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Abstract: The existence of tiny neutrino masses and flavor mixings can be explained

naturally in various seesaw models, many of which typically having additional Majorana

type SM gauge singlet right handed neutrinos (N). If they are at around the electroweak

scale and furnished with sizable mixings with light active neutrinos, they can be produced at

high energy colliders, such as the Large Hadron Collider (LHC). A characteristic signature

would be same sign lepton pairs, violating lepton number, together with light jets — pp→
N`±, N → `±W∓, W∓ → jj. We propose a new search strategy utilising jet substructure

techniques, observing that for a heavy right handed neutrino mass MN much above MW± ,

the two jets coming out of the boosted W± may be interpreted as a single fat-jet (J). Hence,

the distinguishing signal topology will be `±`±J . Performing a comprehensive study of the

different signal regions along with complete background analysis, in tandem with detector

level simulations, we compute statistical significance limits. We find that heavy neutrinos

can be explored effectively for mass ranges 300 GeV ≤MN ≤ 800 GeV and different light-

heavy neutrino mixing |VµN |2. At the 13 TeV LHC with 3000 fb−1 integrated luminosity

one can competently explore mixing angles much below present LHC limits, and moreover

exceed bounds from electroweak precision data.
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1 Introduction

The experimental evidence for neutrino oscillations [1–6] and lepton flavor mixings, from

the various experiments, motivate extensions of the SM incorporating non-zero neutrino

masses and mixings. After the pioneering realization of the unique d = 5 operator [7]

within the SM with ∆L = 2 lepton number violation (L = Lepton number), it was realized

that the Seesaw mechanism [8–14] could be the simplest idea to explain the smallness of

the neutrino masses and flavor mixings. In many of these models, SM is extended by gauge

singlet, Majorana type, heavy right handed neutrinos (RHNs). After electroweak (EW)

symmetry breaking, the light Majorana neutrino masses are generated by, for instance, the

so called type-I seesaw mechanism.

Through the seesaw mechanism, the flavor eigenstates of the SM light neutrino mix

with the mass eigenstates of the light neutrinos and RHNs. The SM singlet RHNs (N)

interact with the SM gauge bosons through lepton mixing. Such Majorana type RHNs, if at

the EW scale, can be produced at the Large Hadron Collider (LHC) with a distinguishing

signature — Same Sign Di-Leptons (SSDL) and di-jets. In this channel the heavy RHNs

decay into a W± and a lepton. In cases where the RHNs are sufficiently massive, very often

the gauge bosons are significantly boosted, resulting in collimated energy deposits in the

hadronic calorimeter. With a suitable jet algorithm, these collimated hadron four momenta

may be reconstructed as a fat-jet (J). Fat-jets retain information of their origins and have

several distinct properties that may be leveraged for tagging and signal discrimination. The

resulting signal of interest therefore becomes SSDL + fat-jet. In this paper we consider

searches for RHNs with masses MN ≥ 300 GeV, which is sufficient to produce boosted jets.

It is important to search for such relatively small-mass RHNs at colliders, since from a very

general theoretical viewpoint, a small MN may be considered technically natural [15, 16].

This is because in the limit MN → 0 one regains U(1)B-L as a global symmetry of the
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Lagrangian. RHN phenomenologies in U(1) extended models have been studied in [17–

19]. Interesting phenomenological aspects of the RHN in the Left-Right (LR) model have

been studied in [20–22]. Different experiments such as ATLAS [23] and CMS [24, 25] have

already searched for RHNs in the SSDL + dijets channel, assuming non-boosted W±.

At the 8 TeV LHC, with 20.3 fb−1 luminosity and 95% confidence limit (C. L.), AT-

LAS [23] has probed mixings for muon flavor down to a |VµN |2 of 3.5 × 10−3, for MN =

100 GeV. The limits further goes down to 2.9 × 10−3 for MN = 110 GeV and then mono-

tonically weakens with mass, up to MN = 500 GeV. At MN = 500 GeV the limits are

|VµN |2 = 4 × 10−1. The limits are nearly two orders of magnitude weaker in the case of

electron flavor mixings |VeN |2 at the 95% C. L.

