO(32) = 15(2 + h0,2)−
χ

6
. (3.53)

which are, however, valid only in the case of standard embedding for geometric compacti-

fications. Nevertheless, it should be noted that (3.52), which is computed in terms of the

index A(q̄, 0, 0) is more general and is, in particular, valid also for asymmetric orbifold

constructions.
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We can now evaluate this number in our heterotic symmetric T 8/Z4 orbifold. We have

A(q, 0, 0) =
1

4

∑

(h,g) 6=(0,0)

1

2

ϑ[
1+h/2
1+g/2 ]

2ϑ[
1−h/2
1−g/2 ]

η12
28 sin8(π4Λ[

h
g ]) η

12η̄12

ϑ[
1+h/2
1+g/2 ]

2ϑ[
1−h/2
1−g/2 ]ϑ̄[

1+h/2
1+g/2 ]

2ϑ̄[
1−h/2
1−g/2 ]

× 1

2

∑

k,ℓ

ϑ̄[kℓ ]
4ϑ̄[

k+h/2
ℓ+g/2 ]

2ϑ̄[
k−h/2
ℓ−g/2 ]

2 1

2

∑

ρ,σ

ϑ̄[ρσ]
8 1

η̄24
.

(3.54)

As expected, the holomorphic q−part cancels out, and one is left with

A(q, 0, 0) = 23
∑

(h,g) 6=(0,0)

sin8
(π

4
Λ[hg ]

)

∑

k,ℓ

ϑ̄[kℓ ]
4ϑ̄[

k+h/2
ℓ+g/2 ]

2ϑ̄[
k−h/2
ℓ−g/2 ]

2

η̄12ϑ̄[
1−h/2
1−g/2 ]

2ϑ̄[
1+h/2
1+g/2 ]

2

∑

ρ,σ

ϑ̄[ρσ]
8

=3j(τ̄) + 2232 .

(3.55)

Hence, the number of fundamental heterotic strings that we must introduce in order to

cancel the B-field tadpole is n = 2232/24 − 3 = 90. We can also check this using (3.53)

which computes n in terms of Hodge numbers, in perfect agreement with the result above.

In what follows, we will further check this number directly from the knowledge of the

massless spectrum, by relating the tadpole coefficient to the anomaly polynomial of the

2d theory.

3.3.1 Positive chirality spectrum (µ = 0 states)

We begin with the positive chirality states. As usual, for the generic orbifold sector h =

0, 1, 2, 3, we arrange the various contributions into NS and R contributions

ZNS
h =χ[0,h−,1]

[

Γ̂sym[h0 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h1 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h2 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h3 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16)

+ χ[0,h−,3]
[

Γ̂sym[h2 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h3 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h0 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h1 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16) .

(3.56)

ZR
h =− χ[1,h−,1]

[

Γ̂sym[h0 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h1 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h2 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h3 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16)

− χ[1,h−,3]
[

Γ̂sym[h2 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h3 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h0 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h1 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16) .

(3.57)

Here only the untwisted sector h = 0 gives rise to massless states. The first E8 gauge group

factor breaks to SO(14)×U(1). The scalars are

χ[0,0−,1](V̄8χ̄[
0,0
−,1] + C̄8χ̄[

1,0
−,1]) : 4× (64,1) ,

χ[0,0−,3] Γ̂
sym[03] : 16× (1,1) ,

(3.58)
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where by boldface we denote the representations of SO(14) and E8. The fermions read

−χ[1,0−,1](V̄8χ̄[
0,0
−,1] + C̄8χ̄[

1,0
−,1]) : 4× (64,1) ,

−χ[1,0−,3] Γ̂
sym[03] : 16× (1,1) .

(3.59)

In total, we have 544 massless scalars φ+ and 544 massless fermions ψ+ of positive spacetime

chirality, which organize themselves into 68 representations of (6, 0) chiral supersymmetry.

As in previous cases, each massless chiral multiplet has the same content as an (8, 0) one.

3.3.2 Negative chirality spectrum (µ = 1 states)

We now turn to states of negative chirality, arising from µ = 1, and which are now super-

symmetry singlets. For the generic sector h = 0, 1, 2, 3, once again, we arrange the various

contributions into NS and R contributions

ZNS
h =χ[0,h−,1]

[

Γ̂sym[h0 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h1 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h2 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h3 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16)

+ χ[0,h−,3]
[

Γ̂sym[h2 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h3 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h0 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h1 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16) .

(3.60)

The NS states are of course identical as for the µ = 0 case and arise only from the untwisted

sector. The difference comes in the fermions, which read

ZR
h =− χ[1,h+,0]

[

Γ̂sym[h1 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h2 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h3 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h0 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16)

− χ[1,h+,2]
[

Γ̂sym[h3 ](V̄8χ̄[
0,h
−,1] + C̄8χ̄[

1,h
−,1]) + Γ̂sym[h0 ](Ō8χ̄[

0,h
+,2] + S̄8χ̄[

1,h
+,2])

+ Γ̂sym[h1 ](V̄8χ̄[
0,h
−,3] + C̄8χ̄[

1,h
−,3]) + Γ̂sym[h2 ](Ō8χ̄[

0,h
+,0] + S̄8χ̄[

1,h
+,0])

]

(Ō16 + S̄16) .

(3.61)

For the fermions, there are contributions from all twisted and untwisted sectors. From

the untwisted sector h = 0 we have a total of 2096 massless fermionic states of negative

chirality

−χ[1,0+,0](Ō8χ̄[
0,0
+,0] + S̄8χ̄[

1,0
+,0])(Ō16 + S̄16) : 6× [(91,1) + (1,1) + (1,248)] ,

−χ[1,0+,2](Ō8χ̄[
0,0
+,2] + S̄8χ̄[

1,0
+,2])(Ō16 + S̄16) : 2× [(14,1) + (14,1)] .

(3.62)

From the h = 1 sector we have a total of 384 massless fermionic states of negative chirality

−χ[1,1+,2]Γ̂
sym[10](Ō8χ̄[

0,1
+,2] + S̄8χ̄[

1,1
+,2]) : 16× (14,1) ,

−χ[1,1+,2]Γ̂
sym[12]Ō8χ̄[

0,1
+,0] : 160× (1,1) .

(3.63)

From the h = 2 sector we have a total of 2144 massless fermionic states of negative chirality

−χ[1,2+,2]Γ̂
sym[22](Ō8χ̄[

0,2
+,0] + S̄8χ̄[

1,2
+,0]) : 120× [(1,1) + (1,1)] ,

−χ[1,2+,2]Γ̂
sym[20](Ō8χ̄[

0,2
+,2] + S̄8χ̄[

1,2
+,2]) : 136× (14,1) .

(3.64)
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Finally, form the sector h = 3 we have a total of 384 states of negative chirality

−χ[1,3+,2]Γ̂
sym[30](Ō8χ̄[

0,3
+,2] + S̄8χ̄[

1,3
+,2]) : 16× (14,1) ,

−χ[1,3+,2]Γ̂
sym[32](Ō8χ̄[

0,3
+,0] + S̄8χ̄[

1,3
+,0]) : 160× (1,1) .

(3.65)

Adding all sectors together, we find a total of 5008 massless chiral fermions ψ− of

negative chirality. We may now perform an independent check of the B-field tadpole

coefficient n = 90 that was computed earlier, by exploiting the fact that the tadpole arises

from 10d anomaly canceling term
∫

B ∧X8, where X8 is a particular curvature and field

strength 8-form. In 2d, the anomaly would be cancelled by the term n
∫

B in the Green-

Schwarz mechanism, with n = 1
48(2π)4

∫

X8.

The anomaly coefficient in the 2d theory with (N, 0) supersymmetry is obtained as

− n =
N

2
+ n+

N ′

16
+ n−

φ

(

− 1

24

)

+ n−
ψ

(

− 1

48

)

. (3.66)

The contribution N/2 is the contribution of the gravity multiplet, N ′/16 is that of a chiral

multiplet (positive chirality) which contains N ′ chiral scalars, −1/24 is the contribution

of a scalar of negative chirality and −1/48 is the contribution of a fermion of negative

chirality. In our case N = 6 but the chiral multiplets actually have N ′ = 8. There

are n+ = 544/8 = 68 chiral multiplets, and we have 544 negative chirality bosons and

5008 negative chirality fermions. Putting everything together we verify indeed n = 90 in

accordance with the previous calculation. The tadpole can be cancelled by introducing

n = 90 elementary heterotic strings, which amounts to 90 additional chiral multiplets in

the spectrum of the theory.

