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Abstract: We derive, in the framework of soft-collinear effective field theory (SCET), a

Lagrangian describing the t-channel exchange of Glauber quarks in the Regge limit. The

Glauber quarks are not dynamical, but are incorporated through non-local fermionic po-

tential operators. These operators are power suppressed in |t|/s relative to those describing

Glauber gluon exchange, but give the first non-vanishing contributions in the Regge limit

to processes such as qq̄ → gg and qq̄ → γγ. They therefore represent an interesting subset

of power corrections to study. The structure of the operators, which describe certain soft

and collinear emissions to all orders through Wilson lines, is derived from the symmetries

of the effective theory combined with constraints from power and mass dimension counting,

as well as through explicit matching calculations. Lightcone singularities in the fermionic

potentials are regulated using a rapidity regulator, whose corresponding renormalization

group evolution gives rise to the Reggeization of the quark at the amplitude level and the

BFKL equation at the cross section level. We verify this at one-loop, deriving the Regge

trajectory of the quark in the 3 color channel, as well as the leading logarithmic BFKL

equation. Results in the 6̄ and 15 color channels are obtained by the simultaneous exchange

of a Glauber quark and a Glauber gluon. SCET with quark and gluon Glauber operators

therefore provides a framework to systematically study the structure of QCD amplitudes

in the Regge limit, and derive constraints on higher order amplitudes.
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1 Introduction

The study of limits of amplitudes and cross sections plays an important role in our under-

standing of gauge theories by providing constraints on higher order calculations, as well as

a glimpse at the all orders structure of the theory. One limit that has been intensely studied

since the early days of field theory, both in QED [1–4] and QCD [5–11], is the Regge or

forward limit, |t| � s. The simplicity of this limit lead to the discovery of integrability in

QCD [12, 13], and allows for an understanding at finite coupling in N = 4 super Yang-Mills
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theory [14–16]. In this limit large logarithms, log(s/|t|), appear in the perturbative expan-

sion at weak coupling, and their resummation dresses the t-channel propagator, leading to

an amplitude that behaves as (s/|t|)ω, where ω is the Regge trajectory. This behavior is

referred to as Reggeization, and directly predicts terms in the higher order perturbative

expansion of amplitudes, placing important constraints on their structure (see e.g. [17–21]

for applications). The Regge trajectory for the gluon is known to two loops in QCD [22–

26], and to three loops in non-planar N = 4 [27]. Recently there has been progress in

understanding the breaking of naive Reggeization, and Regge-cut contributions, leading

to a more complete picture of forward scattering at higher loops [28–32]. At the cross

section level the resummation is described by the Balitsky-Fadin-Kuraev-Lipatov (BFKL)

equation [8, 9].

A powerful approach for studying the limits of gauge theories is the use of effective field

theory (EFT) techniques. The framework of soft collinear effective theory (SCET) [33–

36] has been widely used to study the soft and collinear limits of QCD, including power

suppressed contributions in these limits (see e.g. [37–41]). Recently an EFT for forward

scattering [42] was developed in the framework of SCET, providing a systematic way of ana-

lyzing the Regge limit at higher perturbative orders and at higher powers in the expansion in

|t|/s. In [42], the leading power operators that describe the exchange of t-channel Glauber

gluons were derived, and it was shown that their rapidity renormalization [43, 44] gives

rise to amplitude level Reggeization and the cross section level BFKL equation. For other

approaches to studying the subleading power corrections in the Regge limit see [45–51].

In this paper we apply the EFT for forward scattering to the Reggeization of the quark.

This is interesting for a number of reasons. First, quark exchange in the t-channel provides

the leading contribution for certain flavor configurations in 2 → 2 forward scattering in

QCD, such as qq̄ → gg and qq̄ → γγ, and is thus important for understanding the behavior

of such amplitudes. Second, the Reggeization of the quark is power suppressed relative to

that of the gluon, and therefore provides a simple case for studying the structure of SCET at

subleading power in the Regge limit. Third, the application to quark Reggeization further

develops the operator based framework, which together with [42] provides a description of

the Regge limit for both quark and gluon exchanges which seamlessly interfaces with the

standard SCET for the study of hard scattering.

The study of the Reggeization of the quark has a long history. In QED, the photon

does not Reggeize due to the abelian nature of the theory, but the electron does, providing

the first field theoretic derivation of Regge phenomenon [1–4]. The BFKL equation for

e+e− → γγ has also been studied in QED [52]. In QCD, the Reggeization of the quark

has received less attention since it is at subleading power compared to the Reggeization

of the gluon. It was first studied in [53, 54], and Reggeization was proven to leading

logarithmic (LL) order in [55]. Under the assumption of Reggeization, the two-loop Regge

trajectory for the quark was derived in [56] from the next-to-next-to-leading order 2 → 2

scattering amplitudes in QCD [57–61]. Interestingly, to this order it is the same as the

Regge trajectory of the gluon, up to so-called Casimir scaling, i.e. replacing CA → CF .

The emphasis of this paper is the development of the EFT framework for forward scat-

tering, with the hope of facilitating progress in understanding the structure of the Regge
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limit of QCD. We derive the operators describing the t-channel exchange of a Glauber

quark in the Regge limit. These operators are fixed by the symmetries of the effective

theory, constraints from power and mass dimension counting, and explicit matching calcu-

lations. They describe certain soft and collinear gluon radiation to all orders, and have not

previously appeared in the literature. For a single emission, they reduce to the vertex of

Fadin and Sherman [53, 54], which is the analogue of the Lipatov vertex [6] for the case of

a Reggeized quark. As a demonstration of our framework, we verify explicitly at one-loop

that the rapidity renormalization of our potential operators leads to the Reggeization of

the quark at the amplitude level and to the BFKL equation at the cross section level, thus

providing another LL proof of these results but in the modern language of renormalization.

We also show that it is simple to derive results for amplitudes in the 6̄ and 15 color channels

by considering the simultaneous exchange of a Glauber quark and a Glauber gluon.

An outline of this paper is as follows. In section 2 we briefly review the formulation of

SCET with Glauber gluon operators from [42]. In section 3 we derive the structure of the

fermionic Glauber operators. We consider Glauber quark exchanges between two collinear

particles as well as between a collinear and a soft particle, and discuss their power counting.

We also give the relevant Feynman rules. In section 4 we perform a tree level matching

calculation onto the operators, which is sufficient to fix their precise form to all orders

in αs. In section 5 we derive the one-loop Reggeization of the quark using the rapidity

renormalization of the operators. We also show that rapidity finite contributions arising

from box graphs with both a Glauber quark and a Glauber gluon reproduce known results

in the 6̄ and 15 channel. In section 6 we derive the BFKL equation for qq̄ → γγ, and show

that it is equivalent to the standard BFKL equation up to Casimir scaling. We conclude

and discuss future directions in section 7.

2 SCET with Glauber operators

In this section we briefly review the structure of SCET with Glauber operators, follow-

ing [42]. This also allows us to define the notation used throughout the paper. We will

gloss over many subtleties in the construction of the effective theory, and refer the interested

reader to [42] for a more detailed discussion.

SCET is an effective theory of QCD that describes the interactions of collinear and

soft particles [33–36, 62]. Let us focus on the single lightlike direction relevant for 2 to

2 forward scattering (multiple lightlike directions are considered in [42]). We define two

reference vectors nµ and n̄µ such that n2 = n̄2 = 0 and n·n̄ = 2. Any momentum p can

then be written as

pµ = n̄·p n
µ

2
+ n·p n̄

µ

2
+ pµ⊥ . (2.1)

A particle is referred to as “n-collinear” if it has momentum p close to the ~n direction, or

more precisely, if the components of its momentum scale as (n·p, n̄·p, p⊥) ∼ (λ2, 1, λ). Here

λ � 1 is a formal power counting parameter, which is determined by the scales defining

the measurement or kinematic limits. We will write the SCET fields for n-collinear quarks

and gluons, as ξn(x) and An(x). In addition to describing collinear particles, SCET also
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describes soft particles, which have momenta that scale as (λ, λ, λ), and are described in

the EFT by separate quark and gluon fields, qs(x) and As(x). This theory is sometimes

called SCETII [63].

