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1 Introduction

The high-energy limit of QCD, in which the squared centre-of-mass energy s is much larger

than the momentum transfer |t|, was pioneered by Lev Lipatov [1] and it is described by

the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation, which resums the large logarithms,

ln(s/|t|), at leading logarithmic (LL) accuracy [2–5], and at next-to-leading-logarithmic

(NLL) accuracy [6–9]. The backbone of the BFKL equation are the quark and gluon

scattering amplitudes, which are dominated by the exchange of a gluon in the t channel,

and acquire a ladder structure. They factorise into quantities, like the impact factors, the

Regge trajectory, and the emission of a gluon along the ladder, a.k.a. the central emission

vertex, which constitute the building blocks of the BFKL equation.

In the last few years, the high-energy limit of QCD and the BFKL equation have

undergone an intense scrutiny. On one hand, it has been realised that the BFKL equation

is endowed with a rich mathematical structure. The functions which describe the analytic

structure of the BFKL ladder at LL accuracy in QCD, and the related ladder in N = 4

super Yang-Mills (SYM) theory, are single-valued iterated integrals on the moduli space

M0,4 of Riemann spheres with four marked points [10, 11], which are single-valued harmonic

polylogarithms (SVHPLs) [12]. In the multi-Regge kinematics, which describe the emission

of gluon radiation along the BFKL ladder, the SVHPLs are generalised to single-valued

iterated integrals on the moduli spaceM0,n of Riemann spheres with n marked points [13],

which are single-valued [12, 14, 15] multiple polylogarithms (SVMPLs) [16, 17]. Further,

the functions which describe the analytic structure of the BFKL ladder at NLL accuracy

are a generalisation of SVHPLs [18] recently introduced by Schnetz [19].

On the other hand, because scattering amplitudes are infrared divergent, and so are the

impact factors, the Regge trajectory, and the central emission vertex, in which they factorise

in the high-energy limit, the study of the scattering amplitudes in the high-energy limit

has benefited from a cross breeding with infrared factorisation [20–30], according to which

the infrared structure of scattering amplitudes for massless partons is known up to three
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loops [31–36]. The one-loop impact factors [37–42] and the two-loop Regge trajectory [43–

47], which are building blocks to the BFKL equation at NLL accuracy, have poles in the

dimensional regulator ε in d = 4−2ε dimensions which can be understood, for the one-loop

impact factors, in terms of the one-loop cusp anomalous dimension and the one-loop quark

and gluon collinear anomalous dimensions [27, 28], and for the two-loop Regge trajectory

in terms of the two-loop cusp anomalous dimension [23].1

Further, we know that the picture of high-energy factorisation based on one-reggeised-

gluon exchange breaks down at NNLO accuracy [47]. The violation can be explained

through infrared factorisation by showing that the real part of the amplitudes becomes non-

diagonal in the t-channel-exchange basis [24, 25]. Accordingly, it can be predicted how the

violation propagates to higher loops, and the three-loop prediction for the violation [27, 28],

which has NNLL accuracy, has been confirmed by the explicit computation of the three-

loop four-point function of N = 4 SYM [51]. In the high-energy factorisation picture, that

violation is due to the contribution of the three-Reggeised-gluon exchange [29, 52]. Thus,

although a study of the BFKL ladder and firstly of its building blocks at NNLL accuracy

is yet to be undertaken, we already have a clear picture of how the factorisation violations

occur at NNLL accuracy.

While we have a precise knowledge of how the infrared poles occur and what they

mean in the loop corrections to impact factors and Regge trajectory, the finite parts of

those corrections are treated as free parameters, which neither infrared nor high-energy

factorisation can constrain. At NLL accuracy, they are fixed either by direct computa-

tion [37, 38, 40, 43–46, 48, 49] or by extracting them from the knowledge of the scattering

amplitudes in the exact kinematics [41, 42, 47, 50]. The goal of this short note is to alert

the reader to the possibility that there might be some organised structure in the finite

parts of impact factors and Regge trajectory as well. We shall discuss amplitudes at NLL

accuracy, so we shall not be concerned with factorisation violations here.

