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Abstract: We study very light dilaton, arising from a scale-invariant ultraviolet theory

of the Higgs sector in the standard model of particle physics. Imposing the scale symme-

try below the ultraviolet scale of the Higgs sector, we alleviate the fine-tuning problem

associated with the Higgs mass. When the electroweak symmetry is spontaneously broken

radiatively à la Coleman-Weinberg, the dilaton develops a vacuum expectation value away

from the origin to give an extra contribution to the Higgs potential so that the Higgs mass

becomes naturally around the electroweak scale. The ultraviolet scale of the Higgs sector

can be therefore much higher than the electroweak scale, as the dilaton drives the Higgs

mass to the electroweak scale. We also show that the light dilaton in this scenario is a

good candidate for dark matter of mass mD ∼ 1 eV − 10 keV, if the ultraviolet scale is

about 10−100 TeV. Finally we propose a dilaton-assisted composite Higgs model to realize

our scenario. In addition to the light dilaton the model predicts a heavy U(1) axial vector

boson and two massive, oppositely charged, pseudo Nambu-Goldstone bosons, which might

be accessible at LHC.
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1 Introduction

The standard model (SM) of particle physics, which has been very successful in describing

the interactions of elementary particles, is finally completed by the discovery of its last

missing piece, the Higgs particle, at the large hadron collider (LHC) [1, 2]. The properties

of the Higgs particle are measured to be consistent with the standard model prediction,

better than at the percent level by the subsequent experiments [3, 4]. But, nonetheless, the

SM is widely regarded as an effective theory below the electroweak scale ∼ 1 TeV, set by

the vacuum expectation value (vev) of Higgs fields. Since the SM does not have any obvious

symmetry to protect the mass of Higgs particle, which is very sensitive to short distance

physics, it needs to be highly fine-tuned, if the ultraviolet (UV) scale of Higgs physics is

much higher than TeV [5]. New physics at TeV is hence currently actively explored at the

LHC to find a hint for physics beyond the standard model, though no clear signals have

been found yet.

While signals for new physics are actively being probed at LHC, the lower limit of new

particle masses has been pushed up to almost 2 TeV at the Run 2 of LHC [6, 7], putting

most models of physics beyond the standard model (BSM) such as walking technicolor,

composite Higgs or supersymmetry in great tension with LHC. We might therefore need

to seek alternative solutions to the naturalness problem of the standard model, one of the
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basic guiding principles for new physics. Recently there has been proposed an interesting

mechanism to select the Higgs mass dynamically without introducing new physics at the

electroweak scale [8]. The idea is to construct a model that has many (or infinite) local

minima for a wide range of a field that cosmologically relaxes into a local minimum at the

electroweak scale, starting from a local minimum at the ultraviolet (UV) scale of the Higgs

sector, to give a small mass of the electroweak scale to Higgs fields. The QCD axion fits

this criterion, if it couples to the Higgs sector, since its potential is periodic under the shift

symmetry to have infinitely many local minima, and hence the field is called relaxion.

In this paper we propose a very minimal model which assumes only very light dilaton

in addition to the standard model particles up to a UV cutoff scale, M , much higher than

the electroweak scale. Our model provides the naturally light Higgs boson, though its UV

scale is much higher than the electroweak scale. To discuss the mechanism for our model,

we first assume that our model is an effective theory below the cutoff scale, M . One

possible candidate for the UV completion of our model, as discussed later, is a dilaton-

assisted composite Higgs model, based on Banks-Zaks gauge theories with a quasi infrared

(IR) fixed point [9], where both the Higgs boson and the dilaton are (composite) Nambu-

Goldstone bosons from strong dynamics in UV, corresponding to the spontaneously-broken

global symmetry [10] and scale symmetry, respectively. Being a Nambu-Goldstone boson,

associated with spontaneously-broken scale symmetry at the UV scale of the Higgs sector,

the dilaton in our model does a similar role as relaxion that alleviates the naturalness

problem of the standard model Higgs.

The standard model is scale invariant classically, if one turns off the Higgs mass or the

relevant operators in the Higgs potential. In a classic paper [11], however, Coleman and

Weinberg (CW) showed that, even if one imposes the scale invariance at the quantum level

in the Higgs sector of SM, the Higgs field could develop a vev to break the electroweak

symmetry spontaneously by the radiative corrections. Since the value of Higgs vev is de-

termined by the dimensional transmutation of the quartic coupling in the CW mechanism,

it should be chosen by experiments; 〈φ〉 = vew ' 246 GeV to account for the weak interac-

tions. The standard model fermions and the weak gauge bosons get mass from the Higgs

vev through the Yukawa and gauge couplings with the Higgs fields. The problem of CW

mechanism is however that the Higgs mass turns out to be too small, compared to the

experimental value, mH ' 125 GeV, unless one introduces extra bosons [12, 13]. Further-

more, the standard model has to be fine-tuned from the intrinsic ultraviolet scales such as

the Landau pole associated with the weak hypercharge to keep the scale invariance [14].

Our model relies on the electroweak symmetry breaking à la Coleman-Weinberg but evades

these problems by embedding the Higgs sector into an almost stable conformal sector at

the UV scale of the standard model, which leads to a very light dilaton that generates

additional contributions to the Higgs mass of the order of the Higgs vev, 〈φ〉 = vew.

The ultraviolet theory of the Higgs sector in the standard model is assumed to be near

conformal such as the gauge theories with the Banks-Zaks infrared (quasi) fixed point [9]

and the scale symmetry is spontaneously broken near the IR fixed point to generate a very

light dilaton as a Nambu-Goldstone boson. The dilaton of the UV sector then drives the

Higgs mass to a small value, controlled by the scale anomaly or the vacuum energy of the
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UV sector, once the Higgs field develops a vev. At low energy our model contains only the

standard model with very light dilaton, which is therefore different from previous mod-

els [14–21] that attempt to solve the naturalness problem by imposing the scale invariance

in the Higgs sector, not broken spontaneously. We also show that the light dilaton of our

model abundantly constitutes the dark matter in our universe once it is non-thermally

produced at early universe by the vacuum misalignment of the dilaton field. Finally we

propose a specific dilaton-assisted composite Higgs model to realize our scenario that the

very light dilaton derives the Higgs mass to the electroweak scale.

