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1 Introduction

The 1 + 1 dimensional dilaton gravity models, that on the one hand are exactly solvable

and on the other hand have quite a rich structure, are useful tools to study many different

aspects of classical and quantum gravity (for comprehensive reviews see [1–3]). These

models naturally appear after dimensional reduction of spherically symmetric gravity and

its generalizations and provide an ideal testing ground for the study of black hole quantum

mechanics, thermodynamics, and such deep issues in quantum gravity as the endpoint

of Hawking radiation and the nature of black hole entropy. Special 2D dilaton gravity

models were extensively used in the study of classical and quantum properties of Liouville

black holes [4], the exact string and CGHS black holes [5–9]. The Jackiw-Teitelboim

model [10, 11] is one of the simplest 2D dilaton gravity theories which contains most of the

desirable features. Recently it has been used to study backreaction effects in asymptotically

AdS2 spacetimes in the context of holography [12]. Its deformation has been found [13, 14]

using Yang-Baxter deformation technique, so that the quadratic potential is replaced by a

hyperbolic function of the dilaton field.

In this paper we use a simpler method to derive the hyperbolic deformation [13, 14] of

the Jackiw-Teitelboim model and further generalize it to include sinh-Gordon type matter

field. The class of the proposed dilaton gravity models is still exactly solvable for a variety

of choices of matter and dilaton distributions.
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2 The model

We begin by considering a model of a two-dimensional dilaton gravity which interacts with

a matter field χ of the sinh-Gordon type and a free massless scalar field f . The action

functional of the system we are interested in reads

S = S[gµν , φ, χ, f ] = Sφ + Sχ + Sf ,

Sφ = − 1

4π

∫
d2x
√
−g
[
QφR+ (1− 2bQ)(∇φ)2 − λ e−2bφ

]
,

Sχ = − 1

4π

∫
d2x
√
−g
[
(∇χ)2 +m cosh(2bχ)

]
,

Sf = − 1

8π

∫
d2x
√
−g (∇f)2.

(2.1)

The action Sφ is the action of the Liouville dilaton gravity. On a flat background the

action Sχ describes the matter field χ which obeys the well known sinh-Gordon equation.

However, in our case the geometry is curved. The other field f is a free conformal matter

useful, e.g., to study the solutions involving collapsing null shells.

We consider the model with positive parameters λ and m. By shifting the dilaton

field as φ→ φ+ const, one can make the coefficient λ in front of the Liouville potential to

become an arbitrary (positive) constant. This is possible because in two dimensions
∫
R is

a topological invariant and this field redefinition does not affect the field equations. Later

on we will put λ = m.

Using conformal transformations of the metric, the action (2.1) can be rewritten is

several different but equivalent forms. In the literature it is often used the representation

when the kinetic term of the dilaton field φ cancels. This choice is given by the following

metric redefinition

gµν = e

(
2b− 1

Q

)
φ
ĝµν . (2.2)

When expressed in terms of the ĝµν metric the action functional (2.1) becomes

Ŝ = − 1

4π

∫
d2x

√
−ĝ
[
QφR̂+ (∇̂χ)2 +me

(
2b− 1

Q

)
φ

cosh(2bχ)−me
− 1

Q
φ

+
1

2
(∇̂f)2

]
.

(2.3)

From the computational point of view the following conformal transformation happens

to be more convenient

gµν = e2bφg̃µν ,
√
−g = e2bφ

√
−g̃, R = e−2bφ[R̃− 2b �̃φ]. (2.4)

Then the action (2.1) takes the form

S̃ = − 1

4π

∫
d2x

√
−g̃
[
QφR̃+ (∇̃φ)2 + (∇̃χ)2 +me2bφ cosh(2bχ)−m+

1

2
(∇̃f)2

]
, (2.5)

It is also useful to introduce two other field variables

ω1 = φ+ χ, ω2 = φ− χ. (2.6)

– 2 –
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In terms of these fields the action (2.5) becomes a sum of two decoupled Liouville-type

actions1 and the action of a free scalar field

S̃ = S1 + S2 + Sf , (2.7)

where

Sk =− 1

8π

∫
d2x

√
−g̃
[(
QωkR̃+ (∇̃ωk)2 +me2bωk −m

)]
, (2.8)

and k = (1, 2). These Lagrangians differ from the standard Liouville field theory only in

the extra “cosmological” term −m. Variation of the action (2.7) over the fields ωk (for

k = (1, 2)) and f gives the field equations

�̃ωk −
Q

2
R̃− bme2bωk = 0,

�̃f = 0.
(2.9)