4 Asymmetric T 8/Z4 orbifold

4.1 Asymmetric T 8/Z4 orbifold in type IIB with (24, 8) supersymmetry

We are now ready to consider asymmetric T 8/Z4 orbifold constructions, where the left-

moving coordinates are rotated according to the Z4 action (3.1), whereas the right-moving

ones are inert. Such an orbifold is heavily left-right asymmetric and exhibits strong simi-

larities to the worldsheet realisation of special non-geometric fluxes considered in [12, 13].

These are inherently stringy constructions without geometric duals or, equivalently, with

the Z4 action on the super-coordinates lying outside the conjugacy class of geometric T-

duality actions. As a result, such constructions cannot be cast into a geometric duality

frame and are typically constrained to live only at special points in moduli space.

In essence, the asymmetry of the construction implies the geometric moduli are now

charged under the Z4 action. If the Z4 rotation were also coupled to a translation to render

the action free, which from the point of view of target space would correspond to turning

on a non-geometric flux background, a non-trivial scalar potential would be generated for

these moduli at tree level, and the orbifold theory would live at the minimum of this

potential with vanishing vacuum energy [12, 13]. In the case at hand, the corresponding

orbifold action has fixed points and the non-invariant moduli are in fact projected out of

the physical spectrum.
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In general, asymmetric orbifold constructions are not automatic but are heavily con-

strained by modular invariance, which implies unitarity at all genera and the correct parti-

cle interpretation of the theory. In general, such constructions are only possible at special

points of enhanced symmetry in moduli space that ensure the appropriate factorisation of

the underlying left- and right- moving CFT on which the asymmetric orbifold acts.

We will realise our construction at the fermionic point in T 8 moduli space, where the

torus factorises into a product of eight circles at the special radii RI = 1/
√
2, so that we

can consistently fermionise all coordinates as follows

∂XI = yIwI , (4.1)

and similarly for the right movers. Here, yI(z) and wI(z) are auxiliary left-moving fermions

on the worldsheet, that are introduced to replace the CFT of a left-moving boson at

R = 1/
√
2 with that of a pair of real left-moving fermions. As a result of sitting at this

special point, it is possible to obtain a representation of the (untwisted) Narain lattice Γ8,8

entirely in terms of theta functions

Γ8,8 =
1

2

∑

γ,δ=0,1

∣

∣ϑ
[γ

δ

]∣

∣

16
. (4.2)

We are now ready to introduce the Z4 action at the level of the partition function. Since

all bosonic T 8 coordinates have been fermionised, the asymmetric Z4 action will be in-

troduced entirely at the level of the left-moving worldsheet fermions {ψI , yI , wI}. It is

straightforward to see that the action

ψ1 → ψ2 , y1 → y2 , w1 → w2 ,

ψ2 → −ψ1 , y2 → −y1 , w2 → w1 ,

ψ3 → −ψ4 , y3 → −y4 , w3 → w4 ,

ψ4 → ψ3 , y4 → y3 , w4 → w3 ,

ψ5 → ψ6 , y5 → y6 , w5 → w6 ,

ψ6 → −ψ5 , y6 → −y5 , w6 → w5 ,

ψ7 → −ψ8 , y7 → −y8 , w7 → w8 ,

ψ8 → ψ7 , y8 → y7 , w8 → w7 ,

(4.3)

correctly induces the left-moving part of the Z4 transformation in (3.1). It constitutes a

well defined chiral action on the left-moving d.o.f. under which the internal part of the

worldsheet super-current

TF (z) ∼
8

∑

I=1

ψIyIwI , (4.4)

remains invariant. Diagonalising the action (4.3) in terms of complexified fermions allows

one to read the boundary conditions of each, and hence arrive at the one-loop partition
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function of the 2d type IIB theory on T 8/Z4

Z =
1

4

∑

h,g∈Z4

[

1

2

∑

a,b

(−1)a+b+µab
ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2

η4
e−iπhg/2

]

Γasym
8,8 [hg ]

η8η̄8
e−iπhg/2

×
[

1

2

∑

ā,b̄

(−1)ā+b̄+µāb̄
ϑ̄[ā

b̄
]4

η̄4

]

.

(4.5)

where the asymmetrically twisted (8,8) lattice is now also represented in terms of Jacobi

thetas

Γasym
8,8

[h

g

]

=
1

2

∑

γ,δ=0,1

ϑ
[γ

δ

]2
ϑ
[γ+h/2

δ+g/2

]2
ϑ
[γ−h/2

δ−g/2

]2
ϑ
[γ−h

δ−g

]

ϑ
[γ+h

δ+g

]

ϑ̄
[γ

δ

]8
. (4.6)

In some cases, the symmetrically twisted Narain lattice may be further simplified by using

the following generalization of Jacobi’s triple product identity

ϑ[γδ ]
2 ϑ[

γ+h/2
δ+g/2 ]

2 ϑ[
γ−h/2
δ−g/2 ]

2 ϑ[γ−h
δ−g ]ϑ[

γ+h
δ+g ] = 24(−1)hg sin4

(π

4
Λ[hg ]

) η12

ϑ[
1−h/2
1−g/2 ]

2 ϑ[
1+h/2
1+g/2 ]

2
. (4.7)

This identity is valid for (h, g) 6= (0, 0) and whenever the l.h.s. does not vanish, i.e. (γ, δ) 6=
(1, 1), (γ + h/2, δ + g/2) 6= (1, 1)mod 2 and (γ + h, δ + g) 6= (1, 1)mod 2. Similarly to the

symmetric case, we also define the asymmetric lattices with definite eigenvalue with respect

to the orbifold

Γ̂asym[hλ] =
1

η8η̄8
1

4

∑

g∈Z4

Γasym
8,8 [hg ] e

2πiλg/4e−iπhg/2 . (4.8)

Notice that we added the additional phase e−ihg/2 which is required for modular invariance.

The explicit expansions of these asymmetrically twisted lattice characters are assembled in

appendix C.

We will see in what follows that type IIB theory compactified on this asymmetric

orbifold enjoys chiral (24, 8) supersymmetry. Moreover, in the absence of a geometric

background, the vanishing of gravitational anomalies should be checked by explicitly de-

riving the massless spectrum. As in the previous symmetric cases, the spacetime helicity of

the states is specified by the choice of µ = 0, 1. Namely, the choice µ = 0 describes states

of + spacetime chirality, while the choice µ = 1 describes the states of opposite chirality.

We will show below that all propagating positive helicity states are massive, and there are

16 chiral multiplets with negative helicity arising from the µ = 1 sector.

4.1.1 Positive chirality spectrum (µ = 0 states)

The analysis of the spectrum works in a similar fashion, as in the symmetric case. We

begin with the positive chirality states, µ = 0, and for the generic sector h = 0, 1, 2, 3 we

obtain the expansion of the various contributions into NS-NS, R-R, NS-R and R-NS blocks

ZNS−NS
h = χ[0,h−,1] Γ̂

asym[h3 ] V̄8 + χ[0,h−,3] Γ̂
asym[h1 ] V̄8

ZR−R
h = χ[1,h−,1] Γ̂

asym[h3 ] C̄8 + χ[1,h−,3] Γ̂
asym[h1 ] C̄8

ZNS−R
h = −χ[0,h−,1] Γ̂

asym[h3 ] C̄8 − χ[0,h−,3] Γ̂
asym[h1 ] C̄8

ZR−NS
h = −χ[1,h−,1] Γ̂

asym[h3 ] V̄8 − χ[1,h−,3] Γ̂
asym[h1 ] V̄8

(4.9)
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Using the results in appendices A and C, it is straightforward to check that there are no

propagating massless states of positive spacetime chirality in any sector h = 0, 1, 2, 3.

