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1 Introduction

Duality symmetry has been an important symmetry occurring in supergravity and string

theory. A prototypical model containing this symmetry is classical electrodynamics.

Maxwell’s equations in free space is invariant under the rotation of the doublet ( ~E, ~B) of

electric and magnetic fields. This duality rotation, however, is not a symmetry of Maxwell’s

action. The first attempt to construct a duality-symmetric action was due to Zwanziger [1].

In this construction, in order for the action to be invariant under the duality rotation, the

manifest diffeomorphism covariance was given up. An alternative form of non-manifest

covariance duality-symmetric action was given by Deser and Teitelboim [2]. It was later

shown by [3] that actions from [1] and [2] are dual to each other.

In the literature, the developments of 4D duality-symmetric theories are based mostly

on actions of [1] and [2]. For definiteness, we call duality-symmetric theories based on [2]

as being in ‘standard formulation’, whereas those based on [1] are said to be in ‘dual

formulation’.

In order to keep the manifest diffeomorphism invariance of the action while maintaining

the duality symmetry, an auxiliary field is introduced. In the standard formulation, the
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reference [4] introduced an auxiliary scalar field. As for the case of dual formulation, it

was studied in the reference [3], which introduced an auxiliary two-form field.

In order for the field equations of a nonlinear extension (along with, for example, the in-

clusion [5] of axion and dilaton) of Maxwell’s theory to be invariant under duality rotation,

the Gaillard-Zumino condition [6, 7] has to be satisfied. In [8], a procedure was constructed

in order to solve Gaillard-Zumino condition, and hence explicitly provides examples of non-

linear theory possessing duality symmetry. Nonlinear duality-symmetric action in standard

formulation was studied in [9–11]. In these references, a consistency condition relating to

Gaillard-Zumino condition were derived. In the context of non-manifest covariant the-

ory [9, 10], the condition arises by demanding modified diffeomorphism invariance of the

theory, whereas for covariant theory [11], the condition arises by demanding the theory to

be invariant under a local symmetry responsible for arbitrariness of auxiliary scalar field.

As far as we are made aware, nonlinear duality-symmetric theories in dual formula-

tion are less extensively studied. The reference [12] constructed a covariantised nonlinear

duality-symmetric action in dual formulation with the couple to axion, dilaton, and exter-

nal electric and magnetic sources. One of our main goals is to complete such a framework.

This includes the extension of the action of [12] to describe a duality-symmetric action in

dual formulation of a D3-brane coupled to 10D type IIB supergravity background. It could

be expected that such a construction is in parallel to that given in the case of standard

formulation.

A similar story can be seen in the case of M5-brane. A 6D chiral two-form theory

was first given with a non-manifest covariant action [13, 14]. It was then generalised and

eventually reached the complete covariant M5-brane theory [15, 16]. This M5-brane theory

requires an auxiliary scalar field to maintain the worldvolume diffeomorphism invariance,

and at the same time retain non-linear self-duality. The dual of the chiral two-form theory

with quadratic action was constructed and covariantised by using an auxiliary four-form

field [17]. The theory was extended to a non-manifestly covariant M5-brane theory in dual

formulation [18]. It was then covariantised, by using five auxiliary scalar fields, in the

recent work [19]. The use of five auxiliary scalar fields instead of an auxiliary four-form

field makes it clear that the theory has all the desirable symmetries. The investigation of

a possibility to covariantise M5-brane in dual formulation using other auxiliary fields still

remains an open problem.

In this work, learned from the success story of the M5-brane theory in dual formulation,

we are going to construct a 4D covariant duality-symmetric theory in dual formulation

with the help of three auxiliary scalar fields, and then demonstrate that interactions with

other fields can be included. Thus the theory can be improved along the same line as its

counterpart in standard formulation [11].

It will be illuminating to demonstrate the construction on a concrete example. In

particular we choose to work on constructing in dual formulation, the covariant duality-

symmetric D3-brane worldvolume theory in 10D type IIB supergravity background. This

will be in the Green-Schwarz formulation [20], in which a bosonic worldvolume is embedded

in a supergravity target space. We will also show that, as a standard requirement of the

Green-Schwarz formulation, the theory has kappa-symmetry which reduces the number of
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fermionic degrees of freedom to match with the bosonic one. Finally, a comparison with

the standard D3-brane theory [21, 22] will also be discussed.

This paper is organised as follows. In section 2, we define notation to be used in this

paper by giving basic conventions and tools. In section 3, we construct covariant quadratic

4D duality-symmetric action in dual formulation. We also consider the inclusion of in-

teractions with external fields, which are coset scalars, and gravity. The covariantisation

makes use of three auxiliary scalar fields. The theory has two local PST symmetries. One

of which can be used in order to give twisted self-duality condition. Another one can be

used to gauge-fix the auxiliary fields and reduce the action to Zwanziger action. In sec-

tion 4, we nonlinearise the action of section 3 and also include the interaction with external

two-form fields. Just like its counterpart in standard formulation, in order for a nonlinear

action to possess duality symmetry, it has to satisfy a consistency condition which is re-

lated to Gaillard-Zumino condition. In section 5, we demonstrate the explicit construction

by restricting to DBI theory, and discuss a sense in which this theory is a special case

of Bossard-Nicolai theory. In section 6, we discuss the construction of covariant duality-

symmetric theory in dual formulation for D3-brane theory in 10D type IIB supergravity

background. The setup from earlier sections allow this study to be carried out. We end

the paper by giving conclusion in section 7.

2 Basic conventions and tools

In this section, we define some conventions and tools which will be used especially in

sections 3–4. Much of the tools are followed from [11]. However, we change some conven-

tions to make them more suitable to this paper. Conventions and tools other than those

mentioned in this section will also be used and will be given in later sections.

In this paper, we let the metric signature of a 4D spacetime to be mostly plus

(−,+,+,+). We label the coordinates as xµ, µ = 0, 1, 2, 3, and let

dxµ∧dxν∧dxρ∧dxσ = ǫµνρσd4x, (2.1)

where ǫµνρσ is the Levi-Civita symbol with ǫ0123 = −ǫ0123 = 1.

Consider a theory of N Abelian gauge fields Ar(x), r = 1, 2, · · · , N in 4-dimensional

spacetime. The field strengths of Ar are denoted F r = dAr. One can define the magnetic

duals Ar̄ with field strengths F r̄ = dAr̄ defined via

δ(F r)S =

∫

F r̄∧δF r, (2.2)

where S is the action constructed from the field strength F r, and δ(F r) is the variation

keeping only terms with δF r. A p−form is expressed as

B(p) =
1

p!
dxµ1∧ · · · ∧dxµpBµp···µ1

. (2.3)

The Hodge star • is defined via

• (dxµ1∧ · · · ∧dxµp) =

√−g

(4− p)!
dxν4∧ · · · ∧dxνp+1ǫρ1···ρpνp+1···ν4g

µ1ρ1 · · · gµpρp , (2.4)
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where gµν and g are, respectively, inverse and determinant of the 4D spacetime metric gµν .