2 Very light dilaton and scale anomaly

The standard model (SM) of elementary particles is scale-invariant in the classical limit,

if one turns off the Higgs mass term (and also the cosmological constant term, which

we neglect in our discussions), but the scale symmetry is broken radiatively by quantum

effects. Since our model assumes a spontaneously-broken scale symmetry in the UV theory

of the Higgs sector, one is led at low energy to an extension of the standard model that

still preserves the scale symmetry at the operator level up to the scale anomaly, though

spontaneously broken.

2.1 Coleman-Weinberg potential

We first review the (unsuccessful) scenario of Coleman and Weinberg [11] that Higgs field

might be a dilaton in the standard model. CW showed that even if one imposes in the

standard model the scale-invariance by taking the quadratic term in the Higgs effective

potential to vanish
∂2V (φ)

∂φ2

∣∣∣∣
φ=0

= 0 , (2.1)

the scale symmetry is spontaneously broken by radiative corrections. At one-loop, for

instance, the Higgs field develops an effective potential to have a minimum away from the

origin [11, 22],

V (φ) =
3

1024π2

[
2g4 + (g2 + g′

2
)2
]
φ4

[
ln

(
φ2

v2
ew

)
− 1

2

]
, (2.2)

where g and g′ are the couplings of SU(2)L×U(1)Y electroweak gauge interactions, respec-

tively.1 By expanding the potential around the minimum, one finds the Higgs mass to be

m2
H = (6M4

W +3M4
Z)/(8π2v2

ew) ≈ (9.8GeV)2 for vew = 246 GeV and the weak gauge boson

masses, MW = 80.4 GeV and MZ = 91.2 GeV. The scale-invariant Coleman-Weinberg

potential leads to too small Higgs mass, compared to the measured value, 125 GeV. Fur-

thermore, if one includes the top quark, the one-loop effective potential changes its sign

and the CW mechanism does not work. As we show however in our model, where the scale

symmetry is spontaneously broken at the ultraviolet scale of the Higgs sector, a quadratic

1CW did not include top quark. If one includes the top quark, the effective potential changes its sign

and the electroweak symmetry does not break. But, one could break it radiatively by introducing new

heavy bosons that couple to Higgs fields [13].
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term in the Higgs potential is induced at the electroweak scale to generate the Higgs mass

of the electroweak scale, when the dilaton develops a small vacuum expectation value,

similar to the relaxion mechanism, provided that the CW mechanism works, having extra

bosons [13].

2.2 A model for light dilaton

Below the UV scale of the standard model, which we denote M , taken to be much larger

than 1 TeV, the Higgs potential is given as, neglecting possible irrelevant operators,

V0(φ) = M2φ†φ+ λ
(
φ†φ

)2
(2.3)

where the quadratic term is not protected in general and naturally of order of the UV

scale, M .2 Being parameters of the low-energy effective theory, the Higgs mass M and

the quartic coupling λ include all the ultraviolet contributions from the UV theory above

the cutoff scale that are relevant at low energy. Especially the mass term includes the

contributions from the massive modes in the UV theory or certain intrinsic scales of the

UV sector such as the scale for the conformal phase transition in the case of conformal

UV theories [23]. In the case of the composite Higgs model, that we will focus on later

as a possible model that realizes our mechanism, the Higgs mass is protected by the shift

symmetry and generated by the Higgs interactions with the standard model particles such

as top quark or EW gauge bosons, the mass term in eq. (2.3) then should be regarded as

the counter term to the SM contributions to the Higgs mass that contains the effect of

UV physics.

Since the scale symmetry is assumed to be spontaneously broken near the infrared

fixed point of the UV theory like the Banks-Zaks theories, the symmetry breaking scale

is much higher than the dynamical or infrared scale of the UV theory, ΛSB � M , known

as Miransky scaling [24] or Berezinskii-Kosterlitz-Thouless (BKT) scaling [25, 26]. Our

UV model is therefore almost scale-invariant for the wide range of scales, M < E < ΛSB.

(See figure 1.)

When the scale symmetry is spontaneously broken, the dilatation current creates a

Nambu-Goldstone boson, the dilaton, denoted as σ, out of vacuum:

〈0| Dµ(x) |σ(p)〉 = ifpµe
−ip·x , (2.4)

where f is the dilaton decay constant, f ∼ ΛSB and the dilatation current Dµ = θµνx
ν

with the energy-momentum tensor θµν that couples to gravity.3 In order for the dilaton to

behave like the relaxion, it has to couple to the Higgs fields. One natural way to achieve this

is to assume that both the dilaton and the Higgs boson come from the same UV dynamics.

Being the low-energy effective theory of a scale-invariant UV theory of the Higgs sector,

2In the composite Higgs model the quadratic term will be quite smaller than M , since it is protected by

the shift symmetry, broken only radiatively.
3As supported by the Schwinger-Dyson analysis [27], one can see that the dilaton decay constant should

be the UV scale or ΛSB not the IR scale, M , that measures the strength of the scale anomaly, since the

dilaton has to decouple from the theory if one takes M → 0.
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Figure 1. (a) A scale-invariant UV theory of the SM Higgs sector above M � 4πvew, where the

scale symmetry is spontaneously broken at ΛSB � M . Below M , there is only one extra particle,

the dilaton, in addition to the SM particles. (b) The behavior of couplings in the UV theory as a

function of scale, E.

all the scale-symmetry violating terms in the Higgs sector are coupled to the dilaton field.