4.1.2 Negative chirality spectrum (µ = 1 states)

Moving on to the µ = 1 case, we perform the analogous expansion into NS-NS, R-R, NS-R

and R-NS blocks valid for the generic sector h = 0, 1, 2, 3

ZNS−NS
h = χ[0,h−,1] Γ̂

asym[h3 ] V̄8 + χ[0,h−,3] Γ̂
asym[h1 ] V̄8

ZR−R
h = χ[1,h+,0] Γ̂

asym[h0 ] S̄8 + χ[1,h+,2] Γ̂
asym[h2 ] S̄8

ZNS−R
h = −χ[0,h−,1] Γ̂

asym[h3 ] S̄8 − χ[0,h−,3] Γ̂
asym[h1 ] S̄8

ZR−NS
h = −χ[1,h+,0] Γ̂

asym[h0 ] V̄8 − χ[1,h+,2] Γ̂
asym[h2 ] V̄8

(4.10)

Massless states with negative spacetime helicity arise only from a = 0. In the untwisted

h = 0 sector we have 48 negative chirality fermions and an equal number of negative helicity

RR scalars

− χ[1,0+,0] (V̄8 − S̄8) : 6× (V̄8 − S̄8) , (4.11)

where 6 is the antisymmetric representation of SU(4). In the h = 1 sector we find 16

negative chirality fermions and an equal number of negative chirality RR scalars

− χ[1,1+,2] Γ̂
asym[12] (V̄8 − S̄8) :

1

4
[+ + ++] · (2q3/8) · (V̄8 − S̄8) . (4.12)

The notation (2q3/8) within brackets denotes the 2 chiral operators of conformal weight

(38 , 0) arising from the twisted lattice. Whenever convenient, we shall utilise this shorthand

notation in what follows to refer to contributions involving the twisted lattice. In the h = 2

twisted sector we find 48 negative chirality fermions and similarly for the RR scalars

− χ[1,2+,2] Γ̂
asym[22] (V̄8 − S̄8) : 1 · (6q1/2) · (V̄8 − S̄8) . (4.13)

Finally, in the h = 3 sector we have 16 massless fermions of negative chirality and an equal

number of RR scalars

− χ[1,3+,2] Γ̂
asym[32] (V̄8 − S̄8) :

1

4
[−−−−] · (2q3/8) · (V̄8 − S̄8) . (4.14)

4.1.3 Supersymmetry charges

In covariant formalism, we may now construct the vertex operators associated to the space-

time supercharges of the theory. In IIB theory we conventionally choose the GSO parity

G = +1 to be

G = eiπ(−Qφ+Q0+Q1+Q2+Q3+Q4) , (4.15)

for the left-movers, and make an identical choice for the right-movers

G̃ = eiπ(−Q̄φ+Q̄0+Q̄1+Q̄2+Q̄3+Q̄4) . (4.16)
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We conventionally choose to display all supercharges in the +1/2 super-ghost picture.

From the worldsheet left-movers and the untwisted sector h = 0, we have 6 invariant

supercharges with positive spacetime helicity (Q0 = +1/2)

Q+1/2 = eφ/2+iH0/2 ⊗ 1

2



















− − + +

− + − +

− + + −
+ − − +

+ − + −
+ + − −



















, 60 . (4.17)

These 6 invariant operators are exactly the same as the ones found in the untwisted sector of

either the left- or the right- moving sectors of the symmetric orbifolds discussed in previous

sections. In the present asymmetric construction, however, this is not the end of the story.

Indeed, if we assume that that the left-movers only contribute the above 6 positive chirality

operators then, together with the 8 positive and 8 negative chirality supercharges from

the right-movers, one would obtain a (14, 8) theory. The gravity multiplet would then

contribute 14 · 1
2 − 8 · 1

2 = 3 to the anomaly. The propagating µ = 0 states are all massive,

but from the µ = 1 states one finds a total of 128 massless scalars and 128 massless fermions

of negative chirality, contributing −128 · 1
24 − 128 · 1

48 = −8 to the gravitational anomaly,

which would then fail to cancel against the gravity multiplet. One, therefore, arrives to the

näıve (and necessarily incorrect [27, 28]) conclusion that the theory is anomalous, despite

being modular invariant.

In fact, what this näıve anomaly counting really indicates is that there exist addi-

tional degrees of freedom in the theory that we have missed. This is not very surprising

since in 2d, as already mentioned in previous sections, the fermionic content of the gravity

multiplet is built out of string oscillators in the longitudinal directions and the lightcone

partition function is blind to such states. It is then natural to ask where such additional

supercharges could come from. Because the orbifold is fully asymmetric and forced to live

at a special point in moduli space, it is possible for the twisted R-NS sectors to provide

additional (12 , 0) conformal operators which, in turn, can be sewed together with appropri-

ate string oscillators from the right-movers in order to construct additional supercharges

(or gravitini).

These can be easily extracted from the vertex operators of massless fermions of the

previous section simply by replacing the right moving NS character V̄8 with the right moving

worldsheet fermion oscillator ψ̃µ in the spacetime directions, an operation that preserves the

right-moving GSO parity. These are states that involve string oscillators in the lightcone

directions and, therefore, do not propagate nor do they appear in the lightcone partition

function, as explained earlier. Nevertheless, they still do contribute to the construction of

the gravity multiplet and, hence, to the gravitational anomaly. Explicitly, for h = 1, 2, 3,

they may be represented as

eφ/2+iH0/2 ⊗
(

−χ[1,h+,2] Γ̂
asym[h2 ]

)

⊗ e−φ̃ ψ̃µ ,

h = 1 : 2 states

h = 2 : 6 states

h = 3 : 2 states

(4.18)
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These twisted sector states correspond to 10 additional gravitini (and 10 additional spin

1/2 fermions), arising from the twisted sectors. To each one corresponds an additional

supercharge, so that we have a total of 16 supercharges of positive helicity arising from the

left-movers from all orbifold sectors.

From the worldsheet right-movers we have 8 + 8 additional supercharges of opposite

helicities

Q̃+1/2 = eφ̃/2+iH̃0/2 S̃8 , Q̃′
+1/2 = eφ̃/2−iH̃0/2 C̃8 , (4.19)

all of which are left intact by the asymmetric Z4 action. Therefore, the theory enjoys

chiral (N,M) = (24, 8) supersymmetry and there are 128/8 = 16 physical massless chiral

multiplets of negative helicity. We now see that the gravity multiplet actually contributes

24 · 1
2 − 8 · 1

2 = 8 to the gravitational anomaly, while the 16 chiral multiplets of negative

helicity yield −16 · 8
16 = −8, as before. Therefore, the total anomaly coefficient indeed

vanishes identically, as it should in type IIB theory, in accordance with modular invariance.

Let us further mention that the compactification of IIA string theory on the same

asymmetric orbifold is essentially identical, and amounts to the exchange of the internal

Weyl chiralities of the right-moving SO(8) spinors S̄8 ↔ C̄8 in both the µ = 0 and µ = 1

spectra. Indeed, a T-duality in one of the eight directions at this special point does not

affect the lattice, but introduces an additional phase (−1)āb̄ in the right-moving RNS

partition function. Because the orbifold does not act on the right-movers, this simply

flips the GSO projection of right-moving Ramond states ā = 1 and exchanges their Weyl

chiralities.

The type II theory on the asymmetric Z4 orbifold constructed here is the first ‘exotic’

example we present in this work. Modulo chirality assignments, it contains a total of 32

supercharges. Theories with 32 supercharges are often thought to be “trivial cases”, in

the sense that they only arise either directly in ten dimensions, or by compactification on

simple torii. This is not the case with the (24,8) theory that we discussed here, which

serves as an example of the rich structure of 2d constructions.

4.2 Asymmetric T 8/Z4 in heterotic with (16, 0) supersymmetry

The phenomenon of extra supercharges (or gravitini) arising from twisted sectors in fully

asymmetric orbifold constructions in two spacetime dimensions is not particular to type

II theories. As the discussion of previous section suggested, it is a property of the pure

left-moving action of the twist. We therefore expect the same kind of supersymmetry

“enhancement” to occur also in heterotic theories compactified on the same asymmetric

T 8/Z4 orbifold.

To this end, we consider the heterotic E8 × E8 string theory compactified on this

asymmetric orbifold, whose partition function reads

Z =
1

4

∑

h,g∈Z4





1

2

∑

a,b

(−1)a+b+µab
ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2

η4
e−iπhg/2





Γasym
8,8 [hg ]

η8η̄8
e−iπhg/2

× 1

2

∑

k,ℓ

ϑ̄[kℓ ]
8

η̄8
× 1

2

∑

ρ,σ

ϑ̄[ρσ]8

η̄8
.

(4.20)
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The theta function combinations in the second line simply reflect the free fermion repre-

sentation of the anti-chiral E8×E8 Kac-Moody lattice. As before, due to the asymmetry of

the orbifold action, this construction is performed at the special fermionic point in moduli

space. We will show that the theory has chiral (16, 0) supersymmetry with gauge group

SO(16)× E8 × E8.

