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1 Introduction

The scattering amplitudes of any 4D quantum field theory can be rewritten in the form of

correlation functions on the ‘celestial sphere’ at null infinity, denoted CS2 [1]. For massless

particles one simply represents asymptotic particle states by an operator (carrying labels

such as energy, spin or charge) at the point on CS2 at which they enter or exit Minkowski

space. Massive particles — the focus of this paper — are labelled by a point on the unit

3D hyperbola H3 rather than CS2. However using the bulk-to-boundary propagator on

H3, these have a precise representation as smeared operators on CS2 [2–5].

The utility of so rewriting the S-matrix devolves from the fact that the Lorentz group

acts as the global conformal group SL(2,C) on CS2. This implies that these correlators

share many properties with those of a 2D CFT on the sphere and are subject to many

of the same constraints. This connection is strengthened by the observation [6] that,

once coupled to gravity, the global group is enhanced to the full infinite-dimensional local

conformal group.

In this paper we further explore the connection between 4D scattering amplitudes in

abelian gauge theory and 2D CFT. It has already been noted [1, 7] that soft photon inser-

tions in the 4D S-matrix are equivalent to insertions of a U(1) Kac-Moody current on CS2.

2D CFTs with such a current enjoy a well-known factorization property: every correlator on
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the sphere is a product of a current algebra correlator with a correlator of ‘stripped’ opera-

tors which decouple from the current algebra. It is natural to ask if this 2D factorization lifts

to the full 4D S-matrix. Indeed we show this is precisely the content of the ‘soft factoriza-

tion theorem’ [8–10] in 4D abelian gauge theory. The latter states that the S-matrix factor-

izes into a hard and soft part, distinguished by the introduction of an IR scale. The leading

soft S-matrix contains all soft and collinear poles. We show that it can be efficiently repro-

duced by the 2D U(1) current algebra with the level given by the cusp anomalous dimension.

The literature on the abelian soft factor largely concerns electrically charged asymp-

totic particles. However when expressed as a 2D current algebra, the general case including

magnetic charges [11] is extremely natural and in some respects simpler than the pure elec-

tric case. The soft photon current is complexified and is the gradient of a 2D scalar living

on the torus whose modular parameter is τ = 2πi
e2

+ θ
2π . This scalar can be identified as the

Goldstone boson of the spontaneously broken large electric and magnetic gauge symmetries.

We use this current algebra to derive the soft S-matrix when asymptotic particles carry

magnetic as well as electric charges, and conjecture that it is non-perturbatively exact.

This paper is organized as follows. Section 2 establishes our conventions and reviews

the CS2 smearing function for massive particles in terms of the bulk-to-boundary propa-

gator on H3. In section 3, the 2D current algebra description of soft electric Wilson lines

is given. In section 4, the 2D currents are related to the gauge field at the boundaries

of null infinity. Section 5 computes soft Wilson line expectation values and identifies the

current algebra level with the cusp anomalous dimension. In section 6, magnetic Wilson

(‘t Hooft) operators are incorporated, duality transformation properties are studied and

an identification of the complexified soft photon and Goldstone currents is proposed. In

section 7, the expectation value of general electromagnetically charged Wilson lines with

soft photon insertions is computed. Section 8 relates this formula to the soft part of the

S-matrix in abelian gauge theory.

2 Preliminaries

In this section, we establish notation and review the electric large gauge symmetry of

abelian gauge theories. We largely follow the conventions in the review [12]. In the past and

future lightcones of the origin, we adopt hyperbolic coordinates for which the Minkowski

line element is

ds2 = −dτ2 + τ2
(
dρ2

ρ2
+ ρ2dzdz̄

)
. (2.1)

Surfaces of constant τ2 = −xµxµ are the hyperbolic plane H3, while (z, z̄) parametrizes

the celestial sphere denoted CS2. These coordinates are related to the standard Cartesian

coordinates xµ by

xµ =
τ

2ρ

(
nµ + ρ2q̂µ(z, z̄)

)
, (2.2)

where nµ and q̂µ(z, z̄) are the null vectors

nµ ≡ (1, 0, 0,−1), q̂µ(z, z̄) ≡
(
1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄

)
, (2.3)
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which obey

nµq̂µ(z, z̄) = −2, q̂µ(z, z̄)q̂µ(w, w̄) = −2|z − w|2. (2.4)

The region of real τ is the interior of the lightcone emanating from the origin. The region

outside this lightcone corresponds to imaginary (τ, ρ) and a dS3 slicing but will not be

needed herein. These coordinates provide a resolution of future (past) timelike infinity i+

(i−) to a spacelike hyperboloid H+
3 (H−

3 ) that is obtained by taking the limit τ → ∞ at

fixed (ρ, z, z̄) with ρ > 0 (ρ < 0). The boundary of any H3 with positive (negative) ρ is

the S2 intersection of the future (past) lightcone of the origin with null infinity I. Points

at a given value of (z, z̄) on I− lie at antipodal angles to those at the same value on I+.