The (anomalous) Ward identity of the scale symmetry fixes how the dilaton couples to the

Higgs fields: Consider the following Green’s function,

〈0|T
{
Dµ(x)φ†φ(0)

}
|0〉 . (2.5)

Upon integrating over all spacetime points, after taking the total divergence, one gets

0 =

∫
d4x ∂µ 〈0|T

{
Dµ(x)φ†φ(0)

}
|0〉 (2.6)

=

∫
d4x 〈0|

[
D0(x), φ†φ(0)

]
δ(x0) |0〉+

∫
d4x 〈0|T

{
θµµ(x)φ†φ(0)

}
|0〉 . (2.7)

If one assumes the second term in eq. (2.7) is saturated at low energy by the dilaton, known

as the hypothesis of partially conserved dilatation currents (PCDC), then one gets

2 〈0|φ†φ |0〉 ≈ f 〈σ(0)|φ†φ |0〉 , (2.8)

which shows that the strength to emit the dilaton by φ†φ is 2/f as realized in the effective

theory by 2
f σφ

†φ, the first nontrivial term in the expansion of the nonlinear coupling of

the dilaton to the quadratic Higgs fields, e2σ/fφ†φ.

The Higgs sector of the standard model now becomes at low energy (E < M), sup-

pressing the Higgs couplings to fermions,

LH =
1

2
e2σ/f∂µσ∂

µσ + (Dµφ)† (Dµφ)− V (φ, σ), (2.9)

where φ is the Higgs field and Dµ is the electroweak covariant derivative. The potential

V (σ, φ) in the effective theory contains the scale anomaly term VA and the Higgs potential

term V0 with its coupling to the dilaton,

V (σ, φ) = M2 e2σ/f φ†φ+ λ
(
φ†φ

)2
+ VA(σ) . (2.10)
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We note that because the dilaton transforms nonlinearly under the scale transformation

in the SM sector, σ → σ + σ0,
∫

d4xM2e2σ/fφ†φ is scale invariant and the scale anomaly

term changes accordingly, Evac → Evace
4σ0/f .4

The scale anomaly term in the potential is determined by the anomalous Ward identity

of scale symmetry as [28]

VA(σ) = |Evac| e4σ/f

(
4σ

f
− 1

)
, (2.12)

where Evac ∼M4 is the vacuum energy density of the UV theory of the Higgs sector5 and

f is the dilaton decay constant, f �M .

The low energy theorem associated with the scale anomaly determines the dilaton

mass, m2
D = 16 |Evac| /f2. As long as the scale symmetry is broken very close to the (quasi)

infrared fixed point of the UV theory, there will be a large separation of two scales f ∼ ΛSB

and M , the dynamical (or infrared) scale of the (quasi) scale-invariant UV theory. We then

have |Evac| ∼M4 � f4 and the dilaton can be very light [29, 30].

Since the UV completion of the Higgs sector is assumed to be (quasi) scale-invariant,

one can impose the scale invariance at the cutoff scale on the standard model in the sense

of Bardeen’s naturalness [14].6 We therefore choose the renormalization condition or the

counter terms in eq. (2.10) such that the quadratic term of the Higgs field vanishes in the

full 1PI effective potential [11]:

m2
φ ≡

∂2Veff

∂φ†∂φ

∣∣∣∣
φ=0=σ

= 0 . (2.13)

This renormalization process is stable under any UV contributions because the very light

dilaton, that coupled to Higgs fields, enjoys the shift symmetry, σ → σ+ σ0. (See more on

this in appendix A.) The effective potential then becomes

Veff(σ, φ) = M2
(
e2σ/f − 1

)
φ†φ+ VCW(φ) + VA(σ) , (2.14)

where VCW(φ) is the Coleman-Weinberg potential for (massless) Higgs fields. At one-loop

V 1−loop
CW (φ) = λ

(
φ†φ

)2
+

1

8
β
(
φ†φ

)2
[
ln

(
φ†φ

M2

)
− a
]
, (2.15)

where a is a constant, to be chosen such that 〈φ〉 = vew, and β is nothing but the one-loop

beta function of the Higgs quartic coupling, λ, assumed to be positive by having extra

4The anomalous Ward identity with θµµ = 4Evac(χ/f)4 and χ = feσ/f

∂µDµ = θµµ = 4VA − χ
∂VA
∂χ

, (2.11)

determines the dilaton potential VA(σ).
5The vacuum energy Evac in eq. (2.12), that contributes to the dilaton mass, is due to the vev of the

order parameter of the scale symmetry, subtracting out the usual perturbative contributions, so that it

vanishes when the vev vanishes [31].
6Our renormalization condition at the cutoff scale is technically different from that of Bardeen’s proposal.
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Figure 2. The dilaton potential in arbitrary units. The dilaton gets a vev away from the origin

once the Higgs develops the electroweak vev.

bosons [13]. As the Higgs sector flows into the infrared, the Higgs field develops a vev by

the CW mechanism [11]. As soon as the Higgs field gets a vev, it drives the minimum

of the dilaton potential away from the origin, 〈σ〉 6= 0. When the Higgs field develops a

vev, 〈φ〉 = vew, it breaks the scale symmetry explicitly and the dilaton potential gets an

additional contribution (see figure 2)

VD(σ) = VA(σ) + VCW(vew) +M2
(
e2σ/f − 1

)
v2

ew , (2.16)

where VCW(vew) now depends on σ from the minimization of V (σ, φ). The dilaton field

therefore develops a vev away from the origin. For the one-loop CW potential one finds

− 〈σ〉
f
≈ M2v2

ew

8 |Evac|
� 1 , (2.17)

where we have taken the vacuum energy, |Evac| � M2v2
ew. The Higgs mass then becomes,

neglecting small mixing with the dilaton,

m2
H ≡ V ′′ (〈σ〉 , φ) |φ=vew

∼ M4

|Evac|
v2

ew . (2.18)

Since the dynamical scale or the infrared scale of the UV theory of the Higgs sector is

assumed to be of order of M , its vacuum energy |Evac| ≈ cM4, where the constant c is

given by the structure of the UV theory. In the case of Banks-Zaks gauge theories with

a quasi IR fixed point, the constant depends only on the gauge group and the number of

fermions [31]. Thus the Higgs mass is naturally given as the electroweak scale or vew.