CMS has also studied the SSDL plus dijet signal and obtain the exclusion limits for

|VeN |2 [24] and |VµN |2 [25]. Both studies are performed at the 8 TeV LHC with 19.7 fb−1

luminosity at 95% C. L. The limits for the mixed e±µ±+ jj final state was also considered

in [24]. CMS observed upper limits for |VeN |2 at 1.2 × 10−4 for MN = 40 GeV, 2 × 10−2

for MN = 85 GeV, 8 × 10−3 for MN = 130 GeV and 1.2 × 10−2 for MN = 200 GeV.

Thus, the |VeN |2 limits were found to again weaken with MN . Alternatively, RHNs may

be excluded as large as MN = 480 GeV, assuming the mixing is unity. The limits on

|VµN |2 from the SSDL + dijet final state with µ flavor is probed down to 2 × 10−5 for

MN = 40 GeV, 4.5×10−3 for MN = 90 GeV, 1.75×10−3 for MN = 125 GeV and 7×10−3 for

MN = 175 GeV with |VµN |2 again weakening subsequently with MN . For MN = 500 GeV

the limit is |VµN |2 = 0.6.

In this paper we leverage boosted W± production from massive RHN, and its sub-

sequent decay into a fat-jet in association with µ±µ± pairs. The PT of the W± scale as

PWT ∼ (M2
N −M2

W )/MN and the separation between the hadronic decay products of W±

scale as ∼ MW /P
W
T . Therefore, a natural region of focus may be the intermediate to

heavy RHN mass range, say MN ≥ 300 GeV. In this mass range, the only other competent

limit that exists comes from indirect EW precision data (EWPD). The EWPD limit is

around |VµN |2 = 0.009 [26, 27, 29]. The mixing limits may also be obtained from the Higgs

data [30–32] for 10 GeV ≤MN ≤ 200 GeV.

For simplicity and clarity, we consider only the µ flavor for the SSDL. Moreover, µ

detection efficiencies are better, compared to electrons and tau leptons. We place limits on

|VµN |2 at the 13 TeV LHC, with 3000 fb −1 luminosity, in the 300 GeV ≤ MN ≤ 800 GeV

mass range. A representative diagram for the parton level production and decay of RHN,

leading to final states of interest, is shown in figure 1.

Search strategies utilising boosted and collimated objects have proven to be spectac-

ularly successful in searches at the LHC. The seminal ideas [33–36] have burgeoned into

many sophisticated methods that enable tagging jets arising from the decay of boosted

heavy particles, improving searches for new topologies, investigating jet properties and

mitigating underlying events and pile-up (please see [37] and references therein for a re-

view of some these techniques).

In the context of sterile neutrinos and related models there have been a few studies

that have, in a broader sense, leveraged the effectiveness of collimated objects in the signal

topology [38–42]. Nevertheless, surprisingly, there have not been any investigations in the
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Figure 1. SSDL + fat-jet production at the LHC.

SSDL+fat-jet channel, in the RHN collider search context. We utilise for the first time, jet

substructure techniques to augment RHN searches, in the l±l±J channel corresponding to

figure 1.

The paper is organized as follows. In section 2, we discuss the prototypical model

along with the RHN production cross sections at the 13 TeV LHC. We also calculate the

decay widths and the corresponding branching ratios there. In section 3, we briefly describe

the fat-jet technique for W-tagging. Sections 4 and 5 are dedicated to the setup, collider

analysis, discussion of kinematic distributions, and presentation of the salient results and

limits. We conclude in section 6.