The SCET Lagrangian is expanded as

LSCET = Lhard + Ldyn = L(0) + L(0)
G +

∑
i≥0

L(i)
hard +

∑
i≥1

L(i) , (2.2)

with each term having a definite power counting, O(λi), denoted by the superscript. As

written, the SCET Lagrangian is divided into three different contributions. The L(i)
hard

contain hard scattering operators, and are derived by a matching calculation, and are

process dependent. The L(i) describe the long wavelength dynamics of soft and collinear

modes in the effective theory, and are universal. The leading power Glauber Lagrangian

L(0)
G describes interactions between soft and collinear modes in the form of potentials,

which break factorization unless they can be shown to cancel. It is derived in [42] and

discussed below.

Operators in SCET are formed from gauge invariant building blocks. The gauge in-

variant n-collinear quark and gluon fields are defined as

χn(x) =
[
W †n(x) ξn(x)

]
, Bµn⊥(x) =

1

g

[
W †n(x) iDµ

⊥Wn(x)
]
, (2.3)

with analogous definitions for n̄-collinear fields. The collinear Wilson line is given by

Wn =

[ ∑
perms

exp

(
− g

P̄
n̄ ·An(x)

)]
, (2.4)

where P is the so-called label operator, which picks out the large component of a given

momentum. These operators involve non-local Wilson lines, but are local at the scale of the

dynamics of the EFT. The gauge invariant soft fields are defined in a similar manner, with

Bn̄µS⊥ =
1

g
[S†n̄iD

µ
S⊥Sn̄] , BnµS⊥ =

1

g
[S†niD

µ
S⊥Sn] . (2.5)

These operators involve Wilson lines of soft gluons, and are non-local at the soft scale.

The leading power Glauber Lagrangian in SCETII [42] is given by

LII(0)
G = e−ix·P

∑
n,n̄

∑
i,j=q,g

OiBn
1

P2
⊥
OBCs

1

P2
⊥
OjCn̄ + e−ix·P

∑
n

∑
i,j=q,g

OiBn
1

P2
⊥
OjnBs , (2.6)

which gives contributions that scale as O(λ0). Glauber modes are not dynamical in the

EFT but are incorporated through 1
P2
⊥

potentials, which are instantaneous in the light cone

directions and non-local in the ⊥ direction. In eq. (2.6) the first term describes the scatter-

ing of n and n̄ collinear particles, while the second term describes the scattering of collinear

particles with soft particles. This Lagrangian is exact and does not receive matching cor-

rections in αs since no hard interactions are being integrated out [42]. Moreover, iterated

potentials are reproduced by time ordered products (T -products) in the effective theory.
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Each term in eq. (2.6) is written in a factorized form with gauge invariant operators

that sit at different rapidities. The n-collinear operators are given by

OqBn = χ̄nT
B /̄n

2
χn , OgBn =

i

2
fBCDBCn⊥µ

n̄

2
·(P + P†)BDµn⊥ , (2.7)

with n̄-collinear operators identical under the replacement n ↔ n̄. The soft operators are

given by

OBCs = 8παs

{
Pµ⊥S

†
nSn̄P⊥µ − P⊥µ gB̃

nµ
S⊥S

†
nSn̄ − S†nSn̄gB̃

n̄µ
S⊥P

⊥
µ

− gB̃nµS⊥S
†
nSn̄gB̃n̄S⊥µ −

nµn̄ν

2
S†nigG̃

µν
s Sn̄

}BC
,

OqnBs = 8παs

{
ψ̄nST

B /n

2
ψnS

}
,

OgnBs = 8παs

{
i

2
fBCDBnCS⊥µ

n

2
·(P + P†)BnDµS⊥

}
. (2.8)

In equation (2.6), the operator OBCs connects two operators of different collinear sectors,

and describes an arbitrary number of soft gluon emissions from the forward scattering.

For zero emissions, it reduces to 8παsP2
⊥δ

BC , which, together with the factors of 1/P2
⊥ in

eq. (2.6), reproduces the expected 1/P2
⊥ tree level Glauber potential between two collinear

partons. For a single emission, it reduces to the Lipatov vertex [6]. The Feynman rules for

two soft emissions can be found in [42].

SCET with Glauber operators provides an operator based formalism for studying

Glauber exchanges, and the Regge limit of QCD. For example, amplitude level Reggeiza-

tion and the BFKL equation can be derived in the EFT through the renormalization group

evolution of the operators [42]. The role of Glauber exchanges for factorization violation

can also be explicitly computed within this framework, as discussed in [42]. For exam-

ple, it was used in [64] to give direct computations of the collinear factorization violation

in spacelike splitting functions that was first found and computed in [65]. Higher order

leading power calculations in the framework used here were also made in [66].

3 Fermionic Glauber operators

Having reviewed SCET with Glauber gluon operators, in this section we extend the frame-

work to include Glauber quark operators. In section 3.1 we describe the structure of the

n− n̄ scattering operators, and in section 3.2 we describe the structure of the n-s scattering

operators. In section 3.3 we discuss the regulators beyond dimensional regularization that

are required for calculating with these operators at loop level. The precise structure of

the operators presented in this section are derived from the symmetries of the effective

theory, power counting and mass dimension constraints, and matching calculations, and

are discussed in detail in section 4.
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3.1 n-n̄ operator structure

In this section we present the structure of the n-n̄ scattering operators that describe the

forward scattering of partons in the n and n̄ collinear sectors through the t-channel exchange

of a Glauber quark. Analogous to the gluon case, in equation (2.6), we write the Lagrangian

in the factorized form

LII(1) ⊃ e−ix·P
∑
n,n̄

Ōn̄
1

/P⊥
Os

1

/P⊥
On , (3.1)

where On̄ and On describe fields in the collinear sectors, while Os describes fields in the

soft sector, which sits at an intermediate rapidity between the two collinear sectors. The

superscript II denotes that we are working in SCETII, and the superscript (1) denotes that

this will give contributions that scale as O(λ). The factors of /P⊥ indicate that this is a

non-local potential, and reflect the fermionic nature of the Glauber quark. We have kept

the color and Dirac indices implicit. To simplify the notation, we will often refer to the

operator as

On̄n = Ōn̄
1

/P⊥
Os

1

/P⊥
On . (3.2)

In equation (3.1), we have used the ⊃ notation to emphasize that this is only the

component of the subleading Lagrangian, L(1), that describes the t-channel exchange of

a Glauber quark. In particular, it does not describe O(λ) power corrections to the t-

channel exchange of a Glauber gluon, or of compound states. In general, there are other

operators consistent with the symmetries of the effective theory as well as with power and

mass dimension counting that can be written down. For example, in equation (3.1), one

may replace 1
/P⊥

with 1
P2
⊥

, and appropriately modify the numerator with an additional

derivative or gluon field to satisfy power and mass dimension counting. In section 4 we will

show that On̄n is sufficient for tree level matching, and therefore any additional operators

have vanishing Wilson coefficients at this order. Moreover, we find that the one-loop

renormalization of On̄n does not produce additional operators. Hence, equation (3.1) is

the complete basis of operators for describing quark Reggeization at LL order. We have not

ruled out the presence of additional fermionic exchange operators from one-loop matching,

and we leave the study of the general operator basis to future work.

The exchange of a quark necessarily changes the fermion number in each collinear

sector. In particular, there are 8 scattering configurations:

, (3.3)
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where the red dotted line denotes the Glauber quark. Importantly, in equation (3.1), there

is a sum over the directions n and n̄, as well as an implicit sum over the label momentum

P. This implies that all 8 possible collinear-collinear forward scattering configurations are

generated from equation (3.1). For scattering configurations that preserve fermion number

in each collinear sector, equation (3.1) contributes through T -products, starting at O(λ2)

with T -products of the above diagrams.

Changing the fermion number in each collinear sector implies that the collinear op-

erators appearing in equation (3.2) must contain a quark and a gluon at tree level. The

least suppressed collinear operators with this property in SCET will involve just one quark

and one gluon building block, since the collinear fields of eq. (2.3) scale as O(λ) so that

any additional field would bring additional suppression. Moreover the forward scattering

condition implies that any momentum structure between the quark and the gluon building

block is fixed so that the two building blocks are connected by a simple product. The

two objects should combine to spin-1/2, and the only non-vanishing object that does this

while preserving the desired parity and chirality properties is γµ⊥. Therefore the collinear

operators appearing in equation (3.2) are given by

On̄ = /B⊥n̄χn̄ , On = /B⊥nχn . (3.4)

(Additional factors of /n or /̄n introduced here can be eliminated in the combination in

eq. (3.2) by projection relations.) Having fixed the collinear operators, we can derive the

constraints on the soft operator Os:

• Counting mass dimensions, the two collinear operators are together dimension-5 while

the two Glauber quark potentials subtract two. Since the Lagrangian has mass

dimension four, the mid-rapidity soft operator must therefore have mass dimension

one.