Variation of the action (2.7) over the metric leads to the equations

T̃µν = Tµν1 + Tµν2 + Tµνf = 0, (2.10)

where

T̃µν =
2√
−g̃

δS̃

δg̃µν
, Tµνk =

2√
−g̃

δSk
δg̃µν

. (2.11)

Here

Tµν = − 1

8π

[
2
(
Qω;µν − ω;µω;ν

)
+ g̃µν

(
− 2Qω;α

α + ω;αω;α +m(e2bω − 1)
)]

(2.12)

for ω = (ω1, ω2) correspondingly and

Tµνf =
1

4π

[
f ;µf ;ν − 1

2
g̃µνf ;αf;α

]
. (2.13)

In the conformal gauge we have

ds̃2 = − 2e2ρdx+dx−, x+ = t+ z, x− = t− z, (2.14)

g̃++ = g̃−− = 0, g̃+− = g̃−+ = −e2ρ,

g̃++ = g̃−− = 0, g̃+− = g̃−+ = −e−2ρ,
√
−g̃ = e2ρ. (2.15)

Let us denote

ω+ = ∂+ω, ω− = ∂−ω,

ω++ = ∂+∂+ω, ω−− = ∂−∂−ω, (2.16)

ω+− = ∂−∂+ω, ω−+ = ∂+∂−ω,

1This representation is similar to that of [14], where the difference of Liouville actions was considered.
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and introduce similar objects for partial derivatives of ρ, f , and σ. Then

R̃ = 4e−2ρρ+−, �̃ρ =− 2e−2ρρ+−, (2.17)

�̃ω = − 2e−2ρω+−, �̃f = − 2e−2ρf+−. (2.18)

The components of the stress-energy Tµν (see (2.12)) take the form

T++ =
1

4π

[
−Qω++ + ω+ω+ + 2Qω+ρ+

]
,

T−− =
1

4π

[
−Qω−− + ω−ω− + 2Qω−ρ−

]
,

T+− = T−+ =
1

8π

[
2Qω+− +me2ρ

(
e2bω − 1

)]
.

(2.19)

Field equations (2.9) become

ωk+− +Qρ+− +
bm

2
e2(ρ+bωk) = 0,

f+− = 0.
(2.20)

Variation of the action (2.7) over the metric leads to (2.10). When written explicitly in

components these equations take the form

2Q(ω1+− + ω2+−) +me2ρ
(
e2bω1 + e2bω2 − 2

)
= 0, (2.21)

ω1+ω1+ −Qω1++ + ω2+ω2+ −Qω2++ + 2Q(ω1+ + ω2+)ρ+ + f+f+ = 0, (2.22)

ω1−ω1− −Qω1−− + ω2−ω2− −Qω2−− + 2Q(ω1− + ω2−)ρ− + f−f− = 0. (2.23)

From (2.20) and (2.21) we get

(1− bQ)(ω1+− + ω2+−) + 2Qρ+− +mbe2ρ = 0. (2.24)

For a specific value of the constant Q = 1/b the equation for the conformal factor decouples

from the matter equations. This case is of a particular interest for us, because the classical

field equations can be solved exactly. In the next sections we fix Q = 1/b.

3 Case Q = 1/b

In a special case, when Q = 1/b, (2.24) reduces to the Liouville equation

ρ+− +
mb2

2
e2ρ = 0. (3.1)

Taking into account (2.17), one can see that the solution for the metric g̃µν describes the

spacetime of a constant curvature

R̃ = −2mb2. (3.2)

The general solution of the Liouville equation is well known and reads

e2ρ =
2

mb2
∂+Y

+∂−Y
−

(Y + − Y −)2
, (3.3)
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where

Y + = Y +(x+), Y − = Y −(x−) (3.4)

are arbitrary functions of the advanced and retarded null coordinates.