4.2.1 Positive chirality spectrum (µ = 0 states)

The analysis of the spectrum of states of positive spacetime chirality states, µ = 0, was

outlined in the previous sections. As discussed there, the most convenient representation

from which to analyse the massless (or even massive spectra) is the character expansion of

the partition function in the generic orbifold sector h = 0, 1, 2, 3, while taking into account

the splitting into spacetime bosonic-NS and spacetime fermionic-R states

ZNS
h =

(

χ[0,h−,1] Γ̂
asym[h3 ] + χ[0,h−,3] Γ̂

asym[h1 ]
)

(O16 + S̄16)
2

ZR
h = −

(

χ[1,h−,1] Γ̂
asym[h3 ] + χ[1,h−,3] Γ̂

asym[h1 ]
)

(Ō16 + S̄16)
2

(4.21)

A close inspection of this decomposition shows the absence of massless physical (propagat-

ing) states with positive chirality in any sector h = 0, 1, 2, 3.

4.2.2 Negative chirality spectrum (µ = 1 states)

The same decomposition may be obtained for the negative chirality states, corresponding

to the choice µ = 1,

ZNS
h =

(

χ[0,h−,1] Γ̂
asym[h3 ] + χ[0,h−,3] Γ̂

asym[h1 ]
)

(O16 + S̄16)
2

ZR
h = −

(

χ[1,h+,0] Γ̂
asym[h0 ] + χ[1,h+,2] Γ̂

asym[h2 ]
)

(Ō16 + S̄16)
2

(4.22)

Like in the µ = 0 case, also in µ = 1 the bosons a = 0 are again massive in all orbifold

sectors h = 0, 1, 2, 3. Massless physical (propagating) states of negative spacetime chirality

can, however, arise in the Ramond sector a = 1. From the untwisted h = 0 sector we find

a total of 3696 fermionic states in the adjoint representation of the gauge group

− χ[1,0+,0] Γ̂
asym[00](Ō16 + S̄16)

2 : 60 ×Adj[SO(16)× E8 × E8] . (4.23)

From the h = 1 twisted sector we similarly find a total of 1744 fermionic states

−χ[1,1+,2] Γ̂
asym[12] (Ō16+S̄16)

2 :
1

4
[++++]·

[

(2q3/8) ·Adj(E8 × E8) + 752q3/8q̄
]

. (4.24)

The h = 2 twisted sector gives rise to a total of 4720 fermionic states

− χ[1,2+,2] Γ̂
asym[22] (Ō16 + S̄16)

2 : 1 ·
[

(6q1/2) ·Adj(E8 × E8) + 1744q1/2q̄
]

. (4.25)

Finally, from the h = 3 twisted sector we find 1744 fermionic states

−χ[1,3+,2] Γ̂
asym[32] (Ō16+S̄16)

2 :
1

4
[−−−−]·

[

(2q3/8) ·Adj(E8 × E8) + 752q3/8q̄
]

. (4.26)

In total, there are 11904 massless propagating fermions of negative chirality, all of which

are singlets with respect to the chiral (16, 0) supersymmetry.
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4.2.3 Supersymmetry charges

To construct the vertex operators of supercharges, we again employ the covariant formalism.

For heterotic theory, the left-moving RNS sector requires the projection onto GSO-even

G = +1 states, with GSO parity defined as

G = eiπ(−Qφ+Q0+Q1+Q2+Q3+Q4) . (4.27)

As in previous sections, we only display supercharges in the +1/2 super-ghost picture.

From the untwisted sector, we have the familiar 6 invariant supercharges with positive

spacetime helicity (Q0 = +1/2)

Q+1/2 = eφ/2+iH0/2 ⊗ 1

2



















− − + +

− + − +

− + + −
+ − − +

+ − + −
+ + − −



















, 60 . (4.28)

As in the asymmetric type II case, additional supercharges do arise from the twisted sectors

eφ/2+iH0/2 ⊗
(

−χ[1,h+,2] Γ̂
asym[h2 ]

)

⊗ ∂̄Xµ : 2h=1 + 6h=2 + 2h=3 = 10 . (4.29)

In particular, we see that the twisted sectors give rise to 10 additional gravitini (and 10

additional spin 1/2 fermions), so that we have a total of 16 supercharges of positive helicity

arising from the left-movers from all orbifold sectors, and the theory enjoys chiral (16, 0)

supersymmetry.

4.2.4 Anomaly and B-field tadpole

Let us evaluate the gravitational anomaly coefficient for this construction. From the gravity

multiplet, we have a contribution 16 · 1
2 = 8. On the other hand, from the 11904 negative

chirality fermion supersymmetry singlets, we have a contribution −11904 · 1
24 = −248.

The total anomaly coefficient is therefore found to be −240 and will be cancelled by the

Green-Schwarz mechanism. As in the symmetric heterotic case, since the target space is

two dimensional, this same coefficient will be also identified as the coefficient of the B-field

tadpole that can be cancelled by introducing n = 240 additional fundamental heterotic

strings in the theory.

This can be verified independently by performing a 1-loop computation, in order to fix

the tadpole coefficient. From the partition function of the internal CFT, we can compute

A(q̄, 0, 0) = 8j̄(τ̄) =
8

q̄
+ 5952 + . . . , (4.30)

which, according to the notation of the symmetric heterotic orbifold of section 3.3, α = 8

and β = 5952. The tadpole coefficient is then found to be n = β/24−α = 240 and matches

precisely the anomaly coefficient computed directly from the spectrum, as it should.
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4.3 Asymmetric T 8/Z4 in type IIB with shifts and (20, 8) supersymmetry

In this section we consider type IIB string theory compactified on an asymmetric orbifold

T 8/Z4 with a slightly modified action. Namely, in addition to the Z4 rotation of all 8

left-movers, the orbifold simultaneously acts as an order-2 shift on 4 right-moving T 8

coordinates. The partition function in this case reads

Z =
1

4

∑

h,g∈Z4





1

2

∑

a,b

(−1)a+b+µab
ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2

η4
e−iπhg/2





Γ̃asym
8,8 [hg ]

η8η̄8
e−iπhg/2

×





1

2

∑

ā,b̄

(−1)ā+b̄+µāb̄
ϑ̄[ā

b̄
]4

η̄4



 ,

(4.31)

where Γ̃asym
8,8 [hg ] is the twisted/shifted (8, 8) lattice at the fermionic point, defined as follows

Γ̃asym
8,8 [hg ] =

1

2

∑

γ,δ

ϑ[γδ ]
2 ϑ[

γ+h/2
δ+g/2 ]

2 ϑ[
γ−h/2
δ−g/2 ]

2 ϑ[γ−h
δ−g ]ϑ[

γ+h
δ+g ] ϑ̄[

γ
δ ]

4 ϑ̄[γ+h
δ+g ]

4 . (4.32)

Since the action of the orbifold involves an asymmetric rotation, the construction is again

forced to lie at the fermionic point in the T 8 moduli space. We will see below that this

theory has chiral (20, 8) supersymmetry. Similarly to the asymmetric type II construction

of section 4.1, the trivial action of the orbifold on the right-moving RNS fermions implies

that the IIA and IIB theories have essentially identical spectra and the same amount of

supersymmetry.

We now turn to a brief discussion of the spectrum. All µ = 0 states are massive, in all

orbifold sectors. The massless physical µ = 1 states (negative chirality) are identified as

ZR−R
h=0 = χ[1,0+,0]

ˆ̃Γ[00] S̄8 : 6× 8

ZR−NS
h=0 = −χ[1,0+,0]

ˆ̃Γ[00] V̄8 : 6× 8

ZR−R
h=2 = χ[1,2+,2]

ˆ̃Γ[22] S̄8 : 6× 8

ZR−NS
h=2 = −χ[1,2+,2]

ˆ̃Γ[22] V̄8 : 6× 8

(4.33)

Notice that the sectors h = 1 and h = 3 are always massive. Therefore, we have 96 negative

chirality R-R scalars and 96 negative chirality R-NS fermions.

4.3.1 Supersymmetry charges

As everywhere in this work, we will write (and count) all supercharges conventionally in the

+1/2 superghost picture. Since the supercharges can only be counted in the full covariant

framework, we will need to specify a conventional choice for the GSO projection. For type

IIB, we will choose

G = (−1)−Qφ+Q0 Gint , G̃ = (−1)−Q̃φ+Q̃0 G̃int , (4.34)

for the left and right moving GSO parity operators, and define also the“internal GSO

parity” operators

Gint = (−1)Q1+Q2+Q3+Q4 , G̃int = (−1)Q̃1+Q̃2+Q̃3+Q̃4 . (4.35)
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The general form of the positive and negative chirality supercharges (if they exist) is

Q
(+)
+1/2 = eφ/2+iH0/2Σr , positive chirality ,

Q
(−)
+1/2 = eφ/2−iH0/2 Σ̂s , negative chirality .