In our model, therefore, having the scale-invariant UV theory of the Higgs sector,

that gives the coupling between the dilaton and the Higgs boson, the dilaton dynamically

relaxes the Higgs mass to the electroweak scale, giving the naturally light Higgs boson or

mH �M . Without severe fine-tuning we have therefore dynamically raised the ultraviolet
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Figure 3. Leading order diagrams that dilaton decays into two photons. The dashed line denotes

dilaton and the solid line denotes SM fermions. The external curly lines denote photons and the

internal curly lines denote W bosons.

scale of the Higgs sector M to be much higher than the electroweak scale, alleviating the

naturalness problem associated with the Higgs mass. The scale symmetry does a crucial

role in our mechanism. Having the very light dilaton at the UV scale M , the Higgs sector

is almost scale-invariant. The curvature of the Higgs potential, therefore, has to be chosen

to vanish at the origin by the renormalization condition to be consistent with the scale

symmetry, σ → σ + σ0. However, once the Higgs sector flows into IR, the Higgs field

develops a vev, 〈φ〉 = vew by the CW mechanism, generating the IR scale. The Higgs vev

therefore sets the scale for the Higgs mass.

3 Very light dilaton as dark matter

Besides the naturalness problem that we discussed, another strong motivation for physics

beyond the standard model is to account for the dark matter that constitutes about 23%

of the total energy of our present universe. According to the current standard big-bang

cosmology, cold dark matter with a cosmological constant, so-called the ΛCDM fits the

current observations such as the cosmic microwave background (CMB) best [32, 33]. A

very light dilaton has been shown to be one of the best candidates for the cold dark

matter [29, 30].

3.1 Life time

The dilaton couples to the standard model particles, once they get mass by the Higgs

mechanism that breaks the electroweak symmetry. The light dilaton therefore decays into

two photons through a loop process (and also into neutrinos and gravitons, which we

neglect), as shown in figure 3. The decay rate is given at one loop for the very light

dilaton as

Γ(σ → γγ) ' α2
em

36π3

m3
D

f2
|C|2 , (3.1)

where C is approximately a constant times the electric charge squared, summed over all

charged particles in the standard model. We estimate the lifetime of the dilaton

τD ' 1020 sec

(
5

C

)2(10 keV

mD

)3( f

1012 GeV

)2

. (3.2)

In order for the dilaton to be long-lived to become a dark matter candidate of mass,

mD = 10 keV with decay constant f = 1012 GeV, the UV scale has to be M ∼ 10 TeV

– 8 –



J
H
E
P
0
2
(
2
0
1
8
)
1
0
2

by the low energy theorem for the dilaton, m2
Df

2 = 16 |Evac| ∼ M4. If the dilaton decay

constant is as high as the GUT scale, f ∼ 1016 GeV, the dilaton mass can be as low as

1 eV. For M ∼ 100 TeV, we have f = 1015 GeV, if mD = 10 keV, or f = 1016 GeV, if

mD = 1 keV. Therefore, if the UV scale of SM is around 10 − 100 TeV, the dilaton mass

is about 1 eV − 10 keV.

3.2 Relic abundance of dilaton

Since the dilaton is weakly coupled, it will not be in thermal equilibrium with other particles

in early universe, when it is produced. However, by the vacuum misalignment the light

dilaton will be non-thermally produced in early universe. If we take the degree of the

misalignment to be θos = δσ/f , the relic density of the dilaton will be at the time of

oscillation from the misalignment

ρσ(Tos) =
∣∣VD(Tos)− V min

D

∣∣ 'M4 θos
2 . (3.3)

Since the relic density at present is given as ρσ(T0) = ρσ(Tos) · s(T0)
s(Tos)

, where s(T ) is the

entropy density at temperature T , we find the dilaton dark matter contributes to energy

of our present universe as [29, 30]

Ωσh
2 ∼ 0.5

(
δσ

10−5f

)2( 110

g∗(Tos)

)(
M

10TeV

)4(10TeV

Tos

)3

, (3.4)

where g∗(Tos) is the effective degrees of freedom of early universe at the temperature for

the coherent dilaton field starting to oscillate. Very light dilaton as dark matter has been

studied in [29, 30] in the context of walking technicolor. The light dilaton in our model

might be detected in similar experiments such as a microwave cavity experiment under

strong magnetic fields.

4 Dilaton-assisted composite Higgs model

In this section we propose a specific model to realize our scenario that the dilaton relaxes

the Higgs mass to the electroweak scale. This model is based on a composite Higgs model,

where the Higgs boson is a pseudo Nambu-Golstone boson, associated a global symmetry,

broken spontaneously by strong dynamics at M & 4πvew [10, 34, 35]. The Higgs mass is

protected by the (approximate) shift symmetry that is radiatively broken by the electroweak

interactions, giving the loop-suppressed Higgs mass,

m2
H ∼

g̃2

16π2
M2 , (4.1)

where g̃ is the coupling of the electroweak interactions. On top of these features of the

composite Higgs, our model needs to exhibit a (quasi) IR fixed point to have a very light

dilaton at low energy that couples to the Higgs fields.

Consider a composite Higgs model based on the SU(2) gauge theory with Nf Dirac

fermions ψi (i = 1, 2, · · · , Nf ) of the fundamental representation [36, 37] and with Ns Dirac

– 9 –
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fermions χi (i = 1, 2, · · · , Ns) in the symmetric second-rank ternsor representation [38].

Since the spinors are pseudo real in the SU(2) gauge theory, the global symmetry is SU(2n)

for n (massless) Dirac fermions, which breaks down to Sp(2n), once the fermion bilinears

form condensates [39]. The Higgs field is then identified as one of the Goldstone bosons

living on the coset space, SU(2n)/Sp(2n), where the SM gauge group is embedded in its

unbroken subgroup, SU(2)L×U(1)Y ⊂ Sp(2n) so that the Higgs fields transform correctly

under the SM gauge symmetry.