We consider theories with a U(1) gauge field F = dA obeying the Maxwell equation

d ∗ F = e2 ∗ j. (2.5)

Such theories are invariant under electric gauge transformations of the form

Aµ(x) → Aµ(x) + ∂µε(x), Ψk(x) → eiQkε(x)Ψk(x), (2.6)

where ε ∼ ε+ 2π and Ψk is a matter field of charge Qk ∈ Z.

Gauge transformations that vanish at the boundary of Minkowski space generate re-

dundant descriptions of the same physical state and hence are trivial. We consider non-

trivial ‘large’ gauge transformations [7, 13] which approach a u-independent function

ε(z, z̄) ≡ ε(z, z̄, u = τ/ρ, r = τρ = ∞) (2.7)

at I+ and the boundary ofH+
3 . In Lorenz gauge∇µAµ = �ε = 0, the bulk gauge parameter

that generates this large gauge symmetry is

ε(x) =

∫
d2w G

(
x;w, w̄

)
ε(w, w̄), (2.8)

where

G
(
x;w, w̄

)
= −

1

2π

x2

[x · q̂(w, w̄)]2
. (2.9)

Evaluating G in the coordinate system (2.2), one finds it is τ -independent

G
(
ρ, z, z̄;w, w̄

)
=

1

2π

ρ2

[ρ2|z − w|2 + 1]2
. (2.10)

Moreover, near the boundary of H+
3

lim
ρ→∞

G
(
ρ, z, z̄;w, w̄

)
= δ2(z − w). (2.11)

This immediately implies that the bulk expression (2.8) for ε in Lorenz gauge obeys (2.7).

G may be recognized as the familiar bulk-to-boundary propagator for a massless scalar on

H3 encountered in studies of AdS/CFT. Finally, it follows from the construction (2.8) that

ε obeys

ε(z, z̄)
∣∣
I+ = ε(z, z̄)

∣∣
I−

, (2.12)

and hence obeys the antipodal matching condition for the electric large gauge symmetries

of QED [2, 4, 13].
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3 Soft photon current algebra

In this section we describe the soft photon insertions and soft Wilson lines that comprise

the soft sector of the S-matrix. Any 4D S-matrix element involving n massless particles

may, by a change of notation, be rewritten as a 2D ‘correlation function’ on CS2 with n

operator insertions

An = 〈O1(z1, z̄1) · · ·On(zn, z̄n)〉, (3.1)

where each operator Ok(zk, z̄k) creates or annihilates a massless particle which pierces null

infinity at

zk =
p1k + ip2k
Ek + p3k

, (3.2)

where we take Ek to be positive (negative) for outgoing (incoming) particles. Ok in general

carries other suppressed labels such as the spin or electric charge Qk. SL(2,C) Lorentz

invariance implies global conformal invariance of the correlation functions (3.1).

In this paper, we seek to describe the coupling to the gauge field of timelike Wilson

lines on asymptotic trajectories xµk(s) = pµks describing massive1 charged particles. Massive

particles in momentum eigenstates do not reach I+ and cannot be associated with local

operators at unique points on CS2.2 Instead pk
mk

, which obeys
p2
k

m2
k

= −1, labels a point on

the asymptotic hyperbola H+
3 describing future timelike infinity [2, 5]. The Wilson line for

a charge Qk particle is described by a smeared operator of the form [2–4]

WQk
(pk) ≡ exp

[
iQk

∫
d2w G

(
pk;w, w̄

)
φE(w, w̄)

]
, (3.3)

where the bulk-to-boundary propagator G was given in (2.9) and φE is a local operator

(constructed from the boundary gauge field in the next section) on CS2 which we refer

to as the electric Goldstone boson. The superscript E distinguishes it from its magnetic

counterpart which will appear later. Under a large gauge transformation it transforms as

a Goldstone mode

δεφ
E(z, z̄) = ε(z, z̄), (3.4)

implying a periodicity

φE ∼ φE + 2π. (3.5)