The other field equations are

(b ωk + ρ)+− +
mb2

2
e2(b ωk+ρ) = 0. (3.5)

It is convenient to introduce new fields

σk = b ωk + ρ. (3.6)

In terms of these variables (3.5) take the form

σk+− +
mb2

2
e2σk = 0. (3.7)

Thus, in the conformal gauge the field equations for the metric and two σ-fields reduce to

three identical Liouville equations. The constraint equations (2.22),(2.23) mean that total

fluxes T̃++ = T̃−− = 0 and in terms of σ fields read

σ1++ − (σ1+)2 + σ2++ − (σ2+)2 = 2
[
ρ++ − (ρ+)2

]
+ b2(f+)2, (3.8)

σ1−− − (σ1−)2 + σ2−− − (σ2−)2 = 2
[
ρ−− − (ρ−)2

]
+ b2(f−)2. (3.9)

The matter field f satisfies the equation

f+− = 0. (3.10)

The general solution of this equation is described by two arbitrary functions V and U

f = V (x+) + U(x−). (3.11)

The solutions of the (3.7), which have the form of the Liouville equation, are

e2σk =
2

mb2
∂+X

+

k ∂−X
−
k

(X+

k −X
−
k )2

, k = (1, 2), (3.12)

where

X±k = X±k (x±) (3.13)

are arbitrary functions of the advanced and retarded null coordinates. For the fields ωk it

leads to

e2bωk =
∂+X

+

k ∂−X
−
k

(X+

k −X
−
k )2

(Y + − Y −)2

∂+Y +∂−Y −
. (3.14)

Using this solution and (3.3) one can find the original metric (2.4), the dilaton field φ and

the matter fields χ.

e2bφ =

√
∂+X

+

1 ∂−X
−
1 ∂+X

+

2 ∂−X
−
2

|X+

1 −X
−
1 ||X

+

2 −X
−
2 |

(Y + − Y −)2

∂+Y +∂−Y −
, (3.15)

e2bχ =

√
∂+X

+

1 ∂−X
−
1

(X+

1 −X
−
1 )2

√
(X+

2 −X
−
2 )2

∂+X
+

2 ∂−X
−
2

. (3.16)
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The result of substitution of the solutions (3.12) to (3.8)-(3.9) can be written in the form

{X+

1 , x
+}+ {X+

2 , x
+} = 2{Y +, x+}+ 2b2(f+)2,

{X−
1 , x

−}+ {X−
2 , x

−} = 2{Y −, x−}+ 2b2(f−)2.
(3.17)

Here {A, x} denotes the Schwarzian derivative of the function A(x)

{A, x} ≡ A′′′

A′
− 3

2

(A′′
A′

)2
. (3.18)

One can always use a coordinate transformation such that

Y + = x+, Y − = x−, e2ρ =
2

mb2
1

(x+ − x−)2
. (3.19)

In this gauge the metric becomes

ds̃2 = − 4

mb2
dx+dx−

(x+ − x−)2
. (3.20)

and, evidently,

{Y +, x+} = {Y −, x−} = 0. (3.21)

The remaining nontrivial equations (3.17) for the dilaton fields reduce to

{X+

1 , x
+}+ {X+

2 , x
+} = 2b2(f+)2,

{X−
1 , x

−}+ {X−
2 , x

−} = 2b2(f−)2.
(3.22)

Different choices of the functions X±k and f± correspond to different physical setups

of the problem.

4 Vacuum solutions

Now consider the vacuum solutions of the system (3.22), when the matter field f vanishes.

Let the functions X±k be related according to the rule

X±1 = X±, X±2 =
αX± + β

γ X± + δ
(4.1)

for some arbitrary coefficients α, β, γ, δ. Substitution of this relation to (3.12),(3.14) gives

σ1 = σ2 and φ = ω1 = ω2, that corresponds to χ = 0 in the original field variables. Thus

this ansatz assumes that the sinh-Gordon matter field χ also vanishes.

Thus the choice in question describes the system with the action

S̃ = − 1

4π

∫
d2x

√
−g̃
[

1

b
φR̃+ (∇̃φ)2 +m

(
e2bφ − 1

)
+

1

2
(∇̃f)2

]
. (4.2)

In terms of the metric ĝµν (see (2.2)) it reads

Ŝ = − 1

4π

∫
d2x

√
−ĝ
[

1

b
φR̂+ 2m sinh(bφ) +

1

2
(∇̂f)2

]
. (4.3)
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One can see that the action (4.3) exactly reproduces, up to normalization factors, the

hyperbolic deformation (see [13, 14]) of the Jackiw–Teitelboim gravity model.