2 Model and heavy Majorana neutrinos at the LHC

In the simplest model of seesaw, we only introduce SM gauge-singlet Majorana RHNs Nβ
R

(where β is a flavor index). Nβ
R would couple with the SM lepton doublet `αL and the Higgs

doublet H. The relevant part of the Lagrangian density is

L ⊃ −Y αβ
D `αLHN

β
R −

1

2
Mαβ
N NαC

R Nβ
R +H.c.. (2.1)

After EW symmetry breaking by a vacuum expectation value (VEV) H =
(

v√
2

0
)T

, we

obtain the Dirac mass matrix MD = YDv√
2

. Using these Dirac and Majorana mass matrices,

we can write the full neutrino mass matrix as

Mν =

(
0 MD

MT
D MN

)
. (2.2)

Diagonalizing this matrix, we obtain the well-known seesaw formula for the light Majorana

neutrinos

mν ' −MDM
−1
N MT

D. (2.3)

With MN ∼ 100 GeV, we require YD ∼ 10−6 for mν ∼ 0.1 eV. However, in the general

parameterization for the seesaw formula [43], YD can be large and sizable, which is the

case we are going to consider in this paper. An interesting class of models have mass

matrices MD and MN with specific textures, enforced by some symmetries [95, 100–105],
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so that a large light-heavy neutrino mixing occurs even at a low scale, satisfying the neutrino

oscillation data.

If these RHNs reside at the electroweak scale, then they can be produced in high energy

colliders such as the LHC with a variety of phenomenological aspects [44–86]. Searches for

Majorana RHNs can be performed via the ‘smoking-gun’ tri-lepton, as well as, SSDL+dijet

signals. The rates will generally be suppressed by the square of light-heavy mixing |V`N |2 '
|MDM

−1
N |2. A comprehensive, general study1 of |V`N |2 and associated parameters is given

in [87]. Bounds may be placed on the light-heavy mixing angles using results from different

experiments, as in [23–32, 91, 97], considering degenerate Majorana RHNs.

Through the seesaw mechanism, a flavor eigenstate (ν) of the SM neutrino may be

expressed in terms of the mass eigenstates of the light (νm) and heavy (Nm) Majorana

neutrinos as

ν ' N νm +RNm . (2.4)

Here

R = MDM
−1
N , N =

(
1− 1

2
ε

)
UPMNS , (2.5)

with ε = R∗RT and UPMNS [98, 99] the usual neutrino mixing matrix. In terms of mass

eigenstates, the charged current interactions for the heavy neutrinos is then given by

LCC = − g√
2
Wµēγ

µPL

(
Nνm +RNm

)
+ h.c., (2.6)

where e denotes three generations of charged leptons, in vector form, and PL = 1
2(1− γ5).

Similarly, the neutral current interactiona are given by

LNC = − g

2cw
Zµ

[
νmγ

µPL(N †N )νm +Nmγ
µPL(R†R)Nm

+
{
νmγ

µPL(N †R)Nm + h.c.
}]
, (2.7)

where cw = cos θw with θw being the weak mixing angle.

At the LHC, the heavy neutrinos can be produced through charged current interactions,

via the s-channel exchange of W bosons. The main production process at the parton level

is ud̄→ µ+N (and ūd→ µ−N). The differential cross section is found to be

dσ̂LHC
d cos θ

= (3.89× 108 pb)× β

32πŝ

ŝ+M2
N

ŝ

(
1

2

)2

3

(
1

3

)2 g4

4

×(ŝ2 −M4
N )(2 + β cos2 θ)

(ŝ−M2
W )2 +M2

WΓ2
W

, (2.8)

where
√
ŝ is the center-of-mass energy of the colliding partons, MN the mass of N , and

β = (ŝ−M2
N )/(ŝ+M2

N ). The total production cross section at the LHC is thus given by

σLHC =

∫
d
√
ŝ

∫
d cos θ

∫ 1

ŝ/E2
CMS

dx

√
4ŝ

xE2
CMS

fu(x,Q)fd̄

(
ŝ

xECMS
, Q

)
dσ̂LHC
d cos θ

+(u→ ū, d̄→ d) . (2.9)

1The study uses data from neutrino oscillation experiments [1–6], bounds from Lepton Flavor Violation

(LFV) [88–90], Large Electron-Positron (LEP) [26, 29, 91] experiments using the non-unitarity effects [92,

93] applying the Casas- Ibarra conjecture [43, 64, 95, 96].
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Figure 2. (Left) The total production cross section of the heavy Majorana neutrino as a function

of its mass at the LHC with
√
s = 13 TeV and normalised by the |VµN |2. (Right) Heavy neutrino

branching ratios (BRi) for different decay modes as a function of its mass.