To see whether our composite Higgs model is near the conformal window or not, we

study the two-loop beta function of the SU(N) gauge theory with Nf fundamental Dirac

fermions and Ns Dirac fermions in the second-rank symmetric tensor representation, that

is given as

β(α) ≡ µ∂α
∂µ

= −bα2 − cα3 , (4.2)

with the coefficient b and c, known as

6πb = 11N − 2Nf − 2Ns(N + 2) (4.3)

24π2c = 34N2 − 10NNf − 3

(
N − 1

N

)
Nf

−10NNs(N + 2)− 6

N
(N − 1)(N + 2)Ns(N + 2) . (4.4)

The theory will be asymptotically free if b > 0 and will have a IR fixed point near at

α∗ = −b/c, if c < 0 and the chiral symmetry is unbroken. The chiral symmetry of the

Dirac fermions will break at the critical couplings, αc(f) and αc(s) for the fermions in the

fundamental representation and in the symmetric second-rank tensor, respectively, if they

are smaller than the would-be IR fixed point α∗. The critical couplings are given in the

ladder approximation [40, 41] as

αc(f) =
2π

3

N

N2 − 1
, αc(s) =

2π

3

N

(N + 2)(N − 1)
. (4.5)

For the SU(2) gauge theory with Nf = 8 fundamental Dirac fermions the lattice results

show that the theory is in the conformal window, flowing into a stable IR fixed point [42].

This is consistent with our two-loop beta function analysis, which shows that the critical

coupling for the chiral symmetry breaking αc(f) = 1.40 is bigger than the IR fixed point,

α∗ ≈ 1.26. Let us consider another gauge theory in the conformal window; the SU(2) gauge

theory with Nf = 4 Dirac fermions in the fundamental representation and Ns = 1 Dirac

fermion in the symmetric second-rank tensor representation. Since the critical couplings

for both representations, αc(f) = 1.40 and αc(s) = 1.05 are larger than the IR fixed point,

α∗ ' 0.84, the theory will be in the conformal window, according to the analysis based on

the two-loop beta function. The theory will flow from the asymptotically free theory to the

IR fixed point. The coupling never becomes strong enough to break the chiral symmetry.

Now, we gauge half of the flavor of the fundamental Dirac fermions so that they become

bi-fundamental under SU(2)1 × SU(2)2 (See Table 1.).

For the bi-fundamental fermions ψi (i = 1, 2) the attractive forces are additive and thus

the critical couplings for the chiral symmetry breaking will be smaller than αc(f) = 1.40 in
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ψ1
aα

ψ2
aα

χ{ab} 1

Table 1. The matter content of the gauge theory near the conformal window.

the ladder approximation, since the Bethe-Salpeter Kernel for the fermion-bilinear in the

scalar channel is approximately in the short-distance limit [41]

α1 + α2

αc(f)

1

x2
, (4.6)

where αi is the coupling of SU(2)i at the symmetry breaking scale, ΛSB, and x2 is the dis-

tance square of the four-dimensional Euclidean space. However, unlike the SU(2)1 gauge

theory, the SU(2)2 gauge coupling runs, becoming strong at low energy (E � ΛSB). There-

fore we tune α2 to become close to the αc(f) − α∗ ≈ 0.56 at E = ΛSB so that the chiral

symmetry of the bi-fundamental fermions breaks dynamically very near the IR fixed point

of the SU(2)1 gauge theory.7,8 Once the bi-fundamental fermions get dynamical mass, they

will decouple at low energy and the SU(2)1 coupling becomes stronger and stronger to

break the SU(2)χ chiral symmetry of χab down to U(1)χ and we will have two extra Gold-

stone bosons, Φχ. By identifying the unbroken U(1)χ as the U(1)em, the Goldstone bosons

are oppositely charged and get mass ∼ eMχ, where e is the electric charge and Mχ ∼M is

the scale for the SU(2)χ chiral symmetry breaking. As the SU(2)1 gauge theory flows into

the IR, the bi-fundamental fermions get condensed at ΛSB, breaking the chiral symmetry

near the (quasi) IR fixed point. The coupling of SU(2)1 will show the walking behavior,

since its beta function β1(α) ≈ 0 for the wide range of scales, shown in figure 4,

M < E < ΛSB , (4.7)

where the dynamical (IR) scale is given by the Miransky or BKT scaling,

M ≈ ΛSB exp

(
− π√

α∗/α1 − 1

)
. (4.8)

We see that the dynamical scale M can be arbitrarily small, compared the chiral symmetry

breaking scale ΛSB, if α1 is close to the IR fixed point α∗. Our composite Higgs model

therefore is almost scale-invariant for energy M < E < ΛSB and there should be a dilaton

associated with spontaneous breaking of scale symmetry, when the bi-fundamental Dirac

fermions get condensed at ΛSB to break its global symmetry SU(4) down to Sp(4).

7Since the bi-fundamental fermions are charged under both gauge groups, the β-function will have

mixings between two gauge couplings. At two-loop β(α) = −bα2 − cα3 + b̃α2α2 for SU(2)1, where b̃ =

3/(8π2). The mixing will shift in perturbation the value of b to b − b̃α2. However, since α2 is at most

0.56 before the chiral symmetry breaking, the mixing does not change the IR fixed point much and thus

negligible for our discussions.
8We note that by gauging partially the flavor symmetry of the gauge theory, as in our case, one can move

most of the gauge theories in the conformal window to the broken phase very near the conformal window.

– 11 –



J
H
E
P
0
2
(
2
0
1
8
)
1
0
2

β1(α)

β2(α)

α
α∗•

β(α)

α2 α1

Figure 4. The beta functions β1 and β2 of the SU(2)1×SU(2)2 gauge theory. The chiral symmetry

of the bi-fundamental Dirac fermions is broken at α1 ≈ α∗ for SU(2)1 and α2 ≈ αc(f) − α∗
for SU(2)2.

Since the vacuum manifold M = SU(4)/Sp(4) ∼ SO(6)/SO(5) is five dimensional,

there will be five Goldstone bosons. If we embed the standard model gauge group into

the unbroken subgroup Sp(4) ∼ SO(5) ⊃ SU(2) × U(1) , the five Goldstone bosons can

be decomposed into one SU(2)L doublet, to become the SM Higgs boson, and one real

CP -odd singlet scalar [37, 43, 44]. The broken generator associated with the singlet scalar

is nothing but the axial fermion number U(1)ψA of the bi-fundamental fermion ψ. Assuming

it is non-anomalous,9 we weakly gauge it so that the singlet is absorbed into the U(1)ψA
gauge boson. The U(1)ψA gauge boson gets mass ∼ gψM � 4πvew, with gψ being the U(1)ψA
coupling, and decouples from the SM particles at low energy.