As shown in [2–4] the smearing function is uniquely determined by the symmetries at hand

to be the bulk-to-boundary propagator G. Under a large gauge transformation one easily

finds using (3.4)

δεWQk
(pk) = iQkε(pk)WQk

(pk), (3.6)

as required by (2.6). It has the property that it approaches a delta-function as the particle

is boosted to the speed of light so that the exponent of (3.3) becomes local. As Ek → ∞

1Complications arise for massless charged particles at the loop level because the coupling constant runs

in the deep IR.
2There is however an alternate basis of boost-eigenstate wave functions which are associated to local

operators on CS2 [5].
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at fixed mass,

WQk
(pk) → eiQkφ

E(zk,z̄k) ≡ WQk
(zk, z̄k), δεWQk

(zk, z̄k) = iQkε(zk, z̄k)WQk
(zk, z̄k),

(3.7)

where zk is the point on CS2 to which pk asymptotes.

We note that the operators WQk
themselves do not create physical states. Rather the

operators creating charged asymptotic particles are decomposed into soft operators that

transform nontrivially under large gauge transformations WQk
and hard neutral operators

Õk which decouple from the soft gauge field,

Ok(pk) = WQk
(pk)Õk(pk). (3.8)

This decomposition into hard and soft factors is not unique, and our choice is unconven-

tional. We define it here so that the soft part has strictly zero energy and transforms

simply under SL(2,C). This contrasts with Wilson lines localized to a line in spacetime

which actually have infinite energy.

Now we turn to the soft photon current Jz which lives on CS2 and, as specified in

the next section, is the difference of gauge field strength zero modes integrated along null

generators of I± [12, 13]. The soft photon theorem implies that large gauge transformations

are generated by S-matrix insertions of contour integrals on CS2 of Jz. In the ultra-

relativistic limit (3.7),

JzWQk
(zk, z̄k) ∼

Qk

z − zk
WQk

(zk, z̄k). (3.9)

This is in turns implies the OPE

Jzφ
E(w, w̄) ∼ −

i

z − w
. (3.10)

It may be checked [2–4] that (3.10) correctly reproduces the general large gauge transfor-

mation (3.6).

4 Boundary gauge modes

In this section we will express both the soft photon current Jz and the electric Goldstone

current defined as

SE
z = i∂zφ

E (4.1)

in terms of boundary values of the photon field. A priori there are four independent

boundary values

A(0)
z

∣∣
I+
+

, A(0)
z

∣∣
I+
−

, A(0)
z

∣∣
I−

+

, A(0)
z

∣∣
I−

−

, (4.2)

where A
(0)
z is the leading, non-vanishing piece of the gauge field at I and I+

± (I−
± ) are the

future/past boundaries of future (past) null infinity. The electric matching condition [13]

equates two of these3

A(0)
z

∣∣
I+
−

= A(0)
z

∣∣
I−

+

. (4.3)

3This condition is modified in the presence of magnetic charges [12].
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Another two combinations are related4 to ingoing and outgoing soft photon currents

(see [12])

e2∂zN
− =

∫
dvF (0)

vz = A(0)
z

∣∣
I−

+

−A(0)
z

∣∣
I−

−

,

e2∂zN =

∫
duF (0)

uz = A(0)
z

∣∣
I+
+

−A(0)
z

∣∣
I+
−

. (4.4)

The soft photon current is defined by time-ordered insertions of the difference

Jz = 4π∂z(N
− −N) =

4π

e2
(
A(0)

z

∣∣
I+
−

+A(0)
z

∣∣
I−

+

−A(0)
z

∣∣
I−

−

−A(0)
z

∣∣
I+
+

)
. (4.5)

The equality (up to a sign) of the soft theorem for ingoing and outgoing photons implies

the vanishing of time-ordered insertions of5

e2(∂zN + ∂zN
−) = A(0)

z

∣∣
I+
+

−A(0)
z

∣∣
I−

−

− (A(0)
z

∣∣
I+
−

−A(0)
z

∣∣
I−

+

) = 0. (4.6)

A remaining linear combination is the Goldstone current

SE
z =

i

4

(
A(0)

z

∣∣
I+
+

+A(0)
z

∣∣
I+
−

+A(0)
z

∣∣
I−

+

+A(0)
z

∣∣
I−

−

)
. (4.7)

SE
z can be thought of as the ‘constant part’ of A

(0)
z . Under a large gauge transformation

δεS
E
z = i∂zε, (4.8)

in agreement with (3.4).