In section 2, we focus on the finite part of the one-loop gluon impact factor, having

the finite part of the two-loop Regge trajectory as a target. In section 3, we discuss

exponentiation patterns that might help in understanding the findings of section 2. In

appendix A, we recall the coefficients of the cusp and collinear anomalous dimensions,

used throughout the note. In appendix B, we provide for completeness also the one-loop

quark impact factor.

2 Playing with finite terms

In order to illustrate the issue, we shall consider the tree-level amplitude for gluon-gluon

scattering ga gb → ga′ gb′ , which may be written as [3],

M(0)aa′bb′
gg→gg = 2s

[
gS (T cG)aa′ C

i(0)(pa, pa′)
] 1

t

[
gS (T cG)bb′ C

j(0)(pb, pb′)
]
, (2.1)

where a, a′, b, b′ represent the colours of the scattering gluons, and G represents the adjoint

representation of SU(N), with (T cG)ab = ifacb, with the colour matrices normalised in the

1The one-loop central emission vertex [42, 48–50] has not been analysed yet in this fashion.
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fundamental representation as tr(T cFT
d
F ) = δcd/2. The coefficient functions Cg(0), which

yield the leading-order impact factors, are given in ref. [3] in terms of their spin structure

and in ref. [53] at fixed helicities of the external partons. Their specific form, though, is

immaterial here, since we shall factor the tree amplitude away.

Note that to leading power of s/t, amplitudes are dominated by gluon exchange in

the t channel, i.e. only t-channel gluon ladders contribute to scattering amplitudes in the

high-energy limit. Note also that the colour component of the amplitude (2.1) is odd under

s ↔ u exchange, and it defines the exchange of an antisymmetric octet in the t channel.

However, also the kinematic component of eq. (2.1) is odd under s↔ u exchange, due to the

overall factor of s/t and since in the high-energy limit u ' −s. Thus, the amplitude (2.1)

is even under s ↔ u exchange, which is a general feature when only t-channel gluon

ladders contribute.

In the loop corrections to a scattering amplitude in the high-energy limit, two or

more gluons characterise the ladder exchange in the t-channel exchange. Colour-wise, the

gluon ladder is then described by the 8 ⊗ 8 colour representation, which is decomposed

as 8 ⊗ 8 = {1 ⊕ 8s ⊕ 27} ⊕ [8a ⊕ 10 ⊕ 1̄0], where the term in curly brackets in the direct

sum is even under s ↔ u exchange, while the term in square brackets is odd. However,

to LL accuracy in ln(s/|t|), only the antisymmetric octet contributes. In fact, the virtual

radiative corrections to eq. (2.1) are obtained, to all orders in αS, by replacing [3],

1

t
→ 1

t

(
s

−t

)α(t)

, (2.2)

in eq. (2.1), where α(t) is the one-loop Regge trajectory, which is related to a one-loop

transverse-momentum integration. In dimensional regularization, it can be written as

α(t) = g2
S CA

2

ε

(
µ2

−t

)ε
cΓ , (2.3)

with CA = Nc, the number of colours, and

cΓ =
κΓ

(4π)2
, κΓ = (4π)ε

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

. (2.4)

The reggeization of the gluon is the fact that higher order corrections to gluon exchange in

the t channel can be accounted for by dressing the gluon propagator with the exponential of

eq. (2.2). Thus, at LL accuracy in ln(s/t), i.e. considering the corrections of O(αnS lnn(s/t)),

the amplitude is real, and only the antisymmetric octet contributes to it.