This gives the identity •• = −1. With these definitions, we may write eq. (2.2) as

(•F r̄)ρσ = − 2√−g

δS

δF r
ρσ

. (2.5)

Let us call this equation as ‘duality relation’.

Next, the gauge fields Ar and their duals Ar̄ can be collected into

~A ≡ (Ai) ≡ (Ar, Ar̄), i = 1, 2, · · · , 2N. (2.6)

Likewise,
~F ≡ (F i) ≡ (F r, F r̄). (2.7)

Note that an arrow on the top of a symbol is introduced to indicate that it is a 2N−tuple.

Denote ~ui as a 2N−tuple whose ith entry equals to 1 but the rest are 0. This allows us

to express the 2N−tuples of gauge fields and field strengths respectively as ~A = Ai~ui, ~F =

F i~ui. For definiteness, let us denote the vector space of 2N−tuples as V. The vector space

V is acted linearly by the elements of the duality group G ⊂ Sp(2N,R). The couple to

gravity, scalars and fermions can be introduced into the theory.

In particular, the scalars φ parametrise a coset space G/H of a principal H−bundle

G → G/H, where H is the maximal compact subgroup of G. The vielbeins on G/H allows

the introduction of scalar-dependent invertible metric Mij(φ), through a symmetric non-

degenerate bilinear map M on V such that

M(~ui, ~uj) = M(~uj , ~ui), (2.8)

or Mij = Mji. Since G is a subgroup of Sp(2N,R), one can define an antisymmetric non-

degenerate bilinear map Ω on V such that

Ω(~ui, ~uj) = −Ω(~uj , ~ui), (2.9)

or simply Ωij = −Ωji, and that Ωrs = Ωr̄s̄ = 0, Ωrr̄ = δrr̄. One also defines Ωij = −Ωji

such that ΩijΩjk = −δik. This allows one to define a complex structure, which is a linear

map J : V → V defined via

Ω(~v, J ~w) = −M(~v, ~w), M(J~v, J ~w) = M(~v, ~w), Ω(J~v, J ~w) = Ω(~v, ~w), (2.10)

for all ~v, ~w ∈ V.

As was the case of duality-symmetric theory in standard formulation studied in [11],

the study of duality-symmetric theory in dual formulation also benefits from the use of

differential form language. As a direct extension to the 2N−tuple of gauge fields and field

strength, one can consider the 2N−tuple of p−forms. In other words, for Ai
(p), a p−form

with internal index i, the associated 2N−tuple is given by

~A(p) = Ai
(p)~ui. (2.11)

– 4 –



J
H
E
P
0
2
(
2
0
1
8
)
1
1
6

On these fields, define the star operation

∗ = J•, (2.12)

where J is a linear map on V such that J~ui = J j
i~uj . So

∗ ~A(p) = J j
i •Ai

(p)~uj , (2.13)

or in component form

(∗ ~A(p))
j = J j

i •Ai
(p). (2.14)

The star operation satisfies ∗∗ = 1.

We define exterior derivative and interior product to act from the right. Let v be a

1−form. It can be shown that

∗ ig−1v ∗ ~A(p) = ~A(p)∧v, (2.15)

where g−1 is the linear map associated to the inverse metric of 4D spacetime.

Let us define wedge product between two 2N−tuple differential forms as

~A(p)∧ ~B(q) ≡ Ai
(p)∧B

j
(q)~ui ⊗ ~uj , (2.16)

where the wedge product ∧ on r.h.s. is the usual wedge product of differential forms. This

gives the following identities

Ω( ~A(p)∧ ~B(q)) = −(−1)pqΩ( ~B(q)∧ ~A(p)), (2.17)

Ω( ~A(p)∧ ∗ ~B(p)) = Ω( ~B(p)∧ ∗ ~A(p)), (2.18)

Ω( ~A(p)∧ ∗ ~B(p)) = −M( ~A(p)∧ • ~B(p)). (2.19)

3 Covariant quadratic action of 4D duality-symmetric theory in dual

formulation

In this section, we write down and discuss the quadratic covariant action of 4D duality-

symmetric theory in dual formulation. We make use of the set up and notations given in the

previous section. In order to construct a covariant theory in dual formulation, we make use

of the idea from [19]. This suggests the use of three auxiliary scalars1 aI , I = 0, 1, 2. Define

ζI ≡ daI , (3.1)

and the projectors

P = Y −1
IJ g−1(ζI)⊗ ζJ , P⊥ = 1− P, (3.2)

where Y −1
IJ is the inverse of Y IJ = g−1(ζI , ζJ), and 1 is the identity operator. The

projector P has rank 3 whereas the projector P⊥ has rank 1. Let us denote the following

induced linear transformations

P ≡
∧2

P, P⊥ ≡ tr
(

∧

P
∧

P⊥

)

, I ≡
∧2

1, (3.3)

1The indices I, J, · · · are used as labels of the auxiliary scalars. So they are clearly not to be confused

with part of the spacetime indices.
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which transforms a tensor product of two tangent (resp. cotangent) vectors to a wedge

product of two tangent (resp. cotangent) vectors. For example,

P(v1, v2) = Pv1∧Pv2, (3.4)

where v1, v2 are cotangent vectors of the 4D spacetime. Furthermore, tr means the sum

of all possible permutations, e.g.

P⊥ = tr
(

∧

P
∧

P⊥

)

= P
∧

P⊥ + P⊥
∧

P, (3.5)

with

P
∧

P⊥(v1, v2) = Pv1∧P⊥v2, (3.6)

and similarly for P⊥
∧

P. For more details, see [19]. The induced linear transformations

form the following identities

I = P + P⊥, PP = P, P⊥P⊥ = P⊥, PP⊥ = P⊥P = 0, (3.7)

P
∧

P⊥ = P
∧

I = I
∧

P⊥, P⊥
∧

P = P⊥
∧

I = I
∧

P, (3.8)

∗P = P⊥∗, ∗P⊥ = P∗, (3.9)

P = −1−ζI∧ig−1ζI . (3.10)

In the study of covariant duality-symmetric theory in dual formulation, it will be

convenient to introduce a 1−form

λ = − 1

3!
ǫI0I1I2 • (ζI0∧ζI1∧ζI2), (3.11)

where

ǫI0I1I2 = ǫI0I1I2 =















1 even permutation of 012

−1 odd permutation of 012

0 otherwise.

(3.12)

Let us list the following useful identities:

P⊥ = g−1(v)⊗ v, (3.13)

P⊥ = −v∧ig−1v, (3.14)

where

v =
λ

√

g−1(λ, λ)
. (3.15)

Note that the equation (3.11) can also be written as

λ = − • d
(

1

3!
ǫI0I1I2a

I0ζI1∧ζI2
)

. (3.16)

This is considered as a special case of the auxiliary field used in [3], in which λ = •dB2,

where B2 is an arbitrary 2−form. In [3], the auxiliary 2−form B2 arises from the duali-

sation of the auxiliary field of the PST-covariantised duality-symmetric action in standard
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formulation [4]. Our choice of three (4− 1 = 3) auxiliary scalar fields aI , however, is moti-

vated by the successful covariantisation of M5-brane action in dual formulation [19] using

five (6− 1 = 5) auxiliary scalar fields, which in turn is a specific restriction, motivated by

a basic geometrical argument, of the auxiliary 4−form.