5 Soft Wilson lines

In this section, we complete the definition of the 2D Kac-Moody current algebra by spec-

ifying the OPEs of the Goldstone currents and compute the soft matrix element of two

Wilson operators. Although the physical picture is different, the computation of this sec-

tion is reminiscent of that in [15]. SL(2,C) Lorentz-conformal invariance dictates that all of

the current OPEs are proportional to 1
(z−w)2

.6 The soft photon current is itself neutral, so

JzJw ∼ 0. (5.1)

It follows from (3.10) that

JzS
E
w ∼

1

(z − w)2
. (5.2)

Finally we have7

SE
z S

E
w ∼

k

(z − w)2
, (5.3)

4In a gauge with Au

∣

∣

I+ = 0 and Av

∣

∣

I−

= 0.
5This invokes the standard assumption that the ingoing and outgoing vacua are the same. It is interesting

to relax this but we shall not do so here. See [14].
6Terms proportional to 1

z−w
are absent because we are considering abelian gauge theory.

7The operators WQk
introduced in the previous section are normal-ordered so that such singular terms

are removed in the expansion of the exponent in powers of φE .
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for some constant k which we now determine by comparison with Wilson line expectation

values.

First, we calculate the correlation function of two WQk
operators. We parameterize

massive momenta as

pµk =
mk

2ρk

(
nµ + ρ2kq̂(zk, z̄k)

)
, (5.4)

with outgoing (incoming) asymptotic particles having ρk > 0 (ρk < 0). The Wilson

operators themselves are constructed from φE itself (rather than SE
z ) whose two-point

function has ambiguities. To avoid these ambiguities, we differentiate and then fix the

re-integration constants using SL(2,C). Consider the following derivative of the logarithm

of the two-point function

∂zk∂zℓ log〈WQk
(pk)WQℓ

(pℓ)〉

=

[
iQk

∫
d2z∂zkG(pk; z, z̄)

] [
iQℓ

∫
d2w∂zℓG(pℓ;w, w̄)

]

×

[
〈: φE(z, z̄)WQk

(pk) :: φ
E(w, w̄)WQℓ

(pℓ) :〉

〈WQk
(pk)WQℓ

(pℓ)〉

−
〈: φE(z, z̄)WQk

(pk) : WQℓ
(pℓ)〉〈WQk

(pk) : φ
E(w, w̄)WQℓ

(pℓ) :〉

〈WQk
(pk)WQℓ

(pℓ)〉2

]
.

(5.5)

Colons are used in the above expression to specify which products of operators have been

normal-ordered (ie. singularities at zero separation have been removed). The symmetry in

the arguments of G implies

∂zkG(ρk, zk, z̄k; z, z̄) = −∂zG(ρk, zk, z̄k; z, z̄), (5.6)

and allows for the use of integration-by-parts to turn the scalar fields φE into their current

counterparts SE
z . Then, using the operator product expansion of the SE

z currents, one finds

∂zk∂zℓ log〈WQk
(pk)WQℓ

(pℓ)〉 = QkQℓ

∫
d2z

∫
d2w G(pk; z, z̄)G(pℓ;w, w̄)

k

(z − w)2
. (5.7)

Next, we use the identity

G(ρk, zk, z̄k; z, z̄) =
1

2π
∂z∂z̄ log (pk · q̂(z, z̄)) =

1

2π
∂zk∂z̄k log (pk · q̂(z, z̄)) , (5.8)

and integration-by-parts to evaluate the integral over the (w, w̄) plane

∂zk∂zℓ log〈WQk
(pk)WQℓ

(pℓ)〉 = −kQkQℓ∂zk∂zℓ

∫
d2z

2π
∂z log (pk · q̂(z, z̄)) ∂z̄ log (pℓ · q̂(z, z̄)) .

(5.9)

Using the completeness relation

∂z q̂
µ∂z̄ q̂

ν + ∂z̄ q̂
µ∂z q̂

ν = 2ηµν + nµq̂ν + q̂µnν , (5.10)

– 7 –



J
H
E
P
0
2
(
2
0
1
8
)
0
7
9

the remaining integral may be rewritten as

∫
d2z

2π
∂z log (pk · q̂(z, z̄)) ∂z̄ log (pℓ · q̂(z, z̄))

=

∫
d2z

2π

[
pk · pℓ

(pk · q̂(z, z̄)) (pℓ · q̂(z, z̄))
+

pk · n

2pk · q̂(z, z̄)
+

pℓ · n

2pℓ · q̂(z, z̄)

]
.