(4.36)

Here, Σr is an operator in the internal CFT with conformal weight (1/2, 0), invariant under

the orbifold action, and with internal GSO parity Gint = +1. Similarly, Σ̂s is an operator

in the internal CFT with conformal weight (1/2, 0), invariant under the orbifold action,

but with the opposite internal GSO parity Gint = −1. For the type IIB theory, identical

expressions hold also for the right-moving supercharges with the analogous internal GSO

parity requirements.

Let us first examine the negative chirality supercharges arising from the left-movers.

We are looking for orbifold invariant operators Σ̂ with internal GSO Gint = −1. For this

theory, since the right-moving RNS fermion characters are completely factored from the

remaining degrees of freedom, it suffices to look at the left-moving Ramond sector part of

massless states with negative internal GSO projection, i.e. the sector a = 1, µ = 0. Since,

as mentioned above, no massless states exist in the µ = 0 sector, we conclude that the

left-movers do not give rise to any negative chirality supercharges.

Now we can turn to the positive chirality supercharges arising still from the left-movers.

We are looking for orbifold invariant operators Σ with positive internal GSO Gint = +1.

To find them, it is again sufficient in this particular theory to consider the left-moving part

in the Ramond sector of massless states with positive internal GSO projection, i.e. the

sector a = 1, µ = 1. By looking at the µ = 1 massless spectrum, we can identify 2 such

possibilities

h = 0 : χ[1,0+,0]
ˆ̃Γ[00] , (6q1/2)(1 + . . .) ,

h = 2 : χ[1,2+,2]
ˆ̃Γ[22] , (1 + . . .)(6q1/2) .

(4.37)

These 12 operators indeed have conformal weight (1/2, 0), they are invariant under the

orbifold action and are positive under the internal GSO, Gint = +1. Therefore, the left-

movers contribute a total of 12 positive chirality supercharges and no negative chirality

supercharges, i.e. (12, 0).

Now let us turn to supercharges arising from the right-movers. The supercharges will

again have the generic form

Q̃
(+)
+1/2 = eφ̃/2+iH̃0/2 Σ̃r , positive chirality ,

Q̃
(−)
+1/2 = eφ̃/2−iH̃0/2 ˆ̃Σs , negative chirality .

(4.38)

Let us first count the positive chirality supercharges. This amounts to finding invariant

operators Σ̃, with conformal weight (0, 1/2), which have G̃int = +1. Since the orbifold does

not act on the right-moving fermions, we can focus only on their contribution. The positive

internal GSO requirement translates to µ = 1 and gives rise to the 8 states Σ̃ → S̄8 and,

hence, 8 supercharges of positive chirality.
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For the negative chirality supercharges, we work in a similar way. We look for invari-

ant operators ˆ̃Σ with conformal weight (0, 1/2) with G̃int = −1. The negative internal

GSO requirement arises from the sector µ = 0 and again gives rise to 8 states ˆ̃Σ → C̄8,

corresponding to 8 supercharges of negative chirality.

Therefore, the right-movers contribute a total of (8, 8) supercharges. Adding these

together with the supercharges arising from the left-movers, we find that the full theory

enjoys chiral (20, 8) supersymmetry.

As a check, we can verify the vanishing of the anomaly polynomial. There are 96

negative chirality R-R scalars, contributing −96/24 to the anomaly and an equal number

of negative chirality R-NS fermions contributing −96/48. Since the theory has (20, 8)

supersymmetry its gravity multiplet contributes 20/2 − 8/2, and hence, we find that the

anomaly indeed cancels.

The above discussion illustrates a peculiar phenomenon which, as we have seen, may

arise in asymmetric orbifolds in two spacetime dimensions. In ordinary four-dimensional

string constructions, supplementing an orbifold rotation with a translation does not affect

the number of preserved supersymmetries of the theory. Typically, it is the rotation itself

that determines which supercharges survive the projection, regardless of whether this ro-

tation belongs to the space of ordinary coordinates such as in the case of partial breaking,

or whether it only rotates the R-symmetry lattice, as in the case of full Scherk-Schwarz

breaking of supersymmetry. In those cases, the effect of the translation is merely to render

the action free and, for instance, to give mass to non-invariant gravitini instead of project-

ing them out of the theory. In the construction at hand, instead, modifying the orbifold

action as little as introducing an asymmetric shift does significantly affect the number of

preserved supercharges — specifically, those arising from the twisted sectors.

5 Two dimensional string theories with more than 32 supercharges

In closed string theory, one does not normally expect finite changes in the size and shape

of the internal space to affect the number of preserved supersymmetries. Gravitini may

become massless only at the boundary of moduli space. As we will see more clearly in the

following, however, different choices for the shape of the T 8 lattice may result in different

numbers of supersymmetries being preserved, after modding out by an asymmetric orbifold

action. This does not contradict our expectation that no supersymmetry enhancement may

result from infinitesimal deformations in the bulk of moduli space, since the phenomenon we

are describing is founded on the asymmetric nature of the orbifold. The would-be moduli

responsible for continuously interpolating between two such theories preserving different

numbers of supersymmetries are, in fact, absent.

In order to illustrate how different choices for the shape of the (8,8) lattice may lead

to different numbers of supercharges, we shall examine two type II theories based on asym-

metric T 8/Z4 × Z4 orbifolds. In both cases, the action of the orbifold on the worldsheet

degrees of freedom will be the same from the point of view of the internal CFT of the aux-

iliary worldsheet fermions y, w, ỹ, w̃ replacing the internal coordinates, but the way these

elementary left- and right- moving degrees of freedom are then combined together in order
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to form “coordinates” will be different. In other words, these two theories will differ in the

choice of point in the perturbative moduli space of the Narain lattice, leading to different

lattice symmetries. Remarkably, we are going to show that a special factorised choice for

the (8,8) lattice gives rise to a consistent 2d string theory with more than 32 supercharges!

5.1 Asymmetric T 8/Z4 × Z4 in type IIA/ IIB with (16, 16) or (32, 0) supersym-

metry

The first case we shall present involves type IIA/IIB string theory compactified on an asym-

metric orbifold T 8/Z4 × Z4 which is, in a sense, a double copy of the asymmetric orbifold

we have been considering so far. Namely, each of the Z4 orbifold factors independently act

as asymmetric pure Z4 rotations (4.3) on the left (resp. right) movers. The IIB partition

function explicitly reads

Z =
1

4

∑

h1,g1∈Z4

1

4

∑

h2,g2∈Z4





1

2

∑

a,b

(−1)a+b+µab
ϑ[

a+h1/2
b+g1/2

]2ϑ[
a−h1/2
b−g1/2

]2

η4
e−iπh1g1/2





×
Γ̌asym
8,8 [h1,h2

g1,g2 ]

η8η̄8
e−iπ(h1g1−h2g2)/2

×





1

2

∑

ā,b̄

(−1)ā+b̄+µāb̄
ϑ̄[

ā+h2/2

b̄+g2/2
]2ϑ̄[

ā−h2/2

b̄−g2/2
]2

η̄4
e+iπh2g2/2



 ,

(5.1)

where Γ̌asym
8,8 [h1,h2

g1,g2 ] is the twisted (8, 8) lattice at the fermionic point,

GIJ =
1

2
δIJ , BIJ =

1

2
ǫIJ , (5.2)

and is defined in terms of one-loop Jacobi theta constants as follows

Γ̌asym
8,8 [h1,h2

g1,g2 ] =
1

2

∑

γ,δ

ϑ[γδ ]
2 ϑ[

γ+h1/2
δ+g1/2

]2 ϑ[
γ−h1/2
δ−g1/2

]2 ϑ[γ−h1

δ−g1
]ϑ[γ+h1

δ+g1
]

× ϑ̄[γδ ]
2 ϑ̄[

γ+h2/2
δ+g2/2

]2 ϑ̄[
γ−h2/2
δ−g2/2

]2 ϑ̄[γ−h2

δ−g2
] ϑ̄[γ+h2

δ+g2
] . (5.3)

Since the action of the orbifold involves asymmetric rotations, no continuous deformation

away from the point (5.2) is possible. The IIB theory has chiral (32, 0) supersymmetry,

while for IIA one finds instead (16, 16).