• The Lagrangian, the collinear operators, and the Glauber quark potentials are all

RPI III invariant, and hence the soft operator must be RPI III invariant.

• The only operators to have mass dimension one that scale as O(λ0) are the label mo-

mentum operators n̄ ·P , n ·P , which are neither RPI III invariant nor soft operators.1

Therefore the soft operator must scale at least as O(λ).

• Given the quantum numbers of the collinear operators, the soft operator must be a

matrix in both color (in the fundamental representation) and in Dirac space.

• The soft operator must be soft gauge invariant.

These constraints imply that the most general mid-rapidity soft operator can be formed

only by the gluon gauge invariant building blocks BnS⊥ and Bn̄S⊥ of eq. (2.5) (the soft quark

operator ψS is suppressed), gauge invariant products of soft Wilson lines S†nSn̄, and P⊥, the

only RPI III invariant soft momentum operator. In section 4.3 we will fix the coefficients of

1All derivative operators in the soft sector scale as O(λ).
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= ūn̄(p3)/ε⊥(p2)TA
[
− ig2 1

/q⊥

]
/ε⊥(p4)TBun(p1)

= ūn̄(p3)/ε⊥(p2)TA
[
ig3 TC 1

/q⊥

(
γµ⊥ −

(/q⊥+/k⊥)nµ

n·k +
/q⊥n̄

µ

n̄·k

)
1

/q⊥+/k⊥

]
×/ε⊥(p4)TBun(p1)

= ūn̄(p3)/ε⊥(p2)TA
[
− ig4TCTD 1

/q⊥+/k1⊥+/k2⊥

(
nνγµ⊥
n·k2

− n̄µγν⊥
n̄·k1

+
(/q⊥+/k1⊥+/k2⊥) n̄µn̄ν

2n̄·(k1+k2)n̄·k1
+

/q⊥n
µnν

2n·(k1+k2)n·k1

− (/k1⊥+/q⊥)n̄µnν

n̄·k1 n·k2

)
1
/q⊥

+
{

(C, µ, k1)↔ (D, ν, k2)
}]
/ε⊥(p4)TBun(p1)

Figure 1. Feynman rules for tree level qg forward scattering with zero, one and two soft gluon

emissions, generated by the soft operator Os. Soft emissions at higher orders in αs are also produced

by Os.

the building blocks via a matching calculation and the resulting mid-rapidiy soft operator

for the glauber quark 3 rapidity Lagrangian will be shown to be

Os = −2παs

[
S†n̄Sn /P⊥ + /P⊥S

†
n̄Sn − S

†
n̄Sng/B

n
S⊥ − g/B

n̄
S⊥S

†
n̄Sn

]
. (3.5)

Note the identity

Pµ⊥S
†
n̄Sn − S

†
n̄SngB

nµ
S⊥ = S†n̄SnP

µ
⊥ − gB

n̄µ
S⊥S

†
n̄Sn , (3.6)

which enables rewriting the soft operator in eq. (3.5) in a more compact but less symmetric

form. The power counting of the operators is On ∼ On̄ ∼ λ2 and Os ∼ λ. Using the power

counting formula of [42] which subtracts 2 for a mixed n-n̄-soft operator, we then find that

Onn̄ contributes at O(λ) as stated above.

The structure of the soft operator Os in equation (3.5) is significantly simpler than for

the gluon case, OBCs in equation (2.8), due to the difference in mass dimension between

fermionic and bosonic propagators. In the gluon case, Os is exact: it is not corrected at

higher orders in perturbation theory since Glauber exchange is instantaneous in both time

and longitudinal position, and there is no hard contribution that is integrated out [42].

While we expect this to be the case here, due to the possibility of the additional operators

mentioned below equation (3.2) appearing at higher orders, and the behavior of power

suppressed terms from loop diagrams, it is more complicated to show that this is true in

this case, and we leave it to future work.

The soft operator Os describes the emission of soft gluons from the forward scattering

to all orders in αs. The Feynman rules for qg forward scattering with zero, one and two

soft gluon emissions are given in figure 1. The one emission Feynman rule gives the classic

– 8 –
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result of Fadin and Sherman [53, 54], which we will refer to as the Fadin-Sherman vertex.

The two emission Feynman rule has not, to our knowledge, appeared in the literature

before. It will be required in our derivation of the quark Reggeization through rapidity

renormalization (although only a particularly simple projection appears).

3.2 n-s operator structure

In addition to the n-n̄ scattering operators, the effective theory also includes operators

that describe n-s (and n̄−s) forward scattering. We write the Lagrangian for soft collinear

forward scattering as

LII(1/2)
G ⊃ e−ix·P

∑
n

Ōn
1

/P⊥
Ons + Ōns

1

/P⊥
On . (3.7)

Here the superscript 1/2 indicates that this Lagrangian contribution scales as O(λ1/2)

relative to the leading power contribution. These operators play an important role in

the rapidity renormalization, contributing through T -products in the effective theory. In

particular, their contribution scales as O(λ1/2) ·O(λ1/2) = O(λ), which is at the same order

as the n-n̄ forward scattering operators. We will use the shorthand

Ons = Ōn
1

/P⊥
Ons . (3.8)

As in equation (3.1), we have used the ⊃ symbol in equation (3.7) to emphasize that

this is not the complete Lagrangian at O(λ1/2), and includes only the operators required

for describing quark Reggeization at LL order

In equation (3.7), the sum over the direction n, the implicit sum over the label mo-

mentum P, and the presence of both Ons and its hermitian conjugate generates all possible

scattering configurations, namely:

. (3.9)

The On operators in equation (3.7) are identical to those in equation (3.4). The Ons
operators have a similar structure, but we include a prefactor that arises from tree level

matching:

Ons = −4παs/B
n
⊥Sψ

n
S , Ōns = −4παsψ̄

n
S /B

n
⊥S . (3.10)

The power counting of the operators is On ∼ On̄ ∼ λ2 and Ons ∼ On̄s ∼ λ3/2. Using the

power counting formula of [42], where we subtract 3 for a mixed n-soft or n̄-soft operator,

we then find that Ons gives a contribution scaling as O(λ1/2), as stated.
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3.3 Regulators for rapidity and Glauber potential singularities

As discussed extensively in [42], the Glauber Lagrangian requires both the regularization

of rapidity divergences, as well as the regularization of divergences associated with Glauber

exchanges. Here we use identical regulators to those defined in [42].

Rapidity divergences are regulated using the η-regulator of [43, 44]. In this regulator

the soft and collinear Wilson lines are modified as

Sn =

[ ∑
perms

exp

(
− g

n · P
ω|2Pz|−η/2

ν−η/2
n ·As(x)

)]
,

Wn =

[ ∑
perms

exp

(
− g

n̄ · P
ω2|n̄ · P|−η

ν−η
n̄ ·An(x)

)]
, (3.11)

with analogous modifications for Sn̄ and Wn̄. Here ω is a formal bookkeeping parameter

which satisfies

ν
∂

∂ν
ω2(ν) = −η ω2(ν) , lim

η→0
ω(ν) = 1 . (3.12)

For convenience we set ω = 1 throughout our calculations since it can be trivially restored.

Singularities from Glauber exchanges are also regulated using the η-regulator. In

particular, a factor of ω|2qz|−ηνη is included for each Glauber exchange, where q is the

Glauber momentum. This can be formulated at the level of the Glauber Lagrangian, and

can be shown to be routing independent [42]. We regulate divergences associated with

Glauber quarks in an identical manner, and show the consistency of this regulator at

one-loop through our calculations of the Reggeization, the BFKL equation, and the box

diagrams with simultaneous exchange of a Glauber quark and a Glauber gluon.