At NLL accuracy in ln(s/t), i.e. considering the corrections of O(αnS lnn−1(s/t)), the

amplitude develops an imaginary part, however one can show, either within the high-

energy limit [54] or through infrared factorisation [25], that only the antisymmetric octet

contributes to the real part of the amplitude. That is the reggeization of the gluon at NLL

accuracy. However, because also virtual corrections to the impact factors contribute to the

scattering amplitude at NLL accuracy, one needs a prescription to disentangle the virtual

corrections to the impact factors in eq. (2.1) from the ones that reggeize the gluon (2.2).
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For the antisymmetric octet at NLL accuracy, that prescription is provided by [38]

Maa′bb′
gg→gg = s [gS (T cG)aa′ C

g(pa, pa′)]
1

t

[(
−s
−t

)α(t)

+

(
s

−t

)α(t)
]

[gS (T cG)bb′ C
g(pb, pb′)] ,

(2.5)

where we analytically continue ln(−s) = ln(s)− iπ, for s > 0, and where the impact factors

are real and have the loop expansion,

Cg(t) = Cg(0)(t)

(
1 +

∞∑
L=1

g̃S
2LCg(L)(ε)

)
. (2.6)

The Regge trajectory is loop-expanded as,

α(t) =

∞∑
L=1

g̃S
2Lα(L)(ε) , (2.7)

with the one-loop term given in eq. (2.3). In eqs. (2.6) and (2.7) we have used the rescaled

coupling,

g̃S
2 =

αS

4π
κΓ

(
µ2

−t

)ε
. (2.8)

Then we write the amplitude (2.5) as a loop expansion proportional to the tree amplitude,

Maa′bb′
gg→gg =M(0)aa′bb′

gg→gg

(
1 +

∞∑
L=1

g̃S
2L

L∑
i=0

M (L),i
gg→gg lni

(
s

−t

))
. (2.9)

The real part of the one-loop term of eqs. (2.5) and (2.9) is

Re
[
M (1)
gg→gg

]
= α(1)(ε) ln

(
s

−t

)
+ 2Cg(1)(ε) . (2.10)

The Regge trajectory, α(1)(ε) = 2CA/ε, is in fact independent of the type of parton un-

dergoing the high-energy scattering process. It is also independent of the infrared reg-

ularisation scheme which is used. Conversely, the one-loop impact factors are process

and infrared-scheme dependent. They were computed in conventional dimensional regu-

larization (CDR)/’t-Hooft-Veltman (HV) schemes in refs. [37–42], and in the dimensional

reduction (DR)/ four dimensional helicity (FDH) schemes in refs. [41, 42]. To all orders of

ε, the real part of the unrenormalised one-loop amplitude can be written as [42],

Re
[
M (1)
gg→gg

]
=

2CA
ε

[
−2

ε
− 2ψ(1− ε) + ψ(1 + ε) + ψ(1) + ln

(
s

−t

)]
+

(
1− δRε
3− 2ε

− 4

)
CA

ε(1− 2ε)
+

2(1− ε)Nf

ε(1− 2ε)(3− 2ε)
, (2.11)

with Nf the number of light quark flavours, and where, like in eq. (2.9), we have factored

out g̃S
2M(0)aa′bb′

gg→gg . In eq. (2.11), we have used the regularisation parameter, δR = 1 in

CDR/HV schemes, δR = 0 in the DR/FDH schemes [55]. Note also that in the first line of
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eq. (2.11) the transcendental functions come from one-loop box diagrams, while the rational

functions in the second line come from one-loop bubble diagrams [42]. Using eq. (2.10), we

can write the one-loop gluon impact factor to all orders of ε as,

Cg(1)(ε) =
CA
ε

[
−2

ε
− 2ψ(1− ε) + ψ(1 + ε) + ψ(1)

]
+

(
1− δRε
3− 2ε

− 4

)
CA

2ε(1− 2ε)
+

(1− ε)Nf

ε(1− 2ε)(3− 2ε)
. (2.12)