(5.11)

Upon integrating, the last two terms are zk- and zℓ-independent and consequently drop out

of (5.9). Moreover, the first term is SL(2,C) invariant on its own. Hence after dropping

the last two terms, we may remove the derivatives on both sides to obtain

log〈WQk
(pk)WQℓ

(pℓ)〉 = −kQkQℓ

∫
d2z

2π

pk · pℓ
(pk · q̂(z, z̄)) (pℓ · q̂(z, z̄))

+ c0, (5.12)

where c0 is a soon-to-be fixed integration constant. The integral can be evaluated using

Schwinger parameters, resulting in

∫
d2z

2π

pk · pℓ
(pk · q̂(z, z̄)) (pℓ · q̂(z, z̄))

= −γkℓ coth γkℓ, (5.13)

where

cosh γkℓ ≡
pk · pℓ√
−p2k

√
−p2ℓ

. (5.14)

This defines γkℓ up to shifts by 2πi. γkℓ is real if one particle is outgoing and one particle

is incoming, and vanishes if they are collinear (but not null). The result for two outgoing

or two incoming particles, for which the righthand side is negative, is obtained by analytic

continuation. Namely, defining a parameter βkℓ that is real for these configurations

coshβkℓ ≡ −
pk · pℓ√
−p2k

√
−p2ℓ

, (5.15)

the desired result is obtained by replacing

γkℓ coth γkℓ → (βkℓ − iπ) cothβkℓ (5.16)

in (5.13). Focusing on the case of one outgoing and one incoming particle and integrat-

ing (5.9), one finds

〈WQk
(pk)WQℓ

(pℓ)〉 = δ0,Qk+Qℓ
exp

[
kQkQℓ (γkℓ coth γkℓ − 1)

]
≡ δ0,Qk+Qℓ

exp [−Γkℓ] ,

(5.17)

where c0 was fixed by demanding that the two-point function reduce to unity when Qk +

Qℓ = 0 and pk + pℓ = 0 .

The standard quantum field theory result for the anomalous dimension of a pair of

timelike Wilson lines is

Γkℓ =





− ΓcuspQkQℓ

(
γkℓ coth γkℓ − 1

)
, pk · pℓ > 0

− ΓcuspQkQℓ

(
(βkℓ − iπ) cothβkℓ − 1

)
, pk · pℓ < 0

, (5.18)
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where the constant

Γcusp ≡
e2

4π2
(5.19)

is known as the cusp anomalous dimension. Exact agreement of our expression (5.17) with

this result follows if we identify Goldstone current algebra level (5.3) with (5.19)

k = Γcusp. (5.20)

This is a central result of this paper.

This method for computing the correlation function of two Wilson operators will be

extended to the calculation of n-point functions of Wilson operators with both electric and

magnetic charges in section 7.

6 Magnetic charges

This section generalizes to theories with magnetically charged particles and non-zero vac-

uum angle θ. We focus on the ultra-boosted local operators of the form (3.7), but the results

presented can be easily generalized to the more generic smeared operators associated to

massive particles.

The addition of magnetic charges is more than just a technical generalization. There is

no known non-perturbative abelian gauge theory without magnetic monopoles, and so one

might expect the full soft structure to reflect this. Indeed we shall find that the inclusion

of magnetic degrees of freedom both complexifies and simplifies the soft structure relative

to the purely electric case, leading to an elegant and simplified structure for the current

algebra.

6.1 Duality covariant formulation

In the presence of a θ angle the allowed electric and magnetic charges ek and gk live on the

charge lattice

ek + igk = e(Qk + τMk), (6.1)

where

Qk,Mk ∈ Z, τ =
θ

2π
+

2πi

e2
. (6.2)

Magnetic charges lead to a second set of large gauge symmetries which can be interpreted

as large gauge transformations of the dual magnetic potential [11]. These are naturally

incorporated as a complexification of the original electric ones. The complexified gauge

parameter lives on the torus defined by the dual of the charge lattice

ε ∼ ε+
2πi

τ2
(p+ τq) , p, q ∈ Z. (6.3)