A detailed analysis of these theories is straightforward but technically heavy to display

explicitly. We shall, therefore, discuss here only their salient features, starting with their

massless physical spectra. In type IIA, all sectors are massive for both positive and negative

chirality states. In type IIB, only RR sectors with negative chirality can give rise to massless

states. The number of such massless states for each orbifold sector (h1, h2) is found to be

(0, 0) : 36 , (0, 1) : 12 , (0, 2) : 36 , (0, 3) : 12 ,

(1, 0) : 12 , (1, 1) : 12 , (1, 2) : 28 , (1, 3) : 12 ,

(2, 0) : 36 , (2, 1) : 28 , (2, 2) : 68 , (2, 3) : 28 ,

(3, 0) : 12 , (3, 1) : 12 , (3, 2) : 28 , (3, 3) : 12 .

(5.4)
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In total, there are 384 massless RR states of negative spacetime chirality. The left movers

give rise to a total of 16 supercharges, while the right movers contribute 16 more. As in the

previous sections, this is due to the presence of extra chiral operators in the CFT that are

used to construct gravitini, and which arise from twisted sectors according to the pattern

χ[1,0+,0] Γ̂[
0,0
0,0] : 6q1/2(1 + . . .) ,

χ[1,1+,2] Γ̂[
1,0
2,0] : (1q1/8)(2q3/8) ,

χ[1,2+,2] Γ̂[
2,0
2,0] : (1 + . . .)(6q1/2) ,

χ[1,3+,2] Γ̂[
3,0
2,0] : (1q1/8)(2q3/8) .

(5.5)

As usual, the gravitini carry the same or opposite spacetime chirality depending on whether

the theory is IIA or IIB and, therefore, we indeed count (16, 16) supercharges in IIA and

chiral (32, 0) in IIB. No tadpole arises in the IIA case, while the IIB anomaly vanishes as

expected
N

2
− 384

24
= 0 , (5.6)

for N = 32.

5.2 Asymmetric T 8/Z4 × Z4 in type IIA/ IIB with exotic (24, 24) or (48, 0)

We now come to the final example to be discussed in this work and also the most exotic

one. To our knowledge, it is the first example of a consistent string construction with more

than 32 supercharges. Following the discussion of the previous subsection, we consider

again type II string theory compactified on the same asymmetric orbifold T 8/Z4×Z4, with

one of the Z4 orbifold factors acting asymmetrically as pure left-moving Z4 rotation (4.3),

while the other Z4 similarly rotates asymmetrically only the right movers.

The novelty here is that the (8,8) lattice is now factorised into a purely holomorphic

lattice of signature (8,0) times a purely anti-holomorphic (0,8) one. Before the orbifold

action, the Narain lattice is expected to carry left- and right- moving modular weights (4, 4)

and, hence, holomorphy and modularity uniquely associates this lattice with (E8)L×(E8)R,

namely

Γ8,8(τ, τ̄) = ΓE8(τ)× Γ̄E8(τ̄) . (5.7)

This factorised enhancement point is achieved with a special choice for the T 8 metric and

B-field, such as

GIJ =





























1 −1
2 0 1

2 0 −1
2 0 0

−1
2 1 −1

2 −1
2

1
2 0 0 1

2

0 −1
2 1 1

2 0 0 0 −1
2

1
2 −1

2
1
2 1 0 −1

2
1
2 0

0 1
2 0 0 1 −1

2 0 1
2

−1
2 0 0 −1

2 −1
2 1 −1

2 −1
2

0 0 0 1
2 0 −1

2 1 1
2

0 1
2 −1

2 0 1
2 −1

2
1
2 1





























(5.8)
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and

BIJ =





























0 −1
2 0 1

2 0 −1
2 0 0

1
2 0 −1

2 −1
2

1
2 0 0 1

2

0 1
2 0 1

2 0 0 0 −1
2

−1
2

1
2 −1

2 0 0 −1
2

1
2 0

0 −1
2 0 0 0 −1

2 0 1
2

1
2 0 0 1

2
1
2 0 −1

2 −1
2

0 0 0 −1
2 0 1

2 0 1
2

0 −1
2

1
2 0 −1

2
1
2 −1

2 0





























. (5.9)

It is straightforward to verify that with this choice, the matrix G+B becomes upper trian-

gular, and reflects the symmetry enhancement. Of course, transformations such as discrete

reparametrisations may be employed to offer other equivalent bases for its construction.

However, it is important to stress that the factorised point described here is physically dis-

tinct from the non-factorised one of eq. (5.2) used in the previous section, even though both

choices admit a CFT realisation in terms of auxiliary worldsheet fermions y, w, ỹ, w̃. The

difference between the two constructions from the point of view of these fermionic degrees

of freedom lies in their different boundary condition assignments. By analysing this theory,

we shall see that the enhancement SO(8)L,R → (E8)L,R is responsible for increasing the

number of extra gravitini and the full theory is shown to have more than 32 supercharges.

The partition function of the IIB theory reads

Z =
1

4

∑

h1,g1∈Z4

1

4

∑

h2,g2∈Z4





1

2

∑

a,b

(−1)a+b+µab
ϑ[

a+h1/2
b+g1/2

]2ϑ[
a−h1/2
b−g1/2

]2

η4
e−iπh1g1/2





×
ΓE8 [

h1
g1 ] Γ̄E8 [

h2
g2 ]

η8η̄8
e−iπ(h1g1−h2g2)/2

×





1

2

∑

ā,b̄

(−1)ā+b̄+µāb̄
ϑ̄[

ā+h2/2

b̄+g2/2
]2ϑ̄[

ā−h2/2

b̄−g2/2
]2

η̄4
e+iπh2g2/2



 ,

(5.10)

where ΓE8 [
h
g ] is the purely holomorphic, twisted E8 lattice, defined in terms of level one

free fermion characters as follows

Γasym
E8

[hg ] =
1

2

∑

γ,δ

ϑ[γδ ]
2 ϑ[

γ+h/2
δ+g/2 ]

2 ϑ[
γ−h/2
δ−g/2 ]

2 ϑ[γ−h
δ−g ]ϑ[

γ+h
δ+g ] . (5.11)

Similarly, the IIA partition function is simply obtained from (5.10) by introducing an

additional (−1)āb̄ phase flipping the right-moving GSO projection of right-moving Ra-

mond states.

In fact, the boundary condition assignments are such that the left- and right- moving

CFTs completely factorise. Note that this is a global7 factorisation. To illustrate this fact,

we define

f(µ, τ) ≡ 1

4

∑

h,g∈Z4

1

2

∑

a,b

(−1)a+b+µab+hg
ϑ[

a+h/2
b+g/2 ]

2ϑ[
a−h/2
b−g/2 ]

2

η4
ΓE8 [

h
g ]

η8
, (5.12)

7A local factorisation would be true only up to boundary condition assignments.
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and observe that the partition function for type IIA and IIB can be expressed as the

sesquilinear product

ZIIA = f(µ, τ)f̄(µ+ 1, τ̄) , ZIIB = |f(µ, τ)|2 . (5.13)

This holomorphic factorisation property has important consequences on the spectrum of

the theory. It is straightforward to show that f(µ, τ) is a holomorphic function on the

compact Riemann surface F = SL(2;Z)\H∗, with H∗ being the Poincaré upper half-plane

together with the point at infinity. Indeed, f has no pole at q = 0 and is, hence, a constant

by the open mapping theorem

f(µ, τ) = −12(1− (−1)µ) . (5.14)

In other words, the entire partition function factorises into a purely holomorphic, times a

purely anti-holomorphic part which, numerically, turn out to be constants! The disappear-

ance of the τ, τ̄ dependence in the lightcone partition function is a consequence of spacetime

supersymmetry in the case µ = 0, or the consequence of an MSDS spectral flow [29, 30]

operating in the massive spectrum of the theory in the case µ = 1.8

Using the identity (5.14), it is easy to derive the spectrum of propagating massless

states in both the type IIA and IIB theories under investigation. In type IIB, the µ = 0

sectors are massive, whereas the µ = 1 sectors give rise to 242 = 576 massless RR scalars

with negative spacetime chirality. In type IIA, all sectors are massive.