Expanding eq. (2.12) in ε, its ε poles are accounted for by the cusp anomalous dimension

and by the gluon collinear anomalous dimension [28],2 so through O(ε) the one-loop gluon

impact factor is

Cg(1)(ε) = −
γ

(1)
K

ε2
CA +

4γ
(1)
g

ε
+
b0
2ε

+

(
3ζ2 −

67

18

)
CA +

5

9
Nf

+

[(
ζ3 −

202

27

)
CA +

28

27
Nf

]
ε+O(ε2) , (2.13)

with γ
(1)
K the one-loop coefficient of the cusp anomalous dimension (A.2), γ

(1)
g the one-loop

coefficient of the gluon collinear anomalous dimension (A.4), and b0 the one-loop coefficient

of the beta function (A.5). Up to the different coefficient of the ζ2 term, we note that the

O(ε0) term is related to the two-loop cusp anomalous dimension, γ
(2)
K . Further, we can

introduce the quantity, AD,3 defined as,

AD =

(
202

27
− ζ3

)
CA −

28

27
Nf , (2.14)

and we write eq. (2.13) as,

Cg(1)(ε) = −
γ

(1)
K

ε2
CA −

b0
2ε

+ 2ζ2CA − γ(2)
K −AD ε+O(ε2) . (2.15)

Since we are interested in exploring the relation of eq. (2.13) to the two-loop Regge

trajectory, out of the two-loop term in eqs. (2.5) and (2.9), we only need the real part of

the coefficient of the single logarithm,

Re
[
M (2),1
gg→gg

]
= α(2)(ε) + 2Cg(1)(ε)α(1)(ε) , (2.16)

where α(2)(ε) is the two-loop Regge trajectory [43–47]. In CDR/HV, the unrenormalised

two-loop trajectory reads,

α(2)(ε) =
b0
ε2
CA +

2γ
(2)
K

ε
CA +

(
404

27
− 2ζ3

)
C2
A −

56

27
CANf +O(ε) (2.17)

= 2α(1)(2ε)

[
b0
2ε

+ γ
(2)
K + AD ε

]
+O(ε) ,

2Note that in ref. [28] the overall normalisation is different from the one of eq. (2.8).
3Up to an overall coefficient, AD coincides with the two-loop anomalous dimension, Geik, computed in

ref. [56], up to a typo in the sign of the Nf terms in eq. (32).
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where in the second line we have used eq. (2.14) and factored out the one-loop trajectory

α(1)(ε) = 2CA/ε, and rewritten it as 2α(1)(2ε) for later convenience.

A few comments are in order, when we compare eqs. (2.15) and (2.17): as we said,

in infrared and in high-energy factorisations, the finite part of the one-loop gluon impact

factor and the finite part of the two-loop Regge trajectory are treated as free parameters,

i.e. quantities to be determined by an explicit computation. However, besides the fact that

the O(ε0) term of the one-loop gluon impact factor (2.15) is related to the two-loop cusp

anomalous dimension, up to the ζ2 term with a different coefficient,4 we observe the even

more surprising fact that the O(ε) term of one-loop gluon impact factor (2.15) exactly

reproduces the O(ε0) term of the two-loop trajectory (2.17). In fact, apart for the double

pole and the different coefficient of the ζ2 term, one obtains the two-loop trajectory (2.17)

by changing sign to eq. (2.15) and multiplying it by 2CA/ε, i.e. by the one-loop trajectory.

Such an iterative structure looks surprising: a parton-species dependent one-loop quantity

predicts, albeit not fully, a process independent two-loop quantity.5

3 Discussion

We have no explanation for the intriguing effect we have observed in eq. (2.15), which hints

at much more structure in the finite parts of scattering amplitudes in the high-energy limit

than ever thought of so far. Although we ignore the physical mechanism which underpins

it, it is worth making a few general remarks about a possible exponentiated form and

iterative structure of the QCD scattering amplitudes in the high-energy limit, including

their finite parts. However, since infrared factorisation treats the finite parts of impact

factor and Regge trajectory as free parameters, thus offering no guidance to how they

might exponentiate, the remarks below are purely heuristic.

