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1 Introduction

Deformations of spacetime geometry through compactifications of string theory may help

elucidate the precise mechanism by which closed strings provide a framework for a quan-

tum theory of gravity. This has been the hope in some recent investigations surrounding

non-geometric string theory, in which noncommutative and nonassociative deformations of

target space geometry have been purported to be probed by closed strings in non-geometric

flux compactifications [1, 9, 13, 15–17, 19, 25]. In particular, in locally non-geometric back-

grounds one aims to find a low-energy limit of closed string theory which is described by

an effective nonassociative theory of gravity on spacetime.

In this paper we focus on the parabolic phase space model for strings propagating in

locally non-geometric constant R-flux backgrounds in d dimensions [25]. In this framework

the canoncial commutation relations of phase space are deformed by a trivector R-flux on

target space to the quasi-Poisson coordinate algebra

[xµ, xν ] = i ℓ3s
3~ Rµνρ pρ , [xµ, pν ] = i ~ δµν and [pµ, pν ] = 0 , (1.1)

with the nonassociativity of spacetime captured by the non-vanishing Jacobiators

[xµ, xν , xρ] := [xµ, [xν , xρ]] + [xν , [xρ, xµ]] + [xρ, [xµ, xν ]] = ℓ3s R
µνρ . (1.2)

On fields these deformations are described by nonassociative phase space star-

products [8, 24, 26], and using them the formal mathematical development of nonasso-

ciative differential geometry of phase space has been pursued in [5, 10, 11, 27]; a more

pedestrian approach to these developments is given in [12, 14]. The purpose of the present

paper is two-fold.

Firstly, we present a self-contained construction of nonassociative differential geom-

etry based on the constant parabolic R-flux background which is rooted in two guiding

principles: equivariance under the twist deformed quasi-Hopf algebra of infinitesimal dif-

feomorphisms on the one hand (including invariance of the operations of multiplication,

inner derivation and exterior derivation of fields, and covariance of tensor fields) and, on

the other hand, the equivalent descriptions of tensor fields as sections of vector bundles and

as maps between vector bundles. These constructions are compatible with the category

theory formalism of [10, 11]; indeed, sections 2–4 of the present paper can also be regarded

as unravelling that general construction for the specific cochain twist deformation provided

by the constant parabolic R-flux model in phase space. This unravelling complements that

undertaken in [12]. However, as pursued by [14], the main viewpoint here is to avoid the

use of category theory altogether and yet, in contrast to the more pedestrian approach

of [14], to provide a self-consistent and mathematically rigorous construction of nonasso-

ciative differential geometry. This leads to a notion of torsion that coincides with that

introduced in [14] (see (4.35)). On the other hand, it leads to key new results, including

a simple definition of curvature tensor as the square of the covariant derivative, its equiv-

alent description as an operator on vector fields (the second Cartan structure equation,

see (4.55)), and a well-defined Ricci tensor (see (4.75) and (4.83)).

– 2 –
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Secondly, we use this framework to systematically study the metric aspects of nonasso-

ciative differential geometry. This is a nonassociative generalization of the noncommutative

Riemannian geometry developed in [6, 7]. One of our main achievements is the construc-

tion of the analog of the Levi-Civita connection (see (5.49)), wherein we describe how

to circumvent the problems encountered in [14]. We thus obtain a metric formulation of

nonassociative gravity on phase space. A complementary vielbein or first order formalism

for nonassociative gravity has been considered in [11, 12]. Here we have chosen to develop

the metric aspects of nonassociative gravity, because it also represents the most direct way

to explore the potential relevance of nonassociative gravity to string theory, in that in

closed string theory the fundamental field is the metric tensor rather than the vielbein.

Although it is interesting in its own right to be able to implement general covari-

ance under the quasi-Hopf algebra of deformed diffeomorphisms and to formulate Einstein

equations in nonassociative space, in order to arrive at a theory that can be potentially

considered as providing a low-energy effective action for closed strings in the presence of

non-geometric fluxes, it is necessary to project nonassociative gravity from phase space to

spacetime. To this aim we further develop the approach of [5], which demonstrated how

to extract results of closed string scattering amplitudes in non-geometric backgrounds [16]

from the nonassociative deformation of phase space. We conclude in particular that, in the

constant parabolic R-flux model, the curvature of spacetime is deformed in a non-trivial

way by locally non-geometric fluxes. Our main result for the Ricci tensor of nonassociative

gravity is presented in (5.90) and reproduced here:

Ric◦µν = RicLCµν + ℓ3s
12 R

αβγ
(
∂ρ
(
∂αg

ρσ (∂βgστ ) ∂γΓ
LC τ
µν

)
− ∂ν

(
∂αg

ρσ (∂βgστ ) ∂γΓ
LC τ
µρ

)

+ ∂γgτω
(
∂α(g

στ ΓLC ρ
σν ) ∂βΓ

LCω
µρ − ∂α(g

στ ΓLC ρ
σρ ) ∂βΓ

LCω
µν

+(ΓLCσ
µρ ∂αg

ρτ − ∂αΓ
LCσ
µρ gρτ ) ∂βΓ

LCω
σν

− (ΓLCσ
µν ∂αg

ρτ − ∂αΓ
LCσ
µν gρτ ) ∂βΓ

LCω
σρ

))
, (1.3)

where RicLCµν is the usual Ricci tensor of the classical Levi-Civita connection ΓLC ρ
µν of a met-

ric tensor gµν on spacetime. This expression is valid to linear order in the R-flux, which is

the order at which the corresponding conformal field theory calculations are reliable [16].

It represents the first non-trivial starting point for understanding how to define a nonas-

sociative theory of gravity describing the low-energy effective dynamics of closed strings

in non-geometric backgrounds, although in this paper we do not address in detail the im-

plications of this structure on string theory or double field theory [17]; see [14] for some

discussion of points which should be addressed in this latter context.

A somewhat perplexing aspect about the development of the geometry of the phase

space model for the R-flux background concerns the precise meaning of Riemannian geom-

etry of phase space. Superficially, our approach is reminescent of recent discussions of Born

geometry in string theory [21], wherein it is argued that the fundamental string symmetries

should contain diffeomorphisms of phase space, in accord with Born’s original proposal to

unify quantum theory with general relativity by treating spacetime and momentum space

on equal footing. It is precisely the phase space formulation that is responsible for nonas-

– 3 –
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sociativity in the parabolic R-flux model [5, 26, 27], and it would be interesting to find

explicit connections between our constructions and the proposal of [21].

The outline of the remainder of this paper is as follows. In section 2 we describe some

preliminary Hopf algebraic ingredients and define the quasi-Hopf algebra of infinitesimal

diffeomorphisms. This is the symmetry algebra that leads us into the nonassociative defor-

mations of differential geometry, and in this preliminary section we follow [5, 10, 27], where

further details can be found; we also comment on how our constructions fit into frameworks

suitable for a double field theory formulation of all our developments. In section 3 we use

these ingredients to fully develop nonassociative tensor calculus on phase space, and apply

it in section 4 to construct a nonassociative theory of connections, obtaining new defini-

tions of curvature and Ricci tensors, together with the main results of the Cartan structure

equations for curvature and torsion. This section builds and expands on the nonassociative

differential geometry machinery developed by [11], and on the noncommutative geometry

techniques and results of [2, 6]. In section 5 we introduce metric tensors and develop the

Riemannian aspects of nonassociative differential geometry, including the extension to the

nonassociative setting of the noncommutative metric compatibility condition [2, 7], the

explicit construction of the Levi-Civita connection, the corresponding Ricci tensor and

vacuum Einstein equations on nonassociative phase space, and the induced corrections to

the spacetime Ricci tensor given in (1.3). Finally, in section 6 we conclude by summarising

our main findings and highlighting key open issues for further investigation.

2 Algebraic structure of non-geometric flux deformations

2.1 R-flux induced cochain twist and quasi-Hopf algebra

The presence of a constant non-geometric R-flux on M = R
d has been proposed to be

captured by a certain nonassociative deformation of the geometry of phase space M =

T ∗M = R
d × (Rd)∗. Coordinates on M will be denoted xA = (xµ, x̃µ) with A = 1, . . . , 2d,

where xµ are spacetime coordinates on M while x̃µ = pµ are momentum coordinates for

µ = 1, . . . , d. Derivatives are denoted in a similar way: ∂A =
(

∂
∂xµ = ∂µ,

∂
∂pµ

= ∂̃µ
)
. In

string theory applications, the metric on M is usually taken to have Euclidean signature,

but in what follows our results do not depend on the signature of the spacetime metric

tensor which can be either Euclidean or Lorentzian.

The geometry of phase spaceM is deformed by using a particular cochain twist element

F in the universal enveloping Hopf algebra UVec(M) of the Lie algebra of vector fields

Vec(M) on M. It is defined by

F = exp
(
− i ~

2 (∂µ ⊗ ∂̃µ − ∂̃µ ⊗ ∂µ)−
i ℓ3s
12~ R

µνρ (pν ∂ρ ⊗ ∂µ − ∂µ ⊗ pν ∂ρ)
)
, (2.1)

where Rµνρ are the totally antisymmetric constant R-flux components, and implicit sum-

mation over repeated upper and lower indices is always understood. We will write

F =: f α ⊗ f α = 1⊗ 1 +O(~, ℓ3s) , (2.2)

– 4 –
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where f α, f α are elements in UVec(M) and summation on α is understood; for the inverse

of the twist we write F−1 =: f α⊗ f α. Following [5, 27], it will sometimes be convenient to

regard the twist element (2.1) as the result of applying successively two commuting abelian

cocycle twists

F = F FR = FR F , (2.3)

where the Hopf 2-cocycle

F = exp
(
− i ~

2 (∂µ ⊗ ∂̃µ − ∂̃µ ⊗ ∂µ)
)
=: f α ⊗ f α = 1⊗ 1 +O(~) (2.4)

implements the standard Moyal-Weyl deformation of canonical phase space, while the

2-cocycle

FR = exp
(
− iκ

2 Rµνρ (pν ∂ρ ⊗ ∂µ − ∂µ ⊗ pν ∂ρ)
)
=: fα

R ⊗ fRα = 1⊗ 1 +O(κ) , (2.5)

with

κ :=
ℓ3s
6~

, (2.6)

implements the deformation by the R-flux; in the following we shall sometimes treat ~ and

κ as independent (small) deformation parameters.

The Hopf algebra UVec(M) has coproduct ∆ defined as ∆(1) = 1 ⊗ 1, ∆(∂A) =

1⊗∂A+∂A⊗1, counit ǫ defined as ǫ(1) = 1, ǫ(∂A) = 0, and antipode S defined as S(1) = 1,

S(∂A) = −∂A, with ∆ and ǫ extended to all of UVec(M) as algebra homomorphisms, and S

extended as an algebra antihomomorphism (linear and anti-multiplicative). With the twist

F , following [27] we deform the Hopf algebra UVec(M) (considered to be extended with

power series in ~ and κ) to the quasi-Hopf algebra UVecF (M). It has the same algebra

structure as UVec(M) and coproduct ∆F = F ∆F−1; explicitly, on the basis vector fields

we have

∆F (∂µ) = 1⊗ ∂µ + ∂µ ⊗ 1 ,

∆F (∂̃
µ) = 1⊗ ∂̃µ + ∂̃µ ⊗ 1 + iκRµνρ ∂ν ⊗ ∂ρ . (2.7)

The quasi-antipode is SF = S, where the quasi-antipode elements αF and βF are the

identity in the case of the twist F , because α = β = 1 in UVec(M) and

f α S(f α) = fα
R S(fRα) = f α S( f α) = f

α
R S( fRα) = 1 , (2.8)

(see [27], section 2.2). The counit is ǫF = ǫ. The twist F does not fulfill the 2-cocycle

condition, and instead one obtains

Φ (F ⊗ 1) (∆⊗ id)F = (1⊗F) (id⊗∆)F , (2.9)

where the element Φ, called the associator, is the Hopf 3-cocycle

Φ = exp
(

ℓ3s
6 Rµνρ ∂µ ⊗ ∂ν ⊗ ∂ρ

)
=: φ1 ⊗ φ2 ⊗ φ3 = 1⊗ 1⊗ 1 +O(ℓ3s) (2.10)

– 5 –
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with summation understood in the second expression (as in e.g. F = f α ⊗ f α). The

inverse associator is denoted Φ−1 =: φ̄1 ⊗ φ̄2 ⊗ φ̄3. The failure of the 2-cocycle condition

implies that the twisted coproduct ∆F is no longer coassociative, as one sees from the

quasi-coassociativity relation

Φ (∆F ⊗ id)∆F (ξ) = (id⊗∆F )∆F (ξ) Φ (2.11)

for all ξ ∈ UVec(M).