4 Tree level matching

In this section we consider tree level matching between QCD and SCET. This, combined

with the symmetries of the effective theory as well as constraints from power and mass

dimension counting, will allow us to fix the structure of the operators, as given in the

previous section. In section 4.1 and section 4.2 we perform the matching with zero soft

emissions. In section 4.3 we present the most general form of the soft operator Os, and fix

its structure with tree level matching.

We will use the following alternative notation for Feynman diagrams involving Glauber

quark exchange, distinguishing the Glauber quark exchange from a Glauber gluon exchange

by including an arrow on the red dotted line:

≡ , ≡ , (4.1)

where we have illustrated with particular configurations of n-n̄ and n-s scattering. The

notation with the red dotted line shows the t-channel exchange explicitly, while the

notation with the red elliptical blob emphasizes the potential nature of the forward

scattering operators.
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4.1 n-n̄ scattering

We begin with the matching for the n-n̄ scattering operator. For definiteness, we take the

configuration q(pn1 ) + g(pn̄2 )→ g(pn4 ) + q(pn̄3 ), and choose our momenta as

p1⊥ = −p4⊥ = q⊥/2 , p2⊥ = −p3⊥ = −q⊥/2 . (4.2)

For this choice, the positive q⊥ is aligned with the fermion number flow. Expanding the

full theory result in the forward limit, we find

= −4πiαsūn̄(p3)/ε⊥(p2)TA
/q⊥
q2
⊥
/ε⊥(p4)TBun(p1) . (4.3)

This is reproduced in the effective theory by the zero emission Feynman rule of the forward

scattering operator On̄n:

= 〈On̄n〉 =

〈
χ̄n̄/B⊥n̄

1

/P⊥
(−4παs /P⊥)

1

/P⊥
/B⊥nχn

〉
. (4.4)

In particular, this defines the normalization of the soft operator Os with zero emissions,

but does not probe the structure of the soft Wilson lines or the soft gluon fields within Os.

4.2 n-s scattering

The expansion of the full theory diagram in equation (4.3) also fixes the structure of the

n-s operators. In particular, we immediately see that it is reproduced by the zero emission

Feynman rule of the forward scattering operator On̄s:

= 〈On̄s〉 =

〈
χ̄n̄/B⊥n̄

1

/P⊥

(
−4παs/B

n̄
⊥Sψ

n̄
S

)〉
. (4.5)

This simple matching, combined with constraints from power counting, mass dimension

and the symmetries of the effective theory, therefore fixes the form of the operators Ons
and On̄s. Once again these are the only operators that appear from tree level matching.

4.3 Matching to the soft operator

To derive the precise structure of the soft operator Os, we must consider matching with soft

gluon emissions. We begin by deriving the most general form of the soft operator consistent

with constraints from power counting, mass dimension and the symmetries of the effective

theory. We then use matching calculations to fix the free coefficients in the operator.

As discussed in section 3.1, the soft operator must have mass dimension 1, scale as

O(λ), and be composed of gauge invariant building blocks in the effective theory such as

P⊥, Bn⊥, Bn̄⊥ and Wilson lines. Since the total ⊥ momentum of the Lagrangian is zero,

we have P⊥ = P†⊥, and therefore we can choose to write the operator in terms of P⊥.

– 11 –
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Hermiticity requires that the operator satisfies (up to γ0 factors that are absorbed by the

collinear operators in On̄n)

Os = O†s
∣∣
n↔n̄ . (4.6)

The above constraints do not prohibit the appearance of an arbitrary number of soft Wilson

lines since these have mass dimension 0 and scale as O(λ0). However, due to the physical

picture of these Wilson lines as arising from the emission of gluons off the partons involved

in the forward scattering, we will require that each term in the soft operator has two

Wilson lines. These soft Wilson lines can appear both explicitly, as well as inside the

gauge invariant soft gluon fields, defined in equation (2.5), and both must be counted. The

constraint of having two soft Wilson lines leads to the following allowed combinations:

S†n̄SnB
nµ
S⊥ , Bn̄µS⊥S

†
n̄Sn , BnµS⊥S

†
nSn̄ , S†nSn̄B

n̄µ
S⊥ . (4.7)

Given these constraints, the most general structure of the operator is

Os = −4παs

[
C1

2

(
g/Bn⊥sS†nSn̄ + S†nSn̄g/B

n̄
⊥s

)
+
C2

2

(
S†n̄Sng/B

n
S⊥ + g/Bn̄S⊥S

†
n̄Sn

)
+
C3

2

(
S†nSn̄ /P⊥ + /P⊥S†nSn̄

)
+
C4

2

(
S†n̄Sn /P⊥ + /P⊥S

†
n̄Sn

)]
. (4.8)

The tree level matching with zero emission in section 4.1 gives the relation

C3 + C4 = 1 . (4.9)

In the next section, we derive additional coefficient relations by considering soft emissions,

which probe the structure of the soft Wilson lines and the soft gluon fields. Note that the

general form of the soft operator in equation (4.8) includes both combinations S†nSn̄ and

S†n̄Sn. In the Glauber gluon case, the soft operator OBCs in equation (2.8) has only one of

these combinations, corresponding to the ordering of the operators OiBn , OBCs and OjCn̄ in

equation (2.6). We will see that this also holds in the Glauber quark case, and in particular

we will show that C1 = C3 = 0 for the ordering of operators in equation (3.1).

4.3.1 One soft emission

The single emission diagrams in the full theory and effective theory are shown in figure 2.

Expanded to a single emission with outgoing momentum k, the soft operator is given by

Os = − 4παs

[
(C1 + C2)g /As⊥

−
(
C1

2
+
C2

2

)(
gTAn ·AAsk

n · k
+
gTAn̄ ·AAsk

n̄ · k

)
(/q⊥ + /k⊥)

−
(
C3

2
− C4

2

)(
gTAn ·AAsk

n · k
−
gTAn̄ ·AAsk

n̄ · k

)
(/q⊥ + /k⊥)

+

(
C1

2
+
C2

2

)
/q⊥

(
gTAn ·AAsk

n · k
+
gTAn̄ ·AAsk

n̄ · k

)
−
(
C3

2
− C4

2

)
/q⊥

(
gTAn ·AAsk

n · k
−
gTAn̄ ·AAsk

n̄ · k

)]
. (4.10)
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a)

b)

Figure 2. (a) Full theory and (b) effective theory graphs with a single soft emission. We refer to

the effective theory vertex as the Fadin-Sherman vertex since it first appeared in [53, 54].

To fix C1 + C2, we only need the perpendicular polarization, which comes from the full

theory diagram

= i4παsūn̄/ε⊥T
A /q⊥
q2
⊥
γρ⊥T

c
(/q⊥ + /k⊥)

(q⊥ + k⊥)2 /ε⊥T
Bun . (4.11)

In the effective theory, we have

= −i4παs(C1 + C2)ūn̄/ε⊥T
A /q⊥
q2
⊥
γρ⊥T

c
(/q⊥ + /k⊥)

(q⊥ + k⊥)2 /ε⊥T
Bun , (4.12)

and thus the constraint from matching is

C1 + C2 = −1 . (4.13)

The Wilson line structure is probed using the n ·A and n̄ ·A polarizations of the emission.

From the remaining four diagrams in the full theory, we find

+ + +

= −i4παsūn̄/ε⊥T
A

[(
gTAn ·AAsk

n · k

)
(/q⊥ + /k⊥)− /q⊥

(
gTAn̄ ·AAsk

n̄ · k

)]
/ε⊥T

Bun . (4.14)

Upon comparing with equation (4.10), we derive the relation

C1 + C2 = (C3 − C4) . (4.15)
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The constraints derived from zero and one emission matching, given in eqs. (4.9), (4.13)

and (4.15), have the solution C1 +C2 = −1, C3 = 0 and C4 = 1. The remaining degeneracy

between the coefficients C1 and C2 can be broken by matching with two soft emissions.

4.3.2 Two soft emissions

The double emission diagrams in the full theory and effective theory are shown in figure 3.

Note that the operators for n-s and n̄-s forward scattering enter the matching through

T -product contributions.