When the SU(2) × U(1) subgroup in the unbroken global symmetry is gauged, the

electroweak interaction contributes to the vacuum energy, lifting the degeneracy of the

vacuum manifold. The correction to the vacuum energy at the leading order in the elec-

troweak coupling expansion is given as (see figure 5), after the renormalization,

∆Evac = −g
2
ew

2

∫
d4x∆µν(x) 〈0|U †T {Jµ(x)Jν(0)}U |0〉 ≡ αew

4π
M2f2

φ F

(
φ

fφ

)
, (4.9)

where ∆µν is the electroweak gauge boson propagator and Jµ(x) are the electroweak cur-

rents, denoted as ⊗ in figure 5. The composite Higgs field φ is nonlinearly realized,

U = exp [2iφ/fφ] with the decay constant, fφ ∼ M by the Pagels-Stokar formula [27].

In addition to the SM gauge bosons, the SM fermions will contribute to the vacuum energy

through the Yukawa interactions. To calculate, for instance, the top Yukawa contributions

to the vacuum energy, one needs to calculate the two-point function of the composite op-

erators Γ(x) or Γ†(x) of the UV theory, denoted as the bullets in figure 5, that source or

sink the top-quark mass term, connected by the top-quark propagators. The zero mode of

9This is always made possible, if one introduces leptonic fields that are charged under U(1)ψA but not

under the UV gauge interactions.
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Figure 5. The SM corrections to the vacuum energy. The blob denotes the (full) two-point function

of the strong dynamics of the composite Higgs. The curly line denotes the SM gauge bosons, Aaµ
and the solid line denotes the SM fermions such as the top quark.

the composite operator Γ(x) for the top quark should be correctly normalized to give the

top Yukawa coupling, yt .10

Expanding the vacuum energy of the composite Higgs due to the vacuum misalignment

in powers of the Higgs fields, φ, one finds the Higgs effective potential at the scale M

becomes for φ†φ� f2
φ

V0(φ) = M2
0φ
†φ+

β

8

(
φ†φ

)2
[
ln

(
φ†φ

M2

)
− a
]

+ · · · , (4.10)

where M2
0 = ξM2 with ξ ≈ 3g2

ψ/32π2− 3y2
t /4π

2. The one-loop beta-function for the Higgs

quartic coupling β is adjusted to be positive in the composite Higgs model. For instance,

the U(1)ψA gauge-boson contribution to the one-loop beta-function to the quartic coupling

is given as

β1 =
3

32π2
g4
ψ , (4.11)

which makes the beta-function β > 0 as long as gψ & 2yt.

In the dilaton-assisted composite Higgs model the (one-loop) effective potential for the

composite Higgs fields and the dilaton is given as

V (σ, φ) = M2
0

(
e2σ/f − 1

)
φ†φ+

β

8

(
φ†φ

)2
[
ln

(
φ†φ

M2

)
− a
]

+ VA(σ) , (4.12)

where we have chosen the renormalization condition that is consistent with the scale sym-

metry [14],
∂2V

∂φ†∂φ

∣∣∣∣
σ=0=φ

= 0 . (4.13)

To find the vacuum configuration we minimize the effective potential:

∂V

∂σ

∣∣∣∣
φ=vew

= M2
0

2

f
e2σ/fv2

ew + |Evac|
16σ

f2
e4σ/f = 0, (4.14)

10The SM fermions are external to the composite Higgs dynamics. Unlike the gauge interactions, the

Yukawa interaction of SM fermions will be absent in the composite Higgs, unless the interaction for the

Yukawa couplings is incorporated in the UV theory to begin with. Here we assume that the Yukawa

couplings are generated in the UV theory through the four-Fermi interactions between the SM fermions

and the fermions in the UV theory of the composite Higgs, similar to the extended technicolor [45, 46].
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which gives

− 〈σ〉
f
≈ M2

0 v
2
ew

8 |Evac|
=
M2

0 v
2
ew

8cM4
� 1 , (4.15)

using the relation Evac = −cM4 of the composite Higgs model. Neglecting the small mixing

with the dilaton, the Higgs mass becomes

m2
H =

∂2

∂φ†∂φ
V (〈σ〉 , φ)

∣∣∣∣
φ=vew

=

(
ξ

4c
+
β

4

)
v2

ew . (4.16)

Since in our composite Higgs model c ' 1.2 [31], either ξ or β has to be O(1) or the U(1)ψA
coupling g2

ψ/4π ' 0.73 to give mH ' 125 GeV.

By coupling the Higgs sector to the light dilaton, we have shown that the Higgs mass

is given by the IR scale, mH ∼ vew, not by the UV scale, M . This seems mysterious but

the scale symmetry is working behind. As the Higgs sector flows into IR, M → M ′, the

dilaton transforms σ → σ+f ln (M ′/M) to keep the renormalization condition (4.13) until

the Higgs field gets the vev, 〈φ〉 = vew which breaks the scale symmetry. Hence the UV

scale of the composite Higgs can be arbitrarily high. The cosmological or phenomenological

requirements on the dilaton mass and its decay constant, however, will constrain the scale

of the model. In our model with the SU(2)1 × SU(2)2 composite-Higgs gauge group, if we

take for instance M = 10 TeV and α1 = 0.98α∗, the dilaton decay constant f ∼ ΛSB '
3× 1010 TeV to give the dilaton mass

mD ∼
M2

f
' 3 keV . (4.17)

The dilaton of this mass range is shown to be a good candidate for the dark matter [29, 30].

5 Discussions and conclusion

In this paper we propose a mechanism that very light dilaton naturally derives the Higgs

mass to the electroweak scale, if the Higgs field gets the electroweak vev à la Coleman-

Weinberg mechanism and couples to the light dilaton. The scale symmetry, associated with

the light dilaton, does a crucial role in our mechanism that the Higgs mass is given by the

Higgs vev, vew, the IR scale of the Higgs sector.