We take ECMS = 13 TeV, for the center-of-mass energy of the LHC. In the numerical

analysis, we further employ CTEQ5M [121] for the u-quark (fu) and d̄-quark (fd̄) parton

distribution functions, with a factorization scale Q =
√
ŝ. The total cross section thus com-

puted, as a function of MN , is depicted in figure 2 (Left pane), normalized by |VµN |2. Hence,

the resultant cross sections shown in figure 2 correspond to maximum values for a fixed MN .

The main decay modes of the heavy neutrino are N → `W , ν`Z, ν`h. The correspond-

ing partial decay widths [49–51, 106, 107] are given by

Γ(N → `W ) =
g2|V`N |2

64π

(M2
N −M2

W )2(M2
N + 2M2

W )

M3
NM

2
W

,

Γ(N → ν`Z) =
g2|V`N |2
128πc2

w

(M2
N −M2

Z)2(M2
N + 2M2

Z)

M3
NM

2
Z

,

Γ(N → ν`h) =
|V`N |2(M2

N −M2
h)2

32πMN

(
1

v

)2

. (2.10)

Note that the decay width of heavy neutrinos into W± is about twice as large as that into

Z0, owing to the two degrees of freedom. We plot the branching ratios BRi (≡ Γi/Γtotal)

of the various decay modes (Γi) in figure 2 (Right pane). Note that for larger values of

MN , the branching ratios are related as

BR (N → `W ) : BR (N → νZ) : BR (N → νH) ' 2 : 1 : 1. (2.11)

As mentioned earlier, in our analysis we will consider Majorana RHNs having mass

in the range 300 GeV ≤ MN ≤ 800 GeV. In this mass range, the W± boson from the

leading decay mode N → `W (see figure 2), will be boosted. These boosted W± can decay

hadronically to produce a fat-jet, with the characteristic final state µ±µ±J .

3 Fat-jets and jet substructure for W -like jet tagging

As we have emphasized, in scenarios where the right-handed neutrino is very heavy, the

hadronically decaying daughter W± will typically have a large boost. This causes the jets
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from the W± to be very collimated and one would detect them as a single jet — a ‘fat-

jet’ (J). The boosted topology and its associated substructure is extremely powerful in

reducing backgrounds, mitigating underlying event contamination and in event tagging [37].

In our context, the jet substructure analysis primarily appears as a means to efficiently tag

the hadronically decaying boosted-W±. Our strategy will be to leverage two variables —

N-subjettiness and jet-mass — to achieve efficient W-tagging in the µ±µ±J final state.

N-subjettiness [108, 109] is an inclusive jet shape variable defined as

τN =
1

N0

∑
i

pi,T min {∆Ri1,∆Ri2, · · · ,∆RiN} . (3.1)

The normalization is defined as N0 =
∑
i
pi,TR. i runs over the constituent particles in the

jet. pi,T are transverse momenta of the constituent particles, ∆Riα =
√

(∆η)2
iα + (∆φ)2

iα is

the η−φ distance between a candidate α-subjet and a constituent particle i and R is the jet

radius. τN tries to quantify if the original jet consists of N daughter subjets. A low value of

τN suggests that the original jet consists of N or fewer daughter subjets. Thus, information

from τN may potentially be used to identify an object that has an N-prong hadronic decay.

In fact, it has been shown that a better discriminant to tag an N-subjet object is to consider

ratios τN/τN−1 [108, 109]. For W-tagging, the W± yields two subjets that are collimated,

and hence the variable of interest is τJ21 = τ2/τ1. The mass of the fat-jet (MJ), after

suitable jet grooming, is another variable that can help in distinguishing signal events from

background. At each iteration in a sequential recombination jet algorithm, in the E-scheme,

the mother proto jet four-momentum is the vector sum of the daughter proto jet four-

momenta. In this fashion, the jet algorithm at the end of the iteration provides a P JT for the

full fat-jet. M2
J is computed as the invariant mass square of the fat-jet four momentum (P 2

J ).