The vacuum solution assumes that the matter field f = 0 vanishes. Then because of

the properties of the Schwarzian derivative we obtain

{X±1 , x
±} = {X±2 , x

±} = {X±, x±}. (4.4)

The constraint equations (3.22) reduce to

{X±, x±} = 0. (4.5)

Their general solutions are

X+(x+) =
α1x

+ + β1
γ1 x+ + δ1

, α1δ1 − β1γ1 > 0, (4.6)

X−(x−) =
α2 x

− + β2
γ2 x− + δ2

, α2δ2 − β2γ2 > 0. (4.7)

In the conformal gauge (3.19) we obtain the vacuum solution for the dilaton

e2ρ =
2

mb2
1

(x+ − x−)2
, (4.8)

e2bφ =
C1(x

+ − x−)2

C2x+x− + C3x+ − C4x− + C5
, (4.9)

where

C1 = (α1δ1 − β1γ1)(α2δ2 − β2γ2),
C2 = α1γ2 − α2γ1, C3 = α1δ2 − β2γ1,
C4 = α2δ1 − β1γ2, C5 = β1δ2 − β2δ1.

(4.10)

By lifting the solution to a higher dimensional spherical spacetime, the dilaton field gets a

meaning of some power of the radial coordinate. In higher dimensions, even for non-static

spacetimes, one can define the apparent horizon using the condition, that a normal to the

constant radius surface becomes null on the apparent horizon. This property boils down

to the following condition for the analogue of the apparent horizon in the two dimensional

dilaton gravity

(∇̃φ)2
∣∣
Hor

= 0. (4.11)

As an example consider a particular choice of parametrization of the solution (4.6)

X+(x+) =
(1 + 2ac)x+ + pc

c x+ + 1
, (4.12)

X−(x−) = x−. (4.13)

where a, c, p are arbitrary constants satisfying the condition 1+2ac > pc2. Then the dilaton

field takes the form

e2bφ =
(1 + 2ac− pc2)(x+ − x−)2

[x+ − x− + c (p+ 2ax+ − x+x−)]2
. (4.14)
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The horizon equation (4.11) gives

x+
∣∣
Hor

= a±
√
a2 + p, x−

∣∣
Hor

= a±
√
a2 + p. (4.15)

The obtained solution reproduces the hyperbolic deformation [13, 14] of the Jackiw–

Teitelboim gravity model. It can be also generalized to a non-static case [13, 14] that

includes the collapsing shell of null matter f .

5 Non-vacuum solutions

Now consider a more general setup of the problem. By choosing a different ansatz for

functions F±

X±1 = X±, X±2 = F±(X±) (5.1)

and using the chain rule of the Schwarzian derivative, one can write the constraint equa-

tions (3.22) in the form

{X±, x±}+
1

2

(
∂X±

∂x±

)2

{F±, X±} = b2(f±)2. (5.2)

Let us study a few simple examples of deformations of the Jackiw–Teitelboim dilaton

gravity, that correspond to different choices of the solutions for matter field χ. In this

section the matter field f is assumed to vanish.

In the conformal gauge (3.19) for any given functions F± we have (see (3.15),(3.16))

e2bφ =
|∂+X

+∂−X
−|
√
|(F+)′(F−)′|

|X+ −X−||F+ − F−|
(x+ − x−)2, (5.3)

e2bχ =
|F+ − F−|

|X+ −X−|
√
|(F+)′(F−)′|

. (5.4)

Here F ′ ≡ ∂XF (X) and X± are the solutions of (5.2). The constraint equations (5.2)

define functions X±, and for f = 0 take the form

{X,x}+
1

2

(
∂X

∂x

)2

{F,X} = 0. (5.5)

For any chosen function F (X), this equation is a third-order ordinary differential equation.

Therefore its general solution X(x) is parameterized by three arbitrary constants. In some

cases the solution is quite simple. Let us consider a few natural choices of the function F

that admit exact solution of (5.5) in terms or elementary functions.

It should be noted that if one finds the solution X(x) for some function F (X), then,

because of properties of the Schwarzian derivative, exactly the same function X(x) is

the solution of the problem with F → G, provided the function G is fractional linear

transformation of the function F

G(X) =
c1F (X) + c2
c3F (X) + c4

, {G,X} = {F,X}. (5.6)
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The dilaton φ and matter field χ depend on choice of functions F±. Thus, starting from

any given solution and using this property we can generate a whole class of physically

different solutions for the dilaton and matter fields.

Among all possibilities we single out three simplest types

A when {F,X} = α (5.7)

B when {F,X} =
α

X2
, (5.8)

C when {F,X} =
α

X4
, (5.9)

where α is an arbitrary constant.