We then show that the dilaton-assisted composite Higgs model, based on the SU(2)1×
SU(2)2 gauge theory with two Dirac fermions in the bi-fundamental representation and

one in the symmetric tensor representation of SU(2)1, realizes our scenario. Both the

dilaton and the composite Higgs are shown to arise as (pseudo) Nambu-Goldstone bosons,

once the Dirac fermions in the bi-fundamental representation get condensed. The standard

model is then coupled through the very light dilaton to the quasi-conformal composite

Higgs model at M � 1 TeV. By imposing the scale symmetry on the standard model, the

naturalness problem of Higgs mass is alleviated to the UV scale, M . When the electroweak

symmetry is radiatively broken by the CW mechanism, the dilaton potential gets an extra

contribution from the Higgs vev, which then drives the dilaton vev away from the origin.

The non-vanishing dilaton vev relaxes the Higgs mass naturally to be of the electroweak

– 14 –



J
H
E
P
0
2
(
2
0
1
8
)
1
0
2

scale, as the vacuum energy or the scale anomaly of the scale-invariant UV theory of the

Higgs sector is of the UV scale, M .11

At the electroweak scale, much below the UV scale, the model contains the standard

model and only one extra particle, the very light dilaton, which is shown to be a good

candidate for dark matter in the universe. If we take for instance the UV scale M ∼
10− 100 TeV and the dilaton decay constant f ∼ 1012−16 GeV, the dilaton mass becomes

mD ∼ 1 eV − 10 keV, which is then long lived enough and abundantly produced by the

vacuum misalignment to constitute dark matter in our universe.

Finally, the dilaton-assisted composite Higgs model predicts in addition to the very

light dilaton a heavy (axial) vector boson of mass ∼ gψM and two, oppositely charged,

pseudo Nambu-Goldstone bosons (SM singlet) of mass ∼ eM . If the UV scale of our

composite Higgs model is around a few 10 TeV, their mass will be a few TeV or so,

accessible at LHC.
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A On the stability of the renormalization condition m2
φ(Λ) = 0

In this appendix we show that the renormalization condition, imposed in eq. (2.14), that

the Higgs quadratic term vanishes at the UV cutoff Λ of the Higgs sector is natural and

stable under any radiative corrections from the UV physics of the Higgs sector, if the

Higgs sector is embedded into the scale-invariant theory that breaks the scale symmetry

spontaneously, leading to very light dilaton at low energy.

A.1 Scale anomaly and the dilation effective potential

In the theory, where the scale symmetry is spontaneously broken, very light dilaton of mass

m2
D ∼ |Evac| /f2 � |Evac|1/2, arises as a Nambu-Goldstone boson, provided that the scale

anomaly is much smaller than the scale of spontaneous breaking of the scale symmetry

− 〈∂µDµ〉 = −
〈
θµµ
〉

= −4Evac � f4 . (A.1)

where Dµ is the dilatation current and the dilaton decay constant f is of the order of

the spontaneous scale-symmetry breaking scale. Then, at low energy E < M , taking

11Our mechanism that the light dilaton relaxes the Higgs mass from the UV scale M to the IR scale, vew
might be the manifestation of the a-theorem in the conformal field theory, studied in [47]. This needs to be

investigated further.
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|Evac| ∼ M4, one can write down the low-energy effective theory of dilaton that saturates

the scale anomaly:

Leff
D =

1

2
∂µχ∂

µχ− VA(χ) , (A.2)

where χ describes the small fluctuations around the asymetric vacuum,

θµµ ≈ 4Evac

(
χ

f

)4

, (A.3)

with 〈χ〉 = f at the vacuum.

The dilatation current in the dilaton effective theory is given as

Dµ =
∂Leff

D

∂(∂µχ)
(xν∂νχ+ χ)− xµLeff

D . (A.4)

The scale anomaly then takes [48], using the equations of motion for χ,

∂µDµ = 4VA − χ
∂VA
∂χ

. (A.5)

From eqs. (A.3) and (A.5) we get

VA(χ) = |Evac|
(
χ

f

)4 [
4 ln

(
χ

f

)
− c0

]
. (A.6)

We note that the anomaly equation (A.5) does not fix the constant c0. But, our choice of

the vacuum, 〈χ〉 = f , fixes c0 = 1. For the nonlinear realization of the dilatation symmetry

we rewrite χ = feσ/f to get

Leff
D =

1

2
e2σ/f∂µσ∂

µσ − VA(σ) , (A.7)

with VA(σ) = |Evac| e4σ/f (4σ/f − 1).

A.2 Dilaton and scale invariance of the Higgs sector

To solve the fine-tuning problem of Higgs mass, we embed the Higgs sector to a scale-

invariant theory in UV. The UV theory is assumed to break the scale symmetry spon-

taneously, generating dynamically a condensate 〈θµµ〉 ∼ M4. The scale M defines the

intrinsic scale of the UV theory such as the dynamical mass in eq. (4.8) or the scale of

phase transitions in [23].

Integrating out all the modes above the dynamical scale M in the Higgs UV sector, the

low energy effective theory of the Higgs fields is given as, turning off all the SM interactions

except the Higgs self interactions and the dilaton coupling,

LH = Leff
D +

1

2
∂µφ

†∂µφ−M2
φe

2σ/fφ†φ− λ
(
φ†φ

)2
+ · · · , (A.8)

where the ellipsis denotes the higher order terms of φ†φ, suppressed by powers of M . Note

that we have included in the effective theory the the dilaton coupling to the Higgs fields,
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as they come from the same UV dynamics, shown in section 2.2. All the effects above the

UV cutoff, taken to be M , of the Higgs sector are approximated in the effective theory

by two relevant and marginal operators, namely the Higgs quadratic coupling, M2
φ, and

the Higgs quartic coupling, λ. Since the scale symmetry that protects the Higgs quadratic

coupling is spontaneously broken, generating a scale M , it should be of the order of M or

M2
φ = cmM

2, if one integrates out all the heavy modes of E > M .

Now we argue that, because of the scale symmetry that is spontaneously broken at low

enegy, the Higgs quadratic coupling Mφ is unphysical just like the phase of nucleon mass in

the coupling of pions to nucleons is unphysical because of the spontaneously-broken chiral

symmetry.12 To see this, we integrate out the heavy modes further down to M ′ < M .