To reconstruct the candidate fat-jet, Delphes 3.3.2 [110] hadron calorimeter outputs

are clustered using FastJet 3.1.3 [111, 112]. The τJ21 is computed with the aid of the N-

subjettiness extension, available as part of the FastJet-contrib [111, 112]. Following [113]

for W-tagging, we will choose for the jet clustering algorithm Cambridge-Achen [114, 115]

with a jet-cone radius R = 0.8. We will in addition require specific cuts on τJ21 and MJ for

efficient W-tagging, as we shall discuss in section 5.

4 Analysis setup and simulation

In preparation for our exploration of the SSDL+fat-jet channel at 13 TeV LHC, along with

establishing the setup in terms of signal RHN model files and a jet substructure analysis

strategy, we must also consider the relevant backgrounds carefully. Towards this end we

will perform detailed background simulations and study the prospects of our proposed

channel, in terms of statistical significance.

Consider the production of heavy RHN, through an off-shell W±. This in a further

decay produces relatively clean, same sign di-muon pair µ±µ± final states, in association

with a boosted W±. Our primary objective is to unmask these W± from other hadronic

backgrounds. This is efficiently achieved by utilizing jet substructure to W-tag the fat-

jet originating from W±. Of course, one expects from our previous discussions that the

– 6 –
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fat-jet and jet substructure techniques become significant when W± bosons are generated

with sufficient boost. Hence, as mentioned earlier, our primary region of interest is when

MN �MW . Notably, these are also the ranges where conventional searches at colliders fail

to probe the mixing parameters very effectively. Corresponding to the signal production

channel depicted in figure 1, we will consider

pp→ `+1 N, N → `+2 W
−, W− → J

pp→ `−1 N, N → `−2 W
+, W+ → J.

(4.1)

As mentioned before, for concreteness we assume the light-heavy mixing is non-zero only

for the muon flavor in a simplified model. The muons also provide cleaner lepton signals.

Hence, all leptons we consider in this study will be muons. It is straightforward to extend

the analysis if more lepton flavors are allowed.

Backgrounds for our SSDL+fat-jet channel can originate from electroweak gauge boson

decays along with a fat-jet; the latter for instance produced from a W boson decaying to J .

Additionally, some of the QCD jets can also mimic J . Hence, one is required to simulate

all such processes accompanied by hard jet(s) at the parton level, and then match them

with shower jet events.

Dominant contributions come from same-sign W± pair production in association with

jets — W±W± + jets. Here, W± would decay leptonically. One of these jets has the

possibility to resemble a W±-like fat-jet. Another significantly large contribution comes

from WZ production, where both vector bosons decay leptonically. Subsequently, one of

the charged lepton is missed in the detector, giving an SSDL signature. An additional

fat-jet like component can come either from a radiated jet or an associated W± boson

decaying hadronically. As demonstrated in [25] backgrounds from the top quark decays

can be controlled effectively by rejecting the events where at least one jet had been identified

as originating from the b-quark. Additional veto affects our signal and other backgrounds

at 5-7% level [116].

We implement the parton level event generation using MadGraph5-aMC@NLO [117, 118]

and signal model files are generated with FeynRules [119, 120]. CTEQ6L [121] is adopted

for the parton distribution functions (PDF) and the factorization scale µF is set to the

default MadGraph option. The showering, fragmentation and hadronization of the gener-

ated events were performed with PYTHIA6.4 [122]. The matching is done using the MLM

scheme [128]; based on a shower-kT algorithm with pT-ordered showers. For SM back-

grounds, the matching scale QCUT is set between 20 and 30 GeV. The showered events

are passed through Delphes 3.3.2 [110] for detector level simulations with the default

CMS card. The jets and associated substructure variables are constructed as described in

section 3.

The W±W± production cross-section is σW±W± = 119.26 fb as calculated with the

full next-to-leading order in perturbative QCD and electroweak corrections to the vector-

boson scattering as well as its irreducible background [123]. For the W±Z and W±W±Z

channels cross-sections are 51.11 pb [124] and 197.41 fb [125] in the NNLO and NLO QCD

respectively. The effect of the next-to-leading order QCD correction for heavy neutrino

– 7 –
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production with arbitrary renormalization and factorization scale choices have been studied

in [106]. We consider corresponding cross-section for different heavy neutrino masses.