Instead of performing the complete two emission matching, we will assume that only

one ordering of Wilson lines appears, as in the case of the leading power Glauber Lagragian

LII(0)
G . This is motivated also by the patterns found in one emission matching as well as

the structure of diagrams in figure 3 for the two emission matching. We leave a general

proof of this statement to future work. Under this assumption, we have C1 = 0, which

completely fixes the form of our soft operator to the final form given in equation (3.5):

Os = −2παs

[
S†n̄Sn /P⊥ + /P⊥S

†
n̄Sn − S

†
n̄Sng/B

n
S⊥ − g/B

n̄
S⊥S

†
n̄Sn

]
. (4.16)

The particular ordering of the Wilson lines, S†n̄Sn, appearing in Os in equation (3.5)

corresponds to the ordering of the collinear and soft operators in equation (2.6), and to

the scattering configuration employed in our matching. The soft operator written with the

opposite ordering is obtained simply by the replacement n↔ n̄ in equation (3.5).

5 Quark reggeization from rapidity renormalization

In this section we consider the renormalization of the Glauber operators to derive the

Reggeization of the quark. The renormalization should be done at the level of the squared

amplitude, including both virtual and real contributions, to obtain IR finite results. Nev-

ertheless, with careful interpretation of the IR divergences, the virtual diagrams can be

examined at the amplitude level, and we will see that the solution to the rapidity renor-

malization group equation (RGE) corresponds to the Reggeization of the quark.

For quark-gluon scattering, we can decompose the color structure of the t-channel

exchange as 3 ⊗ 8 = 3 ⊕ 6̄ ⊕ 15. Explicitly, if we decompose the amplitude using the

color basis

M = 2
(
TATB

)
ij
A+ 2

(
TBTA

)
ij
B + δABδijC , (5.1)

then the contributions to the 3, 6̄ and 15 color structures are given by [56],

M3 = 2CFA−
1

N
B + C , (5.2)

M6̄ = −B + C , (5.3)

M15 = B + C . (5.4)

In this section we will focus on the Reggeization of the 3 channel at LL order, which corre-

sponds to dressing the tree-level t-channel quark exchange. In the study of Reggeization,
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a)

b)

Figure 3. (a) Full theory and (b) effective theory graphs with two soft emissions. In the effective

theory, the first three graphs are T -product contributions, and the fourth graph is the two emission

Feynman rule from the Fadin-Sherman vertex.

it is conventional to also decompose the amplitude so that it has a definite signature under

crossing, i.e., M± = 1
2 [M±M(s↔ t)]. Indeed, it is known that it is the positive sig-

nature 3 channel that builds upon the lowest order quark exchange and Reggeizes at LL

order. The negative signature channel is suppressed by an αs, and has a series that starts

at next-to-leading logarithmic (NLL) order, which is beyond the order we are working.

In section 5.1 we setup the notation and present the structure for the renormalization of

the Glauber quark operators. We also derive consistency relations among the anomalous

dimensions of the soft and collinear operators, which provide important checks on our

calculation. In sections 5.2 and 5.3 we compute the anomalous dimension of the collinear
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and soft operators. In section 5.4 we solve the RGE and demonstrate the Reggeization of

the quark.

The 6̄ and 15 channels are generated by the simultaneous exchange of both a Glauber

quark and a Glauber gluon. These diagrams are rapidity finite at lowest order, and will be

considered in section 5.5.

5.1 RG structure and consistency relations

For the collinear sector, there is no mixing and the renormalization has the structure

O bare
n = VOnOn , VOn = (1 + δVn) , (5.5)

with analogous relations for the n̄ sector. Following [42], we use the notation “V ” instead

of the traditional “Z” for renormalization factors to remind the reader that these are only

virtual contributions and may still depend on IR regulator.

For the soft operator Ons , there is no mixing and we have

On bare
s = VOnsO

n
s , VOns = (1 + δV n

s ) , (5.6)

with analogous relations for the n̄ sector. For the soft operator Os, the renormalization

group structure is more complicated due to mixing with T -products of Ons and On̄s . This is

discussed in detail for the Glauber gluon case in [42]. The structure in our case is given by

~O bare
s = V̂Os · ~Os ,

~Os =

(
Os

i
∫
d4x T On̄s (x)Ōns (0)

)
, V̂Os =

(
1 + δVs 0

δV T
s VOn̄s VŌns

)
. (5.7)

Importantly, due to the relative difference in the power counting of Os to that of On̄s and

Ons , both components in ~Os are the same order in the power counting.

The renormalization group structure above, for both the collinear and soft sectors, is

simpler than for the case of Glauber gluon operators, which involves mixing between quark

and gluon operators that leads to the universality of Reggeization [42]. In the present case,

there is only a non-trivial mixing in the soft sector.

The µ and ν anomalous dimensions are derived by demanding the µ and ν invariance

of the bare operators as usual. Since our operators do not have Wilson coefficients and the

soft and collinear fields are at the same µ scale, we expect their µ anomalous dimension to

vanish, as in the case of L(0)
G [42]. Therefore, we focus here on the ν anomalous dimensions,

which give rise to rapidity renormalization, and the Reggeization.

We have the standard relations

Obare = VO · O(ν, µ) , ν
∂

∂ν
O(ν, µ) = γνO · O(ν, µ) , γνO = −V −1

O · ν ∂
∂ν
VO , (5.8)

for O = On ,Ons ,Os and for the operators describing the n̄ sector. For the soft operator

Os, which undergoes mixing, the anomalous dimension has the form

γ̂νOs =

(
γdir
sν 0

γTsν γνOn̄s
γνŌns

)
. (5.9)
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a) b) c) d)

Figure 4. One-loop virtual contributions to the renormalization of the collinear operator On. The

V graphs are labeled a) and b), and the Wilson line graphs are labeled c) and d).

The fact that there is no overall ν dependence in n-n̄ scattering and n-s scattering

leads to relations among the anomalous dimensions. The consistency for n-n̄ scattering is

derived at the level of the time evolution operator, and one must consider all possible con-

tributions from T -products involving LII(0)
G , LII(1/2), and LII(1). At one-loop, this simplifies

considerably, and we have

ν
∂

∂ν

(
On̄n + i

∫
d4x T On̄s(x) · Ōns(0)

)
= 0 . (5.10)

Note again that this has homogeneous power counting. By differentiating the time evolution

of the n-n̄ scattering and the n-s scattering, we can derive the following relations between

anomalous dimensions

γνOn = γνOn̄ , γdir
sν + γTsν = −γνOn − γ

ν
On̄ , γνOns = −γνOn . (5.11)

5.2 One-loop virtual anomalous dimension for the collinear operator

In this section we compute the one-loop virtual contributions to the renormalization of the

collinear operator On. The two types of contributions are shown in figure 4, which we refer

to as V graphs and Wilson line graphs. All the integrals can be evaluated following [42],

and we therefore only give the final results. It is sufficient to consider external gluons with

perpendicular polarization, which simplifies the calculation. We employ a gluon mass, m,

as an IR regulator to ensure that all poles in ε are of UV origin. The IR regulator will

explicitly appear in the rapidity anomalous dimension γνOn , and in the Regge trajectory.

In the following, we display only contributions to the 1/η pole (e.g., ignoring coupling

and wavefunction renormalization), and denote finite pieces with ellipses. For the V graphs,

we find

Figure 4a = (4παs)
2(2CF − CA)ūn̄γ

µ
⊥T

A /q⊥
q2
⊥

×
∫
d̄dk

ιεµ2ε|n̄ · k|−ηνη/k⊥(/k⊥ + /q⊥)n̄ · p1

(k2 −m2)(k + q)2(k + p1)2n̄ · k
γν⊥T

Bun + . . .

= −i4παsūn̄γµ⊥T
A /q⊥
q2
⊥
γν⊥T

Bun
αs
2π

(
CF −

CA
2

)
g(ε, µ2/t)

η
+ . . . , (5.12)

Figure 4b = −(4παs)
2CAūn̄γ

µ
⊥T

A /q⊥
q2
⊥

×
∫
d̄dk

ιεµ2ε|n̄ · k|−ηνη/k⊥(/k⊥ + /q⊥)n̄ · p4

(k2 −m2)(k + q)2[(k − p4)2 −m2]n̄ · k
γν⊥T

Bun + . . .