An important role in the following is played by the ‘shadow transform’ which appears

in CFT analyses.8 The shadow operator of a dimension (0, 1) 2D operator, which we denote

8See [16] for a recent discussion. The construction of a stress tensor from soft graviton modes in [17]

also used a shadow transform.
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by a bar, is

J̄z ≡ −

∫
d2w

2π

1

(z − w)2
Jw̄. (6.4)

We will find it very convenient to discuss only Jz and J̄z, and not Jz̄. No information is

lost in this choice because Jz̄ correlators can always be constructed from an inverse shadow

transform using the identity

∫
d2v

1

2π(z − v)2
1

2π(w̄ − v̄)2
= δ2(z − w). (6.5)

The gauge potential is not a duality-invariant concept and is not a priori well-defined

in the presence of both electric and magnetic charges. However, the soft theorem involves

a zero mode of the field strength and so is covariant. The soft theorem receives magnetic

corrections

〈JzO1(p1) · · ·On(pn)〉 =
n∑

k=1

Qk + τMk

z − zk
〈O1(p1) · · ·On(pn)〉,

〈J̄zO1(p1) · · ·On(pn)〉 =
n∑

k=1

Qk + τ̄Mk

z − zk
〈O1(p1) · · ·On(pn)〉,

(6.6)

where J̄z is the shadow transform of Jz̄. In the absence of magnetic charges, the righthand

sides are equal so we did not need to introduce J̄z.

The soft sector has an electromagnetic duality symmetry even if the full theory does

not. Under SL(2,Z)

τ →
aτ + b

cτ + d
,

(
Qk

Mk

)
→

(
a −b

−c d

)(
Qk

Mk

)
,

(
a b

c d

)
∈ SL(2,Z). (6.7)

These relations imply that the soft factor transforms as a modular form of weight minus

one
Qk + τMk

z − zk
→

1

cτ + d

Qk + τMk

z − zk
. (6.8)

This in turn fixes the transformations of the soft photon currents

Jz →
Jz

cτ + d
, J̄z →

J̄z
cτ̄ + d

. (6.9)

The Wilson operators (3.3) generalize to vertex operators of the form

W(Qk,Mk)(zk) = exp

[
i

2
(Qk + τMk) Φ̄(zk) +

i

2
(Qk + τ̄Mk) Φ(zk)

]
, (6.10)

where Φ is a complex chiral boson whose real and imaginary parts are the electric and

magnetic Goldstone bosons, φE and φM , respectively. As befits a Goldstone boson, Φ lives

on the same torus as the gauge parameter

Φ ∼ Φ+
2πi

τ2
(p+ τq) , Φ̄ ∼ Φ̄−

2πi

τ2
(p+ τ̄ q) , p, q ∈ Z. (6.11)
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Duality invariance of the vertex operators W(Qk,Mk) fixes the transformations

Φ → (cτ̄ + d)Φ, Φ̄ → (cτ + d)Φ̄. (6.12)

To reproduce the soft theorem, these scalars must obey the OPEs with the soft photon

currents

JzΦ(w) ∼ 0, JzΦ̄(w) ∼ −
2i

z − w
,

J̄zΦ(w) ∼ −
2i

z − w
, J̄zΦ̄(w) ∼ 0.

(6.13)

It follows that under large gauge transformations parametrized by a locally holomorphic

function ε
δεΦ(z) = 0, δ̄εΦ(z) = 2ε(z),

δεΦ̄(z) = 2ε(z), δ̄εΦ̄(z) = 0 ,
(6.14)

where δε and δ̄ε are the transformations generated by contour integrals of Jz and J̄z,

respectively. As before, Goldstone currents can be constructed from the Goldstone bosons

Sz = i∂zΦ, S̄z = i∂zΦ̄, (6.15)

where these obey

Sz → (cτ̄ + d)Sz, S̄z → (cτ + d)S̄z. (6.16)

Demanding the desired result (5.18) for purely electric Wilson operators together with

duality invariance implies

SzSw ∼ 0, S̄zS̄w ∼ 0, SzS̄w ∼
2Γcusp

(z − w)2
. (6.17)

6.2 Current identifications

It might seem from our treatment so far that Sz and Jz are independent 2D currents. How-

ever in this section we argue that in fact there is a redundancy and one may consistently set

Sz = ΓcuspJz, S̄z = ΓcuspJ̄z, (6.18)

reducing the current algebra to a single complex current. (6.18) is consistent with the

duality transformations (6.9) and (6.16) as well as the OPEs (6.13). Without such an iden-

tification, we have too many fields in the sense that soft photon insertions are described by

Jz, and Sz do not comprise a second set. Sz was introduced as the Goldstone mode and ap-

pears in Wilson operators associated to charged particles. The identification (6.18) asserts

that the Jz, J̄z current algebra alone can compute the full soft factor of the S-matrix.