To establish specific features and kinematic characteristics related to our RHN signal

and backgrounds, we start by focusing on signal identification. Our prototypical signal is

Same Flavour (µ± ) SSDL, in association with a fat-jet. We adopt the following selection

criteria

• Muons µ± are identified with a minimum transverse momentum pµT > 10 GeV and

rapidity range |ηµ| < 2.4, with a maximum efficiency of 95%. Efficiency decreases for

pµT above 1 TeV.

• Only events with reconstructed di-muons having same sign are selected for further

analysis.

• Hard jets having at least pjT > 10 GeV and |ηj | < 2.4 are identified.

• Candidate fat-jets are to be identified, following the criteria in section 3 (an R = 0.8,

CA jet with |ηJ | < 2.4).

• We identify the hardest fat-jet with the W± candidate jet (J), and this is required

to have pJT > 100 GeV.

The above basic selection criteria are like primary level cuts required for effective signal

identification. The last requirement is to ensure robust fat-jet properties. As argued

earlier, features of the boosted fat-jet are rather more prominent for large MN ; showing up

emphatically for 300 GeV and above. In the next section we introduce some additional event

criteria and then illustrate various results by considering several signal benchmark points.

5 Results and discussion

In the previous section, basic selection criteria were set. We are now in a position to identify

specific features and kinematic characteristics that can further differentiate RHN events

from SM backgrounds. To highlight the differences, we focus on four key characteristic

distributions, considering backgrounds along with three signal benchmark points (based

on MN = 300, 500 and 700 GeV).

Figure 3 illustrates the normalized differential distribution of events as a function of

missing transverse momentum, after the application of the basic selection cuts. Missing

transverse momentum (MET) is calculated from the contributions of isolated electrons,

muons, photons and jets along with unclustered deposits. Our signal of interest from

RHN involves no missing particle at the detector and is thus expected to have low MET.

The only MET contributions may be from the mismeasurement of hard jets. On the

contrary, in almost all relevant background processes, leptons originate from W± along with

a neutrino. The neutrinos are not detected and contribute to a large MET. Distribution of

one prototypical signal region with all dominant backgrounds is shown in the plot. It clearly

shows the larger MET contribution for the backgrounds. Inset shows the same distribution
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of same sign di-lepton + fat-jet production channel after the application of the basic selection

cuts including pJT > 100 GeV. Distributions of one signal region with all dominant backgrounds are

shown in the plot. Inset shows the variation for three benchmark signal points with MN = 300, 500

and 700 GeV.

��=��� ���

��� ���
��� ���

Signal

WZ+j

WWZ+j

WW+j

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

τ21J

1 σd
σ

d
τ 21J

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

Figure 6. Normalised differential distributions as a function of two to one N-subjet ratio τJ21 for

fat-jet (J) in case of same sign di-lepton + fat-jet production channel after the application of the

basic selection cuts including pJT > 100 GeV. Distributions of one signal region with all dominant

backgrounds are shown in the plot. Inset shows the variation for three benchmark signal points

with MN = 300, 500 and 700 GeV.

for three benchmark signal points, MN = 300, 500 and 700 GeV. Distributions are very

mildly sensitive to MN , since heavier masses contribute to harder boosted jets and the

jet-energy mis-measurements have a PT dependence.
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Figure 4 presents the normalized differential distributions for the fat-jet transverse

momentum in a similar way. Here, minimum P JT of 100 GeV has already been imposed.

As we discussed in section 3, P JT is the vector sum of all constituent four momenta in J .

Signal distribution is noticeably harder compared to background distributions, which fall

faster. Comparison of different signal distributions is also quite interesting. As expected,

heavier MN produces harder J candidates.

Imposing a minimum P JT selection brings out marked differences in the distribution

of MJ and τJ21, between signal and backgrounds events. These jet shape variables can be

very powerful in further containing the backgrounds. Two fat-jet invariant mass peaks are

evident from the figure 5. Second peak at around 80 GeV reflects the jet mass of W like

fat-jet J . This peak is absent for those backgrounds where fat-jet is faked by QCD jets.