= −i4παsūn̄γµ⊥T
A /q⊥
q2
⊥
γν⊥T

Bun
αs
2π

CA
2

g(ε, µ2/t)

η
+ . . . , (5.13)
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where

g(ε, µ2/t) = eεγE
(
µ2

−t

)ε
cos(πε)Γ(−ε)Γ(1 + 2ε) . (5.14)

These results are independent of the IR regulator m, with t regulating the IR region. For

the Wilson line graphs, we find

Figure 4c = −(4παs)
2(2CF − CA)

×
∫
d̄dk

ιεµ2ε|n̄ · k|−ηνηn̄ · p1

(k2 −m2)(k + p1)2n̄ · k
ūn̄γ

µ
⊥T

A /q⊥
q2
⊥
γν⊥T

Bun + . . .

= −i4παsūn̄γµ⊥T
A /q⊥
q2
⊥
γν⊥T

Bun
αs
2π

(
CF −

CA
2

)
h(ε, µ2/m2)

η
+ . . . , (5.15)

Figure 4d = −(4παs)
2CA

×
∫
d̄dk

ιεµ2ε|n̄ · k|−ηνηn̄ · p4

(k2 −m2)(k + p4)2n̄ · k
ūn̄γ

µ
⊥T

A /q⊥
q2
⊥
γν⊥T

Bun + . . .

= −i4παsūn̄γµ⊥T
A /q⊥
q2
⊥
γν⊥T

Bun
αs
2π

CA
2

h(ε, µ2/m2)

η
+ . . . , (5.16)

where

h(ε, µ2/m2) = eεγE
(
µ2

m2

)ε
Γ(ε) . (5.17)

Here we see an explicit dependence on the IR regulator m. Note that the CA dependence

of the 1/η pole cancels in the sum for both the V graphs and Wilson line graphs. Upon

summing all diagrams in figure 4, we find

δVn =
αsCF

2π

[
g(ε, µ2/t) + h(ε, µ2/m2)

η

]
,

γνOn =
αsCF

2π

[
g(ε, µ2/t) + h(ε, µ2/m2)

]
=
αsCF

2π
ln

(
−t
m2

)
, (5.18)

where we expanded in ε in the final result for γνOn . This result is the same as for the

Glauber gluon case up to Casimir scaling.

5.3 One-loop virtual anomalous dimension for the soft operator

The result for the anomalous dimension γνOn in eq. (5.18), along with the relations in

eq. (5.11), specify the complete set of anomalous dimensions for our operators. Nonetheless,

in this section we explicitly compute the renormalization of the soft operator Os, verifying

the structure of the operator mixing and the result for the combination γdir
sν + γTsν .

The relevant diagrams are shown in figure 5, which we refer to as the flower graph, and

the eye graph. As in the previous section, all integrals can be performed using techniques

from [42], so we present only the final results, and again we keep only terms that contribute

to the 1/η pole, as required for the rapidity renormalization. For the flower diagram, we
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a) b)

Figure 5. One-loop virtual contributions to the renormalization of the soft operator Os. The

flower graph is labeled a) and the eye graph is labeled b).

find

Figure 5a = −(4παs)
22CF ūn̄γ

µ
⊥T

A /q⊥
q2
⊥
γν⊥T

Bun

∫
d̄dk

ιεµ2ε|2kz|−ηνη

(k2 −m2)n · kn̄ · k
+ . . .

= −i4παsūn̄γµ⊥T
A /q⊥
q2
⊥
γν⊥T

Bun

[
−αs
π
CF

h(ε, µ2/m2)

η

]
+ . . . . (5.19)

For the eye diagram, we find

Figure 5b = −(4παs)
22CF ūn̄γ

µ
⊥T

A /q⊥
q2
⊥

×

[∫
d̄dk

ιεµ2ε|2kz|−ηνη/k⊥(/k⊥ + /q⊥)/k⊥

(k2 −m2)(k + q)2n · kn̄ · k

]
/q⊥
q2
⊥
γν⊥T

Bun + . . .

= −i4παsūn̄γµ⊥T
A /q⊥
q2
⊥
γν⊥T

Bun

[
−αs
π
CF

g(ε, µ2/t)

η

]
+ . . . . (5.20)

These results determine the counterterms and anomalous dimensions as

δVs = −αs
π
CF

h(ε, µ2/m2)

η
, δV T

s = −αs
π
CF

g(ε, µ2/t)

η
,

γdir
sν = −αs

π
CFh(ε, µ2/m2) , γTsν = −αs

π
CF g(ε, µ2/t) , (5.21)

consistent with those for the collinear sector. In the next section, we will solve the RGE

and see that the anomalous dimension fixes the form of the Regge trajectory.

5.4 Solving the rapidity RGE

With the anomalous dimensions in hand, it is now straightforward to achieve amplitude

level Reggeization through solving the rapidity RGE. We have the rapidity anomalous

dimensions γνOn for the collinear operator On and γdir
sν +γTsν for the soft operator Os, which

satisfy the required consistency relations in eq. (5.11), This ensures that we can equivalently

either run the collinear operators to the soft scale, or the soft operators to the collinear

scale. We choose to run the collinear operators to the soft scale. The rapidity RGE is

given by

ν
d

dν
On(ν) = γνOnOn(ν) , (5.22)
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where the argument explicitly denotes the dependence on the ν scale (the µ scale does not

enter our analysis). Since the anomalous dimension is independent of ν, the solution is

On
(√
−t
)

=

(
s

−t

)− 1
2
γνOn
On
(√
s
)
, (5.23)

with an analogous expression for the n̄-collinear sector. Upon substituting the evolved

collinear operators into the forward scattering operator, we find

Onn̄ =

(
s

−t

)−αs(µ)CF
2π

log
(
−t
m2

)
Ōn
(√
s
) 1

/P⊥
Os
(√
−t
) 1

/P⊥
On̄
(√
s
)
, (5.24)

which is the one-loop Reggeization of the quark. We emphasize again that we have not

decomposed this result into amplitudes of definite signature. At LL order, log(s/|t|) and

log(−s/|t|) are equivalent, and only differ at NLL order. The one-loop Regge trajectory

for the quark is given by the exponent in equation (5.24):

ωq = −αs(µ)CF
2π

log

(
−t
m2

)
, (5.25)

which agrees with the known result [53, 56]. Here it emerges directly from the rapidity

renormalization of operators in the SCET subleading power Lagrangian. The one-loop

quark Regge trajectory is identical to that for the gluon up to Casimir scaling, CA → CF .

In a physical cross section, the dependence on the IR cutoff m is cancelled by real emission

diagrams, leading to an IR finite result. In section 6, we will consider Reggeization at the

cross section level for qq̄ → γγ, which will lead to the IR finite BFKL equation.

5.5 Glauber boxes

So far, in this section we have focused on the structure of the rapidity divergent contri-

butions, which lead to the Reggeization of the 3 color channel. At O(α2
s) there are also

non-vanishing contributions to the 6̄ and 15 color channels, which are known in the liter-

ature [56]. In this section, we show that these are reproduced in a very simple manner in

our framework by the simultaneous exchange of a Glauber quark and a Glauber gluon, as

shown in figure 6.

As discussed in detail in [42], the box graphs with Glauber scaling for the loop momen-

tum require the rapidity regulator |2kz|−ηνη to make them well defined (but are indepen-

dent of η as η → 0). In particular, the Glauber cross box diagram vanishes due to having

poles in k0 on the same side of the contour. This is crucial since the box and cross box

diagrams have different color factors, and thus illustrates the nontrivial mapping between

the calculations in the EFT defined with our regulator, and full QCD. The ability to repro-

duce the known results for the 6̄ and 15 channels therefore provides a non-trivial test of the

regulator, and of the EFT simultaneously involving quark and gluon Glauber operators.