The sextuple (UVec(M), · ,∆F ,Φ, S, ǫ) defines on the vector space UVec(M) the struc-

ture of a quasi-Hopf algebra UVecF (M) [20]. In UVecF (M) the only relaxation of the Hopf

algebra structure is the presence of a non-trivial associator Φ for the coproduct ∆F . The

quasi-Hopf algebra UVecF (M) will play the role of the symmetry algebra of infinitesimal

diffeomorphisms of the nonassociative deformation of phase space M.

For later use, we rewrite the relation (2.11), which expresses the failure of coassocia-

tivity of ∆F , in the form
(
ξ(1)(1) ⊗ ξ(1)(2) ⊗ ξ(2)

)
Φ−1 = Φ−1

(
ξ(1) ⊗ ξ(2)(1) ⊗ ξ(2)(2)

)
. (2.12)

Here we introduced the Sweedler notation

∆F (ξ) =: ξ(1) ⊗ ξ(2) (2.13)

for the coproduct (with implicit summation) and its iterations, for example

(∆F ⊗ id)∆F (ξ) =: ξ(1)(1) ⊗ ξ(1)(2) ⊗ ξ(2) . (2.14)

Recalling that the quasi-antipode is just the undeformed antipode S, we also observe that

its compatibility with the coproduct ∆F ,

ξ(1) S(ξ(2)) = ǫ(ξ) = S(ξ(1)) ξ(2) , (2.15)

for all ξ ∈ UVecF (M), follows from the equalities (2.8).

A further relevant property of the quasi-Hopf algebra UVecF (M) is its triangularity.

We denote by ∆op
F the opposite coproduct, obtained by flipping the two legs of ∆F , i.e., if

∆F (ξ) = ξ(1)⊗ξ(2) then ∆op
F (ξ) := ξ(2)⊗ξ(1), for all ξ ∈ UVecF (M). Since the coproduct of

UVec(M) satisfies ∆ = ∆op, it follows immediately that the coproduct ∆F of UVecF (M)

satisfies the property ∆op
F (ξ) = R∆F (ξ)R

−1, for all ξ ∈ UVecF (M), with the R-matrix

given by

R = F−2 =: R α ⊗ R α . (2.16)

Its inverse R−1 = F2 =: R α ⊗ R α satisfies

R α ⊗ R α = R α ⊗ R α (2.17)

so that the R-matrix is triangular. The quasi-Hopf algebra UVecF (M) with this R-matrix

is a triangular quasi-Hopf algebra [10, 22]. The coproduct of the inverse of the R-matrix

can be explicitly computed and reads

(∆F ⊗ id)R−1 = Φ−3 R β ⊗ R α ⊗ R αR β , (2.18)

(id⊗∆F )R
−1 = Φ3 R αR β ⊗ R α ⊗ R β . (2.19)

– 6 –
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These equalities are a simplified version of the compatibility conditions between the co-

product ∆F and the R-matrix that is due to the antisymmetry of the trivector Rµνρ

(see (2.20) below).

2.2 Associator identities

There are various noteworthy identities for the associator that arise for the particular

cochain twist induced by the constant R-flux background, which we summarise here as

they will be used extensively in our calculations throughout this paper.

A main simplification is that the legs of the associator commute among themselves,

φa φb = φb φa, and also with the legs of the twist, φa f
α = f α φa and φa f α = f α φa.

Moreover, by antisymmetry of the trivector R, we have

φa ⊗ φb ⊗ φc = φ̄a ⊗ φ̄c ⊗ φ̄b (2.20)

and φa ⊗ φb φc = 1 ⊗ 1, where here and in the following (a, b, c) denotes a permutation of

(1, 2, 3). Furthermore, since the antipode is an antihomomorphism we have

(id⊗ id⊗ S)Φ = exp
(

ℓ3s
6 Rµνρ ∂µ ⊗ ∂ν ⊗ S(∂ρ)

)
= exp

(
− ℓ3s

6 Rµνρ ∂µ ⊗ ∂ν ⊗ ∂ρ

)
(2.21)

which leads to

φa ⊗ φb ⊗ S(φc) = φ̄a ⊗ φ̄b ⊗ φ̄c . (2.22)

Since the coproduct ∆ : UVec(M) → UVec(M) ⊗ UVec(M) is an algebra homomor-

phism, we have

(id⊗ id⊗∆)Φ = exp
(

ℓ3s
6 Rµνρ ∂µ ⊗ ∂ν ⊗∆(∂ρ)

)

= exp
(

ℓ3s
6 Rµνρ (∂µ ⊗ ∂ν ⊗ ∂ρ ⊗ 1 + ∂µ ⊗ ∂ν ⊗ 1⊗ ∂ρ)

)
(2.23)

= exp
(

ℓ3s
6 Rµνρ ∂µ ⊗ ∂ν ⊗ ∂ρ ⊗ 1

)
exp

(
ℓ3s
6 Rµνρ ∂µ ⊗ ∂ν ⊗ 1⊗ ∂ρ

)

= φ1 ϕ1 ⊗ φ2 ϕ2 ⊗ φ3 ⊗ ϕ3 ,

where here and in the following we use different symbols for multiple associator insertions

in order to avoid confusion. We further have (id ⊗ id ⊗ ∆)Φ = (id ⊗ id ⊗ ∆F )Φ because

∆F (ξ) = F ∆(ξ)F−1 and F commutes with the legs of the associator. Hence we have

φa ⊗ φb ⊗ φc(1) ⊗ φc(2) = φa ϕa ⊗ φb ϕb ⊗ φc ⊗ ϕc . (2.24)

Finally, we also rewrite the identity ΦΦ−1 = id as

φa ϕ̄a ⊗ φb ϕ̄b ⊗ φc ϕ̄c = 1⊗ 1⊗ 1 . (2.25)

– 7 –
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2.3 Double field theory formulation

Before deforming the geometry of M into a nonassociative differential geometry with the

cochain twist F and the associated quasi-Hopf algebra UVecF (M), let us describe the

general extent to which our results will be applicable, particularly from the perspective of

double field theory, as they will mostly be suppressed in the following in order to streamline

our presentation and formulas.

Firstly, if globally non-geometric Q-flux is also present [1, 17, 19, 25], then it has the

effect of modifying the twist element (2.3) to

F = F FR FQ , (2.26)

where

FQ = exp
(
− iκ

2 Qµν
ρ (w

ρ ∂µ ⊗ ∂ν − ∂ν ⊗ wρ ∂µ)
)

(2.27)

with wµ closed string winding coordinates which may be regarded as momenta p̂µ conjugate

to coordinates x̂µ that are T-dual to the spacetime variables xµ. The twist FQ is an

abelian 2-cocycle, and the vector fields wρ ∂µ commute with the other vector fields ∂A

and pµ ∂ν generating the twists F and FR, so the Hopf coboundary of (2.26) is still the

associator (2.10); indeed, unlike the R-flux, the Q-flux only sources noncommutativity. In

this setting theQ-flux and R-flux are independent deformation parameters, while coexistent

constant Q-flux and R-flux in string theory are constrained in the absence of geometric

fluxes by the Bianchi identities

Rµ[νρQλτ ]
µ = 0 and Q[νρ

µQ
λ]µ

τ = 0 (2.28)

which are easily imposed as additional constraints on the twist element (2.26).

In fact, analogously to [8] one can extend the twist element (2.1) to the full phase

space M×M̂ of double field theory in the R-flux frame as

F̂ = F F̂ , (2.29)

where

F̂ = exp
(
− i ~

2 (∂̂µ ⊗
˜̂
∂µ −

˜̂
∂µ ⊗ ∂̂µ)

)
(2.30)

implements the deformation of the canonical T-dual phase space M̂ with coordinates

x̂µ, p̂
µ = wµ. The cochain twist (2.29) is O(2d, 2d)-invariant so that it can be rotated

to any other T-duality frame by using an O(2d, 2d) transformation on M × M̂, and in

this way one can write down a nonassociative theory which is manifestly invariant un-

der O(2d, 2d) rotations. In particular, by restricting to rotations which also preserve the

canonical symplectic 2-form of double phase space, we obtain a formulation that is invariant

under a subgroup

O(d, d) ⊆ O(2d, 2d) ∩ Sp(2d) . (2.31)

– 8 –
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As the inclusion of F̂ affects neither the commutation nor the association relations on the

original phase space M, while yielding the standard Moyal-Weyl deformation of the T-dual

phase space M̂, we will regard the phase space M̂ as implicitly hidden in the background

in all of our subsequent treatments, with the understanding that all of our formalism can be

rotated to any T-duality frame by including a dependence on the T-dual coordinates of M̂

and suitably inserting F̂ in formulas. In this way we obtain a manifestly O(d, d)-invariant

formulation of the gravity theory which follows.

From this perspective, there are also natural modifications of our formalism, analogous

to those of Moyal-Weyl spaces [3], which fit nicely into the flux formulation of double field

theory appropriate to curved backgrounds [17]. The vector fields

Xµ = ∂µ , X̃µ = ∂̃µ and Xµν = pµ ∂ν − pν ∂µ (2.32)

onM, defining the twist deformation of flat spaceM = R
d, represent a nilpotent subalgebra

k of the Lie algebra iso(2d) with the nonvanishing Lie brackets

[
X̃µ, Xνρ

]
= δµν Xρ − δµρXν . (2.33)

For any collection of vector fields {Xµ, X̃
µ, Xµν , µ, ν = 1, . . . , d} satisfying these Lie

bracket relations on an arbitrary manifold M, the cochain twist element

Fc = exp
(
− i ~

2 (Xµ ⊗ X̃µ − X̃µ ⊗Xµ)−
iκ
4 Rµνρ (Xνρ ⊗Xµ −Xµ ⊗Xνρ)

)
(2.34)

of the Hopf algebra U iso(2d) ⊂ UVec(M) provides a nonassociative deformation of M, all

of whose features fit into the framework we develop in the following.

For example, in the cases considered in the present paper we will see that there is

a preferred basis ∂A, dx
A of vector fields and 1-forms on M that is invariant under the

action of the associator and which greatly simplifies calculations. In particular, the Cartan

structure equations expressing torsion and curvature as operators on vector fields will be

established by checking that these operators define tensor fields, and by showing that

in the preferred basis they coincide with the torsion and curvature coefficients. These

simplifications can be carried out as well for the more general twist Fc, by considering as

basis the commuting vector fields Xµ, X̃
µ and their dual 1-forms; more generally, if the

vector fields Xµ, X̃
µ do not form a basis (e.g. they become degenerate), this can be achieved

by completing them to a basis that is still invariant under the action of the associator with

the methods described in ([3], section 4).