In the subsequent calculations, we will also need to make use of the following identities

for variations with respect to aI . By using the result

δ(a)P = P⊥g−1δζI ⊗ ζI + g−1ζI ⊗ P⊥δζI , (3.17)

one obtains

δ(a)P ~F = ∗(P⊥δζI∧ig−1ζI ∗ ~F )−P⊥δζI∧ig−1ζI
~F , (3.18)

where

ζI ≡ Y −1
IJ ζJ . (3.19)

Let us also note another useful identity:

Lg−1ζI (P ~F)∧P ~F = 0. (3.20)

The covariant duality-symmetric quadratic action in dual formulation is given by

S = −1

2

∫

Ω(~F∧P ~F), (3.21)

or equivalently,

S = −1

4

∫

M(~F∧ • ~F ) +
1

4

∫

M(ig−1v
~F∧ • ig−1v

~F),

= −1

8

∫

d4x
√−gMij(φ)F

i
µνF

jµν − 1

4

∫

d4x
√−gMij(φ)F i

µνv
νF jµσvσ,

(3.22)

where ~F = ~F − ∗~F . The form of the action makes it clear that we allow the gauge fields

to interact with coset scalars and 4D gravity. However, we do not consider dynamics of

scalars and gravity, i.e. we treat them as external fields. In the next sections, we will also

allow the interaction with other external fields.

Using the identities (2.17), (2.18), and (3.9), one obtains the variation of the action

with respect to Ai :

δ( ~A)S =

∫

Ω(δ ~A∧dP ~F)− 1

2

∫

d(Ω(δ ~A∧(2P ~F − ~F ))). (3.23)

To compute the variation of the action with respect to aI , we use the identities (3.17), (3.18),

and (3.20), which give

δ(a)S = −
∫

Ω
(

δaIig−1ζIP ~F∧dP ~F
)

+
1

2

∫

d
(

Ω(δaIig−1ζIP ~F∧P ~F)
)

. (3.24)

Using the above variations, one obtains the field equations of Ai

dPF i = 0. (3.25)
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One also obtains the field equations for aI

Ωijig−1ζIPF i∧dPF j = 0, (3.26)

which are trivially satisfied after imposing field equations (3.25) for Ai. This suggests that

the auxiliary fields have no dynamics of their own, reflecting their auxiliary nature.

The quadratic action (3.21) possesses two important types of local symmetries. These

are called PST1 and PST2. The PST1 symmetry is given by

δAi = ψi
I(a

K)daI , δaI = 0, (3.27)

where ψi
I are arbitrary functions of auxiliary fields aI . The form (3.27) suggests that PST1 is

semi-local [23, 24]. In the case where it is a gauge symmetry, it can be used to gauge-fix the

field equations to give the twisted self-duality condition. The PST2 symmetry is given by

δaI = ϕI , δ ~A = ϕIig−1ζIP ~F . (3.28)

It is used to ensure that the auxiliary fields aI are arbitrary.

To analyse the semi-local PST1 symmetry, let us follow the analysis of [24]. A criteria

to determine whether a symmetry is gauge or global symmetry is to check the vanishing of

Noether’s charge. If the Noether’s charge vanishes, then the symmetry is a gauge symmetry

(see for example [25]). The Noether’s current of PST1 symmetry is given by

j = •Ω(~ψIda
I∧P ~F). (3.29)

One then investigates the dynamical system of action (3.21) to look for the branch in which

the Noether’s charge vanishes. Since the action is singular when g−1(λ, λ) = 0, it turns out

that the dynamical system is separated into two branches. One of them has g−1(λ, λ) > 0,

while the other has g−1(λ, λ) < 0. These two branches are disconnected because there is

no smooth PST2 transformation which joins the two branches without passing through the

forbidden g−1(λ, λ) = 0 region. The Noether’s charge of PST1 vanishes if λ0 = 0. This is

the case only in the g−1(λ, λ) > 0 branch, in which PST2 symmetry can be used to gauge-fix

the auxiliary fields as, for example, aI = xI . Therefore, in this branch, the PST1 symmetry

is a gauge symmetry. So the field equation is equivalent to the twisted self-duality condition

F i = ∗F i. (3.30)

On the other hand, in the g−1(λ, λ) < 0 branch, the Noether’s charge is always zero. So

in this branch one does not obtain the twisted self-duality condition.

In the g−1(λ, λ) > 0 branch, which is permissible, one can use PST2 symmetry (3.28)

to fix the gauge

aI = (ζ0)
I
µx

µ, (3.31)

where (ζ0)
I
µ are constants, such that after substituting eq. (3.31) into eq. (3.11), one obtains

spacelike λ. The action becomes

S = −1

8

∫

d4x
√−gMij(φ)F

i
µνF

jµν − 1

4g−1(n, n)

∫

d4x
√−gMij(φ)F i

µνn
νF jµσnσ, (3.32)
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where

nν = (ζ0)
0
µ0
(ζ0)

1
µ1
(ζ0)

2
µ2

ǫνµ0µ1µ2

√−g
. (3.33)

From the action (3.32), if one turns off coset scalars, and gravity, then one obtains a source-

free version of Zwanziger’s action [1]. In the gauge (3.31), under the combined local trans-

formation of PST2 and 4D diffeomorphism δxµ = ξµ(x) the auxiliary fields transform as

δaI(x) = ξµ(x)∂µa
I(x) + ϕI(x) = ξµ(x)(ζ0)

I
µ + ϕI(x). (3.34)

In order for this combined transformation to not modify the gauge-fixing condition (3.31),

the PST2 gauge parameter has to be chosen as

ϕI(x) = −ξµ(x)(ζ0)
I
µ, (3.35)

in which case, the combined local transformation on Ai
µ is given by

δAj
µ = ξρ∂ρA

j
µ + ∂µξ

ρAj
ρ −

1

g−1(n, n)
ξσJ j

iF iρ
λn

λnνǫµνρσ
√−g, (3.36)

which is the modified diffeomorphism of the action (3.32). Note that this transformation

does not depend explicitly on the choice of (ζ0)
I
µ.