Since the Glauber cross boxes shown in figure 6c and figure 6d vanish, we only compute

the boxes shown in figure 6a and figure 6b. The k0 and kz integrations are the same as

for the box graphs with only Glauber gluons considered in [42], while the k⊥ integration
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a) b) c) d)

Figure 6. Graphs contributing to the 6̄ and 15 color structures of the t-channel exchange. The

cross box diagrams labeled c) and d) vanish with our regulator.

is modified by the presence of the Glauber quark. Employing the results for the integrals

in [42], we find

Figure 6a = −δABδij2π2α2
sūn̄γ

µ
⊥

[(
−i
4π

)∫
d̄d−2k⊥/k⊥(−iπ)

~k2
⊥(~k⊥ + ~q⊥)2

]
γν⊥un , (5.26)

Figure 6b = δABδij2π
2α2

sūn̄γ
µ
⊥

[(
−i
4π

)∫
d̄d−2k⊥(/k⊥ + /q⊥)(−iπ)

~k2
⊥(~k⊥ + ~q⊥)2

]
γν⊥un . (5.27)

Just like for the exchange of two Glauber gluons, these box diagrams yield “iπ” factors

that are characteristic of Glauber loops. Here we have simplified the color structure as

(TDTATC)ijf
BCD = iδABδij/4. The sum of the diagrams is

Figure 6a + Figure 6b =

[
−i4παsūn̄γµ⊥

/q⊥
q2
⊥
γν⊥un

]
δABδij

αs
4π

[
−1

ε
− log

µ2

−t

]
(−iπ) . (5.28)

From eq. (5.28) we find a nonzero contribution to the color amplitude C in the decompo-

sition of eqs. (5.1)–(5.4), and thus the contributions to the 6̄ and 15 color structures are

M6̄ =M15 =

[
−i4παsūn̄γµ⊥

/q⊥
q2
⊥
γν⊥un

]
αs
4π

[
−1

ε
− log

µ2

−t

]
(−iπ) , (5.29)

which agrees with the results of [56] upon accounting for conventions.

6 BFKL for qq̄ → γγ

In this section we consider the application of Glauber quark operators for qq̄ → γγ for-

ward scattering. In QED, fermion Reggeization in the process e+e− → γγ was studied

in [52]. Here we will follow the framework laid out in [42], where the BFKL equation was

derived from the rapidity renormalization of Glauber gluon operators at the cross section

level. With Glauber operators in the effective theory, one can no longer factorize soft and

collinear dynamics to all orders. However, with any fixed number of Glauber exchanges,

the factorization is still possible, and therefore one can consider an expansion in the number

of Glauber operator insertions. The first term in this expansion has a single Glauber gluon

on either side of the cut and is referred to as the Low-Nussinov Pomeron approximation.

This was used in [42] to derive the BFKL equation at LL order.

Unlike for the gluon BFKL, where one must consider an arbitrary number of Glauber

operator insertions, for the case of quark Reggeization, the Glauber quark operators have an
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a) b) c)

Figure 7. Graphs contributing to the LL order evolution of the soft function S(q⊥, q
′
⊥). The real

contribution is labeled a), and the virtual contributions are labeled b) and c). The black dashed

line represents the final state cut.

explicit power suppression, and therefore cannot be iteratively inserted. Instead, we must

consider a single quark Glauber operator insertion on either side of the cut plus an arbitrary

number of Glauber gluon operator insertions with L(0)
G . To proceed, one must therefore

still expand in the number of leading power Glauber gluon exchanges. To LL accuracy

the situation simplifies significantly, and we only need to consider the factorization of the

forward scattering matrix element with a single quark Glauber insertion on either side of

the cut. Following [42], we can write the transition matrix element as

T q(1,1) =

∫
d2q⊥d

2q′⊥C
q
n(q⊥, p

−)Sq(q⊥, q
′
⊥)Cqn̄(q′⊥, p

′+) , (6.1)

where Cqn(q⊥, p
−) and Cqn̄(q′⊥, p

′+) are squared collinear matrix elements and Sq(q⊥, q
′
⊥) is

a squared soft matrix element. The subscript (1, 1) indicates that there is a single quark

Glauber exchange on either side of the cut and the q superscript distinguishes these matrix

elements from the matrix elements of operators of L(0)
G describing Glauber gluon exchange

from [42]. In evaluating the matrix elements above, large logs arise due to the interplay of

collinear modes whose natural rapidity scale is
√
s and soft modes whose natural rapidity

scale is
√
−t. We will resum these logs by considering the renormalization of the transition

amplitude T q(1,1) at LL order, and we will find that the resulting evolution equation is the

same as the BFKL equation [8, 9] up to Casimir scaling.

6.1 BFKL equation for the soft function

Let us choose the rapidity scale in the renormalized transition matrix element T q(1,1)(ν)

to be ν =
√
s, and consider the running of the soft function from ν =

√
−t to ν =

√
s

to resum the large logs. This requires the one-loop real and virtual diagrams shown in

figure 7. In addition to these diagrams, there are also diagrams involving a Glauber gluon,

and real soft quarks crossing the cut, coming from a power suppressed SCET Lagrangian.

It is straightforward to show that such contributions are not rapidity divergent, which is

expected, since the analogous virtual graphs are not associated with the Reggeization of the

quark. For the calculations in this section we drop the mass regulator since IR divergences

will cancel between the real and virtual contributions, and we set d = 4 since only rapidity

divergences are relevant for our analysis.
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We define the soft function as

Sq(q⊥, q
′
⊥) = −(2π)4

V2

δii
′
δjj
′

qµ⊥q
′ν
⊥γ
{µ
αᾱγ

†ν}
ββ̄

∑
X

〈0|Oijsαᾱ(q⊥, q
′
⊥)|X〉〈X|O†i

′j′

sββ̄
(q⊥, q

′
⊥)|0〉 , (6.2)

where the volume factor is V2 = (2π)2δ2(0), the color indices i, j, i′, j′ and fermionic indices

α, ᾱ, β, β̄ have been made explicit, and for normalization we divide out by −qµ⊥q
′ν
⊥γ
{µ
αᾱγ

†ν}
ββ̄

=

−1
2{/q
′
⊥/q
†
⊥ + /q⊥/q

′†
⊥}.

We now compute the tree level and one-loop real and virtual contributions to the

soft function. At tree level, the matrix element of the soft operator and the soft function

obtained from squaring it are

〈0|Oijs |0〉 = −i4παs/q⊥δ
2(~q⊥ + ~q′⊥)δij , Sq0(q⊥, q

′
⊥) = (4παs)

2δii(2π)2δ2(~q⊥ + ~q′⊥) .

(6.3)

For the O(αs) real contribution shown in figure 7a, we compute the square of the

one-gluon Feynman rule from the Fadin-Sherman vertex. Upon summing over gluon po-

larizations in Feynman gauge, we find

(2π)4

V2
〈0|OijS |g〉〈g|O

ij†
S |0〉 = −(4παs)

32CF δ
ii(2π)2δ2(~q⊥+~q′⊥+~k⊥)

{/q′⊥/q
†
⊥ + /q⊥/q

′†
⊥}

n · kn̄ · k
+ · · · ,

(6.4)

where we have dropped the term having γµαᾱ⊥γ
†µ
ββ̄⊥, which is rapidity finite. Using this

result in eq. (6.2) we find the contribution to the soft function

Sq,real
1 =

αsCF
π2

Γ
[η

2

] ∫ d2k⊥

(~k⊥ − ~q⊥)2
Sq0(k⊥, q

′
⊥) + · · · , (6.5)

where we have included the integral over phase space and identified the tree-level soft

function. The ellipses denote rapidity finite contributions that will not play a role in the

rapidity renormalization.

For the virtual corrections, we have the same flower and eye graphs appearing in the

analysis for quark Reggeization in section 5.3. As before, we keep only rapidity divergent

contributions. The flower graph, appearing in figure 7b, is given by

= −2(4παs)
2CF δij

∫
d̄4k

w2|2kz|−ηνη/q⊥
k2 n · k n̄ · k

δ2(~q⊥ + ~q′⊥) + . . . , (6.6)

where the ellipses denote rapidity finite terms. The eye graph, appearing in figure 7c, is

given by

= −2(4παs)
2CF δij

∫
d̄4k

w2|2kz|−ηνη/k⊥(/k + /q⊥)/k⊥

k2 (k + q⊥)2 n · k n̄ · k
δ2(~q⊥ + ~q′⊥) + · · · (6.7)

= 2(4παs)
2CF δij

∫
d̄4k

w2|2kz|−ηνη

n · k n̄ · k

[
/q⊥

(k + q⊥)2
+

q2
⊥/k

k2(k + q⊥)2

]
δ2(~q⊥ + ~q′⊥) + · · · ,
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where in the second line we dropped integrands that are odd in k. Note that the first term

in the square brackets cancels the flower graph. The total virtual contribution is then

+ = i4πα2
sCF δijΓ

[η
2

] ∫
d̄2k⊥

~q 2
⊥/q⊥

~k 2
⊥(~k⊥ − ~q⊥)2

δ2(~q⊥ + ~q′⊥) + · · · . (6.8)

We combine this result with the tree-level matrix element in eq. (6.3) to obtain the squared

matrix element. Hence the one-loop virtual contribution to the soft function is

Sq,virtual
1 = −αsCF

2π2
Γ
[η

2

] ∫
d2k⊥

~q 2
⊥

~k 2
⊥(~k⊥ − ~q⊥)2

Sq0(q⊥, q
′
⊥) + · · · . (6.9)

These results for the real and virtual corrections, Sq,real
1 and Sq,virtual

1 , to the bare soft

function are the same as in the gluon case up to Casimir scaling. Hence the rest of the

analysis towards deriving the BFKL follows that of [42], and we refer the reader there

for further details. Let us mention a few key steps and then present the final evolution

equation. The rapidity divergence is multiplicatively renormalized with a k⊥ convolution

by a standard SCET soft function counterterm to cancel the 1/η divergence. Then the

rapidity renormalization group follows from the ν-independence of the bare soft function.