3 Nonassociative deformation of tensor calculus

3.1 Principles of twist deformation

The tensor algebra on M is covariant under the action of the universal enveloping algebra

of infinitesimal diffeomorphisms UVec(M). We have seen how the R-flux induces a twist

deformation of the Hopf algebra UVec(M) into the quasi-Hopf algebra UVecF (M). We

construct a nonassociative differential geometry on M by requiring it to be covariant with

respect to the quasi-Hopf algebra UVecF (M).
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Every time we have an algebra A that carries a representation of the Hopf alge-

bra UVec(M), and where vector fields u ∈ Vec(M) act on A as derivations: u(a b) =

u(a) b+ a u(b), i.e., every time we have a UVec(M)-module algebra A, then deforming the

multiplication in A into the star-multiplication

a ⋆ b = f α(a) f α(b) (3.1)

yields a noncommutative and nonassociative algebra A⋆ that carries a representation of

the quasi-Hopf algebra UVecF (M), where

ξ(a ⋆ b) = ξ(1)(a) ⋆ ξ(2)(b) , (3.2)

for all ξ ∈ UVecF (M) and a, b ∈ A; in particular, the vector fields ∂µ and ∂̃µ act as

deformed derivations according to the Leibniz rule implied by the coproduct (2.7). We

say that A⋆ is a UVecF (M)-module algebra because of the compatibility (3.2) of the

action of UVecF (M) with the product in A⋆. For later use we recall the proof of the key

property (3.2):

ξ(a ⋆ b) = ξ
(
f α(a) f α(b)

)

= ξ(10)
(
f α(a)

)
ξ(20)

(
f α(b)

)

= f α
(
ξ(1)(a)

)
f α

(
ξ(2)(b)

)

= ξ(1)(a) ⋆ ξ(2)(b) , (3.3)

where we used the notation ∆(ξ) = ξ(10) ⊗ ξ(20) for the undeformed coproduct together

with ∆(ξ)F−1 = F−1∆F (ξ).

If the algebra A is commutative then the noncommutativity of A⋆ is controlled by the

R-matrix as

a ⋆ b = R α(b) ⋆ R α(a) =: αb ⋆ αa , (3.4)

where in the last equality we used the notation αa := R α(a) and αa := R α(a); the ex-

pression (3.4) is easily proven by recalling that R = F−2 and that a ⋆ b = f α(a) f α(b) =

f α(b) f
α(a). If the algebra A is associative then the nonassociativity of A⋆ is controlled

by the associator Φ as

(a ⋆ b) ⋆ c = φ1a ⋆ (φ2b ⋆ φ3c) , (3.5)

where we denote φ1a := φ1(a); an explicit proof can be found in ([5], section 4.2).

In the following we deform the algebra of functions, the exterior algebra of differential

forms and the algebra of tensor fields on M according to this prescription.

3.2 Functions

The action of a vector field u ∈ Vec(M) on a function f ∈ C∞(M) is via the Lie derivative

Lu(f) = u(f), which is indeed a derivation. The action of the Lie algebra Vec(M) on

functions is extended to an action of the universal enveloping algebra UVec(M) by defining

the Lie derivative on products of vector fields as Lu1 u2 ···un := Lu1 ◦ Lu2 ◦ · · · ◦ Lun and
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by linearity. The UVec(M)-module algebra C∞(M) (extended with power series in ~ and

κ) is then deformed to the UVecF (M)-module algebra A⋆ := C∞(M)⋆, which as a vector

space is the same as C∞(M) but with multiplication given by the star-product

f ⋆ g = f α(f) · f α(g) (3.6)

= f · g + i ~
2

(
∂µf · ∂̃µg − ∂̃µf · ∂µg

)
+ iκRµνρ pν ∂ρf · ∂µg + · · · ,

where the ellipses denote terms of higher order in ~ and κ. Noncommutativity is controlled

by the R-matrix as f ⋆g = R α(g)⋆R α(f) =: αg⋆αf, and nonassociativity by the associator

Φ as (f ⋆ g) ⋆ h = φ1f ⋆ (φ2g ⋆ φ3h). The constant function 1 on M is also the unit of A⋆

because f ⋆ 1 = f = 1 ⋆ f .

Denoting the star-commutator of functions by [f, g]⋆ := f ⋆ g − g ⋆ f , we reproduce in

this way the defining phase space quasi-Poisson coordinate algebra

[xµ, xν ]⋆ = 2 iκRµνρ pρ , [xµ, pν ]⋆ = i ~ δµν and [pµ, pν ]⋆ = 0 (3.7)

of the parabolic R-flux background, with the non-vanishing Jacobiators

[xµ, xν , xρ]⋆ = ℓ3s R
µνρ . (3.8)

3.3 Forms

Similarly to (3.6), we can deform the exterior algebra of differential forms Ω♯(M) by

introducing the star-exterior product

ω ∧⋆ η = f α(ω) ∧ f α(η) . (3.9)

The algebra of differential forms with the nonassociative product ∧⋆ is denoted Ω♯
⋆, with

Ω0
⋆ = A⋆. Here too the vector fields in the twist act on differential forms via the Lie

derivative; in particular, for the basis 1-forms we find

L∂A(dx
B) = 0 (3.10)

along with (recalling that x̃µ := pµ)

LRµνρ Xνρ(dx
σ) = 2Rµνσ dx̃ν and LRµνρ Xνρ(dx̃σ) = 0 , (3.11)

where the vector fields Xµν are defined in (2.32) and we used the fact that the Lie derivative

commutes with the exterior derivative. Iterating the commutativity of the exterior deriva-

tive d : Ω♯
⋆ → Ω♯+1

⋆ with the Lie derivative along vector fields implies d f α(ω) = f α(dω)

and d f α(ω) = f α(dω), giving the undeformed Leibniz rule

d(ω ∧⋆ η) = dω ∧⋆ η + (−1)|ω| ω ∧⋆ dη (3.12)

where ω is a homogeneous form of degree |ω|.

The star-exterior product of 1-forms dxA reduces to the usual antisymmetric associa-

tive exterior product: using (3.10) we have

dxA ∧⋆ dx
B = dxA ∧ dxB = −dxB ∧ dxA = −dxB ∧⋆ dx

A . (3.13)
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In particular, the volume element is undeformed. For this, we note that the action of the

associator (2.10) trivializes on the exterior products of basis 1-forms: in the case of three

basis 1-forms we obtain

(dxA ∧⋆ dx
B) ∧⋆ dx

C = φ1(dxA) ∧⋆

(
φ2(dxB) ∧⋆

φ3(dxC)
)

= dxA ∧⋆ (dx
B ∧⋆ dx

C)

= dxA ∧ dxB ∧ dxC , (3.14)

where φa act via Lie derivatives on forms and we used (3.10).

The exterior product between 0-forms (functions) and 1-forms gives the space of 1-

forms the structure of a C∞(M)-bimodule. Similarly, restricting the star-exterior product

of differential forms to functions and 1-forms defines the A⋆-bimodule structure of the space

of 1-forms Ω1
⋆. In particular, the star-exterior product of functions and basis 1-forms is

given by

f ⋆ dx̃µ = f · dx̃µ = dx̃µ ⋆ f ,

f ⋆ dxµ = f · dxµ − iκ
2 Rµνρ ∂νf · dx̃ρ = dxµ ⋆ f − dx̃ρ ⋆ iκRµνρ ∂νf . (3.15)

Similarly to [14], it is convenient to package the relations in (3.15) into a single relation by

defining an antisymmetric tensor RAB
C on M whose only non-vanishing components are

Rxµ,xν

x̃ρ = Rµνρ, so that

f ⋆ dxA = dxC ⋆
(
δAC f − iκR

AB
C ∂Bf

)
. (3.16)

As a useful special case, this implies

df = ∂Af dxA = ∂Af ⋆ dxA = dxA ⋆ ∂Af (3.17)

by antisymmetry of Rµνρ (and hence of RAB
C).

3.4 Tensors

The usual tensor product ⊗C∞(M) over C
∞(M) is deformed to the star-tensor product ⊗⋆

over A⋆ defined by

T ⊗⋆ U = f α(T )⊗C∞(M) f α(U) , (3.18)

where the action of the twist on the tensor fields T and U is via the Lie derivative. Due to

nonassociativity, for f ∈ A⋆ one has

(T ⋆ f)⊗⋆ U = φ1T ⊗⋆ (
φ2f ⋆ φ3U) . (3.19)

Here the star-tensor product ⊗⋆ between functions and tensor fields is denoted ⋆. In

particular, it gives the space of vector fields Vec(M) an A⋆-bimodule structure. We denote

Vec(M) with this A⋆-bimodule structure by Vec⋆. In order to explicitly write the star-

product between functions and the basis vector fields ∂µ, ∂̃
µ, we first compute the Lie
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derivative action of the vector fields in the twist on the basis vector fields (i.e., the Lie

brackets):

L∂A(∂B) = 0 (3.20)

together with

LRµνρ Xνρ(∂σ) = 0 and LRµνρ Xνρ(∂̃
σ) = −2Rµνσ ∂ν . (3.21)

Then we have

f ⋆ ∂µ = f · ∂µ = ∂µ ⋆ f ,

f ⋆ ∂̃µ = f · ∂̃µ − iκ
2 Rµνρ ∂νf · ∂ρ = ∂̃µ ⋆ f + ∂ν ⋆ iκRµνρ ∂ρf , (3.22)

where here ∂µ ⋆ f denotes the right A⋆-action on Vec⋆ (and not the action of ∂µ on the

function f). Again we can write these relations collectively in the form

f ⋆ ∂A = ∂C ⋆
(
δCA f + iκR

CB
A ∂Bf

)
. (3.23)

Using the star-tensor product, we can extend the A⋆-bimodule Vec⋆ of vector fields to

the Ω♯
⋆-bimodule Vec♯⋆ = Vec⋆ ⊗⋆ Ω

♯
⋆: the left and right actions of the exterior algebra Ω♯

⋆

on Vec♯⋆ are given by

(u⊗⋆ ω) ∧⋆ η = φ1u⊗⋆ (
φ2ω ∧⋆

φ3η) ,

η ∧⋆ (u⊗⋆ ω) = α
(
φ̄1(βu)

)
⊗⋆

(
α(1)

(φ̄2η) ∧⋆
β(α(2)

(φ̄3ω))
)
, (3.24)

where α(a)(T ) := R α
(a)(T ) and α(a)

T := R α (a)(T ) for T a tensor or a form; the left action

in (3.24) follows from

η ∧⋆ (u⊗⋆ ω) = η ∧⋆ (
βω ⊗⋆ βu) = (φ̄1η ∧⋆

φ̄2 βω)⊗⋆
φ̄3

βu = α(φ̄3
βu)⊗⋆ α(

φ̄1η ∧⋆
φ̄2 βω)

(3.25)

where in the first equality we used the fact that the tensor product between contravariant

and covariant tensors is commutative, in particular u⊗C∞(M)ω = ω⊗C∞(M)u, and similarly

in the last equality.

Analogously, we can extend the A⋆-bimodule of 1-forms Ω1
⋆ to an Ω♯

⋆-bimodule Ω♯
⋆⊗⋆Ω

1
⋆.

3.5 Duality

The three star-multiplications ⋆, ∧⋆ and ⊗⋆ thus far constructed are compatible with

the UVecF (M)-action according to (3.2). This compatibility can be regarded as equiv-

ariance of these products under the UVecF (M)-action: there is no action of ξ on the

star-multiplication in (3.2), only on (the functions, forms or tensors) a and b. This no-

tion of equivariance under the universal enveloping algebra of diffeomorphisms UVecF (M)

(invariance and covariance in physics parlance) is the guiding principle in constructing a

noncommutative and nonassociative differential geometry on M. The recipe thus far con-

sidered, which consists in deforming a multiplication m to the star-multiplication ⋆ defined
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by composing the classical product with the inverse twist, ⋆ := m ◦ F−1, extends more

generally to any bilinear map that is equivariant under infinitesimal diffeomorphisms, i.e.,

under UVec(M).