4 Covariant nonlinear action of 4D duality-symmetric theory in dual

formulation

In this section, we nonlinearise the action (3.21). Furthermore, we also include interactions

with other fields, particularly two-form fields ~C2. We start by writing down the action

Scds = S1 + S2 + S3, (4.1)

where

S1 = −1

2

∫

Ω(~F∧P ~F ), S2 =

∫

d4x
√−gL, S3 =

1

2

∫

Ω(~F∧~C2), (4.2)

where now F i = dAi − Ci
2, and we consider the case in which Ai and aI appear in L only

through P⊥F i. The variation of the action with respect to ~A is given by

δ( ~A)Scds = δ( ~A)S1 + δ( ~A)S2 + δ( ~A)S3, (4.3)

where

δ( ~A)S1 =

∫

Ω(δ ~A∧dP ~F ) +
1

2

∫

Ω(δ ~A∧d~C2)−
1

2

∫

d(Ω(δ ~A∧(2P ~F − ~F ))), (4.4)

δ( ~A)S2 = −
∫

Ω(δ ~A∧dP ∗ ~X) +

∫

d(Ω(δ ~A∧P ∗ ~X)), (4.5)

δ( ~A)S3 = −1

2

∫

Ω(δ ~A∧d~C2) +
1

2

∫

d(Ω(δ ~A∧~C2)), (4.6)
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where

Xi =
1

2
dxµ∧dxνXi

νµ, (4.7)

Xiµν = −2M ij δL
δ(P⊥F )jµν

. (4.8)

Note that P ~X = 0. The variation with respect to aI can be conveniently obtained by using

an identity

Ω(d(P ~F1∧ig−1ζIP ~F2)) = −Ω(dP ~F1∧ig−1ζIP ~F2 + dP ~F2∧ig−1ζIP ~F1), (4.9)

giving

δ(a)Scds =
1

2

∫

δaId
(

Ω
(

P ∗ ~F∧ig−1ζIP ∗ ~F − P ∗ ~X∧ig−1ζIP ∗ ~X
))

−
∫

δaIΩ
(

dP(~F − ∗ ~X)∧ig−1ζIP(~F − ∗ ~X)
)

(4.10)

− 1

2

∫

d
(

δaIΩ
(

P ∗ ~F∧ig−1ζIP ∗ ~F + P ~F∧ig−1ζIP ~F − 2P ~F∧ig−1ζIP ∗ ~X
))

.

Note that for the quadratic action (3.21), the first term on the r.h.s. of eq. (4.10) vanishes.

So for the nonlinear case, let us demand

d
(

Ω
(

P ∗ ~F∧ig−1ζIP ∗ ~F − P ∗ ~X∧ig−1ζIP ∗ ~X
))

= 0. (4.11)

This condition will ensure the existence of PST2 symmetry. It is also analogous to the

condition obtained in [11], which in turn is the covariantisation of the conditions by [9, 10],

and is also related to the Gaillard-Zumino condition [6, 7], which requires the consistency

of duality transformation [5] on duality-symmetric theory.

The field equations for ~A, aI , can be read off from the varia-

tions (4.4), (4.5), (4.6), (4.10), which respectively give

dP(~F − ∗ ~X) = 0, (4.12)

Ωijig−1ζIP(~F − ∗ ~X)i∧dP(~F − ∗ ~X)j = 0. (4.13)

Clearly, the field equation for aI is implied by the field equation for ~A. The varia-

tions (4.4), (4.5), (4.6), (4.10) can also be used to determine the PST1 and PST2 symme-

tries. PST1 symmetry is the same as that, eq. (3.27), of quadratic action:

δAi = ψi
I(a

K)daI , δaI = 0, (4.14)

where ψi
I is an arbitrary function of auxiliary fields aI . In case where PST1 is a gauge

symmetry, it allows gauge fixing of Ai field equations giving non-linear twisted self-duality

condition
~X = ∗~F . (4.15)

The PST2 symmetry is given by

δaI = ϕI , δ ~A = ϕIig−1ζIP(~F − ∗ ~X). (4.16)
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Its presence ensures the arbitrariness of the auxiliary fields aI .

In order to determine the case in which PST1 is a gauge symmetry, we can again

follow [24]. By the analysis similar to that given in section 3, one can also conclude that

PST1 is a gauge symmetry only in the g−1(λ, λ) > 0 branch. However, in the g−1(λ, λ) < 0

branch, which is separated from the g−1(λ, λ) > 0 branch, one does not obtain non-linear

twisted self-duality condition. Note that this analysis will also hold in later sections of this

paper.

Let us now proceed to simplify the condition (4.11). For any 2N−tuples of 1−forms
~A, ~B, we define the following symmetric bilinear bracket

( ~A, ~B)σ =
1√−g

Ω( ~Aµ
~Bνvρǫ

µνρσ) = ( ~B, ~A)σ. (4.17)

Let Kµ
ν be symmetric and satisfies Kµ

ν vµ = 0. We have the following identity

( ~A,K ~B)σ + ( ~B,K ~A)σ = −( ~A, ~B)ν(∆K)σν , (4.18)

where K ~A = Kµ
νAi

µdx
ν~ui, and (∆K)µν = Kµ

ν − [K]δµν , with square bracket [·] denoting the

trace over spacetime indices. Direct computation gives

• Ω(P ∗ ~X∧ig−1ζIP ∗ ~X) = −(ig−1v
~X, ig−1v

~X)βζIβvµdx
µ, (4.19)

and

•Ω(P ∗ ~F∧ig−1ζIP ∗ ~F ) = −(~f, ~f)βζIβvµdx
µ, (4.20)

where ~f = ig−1v(P⊥ ~F ). One can see that the condition (4.11) is satisfied if

(ig−1v
~X, ig−1v

~X)β = (~f, ~f)β . (4.21)

5 DBI action in covariant duality-symmetric theory in dual formulation

In this and the next section, we will discuss explicit examples by restricting to N = 1,

i.e. duality-symmetric actions will contain one pair of gauge fields. In particular, we will

discuss DBI, and also D3-brane. For these examples, we will relate the one-potential actions

(i.e. those containing only ‘electric’ gauge field but not ‘magnetic’ one) with the covariant

duality-symmetric actions in dual formulation. We will relate the duality relation (2.5)

with non-linear twisted self-duality condition. We will also compare the on-shell actions.

By setting N = 1, the internal indices i, j, k, · · · take values only in {1, 2}. In this case,

there is the following decomposition

(~f 5)iµ = [~f 2](~f 3)iµ − 1

2

(

[~f 2]2 − [~f 4]
)

f i
µ, (5.1)

where

(~f 2)µν = f iµMijf
j
ν , (~f 3)iµ = (~f 2)νµf

i
ν , (~f 4)µν = (~f 2)µρ(

~f 2)ρν , etc. (5.2)

Note also that by using the identity

ΩijMjkΩ
klMlm = −δim, (5.3)
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one obtains det(Mij) = 1.