Only the triple gauge boson background, where fat-jet can originate from hadronic decay

of one of the W’s, provide some contamination to signal. The signal plots in the inset are

also quite instructive, showing the significant W like fat-jet contributions for higher MN .

The small spurious peak is due to events where some four-momenta from the hadronically

decaying boosted-W± is missed in the jet clustering. This spurious peak around 20 GeV

may be reduced by imposing a larger P JT . This would of course cut down the signal as well,

and we find P JT & 100 GeV to provide the most optimal signal significance.

Another excellent discriminant to tag a hadronic two-pronged object is τJ21 = τ2/τ1,

as we discussed in section 3. Corresponding distributions are shown in figure 6. τJ21 for

W±-like fat-jets peak around small values and this is clearly visible in figure 6. It becomes

more prominent for larger MN , as the inset figure shows, due to the J being more boosted.

It is important to reemphasize that the choice of a higher, minimum P JT effectively

selects purer, W±-like fat-jet events, but probably at the cost of some signal. This is

essentially reflected in the larger event fractions in the higher (lower) peaks for mJ (τJ21).

This would result in a sharper peak and background reductions. We find P JT > 150 GeV to

be optimal for selecting events, while maintaining good signal significance, as mentioned.

We list below our final event selection criteria motivated by the kinematic distributions.

• Leading muon should have pT (µ1) > 20 GeV and the next hardest muon must have

pT (µ2) > 15 GeV.

• Minimum invariant mass for the same sign muon pair must satisfy mµµ > 50 GeV.

This is easily satisfied for the signal events, and can control backgrounds with non-

prompt muon pairs.

• Lacking any missing particles for our signal, require Emiss
T < 35 GeV. This can control

background events with large MET contributions.

• The hardest, reconstructed fat-jet must have pJT > 150 GeV.

• We also demand the invariant mass of the hardest, reconstructed fat-jet to satisfy

MJ > 50 GeV. In principle one may use a mass window around the W± mass, but

we find that a simple lower bound suffices.
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Cut Signal for MN Background

300 GeV 500 GeV 700 GeV WW+j WZ+j WWZ + j

Pre-selection +

µ±µ± + J 82.2+ 45.2 36.6+23.4 19.2+13.0 2717.5+2597.0 9881.3+7639.3 252.1+240.4

pJT > 100 GeV [100%] [100%] [100%] [100%] [100%] [100%]

pT (µ1,2),mµµ 79.5+ 39.8 33.02+ 20.3 15.6+9.2 2255.7+2132.1 5496.6+5074.1 208.0+193.4

[94%] [88%] [77%] [83%] [60%] [82%]

Emiss
T < 35 GeV 66.3+27.4 28.5 +18.1 10.0+7.6 260.8+163.2 189.9+188.1 24.2+ 19.6

[74%] [77%] [55%] [7.9%] [2.2%] [8.9%]

pJT > 150 GeV 35.1+20.6 15.2+ 10.5 8.3+6.0 152.4+91.4 36.5+ 27.2 14.14+12.4

[44%] [58%] [44%] [4.5%] [0.4%] [5.3%]

MJ > 50 GeV 29.3+16.9 20.9+ 10.2 6.6+4.4 34.0+26.6 11.6+8.5 6.6+5.0

[36%] [42%] [34%] [1.1%] [0.1%] [2.3%]

τJ21 < 0.5 26.7+13.7 13.2+7.2 5.4+2.8 17.5+15.9 5.9+5.2 3.0+2.8

[32%] [34%] [25%] [0.6%] [0.06%] [1.2%]

Table 1. The effectiveness of different variables in minimizing backgrounds is illustrated in the

form a cut flow. The two numbers correspond to expected events in µ+µ+ and µ−µ− channels.

We adopt a typical mixing angle |VµN | = 0.03. The numbers are for an integrated luminosity of

3000fb−1, at the 13 TeV LHC.

• The N-subjettiness ratio corresponding to the reconstructed fat-jet must satisfy τJ21 <

0.5.