5.1 Case A

In this case a particular solution of the problem {F,X} = α reads

F =

tan(aX), for α = +2a2,

tanh(aX), for α = −2a2.
(5.10)

Using the property (5.6) we can derive a most general form of the function F in the case A.

F =


c1 tan(aX) + c2
c3 tan(aX) + c4

for α = +2a2,

c1 exp(2aX) + c2
c3 exp(2aX) + c4

for α = −2a2.

(5.11)

One can see that, e.g., the functions tanh(aX), coth(aX), and exp(±2aX) have the same

constant Schwarzian derivative.

The general solution of (5.5), after substitution there {F,X} = α, is characterized by

three arbitrary constants q1, q2, q3

X =


q1 +

√
2

a
arctan[q2(x+ q3)], α = +2a2,

q1 +

√
2

a
arctanh[q2(x+ q3)], α = −2a2.

(5.12)

In order to obtain F± as explicit functions of the coordinates x±, one has to substitute the

solution (5.12) into the function in question (5.11).

5.2 Case B

A particular solution in the case B is

F =


Xn, for α =

1− n2

2
,

ln(X), for α =
1

2
.

(5.13)

– 9 –
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Using the fractional linear transformation (5.6) of (5.13) one can generate the other func-

tions which fulfill the condition (5.8).

The general solution of the constraint equations (5.5)

X = exp

[
q1 +

2
√

2√
n2 + 1

arctanh[q2(x+ q3)]

]
. (5.14)

Note that F (X) ∼ lnX corresponds to n = 0 case.

5.3 Case C

It it easy to find a function, satisfying the condition (5.9)

F =


tan

a

X
, for α = +2a2,

tanh
a

X
, for α = −2a2.

(5.15)

The general form of the function F in the case C reads

F =


c1 tan a

X + c2

c3 tan a
X + c4

for α = +2a2,

c1 tanh a
X + c2

c3 tanh a
X + c4

for α = −2a2.

(5.16)

Substituting the ansatz {F,X} = α/X4 to (5.5) we obtain the solution

X =


q1 +

√
2

a
arctan[q2(x+ q3)], α = +2a2,

q1 +

√
2

a
arctanh[q2(x+ q3)], α = −2a2.

(5.17)

5.4 Some other cases

Note that the solutions (5.17) coincide with (5.12). It’s not surprising because {X−1, x} =

{X,x} and, hence, substitution X → X−1 transforms constraint equation (5.5) of the case

C to that of the case A. In fact, any fractional linear transformation of the function X

X(x)→ εX(x) + ζ

γ X(x) + δ
(5.18)

with arbitrary coefficients ε, ζ, γ, δ does not alter the Schwarzian derivative. Therefore the

solution (5.12) is also a solution of the problem

{X,x}+
1

2

(
∂X

∂x

)2

α
(δε− γζ)2

(γX(x) + δ)4
= 0, α = ±2a2. (5.19)

It corresponds to

F =


tan

a(δε− γζ)

γ(γX + δ)
, for α = +2a2,

tanh
a(δε− γζ)

γ(γX + δ)
, for α = −2a2

(5.20)
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with

{F,X} = α
(δε− γζ)2

(γX(x) + δ)4
. (5.21)

and also to all fractional linear transformations of this function F .

6 Summary

We found out the explicit expressions (5.12), (5.14), (5.17) in terms of elementary functions

for the solutions of the constraint equations (5.5) in cases A,B, and C. The same solutions

are valid for the choice of any other function that is the linear fractional (Möbius) trans-

formation of the functions we have considered. Then one has to substitute these solutions

X±(x±) to F±(X±) and,using (5.3)–(5.4), derive the value of the dilaton φ and the mat-

ter field χ.

The metric g̃µν (see (2.14)) describes pure AdS2 spacetime with the constant curvature

R̃ = −2mb2. The metrics gµν and ĝµν (see (2.4)-(2.2)) describe conformal deformations of

the AdS2 spacetime.

The obtained exact classical solutions typically have both horizons and singularities.

There are also other solutions we did not present in this paper. Their properties should

be analyzed for every particular choice of the matter fields χ and f . Similar to the

cases of Jackiw-Teitelboim gravity [12] or its hyperbolic deformation [13, 14], one can

use the derived solutions to describe collapsing matter problem, holography, thermody-

namics, and Hawking radiation effects. We will return to these interesting questions in

future publications.
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