For example, the pairing between 1-forms and vectors 〈 , 〉 : Ω1(M) × Vec(M) →

C∞(M) is deformed to the star-pairing

〈 , 〉⋆ := 〈 , 〉 ◦ F−1 : Ω1
⋆ × Vec⋆ −→ C∞(M) , (3.26)

which is explicitly given by

〈 ω , u 〉⋆ =
〈
f α(ω) , f α(u)

〉
. (3.27)

Equivariance of the star-pairing under the quasi-Hopf algebra UVecF (M),

ξ〈 ω , u 〉⋆ = 〈 ξ(1)ω , ξ(2)u 〉⋆ , (3.28)

follows from equivariance of the undeformed pairing under the Hopf algebra UVec(M),

with the proof being analogous to (3.3).

Since the usual pairing is C∞(M)-linear: 〈 ω · f , u 〉 = 〈 ω , f · u 〉, 〈 f · ω , u 〉 =

f · 〈 ω , u 〉, and 〈 ω , u · f 〉 = 〈 ω , u 〉 · f , it follows that the star-pairing is A⋆-linear:

〈 ω ⋆ f , u 〉⋆ = 〈 φ1ω , φ2f ⋆ φ3u 〉⋆ ,

〈 f ⋆ ω , u 〉⋆ = φ1f ⋆ 〈 φ2ω , φ3u 〉⋆ ,

〈 ω , u ⋆ f 〉⋆ = 〈 φ̄1ω , φ̄2u 〉⋆ ⋆
φ̄3f , (3.29)

with the proof being analogous to that of quasi-associativity (3.19) of the star-tensor prod-

uct. The first equality in (3.29) shows that the star-pairing is a well-defined map

〈 〉⋆ : Ω1
⋆ ⊗⋆ Vec⋆ −→ A⋆ . (3.30)

At zeroth order in the deformation parameters ~ and κ, this is just the canonical unde-

formed pairing 〈 〉 of 1-forms with vector fields which is nondegenerate, and hence the

star-pairing 〈 〉⋆ is nondegenerate as well. Because of (3.10) and (3.20), the star-pairing

between basis vector fields ∂A and basis 1-forms dxA is undeformed: 〈 dxA , ∂B 〉⋆ = δAB.

This pairing can be extended to star-tensor products

〈 〉⋆ :
(
Ω1
⋆ ⊗⋆ Ω

1
⋆

)
⊗⋆

(
Vec⋆ ⊗⋆ Vec⋆

)
−→ A⋆ (3.31)

in the following way. Firstly, for ω, η ∈ Ω1
⋆ and u ∈ Vec⋆ we define the 1-form

〈 (ω ⊗⋆ η) , u 〉⋆ :=
φ1ω ⋆ 〈 φ2η , φ3u 〉⋆ . (3.32)

This definition is compatible with equivariance under the quasi-Hopf algebra action, since

for ξ ∈ UVecF (M) we have

ξ〈 (ω ⊗⋆ η) , u 〉⋆ = ξ
(
φ1ω ⋆ 〈 φ2η , φ3u 〉⋆

)

= ξ(1) φ1ω ⋆ ξ(2)〈 φ2η , φ3u 〉⋆

= ξ(1) φ1ω ⋆ 〈
ξ(2)(1)

φ2
η ,

ξ(2)(2)
φ3
u 〉⋆

=
φ1 ξ(1)(1)ω ⋆ 〈

φ2 ξ(1)(2)η , φ3 ξ(2)u 〉⋆

= 〈 ξ(1)(ω ⊗⋆ η) ,
ξ(2)u 〉⋆ (3.33)
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where in the second line we used the equivariance of the star-product, in the third line

the equivariance of the star-pairing, and in the fourth line the quasi-coassociativity prop-

erty (2.12). We then define the pairing

〈 (ω ⊗⋆ η) , (u⊗⋆ v) 〉⋆ := 〈 〈 φ̄1(ω ⊗⋆ η) ,
φ̄2u 〉⋆ ,

φ̄3v 〉⋆

= 〈 〈 φ̄1ω ⊗⋆
ϕ̄1η , φ̄2 ϕ̄2u 〉⋆ ,

φ̄3 ϕ̄3v 〉⋆

= 〈 ζ1 φ̄1ω ⋆ 〈 ζ2 ϕ̄1η , ζ3 φ̄2u 〉⋆ ,
φ̄3 ϕ̄3v 〉⋆

= ρ1 α〈 ζ2 ϕ̄1η , ζ3 φ̄2u 〉⋆ ⋆ 〈
ρ2 ζ1 φ̄1

αω , ρ3 φ̄3 ϕ̄3v 〉⋆ , (3.34)

and one again checks that it is equivariant under UVecF (M) by using quasi-

coassociativity (2.12). This definition can be straightforwardly iterated to arbitrary star-

tensor products.

3.6 Module homomorphisms

Tensors can be regarded either as sections of vector bundles or as maps between sections

of vector bundles. In section 3.4 we have taken the first point of view and deformed the

product of sections to the star-tensor product. Thanks to the pairing 〈 , 〉⋆, we can also

consider the second perspective; for example, for any 1-form ω the object 〈 ω , 〉⋆ is a right

A⋆-linear map from the A⋆-bimodule Vec⋆ to A⋆. More generally, given A⋆-bimodules V⋆

and W⋆, we can consider the space of module homomorphisms (linear maps) hom(V⋆,W⋆).

This space carries the adjoint action of the Hopf algebra, which is given by

ξL(v) := (ξL)(v) = ξ(1)
(
L(S(ξ(2))(v))

)
, (3.35)

for ξ ∈ UVecF (M), L ∈ hom(V⋆,W⋆) and v ∈ V⋆. It is straightforward to check equivari-

ance of the evaluation of L on v:

ξ
(
L(v)

)
= ξ(1)L

(
ξ(2)v

)
. (3.36)

Indeed the right-hand side can be written as

ξ(1)L
(
ξ(2)v

)
=

ξ(1)(1)
(
L
(S(ξ(1)(2)) ξ(2)v

))

= φ̄1 ξ(1) ϕ1
(
L
(S(φ̄2 ξ(2)(1)

ϕ2) φ̄3 ξ(2)(2)
ϕ3
v
))

= ξ1 ϕ1
(
L
(ϕ2 S(ξ(2)(1)

) ξ(2)(2)
ϕ3
v
))

= ξ
(
L(v)

)
, (3.37)

where we used (2.12), antimultiplicativity of the antipode S, the compatibility (2.15) and

φa ⊗ φb φc = 1 ⊗ 1. Since the vector fields comprising the associator commute with those

of the twisting cochain F , using (2.22) and φa ⊗ φb φc = 1 ⊗ 1 we obtain the following

identities that will be frequently used:

φa ⊗
φb(v ⋆ φcf) = φa ⊗ (φbv ⋆ φcf) , (3.38)

φaL(φbv)⊗ φc = φa
(
L(φbv)

)
⊗ φc , (3.39)

for v ∈ V⋆, f ∈ A⋆ and L ∈ hom(V⋆,W⋆).
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We define the composition of homomorphisms by

(L1 • L2)(v) :=
φ1L1

(
φ2L2(

φ3v)
)

(3.40)

for L1 ∈ hom(W⋆, X⋆), L2 ∈ hom(V⋆,W⋆) and v ∈ V⋆. One can readily check equivariance

of this composition, i.e., compatibility with the UVecF (M)-action:

ξ(L1 • L2) =
ξ(1)L1 •

ξ(2)L2 , (3.41)

with the proof being similar to (3.37), see also [10]. In particular, with this composition

the UVecF (M)-module end(V⋆) of linear maps on V⋆ is a quasi-associative algebra:

(L1 • L2) • L3 =
φ1L1 •

(
φ2L2 •

φ3L3

)
, (3.42)

for all L1, L2, L3 ∈ end(V⋆). We define the twisted commutator of endomorphisms L1, L2 ∈

end(V⋆) through

[L1, L2]• = L1 • L2 −
αL2 • αL1 , (3.43)

where the braiding with the R-matrix ensures equivariance of [ , ]• under the UVecF (M)-

action: ξ[L1, L2]• =
[
ξ(1)L1,

ξ(2)L2

]
•
.

A map L ∈ hom(V⋆,W⋆) is right A⋆-linear if

L(v ⋆ f) = φ̄1L(φ̄2v) ⋆ φ̄3f = φ̄1
(
L(φ̄2v)

)
⋆ φ̄3f . (3.44)

We denote the space of all such maps by hom⋆(V⋆,W⋆); it closes under the UVecF (M)-

action [10]. To see this explicitly, we need to show that if L is right A⋆-linear, then so is
ξL for all ξ ∈ UVecF (M). This follows from the calculation

ξL(v ⋆ f) = ξ(1)
(
L
(S(ξ(2)(2))v ⋆ S(ξ(2)(1)

)
f
))

= ξ(1) φ̄1
[(
L
(φ̄2 S(ξ(2)(2)

)
v
))

⋆
φ̄3 S(ξ(2)(1)

)
f
]

=
φ1 ξ(1)(1)

[(
L
(
S(φ3 ξ(2))v

))
⋆
S(φ2 ξ(1)(2)

)
f
]

=
φ1 ξ(1)(1)(1)

(
L
(
S(φ3 ϕ3 ξ(2))v

))
⋆
ϕ1 ξ(1)(1)(2)

S(φ2 ϕ2 ξ(1)(2)
)
f

=
φ1 η̄1 ξ(1)(1)

ρ1(
L
(
S(φ3 ϕ3 ξ(2))v

))
⋆
ϕ1 η̄2 ξ(1)(2)(1)

ρ2 S(φ2 ϕ2 η̄3 ξ(1)(2)(2)
ρ3)

f

=
φ1 η̄1 ξ(1)(1)

(
L
(
S(φ3 ϕ3 ξ(2))v

))
⋆
ϕ1 η̄2 ξ(1)(2)(1)

S(ξ(1)(2)(2)
)S(η̄3 ϕ2 φ2)

f

= φ1 ξ(1)
(
L
(
S(ξ(2))S(φ3)u

))
⋆ S(φ2)f

= φ̄1
(
ξL

)(
φ̄2v

)
⋆ φ̄3f , (3.45)

where the third equality follows from (2.12), antimultiplicativity of the antipode S,

and (2.20).

For later use, let us explicitly demonstrate that the composition of L1 ∈ hom⋆(W⋆, X⋆)

and L2 ∈ hom⋆(V⋆,W⋆) is a right A⋆-linear map L1 • L2 ∈ hom⋆(V⋆, X⋆); see [10] for a

general proof in the setting of arbitrary quasi-Hopf algebras. For this, we compute

(L1 • L2)(v ⋆ f) =
φ1
(
L1

(
φ2(L2(

φ3(v ⋆ f)))
))

(3.46)
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using φ3(v ⋆ f) =
φ3(1)v ⋆

φ3(2)f and the identity (2.24) to get

(L1 • L2)(v ⋆ f) = φ1 ϕ1
(
L1

(
φ2 ϕ2(L2(

φ3v ⋆ ϕ3f))
))

= φ1 ϕ1
(
L1

(
φ2 ϕ2

[
ρ̄1(L2(

ρ̄2 φ3v)) ⋆ ρ̄3 ϕ3f
]))

= φ1 ϕ1
(
L1

(φ2(1)
[
ϕ2 ρ̄1(L2(

ρ̄2 φ3v))
]
⋆
φ2(2)

ρ̄3 ϕ3f
))

= φ1 φ̌1 ϕ1
(
L1

(
φ2 ϕ2 ρ̄1(L2(

ρ̄2 φ3 φ̌3v)) ⋆ φ̌2 ρ̄3 ϕ3f
))

= φ1 φ̌1 ϕ1 ζ̄1
(
L1

(
ζ̄2
[
φ2 ϕ2 ρ̄1(L2(

ρ̄2 φ3 φ̌3v))
]))

⋆ ζ̄3 φ̌2 ρ̄3 ϕ3f

= φ1 φ̌1 ϕ1 ζ̄1
(
L1

(
ζ̄2
[
φ2 ϕ̌2 ϕ2 ρ̄1(L2(

ρ̄2 φ3 φ̌3 ϕ̌3v))
]))

⋆ ϕ̌1 ζ̄3 φ̌2 ρ̄3 ϕ3f

= φ1 φ̌1
(
L1

(
φ2(L2(

φ3 φ̌3v))
))

⋆ φ̌2f

= φ1 φ̌1
(
L1

(
φ2(L2(

φ3 φ̌2v))
))

⋆ φ̌3f

= φ̌1
(
(L1 • L2)(

φ̌2v)
)
⋆ φ̌3f , (3.47)

which establishes that L1 • L2 is right A⋆-linear.