We now turn our attention to the supercharges and work out the contribution of the

left-movers only. The right-movers will give identical contributions, modulo their spacetime

chirality that will either be the same as that of left-movers or opposite, depending on

whether we are considering type IIB or type IIA, respectively. It is sufficient to look at the

various orbifold sectors and identify all holomorphic operators of conformal weight
(

1
2 , 0

)

with Ramond boundary conditions on the left-movers

χ[1,0+,0] ΓE8 [
0
0] : 6q1/2(1 + . . .) ,

χ[1,1+,2] ΓE8 [
1
2] : (q1/8)(4q3/8) ,

χ[1,2+,2] ΓE8 [
2
2] : (1)(10q1/2) ,

χ[1,3+,2] ΓE8 [
3
2] : (q1/8)(4q3/8) .

(5.15)

Once these operators are tensored together with the superghost and longitudinal parts, they

create the desired (1, 0) vertex operators of the supercharges. The left-movers contribute

(24, 0) supersymmetries and the same is true for the right-movers, modulo chirality as-

signment. Therefore, we find that type IIB theory will enjoy chiral (48, 0) supersymmetry,

whereas type IIA has (24, 24).

It may appear surprising that we speak of supersymmetry in a theory where all prop-

agating states are massive, such as in the case of type IIA, or for type IIB in the sector of

8While the MSDS spectral flow may be employed to explain (5.14), we emphasize that the supercharges

we discuss in this work are associated with genuine gravitini in two dimensions and are otherwise unrelated

to the MSDS spectral flow that anyway operates on the non-supersymmetric negative chirality massive

states (µ = 1).
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positive chirality states. Nevertheless, the spectral flow in the massive µ = 0 sectors is the

result of the supercharges identified above. Furthermore, the gravity multiplet does indeed

organise itself according to the above counting of supersymmetries. As a check, consider

the gravitational anomaly in the chiral type IIB theory

N

2
− 576

24
= 0 , (5.16)

which indeed vanishes for N = 48.

Let us close this section with a comment about the vacuum energy. In the IIA case,

the partition function numerically vanishes and, hence, so does the cosmological constant.

The IIB case is more interesting and, in fact, may be calculated analytically

ΛIIB = −
∫

F

d2τ

τ2
(Zµ=0 + Zµ=1) = −192π . (5.17)

In addition to non-trivial zero point energy, the theory also possesses non-trivial vacuum

momentum and we refer to [7] for further discussions of this point.

6 Summary and further directions

In this paper we have constructed several 2D left-right (a)symmetric orbifolds which lead

to chiral theories with exotic (P,Q) supersymmetries. In some of the completely asymmet-

ric cases an interesting and new phenomenon occurs, namely the emergence of additional

supercharges from the twisted sectors, such that the total number of supercharges is bigger

than 32. This happens if either in the left- or right-moving string sector the number of

supercharges is bigger than 16, which so far never occurred in any D ≥ 2 string construc-

tion. The way how the two-dimensional orbifolds evade the common no-go theorem that

constrains the maximal number of supersymmetries to N ≤ 8 is the observation that in

the sectors with “too many” supersymmetries only massive propagating states exist.

A natural and very interesting question is whether the configurations that we find

have a higher dimensional description in some region of parameter space. By virtue of

being asymmetric orbifolds most of the moduli of the internal space are projected out,

so if possible at all, we expect the appearance of a higher dimensional description to be

associated with regions of strong coupling in the IIA and heterotic settings. Unfortunately

finding a useful description of such strongly coupled regions is far from straightforward:

as discussed in [31] the fact that we are dealing with an asymmetric orbifold implies that

the momentum modes in the eleventh-dimension are accompanied by wrapped M5 branes,

and the higher dimensional formulation cannot simply be a weakly coupled supergravity.

A related fact is that the supersymmetry enhancements that we find are often non-chiral,

which precludes any construction from an ordinary circle compactification of a higher

dimensional theory.

Another question along similar lines is whether some, or all, of the constructions we

have obtained here can be understood in terms of F-theory [32]. While the formalism we

use superficially looks very different than the tools one uses in F-theory, there are known
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examples of F-theory embeddings of free fermion models [33, 34], so it is certainly not

impossible a priori that some dual exists. This is particularly interesting in view of the

recent activity in constructing F-theory compactifications down to two dimensions [35–38].

An alternative approach for constructing a rich set of two-dimensional theories are the

“brane-brick” models recently studied in [39–45], it would be equally interesting to see if

any of the contructions here have a geometric interpretation in this context.9
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A Orbifold characters

A.1 Untwisted characters, bosons h = 0, a = 0

We list below the untwisted bosonic characters defined in equation (3.17), including their

q-expansion and the identification of their vertex operators.

A.1.1 GSO odd

For GSO odd characters ξ = 1 and therefore, only odd values of λ will be non-vanishing,

i.e. λ = 1, 3. We therefore, have for λ = 1

q4/24 χ[0,0−,1] = 4
√
q + 32q3/2 + 144q5/2 + . . . (A.1)

The 4 states with conformal weight 1/2 satisfying the conditions (3.19) are identified as

Ψi = eiHi , 4+1 of U(4) , (A.2)

where we denote the U(1) charge of U(4) in the subscript, and we define it as J = i
∑

j ∂Hj .

The 32 states of weight 3/2 can be identified as

Ψ̄i
−1/2Ψ̄

j
−1/2Ψ̄

k
−1/2 : 4̄−3

Ψi
−1/2Ψ

j
−1/2Ψ̄

k
−1/2 : 4+1 + 20+1

Ψi
−3/2 : 4+1

(A.3)

For λ = 3, we have

q4/24 χ[0,0−,3] = 4
√
q + 32q3/2 + 144q5/2 + . . . (A.4)

However, now the 4 states with weight 1/2 are identified as

Ψ̄i = e−iHi , 4̄−1 of U(4) . (A.5)

9Other interesting recent constructions of two dimensional theories can be found in [46–49].
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Similarly, for the 32 states of weight 3/2, we find

Ψi
−1/2Ψ

j
−1/2Ψ

k
−1/2 : 4+3

Ψi
−1/2Ψ̄

j
−1/2Ψ̄

k
−1/2 : 4̄−1 + 20−1

Ψ̄i
−3/2 : 4̄−1

(A.6)

We thus see that the states in χ[0,0−,3] carry opposite charges with respect to those in

χ[0,00,1] and, therefore, correspond to the complex conjugate representations.

A.1.2 GSO even

Now we deal with the case GSO even ξ = 0, which means that only even values of λ can

arise. For the Z4 invariant states λ = 0, we have

q4/24 χ[0,0+,0] = 1 + 16q + 70q2 + . . . (A.7)

The 16 states with weight 1 are identified as the currents generating the adjoint of U(4)

Ψi
−1/2Ψ̄

j
−1/2 : 150 + 1 . (A.8)

For λ = 2 one obtains the states transforming with a minus sign under Z4

q4/24 χ[0,0+,2] = 12q + 64q2 + . . . (A.9)

These 12 states of weight 1 can be recognized as

Ψi
−1/2Ψ

j
−1/2 : 6+2 ,

Ψ̄i
−1/2Ψ̄

j
−1/2 : 6−2 .

(A.10)

A.2 Untwisted characters, fermions h = 0, a = 1

We move on to the untwisted fermionic characters. Again, we consider the GSO odd and

even cases separately.

A.2.1 GSO odd

Since we are in the GSO odd case, ξ = 1, the fermionic states transform necessarily with

λ = 1 or λ = 3. We have

q4/24 χ[1,0−,1] = 4
√
q + 32q3/2 + . . . (A.11)

The 4 states with weight 1/2 are identified as the states eiQ·H , with the weights given by

1

2











− + + +

+ − + +

+ + − +

+ + + −











: 4̄+1 (A.12)
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Similarly, we have

q4/24 χ[1,0−,3] = 4
√
q + 32q3/2 + . . . (A.13)

The 4 states with weight 1/2 are now identified as the complex conjugate representation

1

2











+ − − −
− + − −
− − + −
− − − +











: 4−1 (A.14)

A.2.2 GSO even

In the GSO even case, ξ = 0, and the fermionic states transform necessarily with λ = 0 or

λ = 2. We have

q4/24 χ[1,0+,0] = 6
√
q + 32q3/2 + . . . (A.15)

The 6 states with weight 1/2 are identified as the states eiQ·H , with the weights given by

1

2



















+ + − −
+ − + −
+ − − +

− − + +

− + − +

− + + −



















: 6̄0 (A.16)

Similarly, we have

q4/24 χ[1,0+,2] = 2
√
q + 32q3/2 + . . . (A.17)

The 2 states with weight 1/2 are now identified with the two SU(4) singlets

1

2

[

+ + + +

− − − −

]

: 12 + 1−2 (A.18)

A.3 First twisted sector characters, h = 1

Working in a similar way, one may derive the character q-expansions and vertex operators

also for the twisted sectors. For simplicity, we shall explicitly display here only the relevant

q-expansions.

q4/24 χ[0,1−,1] = 4q3/8 + 28q11/8 + . . .

q4/24 χ[0,1−,3] = 8q7/8 + 56q15/8 + . . .

q4/24 χ[0,1+,0] = q1/8 + 17q9/8 + . . .

q4/24 χ[0,1+,2] = 6q5/8 + 38q13/8 + . . .

q4/24 χ[1,1−,1] = 4q3/8 + 28q11/8 + . . .

q4/24 χ[1,1−,3] = 8q7/8 + 56q15/8 + . . .

q4/24 χ[1,1+,0] = 6q5/8 + 38q13/8 + . . .

q4/24 χ[1,1+,2] = q1/8 + 17q9/8 + . . .