We are interested in L which depends on (P⊥ ~F )iµν but not on any derivatives of

(P⊥ ~F )iµν . Based on the equation (5.1), there are only two invariants and are given by

U ≡ −1

4
(P⊥ ~F )iµν(P⊥ ~F )jµνMij = −1

2
[~f 2], (5.4)

Y ≡ 1

32
Mij(P⊥ ~F )iµν(P⊥ ~F )jρσMkl(P⊥ ~F )kµν(P⊥ ~F )lρσ =

1

8
[~f 4]. (5.5)

The next step is to write L as a polynomial of U and Y, and note the identity

ig−1v
~X = ~DL, (5.6)

where differential operator ~D is defined as

~D· = 2M ij δ·
δ(P⊥ ~F )jµν

vνdxµ~ui. (5.7)

Applying ~D to the invariants gives

~DU = ~f, ~DY = −1

2
~f 3, (5.8)

where
~f 3 = (~f 3)iµdx

µ~ui. (5.9)

Therefore,

ig−1v
~X =

δL
δU

~f − 1

2

δL
δY

~f 3. (5.10)

By using the identities

(~f, ~f 3)σ =
1

2
[~f 2](~f, ~f)σ, (5.11)

(~f 3, ~f 3)σ =
1

2

(

[~f 2]2 − [~f 4]
)

(~f, ~f)σ, (5.12)

which are obtained from eq. (4.18), we obtain

(ig−1v
~X, ig−1v

~X)σ =

[

(

δL
δU

)2

+
δL
δU

δL
δY

U +

(

δL
δY

)2(1

2
U2 − Y

)

]

(~f, ~f)σ. (5.13)

The condition (4.21) demands

(

δL
δU

)2

+
δL
δU

δL
δY

U +

(

δL
δY

)2(1

2
U2 − Y

)

= 1. (5.14)

The equation of this and related form also appears in several papers on 4D nonlin-

ear duality-symmetric theory [9–11, 26], as well as the ones on M5-brane [14, 23, 27].

See also [28] for analogous equations for M5-brane. It is a crucial requirement for the

nonlinear deformation of non-manifest covariant 4D duality-symmetric theory and non-

manifest covariant 6D chiral 2-form theory to be diffeomorphism invariant. Or for the
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PST-covariantised counterparts, the requirement arises by demanding that nonlinear de-

formation has PST2 symmetry.

The equation (5.14) takes exactly the same form as the one analysed in [14] in the con-

text of M5-brane theory. In fact, it was this form of the equation that was crucial to achieve

the DBI-like form of M5-brane action. The analysis gave two special solutions which are

L = U, which in our case corresponds to the quadratic action of duality-symmetric theory

in dual formulation. The second special solution reads, after some trivial redefinitions,

L =
1

β

(

1−
√

1− 2βU + 4β2

(

1

2
U2 − Y

)

)

. (5.15)

Substituting this into eq. (4.1) gives a DBI-like nonlinear deformation of duality-symmetric

action in dual formulation

Scds−DBI = −1

2

∫

Ω(~F∧P ~F ) +

∫

d4x

√−g

β

(

1−
√

1− 2βU + 4β2

(

1

2
U2 − Y

)

)

+
1

2

∫

Ω(~F∧~C2)

(5.16)

For this theory, the nonlinear self-duality equation reads

~f∗ ≡ ig−1vP⊥ ∗ ~F =
(1− 2βU)~f − β ~f 3

√

1− 2βU + 4β2
(

1
2U

2 − Y
)

. (5.17)

Note that in the case where the 4D metric is flat and ~C2 = 0, and with identification

(Mij) =

(

e−φ + a2eφ −aeφ

−aeφ eφ

)

, (5.18)

the action (5.16) reduces to the source-free version of the action given in [12]. It will be

possible to see in the next section how this form of the action is extended to the complete

description of covariantised duality-symmetric D3-brane action in dual formulation coupled

to 10D type IIB supergravity.

There are also other possible solutions to eq. (5.14). Bossard and Nicolai [10] present

series solutions to this equation. Let us give a brief review using our notation. Defining

Z = 4Y − U2 the equation (5.14) becomes

(

δL
δU

)2

− 4

(

δL
δZ

)2

Z = 1. (5.19)

After imposing an ansatz, dubbed BN ansatz,

L = U +
∞
∑

n=0

1

(2 + 2n)!
H(n)(U)Z1+n, (5.20)
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the condition (5.19) will give the following conditions

∂H(0)

∂U
= (H(0))2, (5.21)

2(H(0))2+2k ∂

∂U

(

H(k)

(H(0))2+2k

)

(5.22)

=

(

k−1
∑

n=1

(

2 + 2k

1 + 2n

)

H(n)H(k−n) −
k−1
∑

n=0

(

2 + 2k

2 + 2n

)

∂H(n)

∂U

∂H(k−n−1)

∂U

)

; k = 1, 2, 3, · · · .

This allows the recursive procedure leading to the solution of the form

H(k) = c(k)(H(0))2+2k + H̃(k), (5.23)

where H̃(k) is a particular solution, and H(0) is a solution to eq. (5.21). By following the

iterative procedure, the reference [10] demonstrated how to obtain a non-linear deformation

of 4D duality-symmetric theory. The action obtained this way does not necessarily take

the DBI-like form. In fact, it is not known whether there are other actions having closed

form, apart from the DBI-like form.

Although the analysis was originally given in the standard formulation, the above

discussion shows, by closely following the analysis in [10], explicitly that the analysis for

the covariant duality-symmetric theory in the dual formulation can be done along the very

similar line. This is thanks to the equation of the form (5.14), which are shared in both

formulations (but with U and Y defined differently in different formulations).

The BN ansatz is more general than the DBI-like form eq. (5.15) in the sense that the

latter can be obtained as a special case of the former. In order to see this in more details,

let us start by rewriting the equation (5.15) in terms of the invariants U,Z. So

L =
1

β

(

1−
√

(1− βU)2 − β2Z

)

. (5.24)

Expanding in Z gives

L = U +
∞
∑

n=0

(2n)!

22n+1n!(n+ 1)!

(

β

1− βU

)2n+1

Z1+n. (5.25)

This allows us to read off

H(n) = (2n− 1)!!(2n+ 1)!!(H(0))2n+1, (5.26)

where

H(0) =
β

1− βU
. (5.27)

Comparing with the form (5.23), it can be concluded that the DBI-like nonlinearisation

is a special case of BN nonliearisation with c(k) = 0 for all k = 1, 2, 3, · · · . From this

observation, we see that the DBI-like nonlinear deformation is the most special among the

nonlinear deformations in the sense that it is obtained from the BN ansatz in which the
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solutions H(k), k = 1, 2, 3, · · · to the differential equations (5.22) do not have non-trivial

complementary solution.

Duality-symmetry does not completely fix the nonlinear deformation. This is also the

case for duality-symmetric theories with N = 1, 2 rigid supersymmetry [8, 29]. The main

goal of our paper, however, is not to pursue nonlinearly deformed action other than the

standard DBI-like one. Let us therefore focus only on DBI-like actions from now on.

As to be expected from the literature, see for example [26], it should hold that the

DBI-like duality-symmetric equation (5.17) coincide with the standard DBI equation. Let

us proceed to show this.