For later use in our constructions of connections and curvature, we will also prove some

properties of tensor products of right A⋆-linear maps. Let U⋆, V⋆ and W⋆ be A⋆-bimodules.

Then the lifting of L ∈ hom⋆(U⋆,W⋆) to L⊗ id ∈ hom⋆(U⋆ ⊗⋆ V⋆,W⋆ ⊗⋆ V⋆) is defined by

(L⊗ id)(u⊗⋆ v) := (φ̄1L)(φ̄2u)⊗⋆
φ̄3v = φ̄1

(
L(φ̄2u)

)
⊗⋆

φ̄3v (3.48)

for u ∈ U⋆ and v ∈ V⋆. Let us first check equivariance:

ξ(L⊗ id) = ξL⊗ id . (3.49)

For this, we need to check that

ξ
(
(L⊗ id)(u⊗⋆ v)

)
= ξ(1)

(
L⊗ id

)(
ξ(2)(u⊗⋆ v)

)
=

(
ξ(1)L⊗ id

)(
ξ(2)(u⊗⋆ v)

)
(3.50)

for arbitrary u, v and for any ξ ∈ UVecF (M). This follows from the calculation

ξ
(
(L⊗ id)(u⊗⋆ v)

)
= ξ(1)

(
φ̄1L(φ̄2u)

)
⊗⋆

ξ(2) φ̄3v

=
( ξ(1)(1)

φ̄1
L
)( ξ(1)(2)

φ̄2
u
)
⊗⋆

ξ(2) φ̄3v

=
(ϕ̄1 ϕ1 ξ(1)(1)

φ̄1
L
)(ϕ̄2 ϕ2 ξ(1)(2)

φ̄2
u
)
⊗⋆

ϕ̄3 ϕ3 ξ(2) φ̄3v

=
(ϕ1 ξ(1)(1)

φ̄1
L⊗ id

)(ϕ2 ξ(1)(2)
φ̄2
u⊗⋆

ϕ3 ξ(2) φ̄3v
)

=
(
ϕ1 φ̄1 ξ(1)L⊗ id

)(ϕ2 φ̄2 ξ(2)(1)u⊗⋆
ϕ3 φ̄3 ξ(2)(2)v

)

=
(
ξ(1)L⊗ id

)(
ξ(2)(u⊗⋆ v)

)
. (3.51)

With the definition (3.48) the map L⊗ id is indeed well-defined on U⋆ ⊗⋆ V⋆:

(L⊗ id)
(
(u ⋆ f)⊗⋆ v

)
= (L⊗ id)

(
φ1u⊗⋆ (

φ2f ⋆ φ3v)
)
. (3.52)

– 17 –



J
H
E
P
0
2
(
2
0
1
8
)
0
3
6

For this, we use right A⋆-linearity of L to write the left-hand side as

(L⊗ id)
(
(u ⋆ f)⊗⋆ v

)
= φ̄1 ϕ̄1L(τ1 φ̄2 ϕ̄2u)⊗⋆ (

ϕ̄3 τ2f ⋆ τ3 φ̄3v) (3.53)

which is indeed equal to the right-hand side

(L⊗ id)
(
φ1u⊗⋆ (

φ2f ⋆ φ3v)
)
= ϕ̄1L(ϕ̄2 φ1u)⊗⋆

ϕ̄3(φ2f ⋆ φ3v) . (3.54)

Finally, we can show that L⊗ id is right A⋆-linear:

(L⊗ id)
(
(u⊗⋆ v) ⋆ f

)
=

(
ζ̄1(L⊗ id)ζ̄2(u⊗ v)

)
⋆ ζ̄3f . (3.55)

For this, we note that the left-hand side can be expressed as

(L⊗ id)
(
(u⊗⋆ v) ⋆ f

)
= φ̄1 ϕ̄1L(φ̄2 ϕ̄2 ζ1u)⊗⋆ (

φ̄3 ζ2v ⋆ ϕ̄3 ζ3f) (3.56)

which is indeed equal to the right-hand side

(
ζ̄1(L⊗ id)ζ̄2(u⊗⋆ v)

)
⋆ ζ̄3f = ϕ1 φ̄1 ζ̄1 ρ̄1L(τ1 φ̄2 ζ̄2u)⊗⋆ (

ϕ2 τ2 φ̄3 ρ̄2v ⋆ ϕ3 τ3 ρ̄3 ζ̄3f) . (3.57)

We also define

id⊗R L := τR • (L⊗ id) • τR , (3.58)

with τR(v⊗⋆ u) =
αu⊗⋆ αv the braiding operator. This definition is well-posed because τR

is compatible with (3.19), and the twisted composition • is associative if one of the maps is

equivariant (as φ1 ⊗ φ2 φ3 = 1⊗ 1). Moreover, τR is an equivariant map: ξ
(
τR(u⊗⋆ v)

)
=

τR
(
ξ(u⊗⋆ v)

)
, and thus the lifting of L to id⊗R L is equivariant: ξ(id⊗R L) = τR • (ξL⊗

id) • τR = id⊗R
ξL. The lift id⊗R L is furthermore right A⋆-linear:

(id⊗R L)
(
(u⊗⋆ v) ⋆ f

)
= τR

((
φ̄1(L⊗ id) τR

φ̄2(u⊗⋆ v)
)
⋆ φ̄3f

)

=
(
τR (φ̄1L⊗ id) τR

φ̄2(u⊗⋆ v)
)
⋆ φ̄3f

=
(
φ̄1(id⊗R L)φ̄2(u⊗⋆ v)

)
⋆ φ̄3f , (3.59)

where we used right A⋆-linearity of L⊗ id.

To summarise, if L : U⋆ → W⋆ is right A⋆-linear, then L⊗ id is well-defined on U⋆⊗⋆V⋆

and right A⋆-linear, and hence so is id⊗RL. In particular, given another right A⋆-linear map

L′ : V ′
⋆ → W ′

⋆ we obtain a well-defined right A⋆-linear map L⊗RL′ := (L⊗ id)• (id⊗RL′ ),

which is compatible with the action of UVecF (M) and is quasi-associative [10]:

(L⊗R L′ )⊗R L′′ = Φ−1 •
(
L⊗R (L′ ⊗R L′′ )

)
• Φ . (3.60)

3.7 Quantum Lie algebra of diffeomorphisms

By applying the twist deformation to the Lie algebra of vector fields Vec(M) on phase

space M, we obtain the quantum Lie algebra of nonassociative diffeomorphisms described

in [5]. Again we deform the usual Lie bracket of vector fields to the star-bracket

[u, v]⋆ =
[
f α(u), f α(v)

]
. (3.61)
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Defining the star-product between elements in UVec(M) as ξ ⋆ ζ := f α(ξ)f α(ζ), the star-

bracket equals the deformed commutator

[u, v]⋆ = u ⋆ v − αv ⋆ uα . (3.62)

This deformed Lie bracket satisfies the star-antisymmetry property

[u, v]⋆ = −[αv, αu]⋆ (3.63)

and the star-Jacobi identity
[
u, [v, z]⋆

]
⋆
=

[
[φ̄1u, φ̄2v]⋆,

φ̄3z
]
⋆
+

[
α(φ̄1 ϕ̄1v), [α(

φ̄2 ϕ̄2u), φ̄3 ϕ̄3z]⋆
]
⋆
. (3.64)

The star-bracket [ , ]⋆ makes Vec⋆ into the quantum Lie algebra of vector fields.

To implement the action of nonassociative diffeomorphisms on generic differential forms

and tensor fields, we need a suitable definition of star-Lie derivative along a vector u ∈ Vec⋆.

From [5] it is a deformation of the ordinary Lie derivative on phase space M given by

L⋆
u(T ) = L f α(u)( f α(T )) = LD(u)(T ) , (3.65)

where we introduced the invertible linear map D on the vector space UVec(M) by

D : UVec(M) −→ UVec(M) ,

ξ 7−→ D(ξ) := f α(ξ) f α . (3.66)

With this definition it follows immediately that L⋆
u(v) = [u, v]⋆ for u, v ∈ Vec⋆. Moreover,

using the inverse of (2.9) shows that LD(ξ)•LD(ζ) = LD(ξ⋆ζ), for all ξ, ζ ∈ UVec(M), so that

[L⋆
u,L

⋆
v]• = L⋆

[u,v]⋆
. (3.67)

Thus the star-Lie derivatives provide a representation of the quantum Lie algebra of vector

fields on differential forms and tensor fields.

Using (2.9) together with ∆(u) = u ⊗ 1 + 1 ⊗ u, the twisted coproducts of D(u) ∈

UVec(M) are given by

∆F

(
D(u)

)
= D

(
φ̄1u

)
φ̄2 ⊗ φ̄3 +R α φ̄1 ϕ̄1 ⊗D

(
R α(

φ̄2 ϕ̄2u)
)
φ̄3 ϕ̄3 . (3.68)

Using the Leibniz rule for the undeformed Lie derivative Lu(ω∧η) = Lu(ω)∧η+ω∧Lu(η),

it follows from (3.68) that the star-Lie derivatives satisfy the deformed Leibniz rule [5]

L⋆
u(ω ∧⋆ η) = L⋆

φ̄1u
(φ̄2ω) ∧⋆

φ̄3η + α(φ̄1 ϕ̄1ω) ∧⋆ L
⋆

α(φ̄2 ϕ̄2u)
(φ̄3 ϕ̄3η) (3.69)

on forms ω, η ∈ Ω♯
⋆. The Leibniz rule for tensor fields is then obtained by replacing

differential forms with tensor fields and the deformed exterior product ∧⋆ with the deformed

tensor product ⊗⋆. In particular, since [u, v ⋆ f ]⋆ = L⋆
u(v ⋆ f) = LD(u)(v ⋆ f) for f ∈ A⋆,

we analogously obtain the Leibniz rule for the quantum Lie bracket of vector fields:

[u, v ⋆ f ]⋆ =
[
φ̄1u, φ̄2v

]
⋆
⋆ φ̄3f + α

(
φ̄1 ϕ̄1v

)
⋆ L⋆

α(φ̄2 ϕ̄2u)

(
φ̄3 ϕ̄3f

)
. (3.70)

Since the map D is invertible, as in the noncommutative and associative case [2, 6], the

symmetry properties of the quasi-Hopf algebra of infinitesimal diffeomorphisms UVecF (M)

are equivalently encoded in the quantum Lie algebra of diffeomorphisms Vec⋆ with bracket

[ , ]⋆, or in its universal enveloping algebra generated by sums of star-products of ele-

ments in Vec⋆.