The identification (6.18) immediately implies the OPE

JzJ̄w ∼
2

Γcusp(z − w)2
. (6.19)

One might expect that this relation could be unambiguously checked from the definition

of the soft photon current as the soft ω → 0 limit of the photon field operator. However, it

– 11 –
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turns out that the OPE of Jz and Jw̄ has a δ2(z −w) contact term proportional to ωδ(ω).

The latter depends on the detailed manner in which ω → 0 and can be defined to take any

value. This is familiar: it often occurs in CFT that a prescription is needed for contact

terms. Constructing J̄z as the shadow transform of Jz̄, the ambiguity in the contact term

becomes an ambiguity in the 1
(z−w)2

term in the JzJ̄w OPE. Hence at this level (6.19) can

simply be regarded as a prescription for the contact term.

Given this prescription for the contact term, we define the two currents

Bz = Sz − ΓcuspJz, B̄z = S̄z − ΓcuspJ̄z. (6.20)

It is then easy to check that all OPEs involving Bz or B̄z vanish:

BzS̄w ∼ BzJ̄w ∼ B̄zSw ∼ B̄zJw ∼ 0. (6.21)

Hence it decouples and may be ignored. This suggests that we quotient out the Bz current

algebra and view Jz as the fundamental current with OPE (6.19). This current is related

to the Goldstone mode by

Jz =
i

Γcusp
∂zΦ, J̄z =

i

Γcusp
∂zΦ̄. (6.22)

6.3 Sugawara stress-energy and central charge

The Sugawara stress-energy tensor is obtained by inverting the matrix of current levels

Tzz =
1

2
ΓcuspJzJ̄z. (6.23)

Insertions (or scattering of) this operator generate the full infinite-dimensional group of

local conformal transformations (not just SL(2,C)) on the currents. The conformal weight

(or dimension) of a vertex operator W(Qk,Mk) is

h =
Γcusp

2
|Qk + τMk|

2 =
|Qk + τMk|

2

4πτ2
. (6.24)

It would be interesting to explore the possibility of enhanced symmetries at values of the

coupling for which this becomes integral. To compute the central charge, we note the OPE

TzzTww ∼
1

(z − w)4
+ · · · , (6.25)

giving a central charge

c = 2. (6.26)

7 Non-perturbative soft S-matrix

Soft factors associated to generic scattering processes appear in our language as (con-

nected)9 correlation functions of soft photon currents and Wilson operators

〈Jz1 · · · Jzr J̄zr+1
· · · J̄zmW(Q1,M1) · · ·W(Qn,Mn)〉. (7.1)

9The product of Jz’s and J̄z’s has been normal-ordered to remove contact terms arising from the non-zero

current algebra level (6.19), since these correspond to disconnected Feynman diagrams.
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To evaluate these correlation functions, the soft photon current algebra is first used to

evaluate the contributions from insertions of Jz and J̄z and obtain an expression only

involving a correlation function of W(Qk,Mk) operators

〈Jz1 · · ·Jzr J̄zr+1
· · · J̄zmW(Q1,M1) · · ·W(Qn,Mn)〉

=

r∏

i=1

m∏

k=r+1

[ n∑

j=1

(Qj+τMj)∂zi log
(
pj · q̂(zi, z̄i)

)][ n∑

ℓ=1

(Qℓ+ τ̄Mℓ)∂zk log
(
pℓ · q̂(zk, z̄k)

)]

×〈W(Q1,M1) · · ·W(Qn,Mn)〉. (7.2)

Then, the correlation function of W(Qk,Mk) operators can be calculated by applying

the same technique used in section 5

〈Jz1 · · ·Jzr J̄zr+1
· · · J̄zmW(Q1,M1) · · ·W(Qn,Mn)〉

=
r∏

i=1

m∏

k=r+1

[ n∑

j=1

(Qj+τMj)∂zi log
(
pj · q̂(zi, z̄i)

)][ n∑

ℓ=1

(Qℓ+ τ̄Mℓ)∂zk log
(
pℓ · q̂(zk, z̄k)

)]