(A.19)
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A.4 Second twisted sector characters, h = 2

The character q-expansions for the h = 2 twisted sector reads

q4/24 χ[0,2−,1] = 4
√
q + 32q3/2 + . . .

q4/24 χ[0,2−,3] = 4
√
q + 32q3/2 + . . .

q4/24 χ[0,2+,0] = 2
√
q + 32q3/2 + . . .

q4/24 χ[0,2+,2] = 6
√
q + 32q3/2 + . . .

q4/24 χ[1,2−,1] = 4
√
q + 32q3/2 + . . .

q4/24 χ[1,2−,3] = 4
√
q + 32q3/2 + . . .

q4/24 χ[1,2+,0] = 12q + 64q2 + . . .

q4/24 χ[1,2+,2] = 1 + 16q + . . .

(A.20)

A.5 Third twisted sector characters, h = 3

The character q-expansions for the h = 3 twisted sector reads

q4/24 χ[0,3−,1] = 8q7/8 + 56q15/8 + . . .

q4/24 χ[0,3−,3] = 4q3/8 + 28q11/8 + . . .

q4/24 χ[0,3+,0] = q1/8 + 17q9/8 + . . .

q4/24 χ[0,3+,2] = 6q5/8 + 38q13/8 + . . .

q4/24 χ[1,3−,1] = 8q7/8 + 56q15/8 + . . .

q4/24 χ[1,3−,3] = 4q3/8 + 28q11/8 + . . .

q4/24 χ[1,3+,0] = 6q5/8 + 38q13/8 + . . .

q4/24 χ[1,3+,2] = q1/8 + 17q9/8 + . . .

(A.21)

B Lattice characters: symmetric Z4 twist

B.1 Untwisted sector h = 0

We list the contributions arising from the untwisted sector

(qq̄)8/24 Γ̂sym[00] = 1 + 32qq̄ + . . . ,

(qq̄)8/24 Γ̂sym[01] = 4q + 4q̄ + . . . ,

(qq̄)8/24 Γ̂sym[02] = 32qq̄ + . . . ,

(qq̄)8/24 Γ̂sym[03] = 4q + 4q̄ + . . . .

(B.1)

It is straightforward to identify these lattice states at the generic point in moduli space.

Strictly speaking, the lowest ones depicted here are not lattice states, but come from the

Cartan directions. If we complexify the 8 coordinates into Zi and Z̄i, with i = 1, 2, 3, 4 then

there are 42 = 16 oscillators ∂Zi∂̄Z̄j and similarly another 16 oscillators given by ∂Z̄i∂̄Zj

which are invariant. Similarly, the 4 non-level matched oscillators ∂Zi and similarly the 4

right-moving ones ∂̄Zj correspond to the contributions of Γ̂[01]. The remaining contributions

are analyzed in a similar fashion.
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B.2 Twisted sector h = 1

In the h = 1 sector, the contributions are

(qq̄)8/24 Γ̂sym[10] = 16q3/8q̄3/8 + 256q5/8q̄5/8 + 1600q7/8q̄7/8 + . . . ,

(qq̄)8/24 Γ̂sym[11] = 64q3/8q̄5/8 + 640q5/8q̄7/8 + 3840q7/8q̄9/8 + . . . ,

(qq̄)8/24 Γ̂sym[12] = 160q3/8q̄7/8 + 1536q5/8q̄9/8 + 160q7/8q̄3/8 + . . . ,

(qq̄)8/24 Γ̂sym[13] = 384q3/8q̄9/8 + 64q5/8q̄3/8 + 640q7/8q̄5/8 + . . . .

(B.2)

B.3 Twisted sector h = 2

In the h = 2 sector, the contributions are

(qq̄)8/24 Γ̂sym[20] = 136
√
q
√
q̄ + 8192qq̄ + . . . ,

(qq̄)8/24 Γ̂sym[21] = 1024
√
qq̄ + 1024q

√
q̄ + . . . ,

(qq̄)8/24 Γ̂sym[22] = 120
√
q
√
q̄ + 8192qq̄ + . . . ,

(qq̄)8/24 Γ̂sym[23] = 1024
√
qq̄ + 1024q

√
q̄ + . . . .

(B.3)

B.4 Twisted sector h = 3

In the h = 3 sector, the contributions are

(qq̄)8/24 Γ̂sym[30] = 16q3/8q̄3/8 + 256q5/8q̄5/8 + 1600q7/8q̄7/8 + . . . ,

(qq̄)8/24 Γ̂sym[31] = 64q5/8q̄3/8 + 640q7/8q̄5/8 + 3840q9/8q̄7/8 + . . . ,

(qq̄)8/24 Γ̂sym[32] = 160q3/8q̄7/8 + 1536q5/8q̄9/8 + 160q7/8q̄3/8 + 1536q9/8q̄5/8 + . . . ,

(qq̄)8/24 Γ̂sym[33] = 384q3/8q̄5/8 + 64q5/8q̄7/8 + 640q7/8q̄9/8 + . . . .

(B.4)

C Lattice characters: asymmetric Z4 twist

C.1 Untwisted sector h = 0

We list the contributions arising from the untwisted sector

(qq̄)8/24 Γ̂asym[00] = 1 + 28q + 120q̄ + 64
√
q
√
q̄ + 11552qq̄ ,

(qq̄)8/24 Γ̂asym[01] = 64
√
q
√
q̄ + 32q + 12032qq̄ ,

(qq̄)8/24 Γ̂asym[02] = 64
√
q
√
q̄ + 28q + 11552qq̄ ,

(qq̄)8/24 Γ̂asym[03] = 64
√
q
√
q̄ + 32q + 12032qq̄ .

(C.1)

C.2 Twisted sector h = 1

In the first twisted sector h = 1, we have

(qq̄)8/24 Γ̂asym[10] = 32q3/8q̄1/2 + 20q7/8 + 7520q7/8q̄ ,

(qq̄)8/24 Γ̂asym[11] = 8q5/8 + 3008q5/8q̄ + 768q9/8
√
q̄ ,

(qq̄)8/24 Γ̂asym[12] = 2q3/8 + 752q3/8q̄ + 320q7/8
√
q̄ ,

(qq̄)8/24 Γ̂asym[13] = 128q5/8
√
q̄ + 48q9/8 + 18048q9/8q̄ .

(C.2)
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C.3 Twisted sector h = 2

In the second twisted sector h = 2,

(qq̄)8/24 Γ̂asym[20] = 2
√
q + 1264

√
qq̄ + 512q

√
q̄ ,

(qq̄)8/24 Γ̂asym[21] = 64
√
q
√
q̄ + 32q + 12032qq̄ ,

(qq̄)8/24 Γ̂asym[22] = 6
√
q + 1744

√
qq̄ + 512q

√
q̄ ,

(qq̄)8/24 Γ̂asym[23] = 64
√
q
√
q̄ + 32q + 12032qq̄ .

(C.3)

C.4 Twisted sector h = 3

Finally, the contributions of the third twisted sector h = 3 read

(qq̄)8/24 Γ̂asym[30] = 32q3/8
√
q̄ + 20q7/8 + 7520q7/8q̄ ,

(qq̄)8/24 Γ̂asym[31] = 128q5/8
√
q̄ + 48q9/8 + 18048q9/8q̄ ,

(qq̄)8/24 Γ̂asym[32] = 2q3/8 + 752q3/8q̄ + 320q7/8
√
q̄ ,

(qq̄)8/24 Γ̂asym[33] = 8q5/8 + 3008q5/8q̄ + 768q9/8
√
q̄ .

(C.4)

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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