Using the identity

(

1+ β ~f 2
)(

(1− 2βU)1− β ~f 2
)

~f =

(

1− 2βU + 4β2

(

1

2
U2 − Y

))

~f, (5.28)

we obtain

f i
µ =

(f∗)
i
µ + β(~f 2)ij(f∗)

j
µ

√

1− 2βU + 4β2
(

1
2U

2 − Y
)

. (5.29)

Let us consider the special case where ~C2 = ~0, no G/H−coset scalar, and that (Mij) =

diag(1, 1). A more general example will be discussed in the next section. Let us denote

F 1 ≡ F, F 2 ≡ G, f1 ≡ f, f2 ≡ g, i.e. fµ = vνFνµ, gµ = vνGνµ. We also define

F̃µν ≡ 1

2

√−gǫµνρσF
ρσ, G̃µν ≡ 1

2

√−gǫµνρσG
ρσ, (5.30)

and f̃µ ≡ vνF̃νµ, g̃µ ≡ vνG̃νµ. Note that

• F = −1

2
F̃µνdx

νµ ≡ −F̃ , (5.31)

and similarly, •G = −G̃. Let us also note the following useful identities

f̃µf̃µ =
1

2
[F 2] + fµf

µ, (5.32)

fµf̃µ = −1

4
[FF̃ ]. (5.33)

With the above set up, we can rewrite (5.17) and (5.29) in matrix notation as

−g̃ =
(1− 2βU)f − β([f2]f + [fg]g)
√

1− 2βU + 4β2
(

1
2U

2 − Y
)

, f̃ =
(1− 2βU)g − β([fg]f + [g2]g)
√

1− 2βU + 4β2
(

1
2U

2 − Y
)

, (5.34)

f =
−g̃ + β(−[f2]g̃ + [fg]f̃)

√

1− 2βU + 4β2
(

1
2U

2 − Y
)

, g =
f̃ + β(−[fg]g̃ + [g2]f̃)

√

1− 2βU + 4β2
(

1
2U

2 − Y
)

, (5.35)

where U and Y can be expressed as

U = −1

2
[f2]− 1

2
[g2], Y =

1

8
[f2]2 +

1

4
[fg]2 +

1

8
[g2]2. (5.36)
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The strategy to solve the equations (5.34)–(5.35) is to first solve it perturbatively in β and

look for the pattern of the solution which allows us to guess the closed form, and then check

if the guessed closed form is indeed the solution. Let us start the process by expanding

the equations (5.34)–(5.35) in β and iteratively solving order-by-order, trading [fg], [g2] for

[F 2], [FF̃ ]. As a concrete demonstration, we present the result at order β2 :

−g̃ = f +
β

4

(

[F 2]f + [FF̃ ]f̃
)

+
β2

32

(

(3[F 2]2 + [FF̃ ]2)f + 2[F 2][FF̃ ]f̃
)

+O(β3), (5.37)

g = f̃ +
β

4

(

[F 2]f̃ − [FF̃ ]f
)

+
β2

32

(

(3[F 2]2 + [FF̃ ]2)f̃ − 2[F 2][FF̃ ]f
)

+O(β3). (5.38)

Next, we use the identities F = −v∧f− • (v∧f̃), G = −v∧g− • (v∧g̃) to obtain

−G̃ = F +
β

4

(

[F 2]F + [FF̃ ]F̃
)

+
β2

32

(

(3[F 2]2 + [FF̃ ]2)F + 2[F 2][FF̃ ]F̃
)

+O(β3). (5.39)

By making the perturbative calculation up to order, say β9, it is evident that

G̃ = − F + β
4 F̃ [FF̃ ]

√

1− β
2 [F

2]− β2

16 [FF̃ ]2
+O(β10), (5.40)

which up to this order, is a DBI duality condition.

Having obtained the guessed form of the duality condition, let us now outline how to

show that the equations (5.34)–(5.35) indeed agree with

G̃ = − F + β
4 F̃ [FF̃ ]

√

1− β
2 [F

2]− β2

16 [FF̃ ]2
. (5.41)

We start by substituting this equation into the expression of U, Y giving

U = − [f2] + 1
4 [F

2]− β
4 [f

2][F 2] + β
16 [FF̃ ]2

1− β
2 [F

2]− β2

16 [FF̃ ]2
, (5.42)

1

2
U2 − Y = −−1

4 [f
2]2 − 1

8 [f
2][F 2] + 1

64 [FF̃ ]2

1− β
2 [F

2]− β2

16 [FF̃ ]2
. (5.43)

This in turn gives

1− 2βU + 4β2

(

1

2
U2 − Y

)

=

(

1 + β[f2]
)2

1− β
2 [F

2]− β2

16 [FF̃ ]2
. (5.44)

It is also useful to compute

[fg] = −

(

1
4 + β

4 [f
2]
)

[FF̃ ]
√

1− β
2 [F

2]− β2

16 [FF̃ ]2
, [g2] =

[f2] + 1
2 [F

2] + β
8 [FF̃ ]2 + β2

16 [f
2][FF̃ ]2

1− β
2 [F

2]− β2

16 [FF̃ ]2
. (5.45)

Using these results, eq. (5.34)–(5.35) can easily be shown to hold.
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We have thus shown that the DBI-like duality-symmetric field equation (5.17) can be

put in the form

G̃ = − F + β
4 F̃ [FF̃ ]

√

1− β
2 [F

2]− β2

16 [FF̃ ]2
, (5.46)

which is the duality relation corresponding to the action

SDBI =

∫

d4x
1

β

(√−g −
√

− det(gµν +
√

βFµν)

)

, (5.47)

i.e.

G̃µν =
2√−g

δSDBI

δFµν
, (5.48)

which is of the form (2.5). Furthermore, it is interesting to compare the on-shell action.

By ‘on-shell’, we impose the condition (5.41) which was shown earlier to be equivalent to

non-linear twisted self-duality condition. By a simple substitution, we find that

Scds
on-shell
= SDBI −

1

2

∫

F∧G. (5.49)

In fact, if we also impose DBI field equation ∂µ(
√−gG̃µν) = 0, then the second term on the

r.h.s. of eq. (5.49) is simply a surface term. The on-shell agreement of the DBI-like duality-

symmetric action in the standard formulation and the DBI action was done in [30]. We

have also shown that, as expected, the agreement also holds in the case of dual formulation

of duality-symmetric theory.

Having obtained the closed form of the action of the duality-symmetric theory corre-

sponding to DBI action, it is natural to expect that the duality-symmetric theory corre-

sponding to supersymmetric D3-brane in Green-Schwarz formalism can also be obtained.

We will show in the next section how this is constructed.

6 Covariant duality-symmetric theory in dual formulation of kappa-

symmetric D3-brane

In Green-Schwarz formalism, a D3-brane worldvolume is embedded in a target superspace

given by type IIB supergravity. The gauge field A lives on the D3-brane worldvolume. It

couples to the pullbacks of the following superfields on target superspace. These fields are

supervielbeins, a dilaton, an NS-NS B-field, and RR C-fields.

6.1 Type IIB supergravity background

In this subsection, we give essential details for type IIB supergravity background. Most of

the conventions in this subsection are followed from [22].

The conventions of differential forms in target superspace are given in accordance with

the conventions given in earlier sections. Let the 10D target superspace have mostly plus

signature (−,+,+, · · · ,+). A differential super p−form is given by

Cp =
1

p!
dZM1dZM2 · · · dZMpCMp···M2M1

, (6.1)
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where the wedge ∧ symbol is omitted whenever there is no risk of confusion. The exterior

derivatives and interior products act from the right.