×δ0,
∑

sQs
δ0,

∑
tMt

n∏

p,q=1
p 6=q

exp(−Γpq) , (7.3)

where Γkℓ now takes the duality invariant form

Γkℓ =





−
e2 ~Qk · ~Qℓ

4π2

(
γkℓ coth γkℓ − 1

)
, pk · pℓ > 0

−
e2 ~Qk · ~Qℓ

4π2

(
(βkℓ − iπ) cothβkℓ − 1

)
, pk · pℓ < 0

, (7.4)

with
~Qk · ~Qℓ ≡

1

2
(Qk + τMk) (Qℓ + τ̄Mℓ) +

1

2
(Qk + τ̄Mk) (Qℓ + τMℓ) . (7.5)

Setting all magnetic charges Mk to zero, one recovers the result for electric large gauge

symmetry. On the other hand, when the asymptotic particles carry magnetic charge, we

have derived a new and fully SL(2,Z) duality covariant expression for the soft factor asso-

ciated to the complexified large gauge symmetry of Abelian gauge theory. We conjecture

that (7.3) is nonperturbatively exact in theories with both electric and magnetic charges.

8 Soft factorization

The soft factorization theorem in QED states that, to all orders in perturbation theory,

the S-matrix factorizes into a hard and a soft part, where all collinear and soft poles reside

in the soft part, and the hard part is finite. Precise statements may be found in [8–10] and

references therein. Roughly speaking the scattering amplitudes obey

〈· · · qm; · · · kr; · · · pn|S|q1 · · · ; k1 · · · ; p1 · · · 〉
qi soft
−→ (8.1)

〈· · · kr; · · · p̂n|k1 · · · ; p̂1 · · · 〉︸ ︷︷ ︸
hard

〈· · · qm|WQn(p
n) · · ·WQ1

(p1)|q1 · · · 〉︸ ︷︷ ︸
soft

.
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In the above formula, qi (ki) represent asymptotic single-particle soft (hard) photons and

pj represent asymptotic hard electrons (or positrons). The field which creates asymptotic

hard electrons ψ(pk) is decomposed as ψ(pk) ∼ ψ̂(pk)WQk
(pk) and p̂k in (8.1) denotes a

‘stripped’ asymptotic electron which decouples from the soft photon. The factorization

occurs at leading order in a physical power counting parameter λ that sets the soft scale,

thereby distinguishing soft from hard momenta. While there is not a unique choice for this

IR scale, it is generally defined by
q0i
p0j

∼ O(λ) where q0i and p0j are the energies of the soft

and hard asymptotic states respectively.

The full amplitude on the left hand side of (8.1) diverges as 1
Ω =

∏m
i=1(q

0
i )

−1 as qi →

0.10 These are the soft poles, and their residues may be obtained simply by multiplying by

Ω and setting qi = 0.11 The structure of the resulting leading soft amplitude is reproduced

by (7.3)–(7.5) specialized of course to electric charges only. In particular, the singular terms

in the OPE between soft photon currents and Wilson operators reproduce the leading-

order tree-level exact soft factor [8–10]. In addition, the correlators of Wilson operators

reproduce the exponentiated leading-order 1-loop exact virtual soft divergence, where the

IR divergent prefactor is removed by our procedure of matching the anomalous dimensions

of 2D and 4D operators. We conclude that the 2D Jz, J̄z current algebra computes the soft

amplitude of the QED S-matrix. Rewriting the S-matrix as a correlator on CS2 and using

the hard/soft decomposition defined in (3.8), the soft factorization theorem is simply the

familiar 2D current algebra factorization formula

〈Jz1 · · · Jzr J̄zr+1
· · · J̄zmO1 · · ·On〉

= 〈Õ1 · · · Õn〉︸ ︷︷ ︸
hard

〈Jz1 · · · Jzr J̄zr+1
· · · J̄zmW(Q1,M1) · · ·W(Qn,Mn)〉︸ ︷︷ ︸

soft

, (8.2)

specialized to electric charges only.

In conclusion, the soft factorization theorem in abelian gauge theory and current alge-

bra factorization of 2D CFT correlators are the same thing. Moreover, 2D current algebra

techniques are computationally effective for determining the soft S-matrix of 4D abelian

gauge theory.
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10There are additional soft divergences due to virtual photons, which are the leading divergences in the

absence of external soft photons (m = 0).
11There is also universality in the subleading term in the qi expansion that would be of interest to study.
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