The resulting RGE for Sq(q⊥, q
′
⊥) is precisely the leading log BFKL up to Casimir scaling:

ν
d

dν
Sq(q⊥, q

′
⊥, ν) =

2CF αs(µ)

π2

∫
d2k⊥

[
Sq(k⊥, q

′
⊥, ν)

(~k⊥ − ~q⊥)2
−
~q 2
⊥S

q(q⊥, q
′
⊥, ν)

2~k2
⊥(~k⊥ − ~q⊥)2

]
. (6.10)

Note that unlike the amplitude level Reggeization, the BFKL equation is IR finite due to

the cancellation between the real and virtual emissions.

Just as in [42], the rapidity RGE consistency,

0 = ν
d

dν
T q(1,1) =⇒ 0 = γSq + γCqn + γCqn̄ = γSq + 2γCqn , (6.11)

also implies a BFKL equation for the n-collinear function

ν
d

dν
Cqn(q⊥, p

−, ν) = −CF αs(µ)

π2

∫
d2k⊥

[
Cqn(k⊥, p

−, ν)

(~k⊥ − ~q⊥)2
−
~q 2
⊥C

q
n(q⊥, p

−, ν)

2~k2
⊥(~k⊥ − ~q⊥)2

]
, (6.12)

and an analogous BFKL equation for Cqn̄ with (n, p−, q⊥)↔ (n̄, p′+, q′⊥).

7 Conclusions

In this paper we derived operators describing the exchange of Glauber quarks in the Regge

limit, within the framework of the SCET. These Glauber quark operators describe certain

soft and collinear gluon emissions to all orders in αs, and, for the case of a single soft gluon

emission, reproduce the classic result of Fadin and Sherman [53, 54]. From the rapidity

renormalization of the Glauber quark operators, we derived the LL Reggeization of the
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quark and the LL BFKL equation for qq̄ → γγ. The rapidity renormalization gives rise to

an interesting structure involving operator mixing between the T -product of two O(
√
λ)

operators describing soft-collinear scattering, and an O(λ) operator describing collinear-

collinear scattering. We also showed that rapidity finite diagrams involving simultaneous

Glauber quark and Glauber gluon exchanges quite simply reproduce known results in the

6̄ and 15 color channels, showing the consistency of our regulator. These results give a first

view of the structure of the EFT for forward scattering in SCET at subleading power.

There are a number of interesting directions for future study. In particular, it will be

important to extend the study of Reggeization through renormalization group evolution

to derive the two-loop Regge trajectory, both for the quark and the gluon. It is known

that the two-loop quark Regge trajectory is related to the two-loop gluon Regge trajectory

by Casimir scaling, CA → CF [56], and it would be interesting to derive this property

directly from the structure of Glauber operators, and to understand at what loop order it

fails. Furthermore, now that the effective theory describes both quark and gluon Glauber

exchanges, the structure of the higher logarithmic corrections for quantum numbers cor-

responding to compound Reggeon states can be studied using techniques in the effective

theory. Finally, we have studied the subset of operators responsible for quark Reggeization

at LL order, and it would be interesting to derive the complete set of power suppressed

operators in the EFT for forward scattering, such as those describing subleading power

corrections to the Regge trajectory of the gluon.

Note added: as this paper was being finalized, ref. [67] appeared, which studies γγ → qq̄

amplitudes at one-loop in the Regge limit by constructing the quark Reggeization terms in

the effective action formalism of Lipatov [11]. In the SCET language this corresponds to

formulating an auxiliary field Lagrangian for the offshell Glauber quarks, while using the

full QCD Lagrangian for other fields (without defining EFT fields for the n-collinear, soft

and n̄-collinear sectors). Since having distinct fields for these sectors enables their factor-

ization properties to be easily determined and studied, such as in our BFKL calculation,

we believe there are certain advantages to our approach. It would be interesting to make

a more explicit comparison between these formalisms.
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A Expansions of Wilson lines and SCET conventions

In this appendix we collect several expansions of Wilson lines and of the gauge invariant

fields, which prove useful for deriving the Feynman rules used in the text. We use the
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following sign convention for the gauge covariant derivative

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , iDµ = i∂µ + gAµ . (A.1)

The collinear Wilson lines are defined by

Wn =

[ ∑
perms

exp
(
− g
P̄
n̄ ·An(x)

)]
. (A.2)

Expanded to two gluons with incoming momentum k1 and k2, we have

Wn = 1−
gT an̄ ·Aank

n̄ · k
+ g2

[
T aT b

n̄ · k1
+
T bT a

n̄ · k2

]
n̄ ·Aank1

n̄ ·Abnk2

2n̄ · (k1 + k2)
+ · · · ,

W †n = 1 +
gT an̄ ·Aank

n̄ · k
+ g2

[
T aT b

n̄ · k1
+
T bT a

n̄ · k2

]
n̄ ·Aank1

n̄ ·Abnk2

2n̄ · (k1 + k2)
+ · · · . (A.3)

The collinear gluon field is defined as

Bµn⊥ =
1

g

[
W †niD

µ
n⊥Wn

]
. (A.4)

Expanded to two gluons, both with incoming momentum, we find

gBµn⊥ = g

(
Aµa⊥kT

a − kµ⊥
n̄ ·AankT a

n̄ · k

)
+ g2(T aT b − T bT a)

n̄ ·Aank1
Aµb⊥k2

n̄ · k1
(A.5)

+ g2(kµ1⊥ + kµ2⊥)

(
T aT b

n̄ · k1
+
T bT a

n̄ · k2

)
n̄ ·Aank1

n̄ ·Abnk2

2n̄ · (k1 + k2)
.

In both cases, at least one of the gluons in the two gluon expansion is not transversely

polarized.

For the soft Wilson lines, we have

Sn = 1−
gT an ·Aask

n · k
+ g2

[
T aT b

n · k1
+
T bT a

n · k2

]
n ·Aask1

n ·Absk2

2n · (k1 + k2)
+ · · · ,

S†n = 1 +
gT an ·Aask

n · k
+ g2

[
T aT b

n · k1
+
T bT a

n · k2

]
n ·Aask1

n ·Absk2

2n · (k1 + k2)
+ · · · . (A.6)

and

gBµs(n)⊥ = g

(
Aµa⊥kT

a − kµ⊥
n ·AaskT a

n · k

)
+ g2(T aT b − T bT a)

n ·Aask1
Aµb⊥k2

n · k1
(A.7)

+ g2(kµ1⊥ + kµ2⊥)

(
T aT b

n · k1
+
T bT a

n · k2

)
n ·Aask1

n ·Absk2

2n · (k1 + k2)
.

When evaluating diagrams involving the soft Glauber operators, the following combi-

nation is also useful

S†nSn̄ = 1 + gT a
(
n ·Aask
n · k

−
n̄ ·Aask
n̄ · k

)
− g2T aT b

n ·Aas
n · k

n̄ ·Abs
n̄ · k

+ g2

[
T aT b

n · k1
+
T bT a

n · k2

]
n ·Aask1

n ·Absk2

2n · (k1 + k2)
+ g2

[
T aT b

n̄ · k1
+
T bT a

n̄ · k2

]
n̄ ·Aask1

n̄ ·Absk2

2n̄ · (k1 + k2)
.

(A.8)
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