Let coordinates on target superspace be (ZM ) = (Xm, θ), where Xm are 10 bosonic

coordinates, and θ are 32 fermionic coordinates grouped into a doublet of sixteen-

component Majorana-Weyl spinors of positive chirality. The supervielbeins are given by

(EA) = (Ea, Eα) such that

Ea = dZMEa
M , Eα = dZMEα

M , (6.2)

where a = 0, 1, 2, · · · , 9 are bosonic tangent space indices, and α are composite indices

each representing a tensor product of a Majorana-Weyl spinor index and a doublet index.

Gamma matrices are given in the form of tensor products

Γa ⊗ σ, (6.3)

where Γa are gamma matrices corresponding to the Majorana-Weyl spinor, and σ is a real

2× 2 matrices consisting for example,

1 =

(

1 0

0 1

)

, iτ2 =

(

0 1

−1 0

)

, τ1 =

(

0 1

1 0

)

, τ3 =

(

1 0

0 −1

)

. (6.4)

The Gamma matrices of the form (Γa⊗1)αβ, (Γ
a⊗τ1)αβ , (Γ

a⊗τ3)αβ are symmetric whereas

the Gamma matrices of the form (Γa ⊗ iτ2)αβ are antisymmetric. In practice, we will omit

the notations ⊗ and 1.

Apart from the supervielbeins, other target space superfields are a dilaton φ, an NS-NS

B−field B2 with field strength

H3 = dB2, (6.5)

and RR C-fields C0, C2, C4, whose field strengths are given respectively by

R1 = dC0, R3 = dC2 −H3C0, R5 = dC4 −H3C2. (6.6)

Type IIB supergravity theory is invariant under the supergauge transformation

δ(Ea ⊗ Ebηab) = 0, δφ = 0, δB2 = dλ1,

δC0 = 0, δC2 = dµ1, δC4 = dµ3 +B2dµ1, (6.7)

where (ηab) = diag(−1, 1, · · · , 1) is 10D Minkowski metric.

In order to prove kappa-symmetry for a D3-brane coupled to target superspace, the

latter has to obey the constraints. Let us quote only the relevant constraints for this

purpose. The first one is a torsion constraint given by

T a ≡ dEa + Ebωb
a = iEαΓa

αβE
β , (6.8)
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where ωb
a are connection one-forms. Other constraints are

H = −ieφ/2EcEβEα(Γcτ3)αβ +
1

2
eφ/2EcEbEα(Γbcτ3Λ)α + · · · ,

R1 = 2e−φEα(iτ2Λ)α + · · · ,

R3 = ie−φ/2EcEβEα(Γcτ1)αβ +
1

2
e−φ/2EcEbEα(Γbcτ1Λ)α + · · · ,

R5 =
i

6
EβEαEcEbEa(Γabciτ2)αβ + · · · , (6.9)

where · · · are terms which are irrelevant to kappa-symmetry variation, and

Λα =
1

2
EM

α ∂Mφ. (6.10)

6.2 Standard sypersymmetric D3-brane action

Let us now consider a D3-brane worldvolume embedded in the target superspace. The

worldvolume coordinates are labelled by xµ;µ = 0, 1, 2, 3. Gauge field A = dxµAµ lives in

the worldvolume. The couple of worldvolume field with the background superfields are ex-

plained with the help of pullbacks of the latter. The extended field strength of A is given by

F = dA−B, (6.11)

where B here is the pullback of NS-NS B−field. Note that we do not introduce an extra

notation to distinguish background superfields from their pullbacks. We will also adopt

this convention for the rest of this section.

The standard D3-brane action is given by

SD3 = −
∫

d4x
√

− det(gµν + e−φ/2Fµν) +

∫
(

C4 + F∧C2 +
1

2
F∧F∧C0

)

, (6.12)

where gµν = Ea
µE

b
νηab, and Ea

µ = Ea
M∂µZ

M . It is invariant under the kappa-symmetry

transformation define via

iκE
a = δκZ

MEa
M = 0, iκE

α = δκZ
MEα

M = ((1+ Γ̄)κ)α, (6.13)

in which it follows that

δκgµν = 4iEα
(µ(γν))αβiκE

β, δκφ = 2Λα(iκE)α, δκF = −iκH, (6.14)

where γµ is the pullback of Γa, i.e. γµ = Ea
µΓa. Additionally, iκH, iκR1(= δκC0), iκR3, iκR5

are also needed and can be computed from eq. (6.9). The matrix Γ̄ is computed using the

standard method, see for example [21], and is given by

√

1− 1

2
e−φ[F 2]− 1

16
e−2φ[FF̃ ]2 Γ̄ = γ̄τ2 −

1

2
F̃µνγµντ1 +

i

4
[FF̃ ]τ2, (6.15)

where

γ̄ = − i

4!

ǫµνρσ√−g
γµνρσ. (6.16)
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6.3 Covariant duality-symmetric supersymmetric D3-brane action in dual for-

mulation

The standard D3-brane action formulated for example in [21, 31] does not retain SL(2,R)

symmetry of the background supergravity. A way to remedy this is seen for example in [32],

in which an additional world-volume gauge field is introduced. This allows the definition of

extended field strength of the form “~F = d ~A− ~C,” where ~C is an SL(2,R) doublet of 2-form

potential in type IIB supergravity. The doublet ~F is not completely independent. Their

components are related to each other by non-linear twisted self-duality condition which are

imposed by hand, i.e. not at the action level. This theory is verified by the construction of

kappa-symmetry.

An improvement to this theory was initiated by [33], which constructed duality-

symmetric D3-brane action having non-linear twisted self-duality condition as the field

equation of worldvolume gauge fields. The theory was constructed by dimensionally re-

ducing PST-covariantised bosonic M5-brane [15] which in turn made use of an auxiliary

scalar field to maintain the manifest diffeomorphism invariance of 6D worldvolume. The

dimensionally reduced 4D worldvolume action retains the auxiliary scalar field and hence

the manifest worldvolume diffeomorphism invariance. The reference [34] then extended

the theory of [33] to covariant duality-symmetric D3-brane theory coupled to 10D type IIB

supergravity. The construction was then verified by the proof of kappa-symmetry.

For us, we are also going to construct covariant duality-symmetric D3-brane coupled to

10D type IIB supergravity, and proving kappa-symmetry. Our construction will be differed

from [34] by the fact that we work in dual formulation of duality-symmetric theory. Fur-

thermore, the background supergravity used in [34] was based on [32] where the axion and

dilaton are SL(2,R)/SO(2) coset scalars, and the 2− and 4−form potentials each transform

as multiplet under SL(2,R). However, we will keep using the background supergravity in

the form that is more standard to string theory, i.e. the p−form potentials are from R-R,

and NS-NS sectors.