– 19 –



J
H
E
P
0
2
(
2
0
1
8
)
0
3
6

4 Nonassociative differential geometry

4.1 Connections

A star-connection is a linear map

∇⋆ : Vec⋆ −→ Vec⋆ ⊗⋆ Ω
1
⋆

u 7−→ ∇⋆u = ui ⊗⋆ ωi , (4.1)

where ui ⊗⋆ ωi ∈ Vec⋆ ⊗⋆ Ω
1
⋆, which satisfies the right Leibniz rule

∇⋆(u ⋆ f) =
(
φ̄1∇⋆(φ̄2u)

)
⋆ φ̄3f + u⊗⋆ df (4.2)

for u ∈ Vec⋆ and f ∈ A⋆. The action of φa on ∇⋆ is the adjoint action (3.35), which in the

present instance is readily seen to also define a connection. For this, we calculate

φa∇⋆(u ⋆ f) =
φa(1)

(
∇⋆

(S(φa(2)
)
(1)u ⋆

S(φa(2)
)
(2)f

))

=
φa(1)(1)

(
ϕ̄1∇⋆

(ϕ̄2 S(φa(2)
)
(1)u

))
⋆
ϕ̄3 φa(1)(2)

S(φa(2)
)
(2)f

+
φa(1)(1)

S(φa(2)
)
(1)u⊗⋆

φa(1)(2)
S(φa(2)

)
(2)df

=
(
ϕ̄1(φa∇⋆)(ϕ̄2u)

)
⋆ ϕ̄3f +

φa(1)
S(φa(2)

)
(u⊗⋆ df)

=
(
ϕ̄1(φa∇⋆)(ϕ̄2u)

)
⋆ ϕ̄3f + ǫ(φa)u⊗⋆ df , (4.3)

where in the last line we used (2.15). Now since φa∇⋆ will always appear in linear com-

binations with the other associator legs φb and φc, and since ǫ(φa)φb ⊗ φc = 1 ⊗ 1, we

effectively have the Leibniz rule

φa∇⋆(u ⋆ f) =
(
ϕ̄1(φa∇⋆)(ϕ̄2u)

)
⋆ ϕ̄3f + u⊗⋆ df . (4.4)

More generally, the adjoint action of an element ξ ∈ UVecF (M) gives the linear map ξ∇⋆ :

Vec⋆ → Vec⋆ ⊗⋆ Ω
1
⋆ which satisfies ξ∇⋆(u ⋆ f) =

(
φ̄1 ξ∇⋆(φ̄2u)

)
⋆ φ̄3f + u⊗⋆ ǫ(ξ) df, i.e.,

ξ∇⋆

is a connection with respect to the rescaled exterior derivative ξd = Lξ(1) dLS(ξ(2)) = ǫ(ξ) d.

The connection on vector fields (4.1) uniquely extends to a covariant derivative

d∇⋆ : Vec♯⋆ −→ Vec♯+1
⋆

u⊗⋆ ω 7−→
(
φ̄1∇⋆(φ̄2u)

)
∧⋆

φ̄3ω + u⊗⋆ dω (4.5)

on vector fields valued in the exterior algebra Vec♯⋆ = Vec⋆ ⊗⋆ Ω
♯
⋆. It satisfies the graded

right Leibniz rule

d∇⋆(ψ ∧⋆ ω) =
(
φ̄1d∇⋆(φ̄2ψ)

)
∧⋆

φ̄3ω + (−1)|ψ| ψ ∧⋆ dω (4.6)

for ψ = ui ⊗⋆ ωi ∈ Vec♯⋆.

The covariant derivative along a vector field v ∈ Vec⋆ is defined via the pairing opera-

tor as

∇⋆
vu = 〈 ∇⋆u , v 〉⋆ = 〈 (ui ⊗⋆ ωi) , v 〉⋆ =

φ1ui ⋆ 〈 φ2ωi ,
φ3v 〉⋆ . (4.7)
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From the definition of the pairing (3.27), the Leibniz rule for ∇⋆
v comes in the somewhat

complicated form that we will need later:

∇⋆
v(u ⋆ f) = 〈 ∇⋆(u ⋆ f) , v 〉⋆

= 〈 (φ̄1∇⋆(φ̄2u) ⋆ φ̄3f) + (u⊗⋆ df) , v 〉⋆

= 〈 φ1(φ̄1∇⋆(φ̄2u)) ⋆ (φ2 φ̄3f , φ3v) 〉⋆ +
φ1u ⋆ 〈 (φ2(df) , φ3v) 〉⋆ (4.8)

= 〈 φ1(φ̄1∇⋆(φ̄2u)) , (α(φ3v) 〉⋆ ⋆ α(
φ2 φ̄3f)) + φ1u ⋆ 〈 φ2(df) , φ3v 〉⋆

=
(
〈 ϕ̄1 φ1(φ̄1∇⋆(φ̄2u)) , ϕ̄2(α(φ3v) 〉⋆

)
⋆ ϕ̄3(α(

φ2 φ̄3f)) + φ1u ⋆ 〈 d(φ2f) , φ3v 〉⋆ .

More generally, we define

d∇⋆
v
ψ := 〈 d∇⋆ψ , v 〉⋆ + d∇⋆〈 ψ , v 〉⋆ (4.9)

for ψ = ui ⊗⋆ ωi ∈ Vec♯⋆.

The action of the connection on the basis vectors defines the connection coefficients

ΓB
AC ∈ A⋆ through

∇⋆∂A =: ∂B ⊗⋆ Γ
B
A =: ∂B ⊗⋆ (Γ

B
AC ⋆ dxC) . (4.10)

Then we have

∇⋆
A∂B := 〈 ∇⋆∂B , ∂A 〉⋆

= 〈 (∂C ⊗⋆ (Γ
C
BD ⋆ dxD)) , ∂A 〉⋆

= 〈 (∂C ⋆ ΓC
BD)⊗⋆ dx

D , ∂A 〉⋆

= φ1(∂C ⋆ ΓC
BD) ⋆ 〈

φ2dxD , φ3∂A 〉⋆

= ∂C ⋆ ΓC
BA , (4.11)

where we used the definition (3.32), and the contributions from nonassociativity vanish

because we used basis vector fields and basis 1-forms. Using the Leibniz rule (4.2) and

writing an arbitrary vector field u as u = ∂A ⋆ uA with uA ∈ A⋆ one can calculate

∇⋆u = ∂A ⊗⋆ (du
A + ΓA

B ⋆ uB) , (4.12)

and more generally

d∇⋆(∂A ⊗⋆ ω
A) = ∂A ⊗⋆ (dω

A + ΓA
B ∧⋆ ω

B) , (4.13)

for ωA ∈ Ω♯
⋆.

4.2 Dual connections

By considering 1-forms as dual to vector fields, we can define the dual connection ⋆∇ on

1-forms in terms of the connection on vector fields and the exterior derivative as

〈 ⋆∇ω , u 〉⋆ = d〈 ω , u 〉⋆ − 〈 φ1ω , φ2∇⋆(φ3u) 〉⋆ . (4.14)
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Since the pairing is nondegenerate, this defines a connection on the dual bimodule

⋆∇ : Ω1
⋆ −→ Ω1

⋆ ⊗⋆ Ω
1
⋆ . (4.15)

This connection acts from the right so that we should more properly write (ω)⋆∇ rather

than ⋆∇(ω), but this notation is awkward so we refrain from using it. That the action

is from the right immediately follows by comparing the UVecF (M)-equivariance prop-

erty (3.36) of the evaluation from the left with the UVecF (M)-equivariance property of

the evaluation of ⋆∇ on ω, ξ(⋆∇ω) = ξ(2)⋆∇( ξ(1)ω), which shows that evaluation is from the

right so that the equivariance reads ξ
(
(ω)⋆∇

)
= (ξ(1)ω)ξ(2)⋆∇. The proof follows from

ξ〈 ⋆∇ω , u 〉⋆ = d〈 ξ(1)ω , ξ(2)u 〉⋆ − 〈 ξ(1) φ1ω ,
ξ(2)(1)

φ2
∇⋆(

ξ(2)(2)
φ3
u) 〉⋆

= d〈 ξ(1)ω , ξ(2)u 〉⋆ − 〈
φ1 ξ(1)(1)ω ,

φ2 ξ(1)(2)∇⋆(φ3 ξ(2)u) 〉⋆

= 〈
ξ(1)(2) ⋆∇(

ξ(1)(1)ω) , ξ(2)u 〉⋆ , (4.16)

where in the last line we used 〈 ξ ⋆∇ω , u 〉⋆ = ǫ(ξ) d〈 ω , u 〉⋆−〈 φ1ω , φ2 ξ∇⋆(φ3u) 〉⋆, which

is easily understood by recalling that ξ∇⋆ is a connection with respect to the rescaled

exterior derivative ξd = ǫ(ξ) d.

Correspondingly, the connection ⋆∇ satisfies the left Leibniz rule

⋆∇(f ⋆ ω) = φ1f ⋆
(
φ3⋆∇(φ2ω)

)
+ df ⊗⋆ ω (4.17)

for f ∈ A⋆ and ω ∈ Ω1
⋆. The proof follows from the definition (4.14) and the right Leibniz

rule for ∇⋆ after some associator gymnastics. It uniquely lifts to a connection

d⋆∇ : Ω♯
⋆ ⊗⋆ Ω

1
⋆ −→ Ω♯+1

⋆ ⊗⋆ Ω
1
⋆ . (4.18)

Setting ω = dxA and u = ∂B in (4.14), so that d〈 dxA , ∂B 〉⋆ = d δAB = 0, we compute

〈 ⋆∇(dxA) , ∂B 〉⋆ = −〈 dxA , ∇⋆∂B 〉⋆

= −〈 dxA , ∂C ⊗⋆ Γ
C
B 〉⋆

= −ΓA
B (4.19)

so that ⋆∇(dxA) = −ΓA
B ⊗⋆ dx

B. Then for ω = ωA ⋆ dxA ∈ Ω1
⋆ with ωA ∈ A⋆ we have

⋆∇ω = ⋆∇(ωA ⋆ dxA)

= ωA ⋆ ⋆∇(dxA) + dωA ⊗⋆ dx
A

= −ωA ⋆ (ΓA
B ⊗⋆ dx

B) + dωA ⊗⋆ dx
A

= (dωB − ωA ⋆ ΓA
B)⊗⋆ dx

B . (4.20)

More generally, for ωA ∈ Ω♯
⋆ we have

d⋆∇(ωA ⊗⋆ dx
A) = (dωA − ωB ∧⋆ Γ

B
A)⊗⋆ dx

A . (4.21)

These results are natural nonassociative generalizations of the usual results in noncommu-

tative differential geometry, since the associator acts trivially on the basis vector fields and

basis 1-forms.
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4.3 Connections on tensor products

Later on we shall need to compute the action of connections on metric tensors, for which

we require a construction of connections on tensor products of A⋆-bimodules. The general

construction is an extension to the nonassociative case of the noncommutative construction

in [4] and is provided in ([11], section 4.2). Here we shall give a somewhat simpler and

more explicit treatment. Given A⋆-bimodules V⋆ and W⋆, together with connections ∇⋆
V⋆

:

V⋆ → V⋆ ⊗⋆ Ω
1
⋆ and ∇⋆

W⋆
: W⋆ → W⋆ ⊗⋆ Ω

1
⋆, we wish to construct a connection ∇⋆

V⋆⊗⋆W⋆
:=

∇⋆
V⋆

⊕⋆ ∇
⋆
W⋆

: (V⋆ ⊗⋆ W⋆) → (V⋆ ⊗⋆ W⋆)⊗⋆ Ω
1
⋆. Using (3.58) we define

∇⋆
V⋆

⊕⋆ ∇
⋆
W⋆

= ∇⋆
V⋆

⊗ id + id⊗R ∇⋆
W⋆

. (4.22)

Explicitly, using (3.48) and (3.58) we have

∇⋆
V⋆⊗⋆W⋆

(v ⊗⋆ w) =
φ̄1∇⋆

V⋆
(φ̄2v)⊗⋆

φ̄3w + β φ̄3
αv ⊗⋆ β

φ̄1∇⋆
W⋆

(φ̄2 αw) , (4.23)

where we identify (V⋆⊗⋆Ω
1
⋆)⊗⋆W⋆

∼= (V⋆⊗⋆W⋆)⊗⋆Ω
1
⋆ via (v⊗⋆ω)⊗⋆w = (φ̄1v⊗⋆

φ̄2 αw)⊗⋆

φ̄3
αω for v ∈ V⋆, w ∈ W⋆ and ω ∈ Ω1

⋆.