We recall that, on other grounds, in ref. [28] it was hinted that the impact factors,

including their finite contributions, might exponentiate. Compounded with the already

known exponentiation of the Regge trajectory, that amounts, to NLL accuracy, to an

exponentiation of the (real part of the) QCD one-loop amplitude, M
(1)
gg→gg. However, at

two loops, although higher orders terms through O(ε2) would be present, the square of

the one-loop amplitude would yield merely the 2Cg(1)α(1) term of eq. (2.16), which is

subtracted when we compute the two-loop trajectory. Thus, one would need additional

one-loop terms, beyond simply the one-loop amplitude.

We note that there is an exponentiation pattern for which the finite part of the Regge

trajectory is not a free parameter. That occurs in planar N = 4 SYM, where the BDS

ansatz [58, 59] prescribes that the four-point scattering amplitude be written as,

M4 =M(0)
4 exp

[ ∞∑
l=1

al
(
f (l)(ε)M (1)

n (lε) + J (l) +O(ε)
)]

, (3.1)

4In a likely related context, SCET in the high-energy limit, the two-loop cusp anomalous dimension

occurs as the finite term of a one-loop soft exchange [57].
5A similar structure can be distinguished also in the one-loop quark impact factor (B.3), although

polluted by additional contributions.

– 6 –



J
H
E
P
0
2
(
2
0
1
8
)
1
1
2

where a is the ’t-Hooft gauge coupling, and with f (l)(ε) an l-loop dependent second-order

polynomial in ε,

f (l)(ε) = f
(l)
0 + εf

(l)
1 + ε2f

(l)
2 , (3.2)

with f (1)(ε) = 1 and where f
(l)
0 is proportional to the l-loop cusp anomalous dimension,

and f
(l)
1 is proportional to the gluon collinear anomalous dimension. In eq. (3.1), J (l) are

constants, with J (1) = 0, and M
(L)
n (ε) is the L-loop colour-stripped amplitude rescaled by

the tree amplitude.

Accordingly, in the high-energy limit of the planar N = 4 SYM amplitudes [60–63],

the l-loop Regge trajectory can be written as [62],

α
(l)
N=4(ε) = 2l−1 α(1)(lε)

(
f

(l)
0 + εf

(l)
1

)
+O(ε) , (3.3)

with α(1)(ε) = 2/ε the colour-stripped one-loop trajectory of eq. (2.10). We note a couple

of features, which are true to all loops in planar N = 4 SYM: firstly, eq. (3.3) is accurate

through O(ε0), thus the second-order term of eq. (3.2) is irrelevant to it; secondly, the

cusp anomalous dimension fixes the single pole6 of the Regge trajectory, while the gluon

collinear anomalous dimension fixes its finite term.

For l = 2, f
(2)
0 = −ζ2 and f

(2)
1 = −ζ3. The Regge trajectory α

(2)
N=4 (3.3) agrees with the

explicit computation of the two-loop Regge trajectory in planar N = 4 SYM [62] and in full

N = 4 SYM [9], and is in agreement, to O(ε0), with the terms of highest transcendentality

of the QCD two-loop trajectory (2.17). For l = 3, f
(3)
0 = 11ζ4/2 and f

(3)
1 = 6ζ5 + 5ζ2ζ3.

The Regge trajectory α
(3)
N=4 agrees with the explicit computation of the three-loop Regge

trajectory in planar N = 4 SYM [62] and in full N = 4 SYM [51].7

For the QCD amplitudes in the high-energy limit, it is tempting to conjecture an

exponentiation pattern like in eq. (3.1), even more so given that in eq. (3.1) the dependence

of M
(1)
n on 2ε at two loops stems from the general infrared structure of the QCD two-loop

amplitudes [64, 65]. However, let us also note the differences of the QCD amplitudes in

the high-energy limit with respect to planar N = 4 SYM and/or to the BDS ansatz.

Firstly, the finite part of the Regge trajectory (2.17) agrees with the QCD gluon collinear

anomalous dimension only at the level of the terms of highest transcendentality. Secondly,

the fact that the O(ε) term of the impact factor (2.15) agrees fully with the O(ε0) term of

the Regge trajectory (2.17), although present also in planar N = 4 SYM, is unaccounted

for by the BDS ansatz, which is accurate through O(ε0).