Neglecting the logarithmic corrections to cm, the Higgs quadratic coupling becomes

Lm = −cmM ′2e2σ/fφ†φ . (A.9)

This change of the quadratic term can be compensated, if we shift the dilaton field as

σ → σ′ = σ + f ln

(
M ′

M

)
. (A.10)

Under the scale transformation M →M ′ the dilaton potential has to change as

VA(σ) = |Evac| e4σ/f

(
4σ

f
− 1

)
→ V ′A(σ) =

∣∣E ′vac

∣∣ e4σ/f

(
4σ

f
− 1

)
, (A.11)

where E ′vac = Evac (M ′/M)4. In terms of the shifted dilaton field, σ′ = σ + σ0 with σ0 =

f ln (M ′/M), the dilaton potential becomes

V ′A(σ) = VA(σ′) = |Evac| e4σ′/f

(
4σ′

f
− 1

)
. (A.12)

This transformation of the dilaton potential can be easily seen if one notes under the scale

transformation M →M ′ the scale anomaly transforms as with χ′ = eσ
′/f

θµµ = Evac

(
χ

f

)4

→ θµµ
′ = E ′vac

(
χ

f

)4

= Evac

(
χ′

f

)4

, (A.13)

and the anomaly equation becomes

θµµ
′ = 4VA(χ′)− χ′ ∂

∂χ′
VA(χ′) , (A.14)

while the vacuum energy of the ground state or 〈θµµ〉 is left invariant. We note also that

the kinetic term in the effective dilaton Lagrangian (A.7) is kept properly normalized by

the anomaly equation (A.5).

12The intrinsic scale M is also unphysical in this sense. The physical quantities are such as the ratio

M/ΛSB in eq. (4.8) and the intrinsic scale at the vacuum, Me〈σ〉/f , or the Higgs quadratic coupling at the

vacuum, M2
φe

2〈σ〉/f . We often do not specify 〈σ〉 to the physical scale, when there is no confusion, since we

choose 〈σ〉 = 0.
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We see that because of the shift symmetry of the dilaton field the Higgs sector is

scale-invariant up to the logarithmic violation through the constant cm and the quartic

coupling λ. Hence, as long as the shift symmetry of the dilaton is good enough, the

Higgs quadratic coupling M2
φ should be unphysical. This property is not spoiled under any

radiative corrections from the UV physics of the Higgs sector with spontaneously broken

scale-symmetry, because one can always compensate the radiative corrections by shifting

the dilaton field, as we have shown in this appendix A.2. The constraint on the Higgs

mass, studied in [23], therefore does not apply to our model that has light dilaton from the

spontaneously broken scale-symmetry, noted also in [49].

A.3 The renormalization condition m2
φ(Λ) = 0

Now we turn on the SM interactions of the Higgs fields, which will break the scale symmetry

that the Higgs-dilaton sector enjoys. From the effective potential (2.10) or the effective

Lagrangian density (A.8) we calculate the one-particle irreducible (1PI) effective potential

for the Higgs fields by integrating out all SM particles and possibly some new particles to

get at one-loop, neglecting the higher order terms,

Veff(σ, φ) = VA(σ) +
(
M2
φe

2σ/f − c1Λ2
)
φ†φ+

β

8

(
φ†φ

)2
[
ln

(
φ†φ

v2
ew

)
− c2

]
+ c4 , (A.15)

where the loop momentum is cut off at Λ ∼ M and the effective potential is expanded

in powers of Λ with their coefficients ci and β being functions of Higgs couplings to SM

particles and also to new additional heavy particles that the UV sector of Higgs fields

might have.13 Though the scale symmetry is explicitly broken by SM interactions, one can

still impose the renormalization condition (2.13) that the Higgs quadratic term in the 1PI

effective potential at Λ vanishes by redefining the dilaton field σ → σ′ = σ + σ̄0 with a

suitable choice of σ̄0:

m2
φ(Λ) ≡ ∂2Veff

∂φ†∂φ

∣∣∣∣
φ=0=σ′

= M2
φe
−2σ̄0/f − c1Λ2 = 0 . (A.16)

The choice of the renormalization condition, eq. (A.16) or eq. (2.13), is consistent with

the scale symmetry that the Higgs-dilaton Lagrangian of eq. (A.8) enjoys and also with

the fact that the Higgs quadratic term is protected above the intrinsic scale M of the UV

sector by the symmetry.14 We emphasize that the choice of σ̄0 in eq. (A.16) is equivalent

to the choice of the counter term in the Coleman-Weinberg potential, since the quadratic

term M2
φe
−2σ̄0/fφ†φ represents the effects of the UV sector of Higgs fields. Therefore, if we

13If one applies strictly to our discussion Bardeen’s original proposal for the naturalness problem [14],

the only consistent quadratic terms allowed in the radiative corrections in (A.15) are ones due to heavy

particles associated with the UV sector of the Higgs fields, but not the one from the regulator. Here, for

simplicity, without any confusion the correction c1Λ2 stands collectively for all radiative corrections to the

quadratic term that the effective theory receives.
14One may argue that the renormalization condition (A.16) is not compatible with the UV theory of the

Higgs sector that has some new massive particles or nonperturbative scale. But, we emphasize that what

matters is whether or not one can maintain the renormalization condition at all orders in perturbation.
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fix the UV cutoff the Higgs sector to be Λ, the intrinsic scale of the UV theory at vacuum

is determined by the condition with 〈σ〉 = 0

cmM
2 = c1Λ2 . (A.17)

We note that the renormalization condition eq. (A.17) holds for any cutoff Λ because the

Higgs quadratic term in the effective potential eq. (A.15) is scale-covariant: Under the

scale transformation Λ→ Λ′ the dilaton field transforms σ → σ′ = σ+ f ln (Λ′/Λ) and the

quadratic term becomes(
M2
φe

2σ′/f − c1Λ′
2
)
φ†φ =

(
Λ′

Λ

)2 (
M2
φe

2σ/f − c1Λ2
)
φ†φ . (A.18)

This is equivalent to saying that the Callan-Symmanzik equation for the 1PI two-point

function of Higgs fields in Fourier transforms becomes(
p · ∂

∂p
+ f

∂

∂σ
− 2

)
Γ(2)(p;σ) = 0 . (A.19)
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