From the general analysis of section 3.6 it follows that this definition is equivariant:

ξ(∇⋆
V⋆

⊕⋆ ∇
⋆
W⋆

) = ξ∇⋆
V⋆

⊕⋆
ξ∇⋆

W⋆
(4.24)

for any ξ ∈ UVecF (M). Next we need to check that this definition is well-defined:

(∇⋆
V⋆

⊕⋆ ∇
⋆
W⋆

)
(
(v ⋆ f)⊗⋆ w

)
= (∇⋆

V⋆
⊕⋆ ∇

⋆
W⋆

)
(
ρ1v ⊗⋆ (

ρ2f ⋆ ρ3w)
)
. (4.25)

Again by the general analysis of section 3.6, we know that this identity holds if the star-

connection ∇⋆ is substituted by a right A⋆-linear map L, i.e., it holds for the terms which

come from the right A⋆-linear part of the Leibniz rule for ∇⋆, so we only need to check

the inhomogeneous terms coming from the exterior derivative: on the left-hand side this

comes from the application of ∇⋆
V⋆

⊗ id to (v ⋆ f)⊗⋆ w which gives (v⊗⋆ df)⊗⋆ w on using

the fact that φa∇⋆
V⋆

is also a connection, whereas on the right-hand side it comes from

applying τR • (∇⋆
W⋆

⊗ id) to (β α(2) ρ3w ⋆ β
α(1) ρ2f) ⊗⋆ α

ρ1v which on using the R-matrix

identities (2.17) and (2.19) yields

τR
(
α(ρ2df ⊗⋆

ρ3w)⊗⋆ α
ρ1v

)
= γ

α
ρ1v ⊗⋆ γ

α(ρ2df ⊗⋆
ρ3w) = (v ⊗⋆ df)⊗⋆ w (4.26)

as required. Finally, we show that the map ∇⋆
V⋆

⊕⋆∇
⋆
W⋆

is a connection because it satisfies

the Leibniz rule:

(∇⋆
V⋆

⊕⋆ ∇
⋆
W⋆

)
(
(v ⊗⋆ w) ⋆ f

)
=

(
φ̄1(∇⋆

V⋆
⊕⋆ ∇

⋆
W⋆

)
(
φ̄2(v ⊗⋆ w)

))
⋆ φ̄3f + (v ⊗⋆ w)⊗⋆ df .

(4.27)

Again it suffices to check the inhomogeneous term, which comes from (id ⊗R ∇⋆
W⋆

)((v ⊗⋆

w) ⋆ f), and the result follows by a completely analogous calculation to (4.26).

We can iterate the twisted sum of connections to arbitrary numbers of tensors products.

The nonassociativity of ⊕⋆ is controlled in the usual way by suitable insertions of the

associator [12]:

(∇⋆
V⋆

⊕⋆ ∇
⋆
W⋆

)⊕⋆ ∇
⋆
X⋆

= Φ−1 •
(
∇⋆

V⋆
⊕⋆ (∇

⋆
W⋆

⊕⋆ ∇
⋆
X⋆

)
)
• Φ . (4.28)
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4.4 Torsion

In order to define the torsion T⋆ ∈ Vec⋆ ⊗⋆ Ω
2
⋆ of a connection ∇⋆, we first observe that

the map

〈 ∂A ⊗⋆ dx
A , 〉⋆ : Vec⋆ −→ Vec⋆ (4.29)

is the identity map; for this, we simply expand any vector field u as u = ∂A ⋆ uA, and use

the triviality of the associator when acting on ∂A and dxA. Then as in the classical case

we define

T⋆ := d∇⋆

(
∂A ⊗⋆ dx

A
)

= ∇⋆∂A ∧⋆ dx
A

= ∂B ⊗⋆

(
ΓB
AC ⋆ (dxC ∧⋆ dx

A)
)

=: ∂A ⊗⋆ T
A . (4.30)

We can also regard the torsion in the usual way as a map T⋆ : Vec⋆ ⊗⋆ Vec⋆ → Vec⋆

defined by

T⋆(u, v) = 〈 T⋆ , u⊗⋆ v 〉⋆ , (4.31)

where 〈 T⋆ , u ⊗⋆ v 〉⋆ = ∂A ⋆ 〈 TA , u ⊗⋆ v 〉⋆. This map is right A⋆-linear in its second

argument by (3.29), and star-antisymmetric: T⋆(u, v) = −T⋆(αv, αu). This follows form

〈 dxA ∧⋆ dx
B , u⊗⋆ v 〉⋆ = 〈 dxA ⊗⋆ dx

B , u ∧⋆ v 〉⋆ , (4.32)

i.e., from 〈 αdxB ⊗⋆ αdx
A , u ⊗⋆ v 〉⋆ = 〈 dxA ⊗⋆ dxB , γv ⊗⋆ γu 〉⋆. To prove this last

equality we recall that the associator is trivial if it acts on the basis 1-forms and apply the

definition of the pairing; then reordering we obtain the equivalent expression 〈 αdxB , βv 〉⋆⋆

〈 β(1) αdx
A , β(2)

u 〉⋆ = 〈 α(1)dxB , α(2) γv 〉⋆ ⋆ 〈 αdx
A , γu 〉⋆, which follows from (2.18)

and (2.19). Thus we have shown that the map T⋆ is the torsion tensor T⋆ ∈ hom⋆(Vec⋆ ∧⋆

Vec⋆,Vec⋆).

In our good basis one easily calculates the torsion components from (4.30) and obtains

T⋆(∂A, ∂B) = ∂C ⋆ 〈 TC , ∂A ⊗⋆ ∂B 〉⋆ = ∂C ⋆ (ΓC
AB − ΓC

BA) =: ∂C ⋆ TC
AB . (4.33)

The torsion-free condition T⋆(∂A, ∂B) = 0 then results in the symmetric connection coeffi-

cients

ΓC
AB = ΓC

BA . (4.34)

We shall now prove the first Cartan structure equation, which in the present context

states that the torsion tensor (4.31) can be written in terms of covariant derivatives as

T⋆(u, v) = φ1∇⋆
φ2v

(
φ3u

)
− φ1∇⋆

φ2αu

(
φ3 αv

)
+ [u, v]⋆ (4.35)
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The expression (4.35) agrees with the definition of torsion from [14]. To prove (4.35), we

first check it in our good basis: we set u = ∂A, v = ∂B and easily calculate

∇⋆
B∂A −∇⋆

α∂Aα∂B + [∂A, ∂B]⋆ = ∇⋆
B∂A −∇⋆

A∂B

= ∂C ⋆ (ΓC
AB − ΓC

BA) (4.36)

= T⋆(∂A, ∂B) ,

where we used [∂A, ∂B]⋆ = 0. The equality (4.35) then follows once we establish that the

right-hand side defines a tensor in hom⋆(Vec⋆ ∧⋆ Vec⋆,Vec⋆).

For this, it is useful to write the right-hand side of (4.35) as T ⋆(u, v), where

T
⋆ := 〈 〉⋆ • (∇

⋆ ⊗ id)− 〈 〉⋆ • (∇
⋆ ⊗ id) • τR + [ ]⋆ . (4.37)

Here we used the fact that the compositon • is associative since the pairing and the braiding

are UVecF (M)-equivariant; this implies that the composition • in this case reduces to

the usual composition of operators. The associators entering (4.35) are then due to the

definition (∇⋆ ⊗ id)(u⊗⋆ v) =
φ̄1∇⋆(φ̄2(u))⊗⋆

φ̄3v from (3.48).

As defined in (4.37), the map T ⋆ is linear in both of its arguments because it is a

composition of linear maps. A first step in showing that T ⋆ defines a tensor in hom⋆(Vec⋆∧⋆

Vec⋆,Vec⋆) is showing that it is well-defined on Vec⋆ ⊗⋆ Vec⋆:

T
⋆(u ⋆ f, v) = T

⋆(φ1u, φ2f ⋆ φ3v) (4.38)

for all f ∈ A⋆ and u, v ∈ Vec⋆, so that we can write T ⋆(u, v) = T ⋆(u ⊗⋆ v). Explicitly,

as before with the sum of connections, we know that (4.38) holds for the terms which

come from the right A⋆-linear part of the Leibniz rule, so we only need to check that the

inhomogeneous terms coming from the exterior derivative cancel out. In T ⋆(u ⋆ f, v) such

terms come from φ1∇⋆
φ2v

(
φ3(u ⋆ f)

)
, which yields 〈 (u⊗⋆ df) , v 〉⋆, and from

[
u ⋆ f , v

]
⋆
= −

[
αv , α(u ⋆ f)

]
⋆

= −
[
φ1 ϕ1 ρ1 αβv , φ2 ϕ2 ρ2

αu ⋆ φ3 ϕ3 ρ3
βf

]
⋆

=
[
φ̄1 ϕ̄1u , φ̄2 ϕ̄2 βv

]
⋆
⋆ φ̄3 ϕ̄3

βf − φ̄1u ⋆ L⋆
φ̄2 βv

(
φ̄3

βf
)
, (4.39)

where we used (2.19) and (3.70). By definition of the Lie derivative we have

L⋆
u(f) = Lf α(u)

(
f α(f)

)
= 〈 f α(u) , f α(df) 〉 = 〈 βdf , βu 〉⋆ , (4.40)

and so L⋆
φ̄2 βv

(φ̄3
βf) = 〈 φ̄3df , φ̄2v 〉⋆. It follows that the inhomogeneous term in (4.39) can

be written as

φ̄1u ⋆ L⋆
φ̄2 βv

(φ̄3
βf) = 〈 (ϕ̄1 φ1u⊗⋆

ϕ̄2 φ2df) , ϕ̄3 φ3v 〉⋆ = 〈 (u⊗⋆ df) , v 〉⋆ (4.41)

and hence cancels the appropriate term. Next, it follows immediately that T ⋆ restricts

from Vec⋆ ⊗⋆ Vec⋆ to Vec⋆ ∧⋆ Vec⋆ because it is star-antisymmetric under exchange of its

arguments. Finally, we need to check right A⋆-linearity

T
⋆
(
(u⊗⋆ v) ⋆ f

)
= φ̄1T

⋆
(
φ̄2(u⊗⋆ v)

)
⋆ φ̄3f , (4.42)
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which is equivalent to

T
⋆(φ1u, φ2v ⋆ φ3f) = φ̄1 ϕ̄1T

⋆(φ̄2u, ϕ̄2v) ⋆ φ̄3 ϕ̄3f . (4.43)

Again we just check that the inhomogeneous terms coming from the Leibniz rule cancel

out: the contribution to the left-hand side from the first covariant derivative in (4.35) is

right A⋆-linear by the same computation that led to (3.55), while by (2.18) the star-Lie

derivative term from (3.70) is cancelled by the inhomogeneous term from

φ1∇⋆
φ2αu

φ3 α(v ⋆ f) = 〈 φ1 ρ1∇⋆(φ3 ϕ̄1 η̄1 ζ1 βv ⋆ ϕ̄1 η̄2 ζ̄2 αρ3f) , φ2 ρ2 ϕ̄3 η̄3 ζ̄3
αβu 〉⋆ (4.44)

after using (4.40) and (4.8).