Let us start by writing down the complete action of the covariant duality-symmetric

action in dual formulation for supersymmetric D3-brane in Green-Schwarz formulation. It

is given by

Scds−D3 = S1 + S2 + SWZ , (6.17)

where

S1 = −1

2

∫

Ω(~F∧P ~F ), (6.18)

S2 = −
∫

d4x
√−g

√

1− 2U + 4

(

1

2
U2 − Y

)

, (6.19)

SWZ =

∫
(

C4 +
1

2
Ω(~F2∧~C2)−

1

2
C1
2∧C2

2

)

, (6.20)
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where, as usual,

gµν = Ea
µE

b
νηab, F i

2 = dAi
1 − Ci

2, (6.21)

U = −1

2
Mijf

i
µf

j
νg

µν , Y =
1

8
Mijf

i
µf

j
νg

νρMklf
k
ρ f

l
σg

σµ, f i
µ = vνF i

νµ. (6.22)

Additionally,

(Mij) =

(

e−φ + C2
0e

φ −C0e
φ

−C0e
φ eφ

)

, C1
2 = B2, C2

2 = C2. (6.23)

In order to derive this action, we compare the duality relation

G̃µν ≡ 2√−g

δSD3

δFµν
− C̃µν = F̃µνC0 −

e−φFµν + 1
4e

−2φ[FF̃ ]F̃µν

√

1− 1
2e

−φ[F 2]− 1
16e

−2φ[FF̃ ]2
, (6.24)

with the non-linear twisted self-duality condition of Scds−D3 :

~f∗ =
(1− 2U)~f − ~f 3

√

1− 2U + 4
(

1
2U

2 − Y
)

. (6.25)

The comparison allows us to work out how Mij and Ci
2 are related to φ,C0, C2, B. In

section 5, we have shown that in the simple case where Mij = δij , C
i
2 = 0, φ = B2 =

C2 = 0, the equations (6.24) and (6.25) are equal, with the identification F 1 = F, F 2 = G.

Turning now to the general case, the equivalence of equations (6.24) and (6.25) gives rise

to eq. (6.23). This completes the dictionary between the fields in standard supersymmetric

D3-brane theory and the ones in the covariant duality-symmetric version, as well as allowing

us to determine S1, S2, and
∫

1

2
Ω(~F2∧~C2) ⊂ SWZ . (6.26)

Next, by demanding that Scds−D3 is invariant under the supergauge transformation

eq. (6.7), the Wess-Zumino action SWZ and hence the whole Scds−D3 can now be com-

pletely determined.

Having determined the complete Scds−D3 and written all the fields in this theory

in terms of fields in the standard D3-brane theory, we can now apply kappa-symmetry

transformation given in subsection 6.2. For this, we also need additional condition

δκa
I = 0, δκF

1 = −iκH, δκF
2 = −iκ(R3 − H3C0). We also need to recompute the ex-

pression for Γ̄, which can be done by following the standard method and a somewhat

lengthy algebra. In the derivation, it is convenient to make use of T i and Si defined via

δκF
i
µν = 4iĒα

[µ(γν]T
i)αβiκE

β + Λα(γµνS
i)αβiκE

β , (6.27)

which gives

T 1 = eφ/2τ3, T 2 = −
(

e−φ/2τ1 − eφ/2C0τ3

)

, (6.28)

S1 = eφ/2τ3, S2 = +
(

e−φ/2τ1 + eφ/2C0τ3

)

. (6.29)
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They have the following properties

Mijiτ2T
j = ΩijT

j , −Mijiτ2S
j = ΩijS

j , (6.30)

T iT j = M ij − iτ2Ω
ij , S[iT j] = 0. (6.31)

Let us finally present the result:

Γ̄ =
−γ̄τ2 +Ω

(

vµ ~fνiγ̄γµν ~T
)

− 1
2 iΩ(

~fµ ~fν γ̄γ
µν)

√

1− 2U + 4
(

1
2U

2 − Y
)

. (6.32)

Let us now compare the on-shell action of the duality-symmetric D3-brane (6.17)

with the standard D3-brane (6.12). The ‘on-shell’ equality here means the equality after

imposing the D3-brane duality relation (6.24). After a simple substitution, we obtain

Scds−D3
on-shell
= SD3 −

1

2

∫

(F2 +B2)∧(G2 + C2). (6.33)

If we also impose the Aµ field equation ∂µ(
√−g(G̃µν + C̃µν)) = 0 of D3-brane action, then

the second term on the r.h.s. of eq. (6.33) becomes a surface term.

The on-shell agreement of duality-symmetric D3-brane action with the standard D3-

brane action was done in [33, 35, 36]. In these references, the D3-brane whose actions are

being compared lives in the background with graviton, dilaton, and axion. In our analysis,

we have shown that the agreement still holds in the case where the D3-brane is coupled

to the complete 10D type IIB supergravity background. Although the duality-symmetric

D3-brane action that we analysed are in dual formulation, we expect that similar result

should also hold in the standard formulation analysed in [33, 35, 36].

7 Conclusion

In this paper, we have discussed the construction of covariant duality-symmetric theories

in dual formulation, and then demonstrated using an explicit example of D3-brane theory

coupled to 10D type IIB supergravity background.

The duality-symmetric theories discussed in this paper are covariantised by using three

auxiliary scalar fields. The nonlinearisation and inclusion of interaction with external fields

are also discussed. The constructions are closely analogous to the duality-symmetric theo-

ries in standard formulation, especially [11] which makes use of one auxiliary scalar field to

PST-covariantise the theory. But one of the differences is that due to the more complicated

nature of the usage of three auxiliary scalar fields over the usage of one auxiliary scalar field

in standard formulation, we need to introduce extra tools to take care of the construction.

In order to demonstrate how to apply the construction, we discuss concrete examples

which are DBI and D3-brane. The construction of these theories as covariant duality-

symmetric theories in standard formulation has been discussed quite extensively in the

literature. The constructions in the dual formulation can then be done using analogous

approaches, and we have shown by explicit analysis that this is indeed the case.
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The covariant duality-symmetric action in dual formulation of DBI theory takes a

DBI-like form (5.16). This feature agrees with the standard formulation counterpart. See

for example [26]. We have also discussed that the DBI-like form is a special case of BN

ansatz (5.20) in the sense that it is a solution to the differential equation (5.22) with trivial

complementary solution.

Finally, by comparing with the D3-brane action [21, 22], we wrote down eq. (6.17) the

covariant duality-symmetric action in dual formulation of D3-brane coupled to 10D type

IIB supergravity background, and worked out the kappa-symmetry transformation. We

have also shown that the duality relation matches with the twisted self-duality condition.

Furthermore, the two actions are shown to agree on-shell. These results suggest that the

two actions are related. But in order to make sure, one will need further consistency checks.

One of important checks, which will be investigated as a future work, would be to start

from constructing Hamiltonian for the action (6.17). This would then allow one to infer

important physical consequences, for example to check whether energy of BIon solution [37,

38] of the theory (6.17) would agree with the one from standard D3-brane action (6.12).

It would be natural to address the constructions of other covariant nonlinear duality-

symmetric theories in dual formulation as future works. For example, one may wish to

study the actions which include derivatives of field strengths, or some supersymmetric

actions. Some of these theories were discussed in standard formulation in [8, 10]. So one

will need to construct these theories in the context of dual formulation and compare with

the results in standard formulation.

Another possible direction is based on the fact that this paper also makes use of

covariantisation using more than one auxiliary field. One might try to construct duality-

symmetric theories in higher dimensions in formulations which allow covariantisation using

more than one auxiliary field.
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