Finally, if a similar pattern holds at three-loop level, it certainly does in a more intricate

way, since the finite part of the three-loop Regge trajectory in planar N = 4 SYM [62]

does not occur as such in the higher order terms in ε of the lower-loop impact factor and

Regge trajectory.

That concludes our heuristic exploration of possible exponentiation patterns. As re-

gards the underpinning physical mechanism, it is conceivable that since the high-energy

6Since in N = 4 SYM the beta function is vanishing, higher order ε poles do not occur.
7If we assign the Nc-subleading terms of the coefficient of the single logarithm to the factorisation

violations, both for the infrared poles [28] and for the finite parts. This prescription is consistent with the

fact that the Nc-leading term of the coefficient of the single logarithm of full N = 4 SYM agree with the

coefficient of the single logarithm of planar N = 4 SYM.
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limit is characterised by two large and disparate hard scales s� −t� Λ2, the infrared fac-

torisation formulae need be revisited to account for it, with the possible outcome that also

some finite parts of the amplitudes exponentiate, beyond what was envisaged in ref. [28].

Exploring it is left to future analyses.
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A Anomalous dimensions

The perturbative expansion of the cusp anomalous dimension [66, 67], divided by the

relevant quadratic Casimir factor Ci, is

γK(αS) =

∞∑
L=1

γ
(L)
K

(
αs
π

)L
, (A.1)

with coefficients

γ
(1)
K = 2 , γ

(2)
K =

(
67

18
− ζ2

)
CA −

5

9
Nf . (A.2)

The perturbative expansion of the collinear anomalous dimension is

γi(αS) =
∞∑
L=1

γ
(L)
i

(αs
π

)L
, i = q, g , (A.3)

with coefficients,

γ(1)
g = −b0

4
, γ(1)

q = −3

4
CF , (A.4)

where b0 is the coefficient of the beta function,

b0 =
11CA − 2NF

3
. (A.5)

As customary in the literature, the expansion in eqs. (A.1) and (A.3) is in αs/π, while the

impact factor (2.6) and the Regge trajectory (2.7) are expanded as in eq. (2.8), however

the difference is understood, and should not generate any confusion.

B Quark impact factor

In CDR/HV, to all orders of ε the one-loop quark impact factor is [39]

Cq(1)(ε) =
Nc

ε

[
−2

ε
− 2ψ(1− ε) + ψ(1 + ε) + ψ(1) +

1

1− 2ε

(
1

4(3− 2ε)
+

1

ε
− 7

4

)]
+

1

Nc

1

ε(1− 2ε)

(
1

ε
− 1− 2ε

2

)
−

(1− ε)Nf

ε(1− 2ε)(3− 2ε)
. (B.1)

– 8 –



J
H
E
P
0
2
(
2
0
1
8
)
1
1
2

Expanding eq. (2.12) in ε, its ε poles are accounted for by the cusp anomalous dimension

and by the quark collinear anomalous dimension, so through O(ε) the one-loop quark

impact factor is

Cq(1)(ε) = −
γ

(1)
K

ε2
CF +

4

ε
γ(1)
q +

b0
2ε
− 8CF +

(
3ζ2 +

85

18

)
CA −

5

9
Nf

+

[
−16CF +

(
ζ3 +

256

27

)
CA −

28

27
Nf

]
ε+O(ε2) , (B.2)

with γ
(1)
q the one-loop coefficient of the quark collinear anomalous dimension (A.4).

eq. (B.2) can be also written as,

Cq(1)(ε) = −
γ

(1)
K

ε2
CF +

4

ε
γ(1)
q +

[
b0
2ε

+ γ
(2)
K + AD ε

]
+(1 + 4ζ2)CA − 8CF + [2(1 + ζ3)CA − 16CF ] ε+O(ε2) , (B.3)

which shows that the same structure found in eqs. (2.15) and (2.17) can be distinguished

also in the one-loop quark impact factor, although polluted by additional contributions.
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