With these we are able to achieve very significant background elimination, relative to the

signal.

Now we present our results. The effects of the different cuts, as we have motivated, are

summarized in table 1 in the form of a cut-flow. Three reference RNH benchmark points

are presented with masses 300 GeV, 500 GeV and 700 GeV. It is quite clear, in reference to

the different distributions shown earlier, that the choice of these cuts are extremely efficient

in controlling the large SM backgrounds. This enables the RHN signal to be probed to a

significant mass range, or alternatively to smaller mixing angles, at the LHC.

The statistical significance (S) of the observed signal events (S) over the total SM

background events (B) has been calculated using

S = S/
√
B for 5σ significance, (5.1)

S =

√
2×

[
(S +B) ln

(
1 +

S

B

)
− S

]
for 2σ and 3σ significance. (5.2)

figure 7 displays the significance contours in the (MN , |VµN |2) plane. These contours reflect

the extensive capability of RHN searches augmented by jet substructure techniques. One

obtains interesting limits all the way from MN = 300 GeV with |VµN |2 = 3.4 × 10−4 to

MN = 800 GeV with |VµN |2 = 2.9 × 10−3. Additional production channels contributing

to the heavy neutrino production such as γ −W± fusion is expected to increase the net

– 12 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
3

�σ
�σ

�σ
��� ��� ��� ��� ��� ���

��-�

��-�

�� (���)

|�
μ�

�

Figure 7. Exclusion limit in terms of heavy neutrino mass MN and |VµN |2 at the 13 TeV LHC.

cross-section at high energy collider and potentially improve the exclusion limits further

especially for heavier masses [126, 127]. In that sense our present estimates are conservative.

It is instructive to compare our projected collider limits with existing LHC limits, as

well as indirect EWPD bounds. This is shown in figure 8. There are currently no limits

above MN = 500 GeV, from any experiment. From ATLAS searches [23] at
√
s = 8 TeV,

the blue solid line shows the limits for the e±e±jj channel and the brown solid line for

the µ±µ±jj channel. The orange dashed line shows the limits for e±e±jj and the green

dot-dashed line shows limits for µ±µ±jj, both from CMS [24, 25]. The light gray solid line

stands for the EWPD limit for µ flavor mixings [26, 29, 91].

Note that our event selection criteria is optimized to the lower side of the heavy neutrino

mass and we have applied the same cuts universally for the full signal mass range. Now,

we have already observed in the inset plots of figures 3–6, that distributions change with

MN . Hence, there is sufficient room left to improve our results for higher MN , by focused

optimizations at each mass point. Instead of fine tuning the analysis, our main aim here

was to demonstrate the efficacy and usefulness of jet substructure analysis in the general

RHN collider search context [116].

6 Conclusions

Seesaw models can naturally incorporate the existence of tiny neutrino masses and flavor

mixings through simple extensions of the SM, many of which have Majorana RHNs. Such

RHNs, if they exist at the TeV scale, can be produced and detected at the LHC. Searches

have been performed for these states in the dilepton+dijet channel. Here we propose for

– 13 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
3

����-μ �σ �σ
�σ

���
��(

�)-�
�

���
��(�

)-μμ

���
(�)-

��

���
(�)-

�μ
��

�(
�)
-
μμ

��� ��� ��� ��� ��� ��� ��� ���

��-�

��-�

��-�

���

�� (���)

|�
μ�

�

Figure 8. Exclusion limit in terms of heavy neutrino mass MN and |VµN |2 at the 13 TeV LHC

with other available limits.

the first time a search in the dilepton+fat-jet channel, leveraging jet substructure methods

which can very significantly increase the LHC reach for these RHN states. In our case we

considered the mass region MN ≥ 300 GeV. We used the unique kinematic characteristics

of a fat-jet — such as P JT , MJ and τJ21– to W-tag it and it was found that this helps greatly

in discriminating the RHN SSDL+fat-jet signal from backgrounds. Exclusion limits are

obtained by computing signal significance and the bounds we obtain are many orders of

magnitude stronger than current LHC limits.
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