4.5 Curvature

We proceed by defining the curvature of a connection as in the classical case, i.e., as the

square of the covariant derivative, with the composition being the UVecF (M)-equivariant

•-composition of linear maps:

R⋆ := d∇⋆ • d∇⋆ : Vec⋆ −→ Vec⋆ ⊗⋆ Ω
2
⋆ . (4.45)

This definition is well-posed because the linear map d∇⋆ • d∇⋆ is right A⋆-linear and hence

defines a tensor d∇⋆ • d∇⋆ ∈ hom⋆(V⋆, V⋆ ⊗⋆ Ω
2
⋆). Right A⋆-linearity is proven by repeated

iteration of the Leibniz rule for ∇⋆, giving

(d∇⋆•d∇⋆)(v⋆f) = φ1 ϕ1d∇⋆

(
φ2 ϕ2∇⋆(φ3v ⋆ ϕ3f)

)

= φ1 ϕ1d∇⋆

(
φ2 ϕ2

[
ρ̄1∇⋆(ρ̄2 φ3v) ⋆ ρ̄3 ϕ3f

])
+ φ1 ϕ1d∇⋆

(
φ2 ϕ2(φ3v ⊗⋆ d

ϕ3f)
)

= φ1 φ̌1 ϕ1d∇⋆

(
φ2 ϕ2 ρ̄1∇⋆(ρ̄2 φ3 φ̌3v) ⋆ φ̌2 ρ̄3 ϕ3f

)
+φ1 ϕ1d∇⋆

(
ϕ2 φ3v ⊗⋆ d

φ2 ϕ3f
)

= φ1 φ̌1 ϕ1d∇⋆

(
φ2 ϕ2 ρ̄1∇⋆(ρ̄2 φ3 φ̌3v)

)
⋆ φ̌2 ρ̄3 ϕ3f + d∇⋆(v ⊗⋆ df)

− φ1 φ̌1 ϕ1
(
φ2 ϕ2 ρ̄1∇⋆(ρ̄2 φ̌3v)⊗⋆

φ̌2 ρ̄3 ϕ3(df)
)

= φ̄1(d∇⋆ • d∇⋆)(φ̄2v) ⋆ φ̄3f + d∇⋆(v ⊗⋆ df)

− φ̌1 ϕ1 φ2 ϕ2 ρ̄1∇⋆(ρ̄2 φ3 φ̌3v)⊗⋆
φ1 φ̌2 ρ̄3 ϕ3(df)

= φ̄1(d∇⋆ • d∇⋆)(φ̄2v) ⋆ φ̄3f + d∇⋆(v ⊗⋆ df)−
ρ̄1∇⋆(ρ̄2v)⊗⋆

ρ̄3(df)

= φ̄1(d∇⋆ • d∇⋆)(φ̄2v) ⋆ φ̄3f . (4.46)

For trivial associator this definition of curvature reduces to the noncommutative curvature

considered in [4], while the general noncommutative and nonassociative curvature defined

in [11] requires an extra braided commutator in the setting of arbitrary quasi-Hopf algebras.
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Acting on a basis vector field ∂A gives

R⋆(∂A) = φ1d∇⋆

(
φ2∇⋆(φ3∂A)

)

= d∇⋆(∇⋆∂A)

= d∇⋆(∂B ⊗⋆ Γ
B
A)

= φ̄1∇⋆(φ̄2∂B) ∧⋆
φ̄3ΓB

A + ∂B ⊗⋆ dΓ
B
A

= (∇⋆∂B) ∧⋆ Γ
B
A + ∂B ⊗⋆ dΓ

B
A

= (∂C ⊗⋆ Γ
C
B) ∧⋆ Γ

B
A + ∂C ⊗⋆ dΓ

C
A

= φ1∂C ⊗⋆ (
φ2ΓC

B ∧⋆
φ3ΓB

A) + ∂C ⊗⋆ dΓ
C
A

= ∂C ⊗⋆ (Γ
C
B ∧⋆ Γ

B
A) + ∂C ⊗⋆ dΓ

C
A

= ∂C ⊗⋆ (dΓ
C
A + ΓC

B ∧⋆ Γ
B
A)

=: ∂C ⊗⋆ R
C
A . (4.47)

We used the fact that the associator acts trivially on basis vector fields and that the

covariant derivative on form-valued vector fields acts on the form-valued part just as the

exterior derivative d (see (4.5)), which commutes with vector fields (in particular those

defining the twist (2.1)). Taking the exterior derivative of the torsion 2-form from (4.30)

yields the first Bianchi identity

dTA + ΓA
B ∧⋆ T

B = RA
B ∧⋆ dx

B , (4.48)

whereas taking the exterior derivative of the curvature 2-form from (4.47) gives the second

Bianchi identity which reads

dRC
A + ΓC

B ∧⋆ R
B
A − RC

B ∧⋆ Γ
B
A = ΓC

B ∧⋆

(
ΓB
D ∧⋆ Γ

D
A

)
− φ1ΓC

B ∧⋆

(
φ2ΓB

D ∧⋆
φ3ΓD

A

)
. (4.49)

We see that the naive expression for the second Bianchi identity is modified by the asso-

ciator of connection 1-forms. In the associative case, the right-hand side vanishes and one

recovers the usual expression of the second Bianchi identity.

Similarly to the torsion, we can also regard the curvature as the tensor field R⋆ ∈

hom⋆

(
Vec⋆ ⊗⋆ (Vec⋆ ∧⋆ Vec⋆),Vec⋆

)
given on vectors u, v, z ∈ Vec⋆ by the vector field

R⋆(z, u, v) := 〈 φ̄1R⋆(φ̄2z) , φ̄3(u⊗⋆ v) 〉⋆ . (4.50)

Indeed from the definition we see that R⋆(z, u, v) = R⋆(z, u ⊗⋆ v), and moreover it is

not difficult to show that it gives the same result when evaluated on (z ⋆ f, u ⊗⋆ v) and

on (φ1z, φ2f ⋆ φ3(u ⊗ v)) so that it is well-defined on Vec⋆ ⊗⋆ (Vec⋆ ⊗⋆ Vec⋆). Hence we

can write

R⋆(z, u, v) = R⋆(z ⊗⋆ (u⊗⋆ v)) . (4.51)

This is also consistent with the UVecF (M)-action:

ξ
(
R⋆(z ⊗⋆ (u⊗⋆ v))

)
= ξ(1)R⋆

(
ξ(2)(z ⊗⋆ (u⊗⋆ v))

)
, (4.52)
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for all ξ ∈ UVecF (M); this follows by using (4.50) and ξ(1)
(
φ̄1R⋆(φ̄2z)

)
=

ξ(1)(1)
φ̄1
R⋆(

ξ(1)(2)
φ̄2
z), and then the quasi-associativity property (2.12) of the coproduct.

Finally, the map R⋆ is right A⋆-linear:

R⋆
(
(z ⊗⋆ (u⊗⋆ v)) ⋆ f

)
= φ̄1R⋆

(
φ̄2(z ⊗⋆ (u⊗⋆ v))

)
⋆ φ̄3f . (4.53)

We have thus shown that R⋆ ∈ hom⋆

(
Vec⋆ ⊗⋆ (Vec⋆ ⊗⋆ Vec⋆),Vec⋆

)
; since moreover

R⋆(z, u, v) = −R⋆(z, αv, αu), we conclude that R⋆ ∈ hom⋆

(
Vec⋆ ⊗⋆ (Vec⋆ ∧⋆ Vec⋆),Vec⋆

)
.

One readily extracts the explicit expression for the curvature coefficients with respect

to the good basis ∂A. Using the star-pairing and (4.47) we get

R⋆(∂A, ∂B, ∂C) = 〈 ∂D ⊗⋆ R
D
A , ∂B ∧⋆ ∂C 〉⋆

= ∂D ⋆ 〈 dΓD
A + ΓD

B′ ∧⋆ Γ
B′

A , ∂B ∧⋆ ∂C 〉⋆

= ∂D ⋆ 〈 ((∂A′ΓD
AE ⋆ dxA

′

) ∧⋆ dx
E

+(ΓD
B′E ⋆ dxE) ∧⋆ (Γ

B′

AF ⋆ dxF ) , ∂B ∧⋆ ∂C 〉⋆

= ∂D ⋆ 〈 ∂A′ΓD
AE ⋆ (dxA

′

∧⋆ dx
E)

+ΓD
B′E ⋆ (δEE′ ΓB′

AF + iκR
EG

E′ (∂GΓ
B′

AF )) ⋆ (dx
E′

∧⋆ dx
F ) , ∂B ∧⋆ ∂C 〉⋆

= ∂D ⋆
(
∂CΓ

D
AB − ∂BΓ

D
AC − ΓD

B′E ⋆ (δEB ΓB′

AC + iκR
EG

B (∂GΓ
B′

AC))

+ΓD
B′E ⋆ (δEC ΓB′

AB + iκR
EG

C (∂GΓ
B′

AB))
)

=: ∂D ⋆ RD
ABC , (4.54)

where once again we used the fact that the associator acts trivially on the basis vectors

and basis 1-forms.

We shall now prove the second Cartan structure equation, which in the present context

states that the curvature tensor (4.50) can be written in terms of covariant derivatives as

R⋆(z, u, v) = κ1 φ̌1 φ
′
1∇

⋆
ρ̄3 ζ̄3 φ̄3 φ′3v

(
ρ̄1 φ̄1 κ2 φ̌2 φ

′
2∇

⋆
ρ̄2 ζ̄2 φ̌3u

ζ̄1 φ̄2 κ3z
)

− κ1 φ̌1 φ
′
1∇

⋆
ρ̄3 ζ̄3 φ̄3 φ′3αu

(
ρ̄1 φ̄1 κ2 φ̌2 φ

′
2∇

⋆
ρ̄2 ζ̄2 φ̌3αv

ζ̄1 φ̄2 κ3z
)
+∇

⋆
[u,v]⋆

z (4.55)

where to streamline the notation we introduced the bold-face covariant derivative

∇
⋆
vu := 〈 φ̄1∇⋆(φ̄2u) , φ̄3v 〉⋆ . (4.56)

The expression (4.55) for the curvature agrees with that of [14] after taking into account

their different conventions;1 for trivial associator it reduces to the general expression in [6].

To prove (4.55) we first check it on our good basis by setting z = ∂A, u = ∂B and v = ∂C .

1We are grateful to Michael Fuchs for pointing this out to us.

– 28 –



J
H
E
P
0
2
(
2
0
1
8
)
0
3
6

Then the right-hand side reduces to

∇⋆
C(∇

⋆
B∂A)−∇⋆

α∂B
(∇⋆

α∂C
∂A) +∇⋆

[∂B ,∂C ]⋆
∂A

= ∇⋆
C(∇

⋆
B∂A)−∇⋆

B(∇
⋆
C∂A)

= ∇⋆
C(∂D ⋆ ΓD

AB)−∇⋆
B(∂D ⋆ ΓD

AC)

= 〈 ∇⋆∂D , α∂C 〉⋆ ⋆ αΓ
D
AB + ∂D ⋆ 〈 dΓD

AB , ∂C 〉⋆

−〈 ∇⋆∂D , α∂B 〉⋆ ⋆ αΓ
D
AC − ∂D ⋆ 〈 dΓD

AC , ∂B 〉⋆

= R⋆(∂A, ∂B, ∂C) , (4.57)

where in the third equality we used the Leibniz rule (4.8) while the last equality follows

from (4.54). The equality (4.55) for arbitrary vectors then follows once we establish that

the right-hand side defines a tensor in hom⋆(Vec⋆ ⊗⋆ (Vec⋆ ∧⋆ Vec⋆),Vec⋆).

For this, as in the case of the torsion, we rewrite the right-hand side of (4.55) as a

trilinear map R⋆ on vectors z, u and v, and prove that it is a map in hom⋆(Vec⋆⊗⋆ (Vec⋆∧⋆

Vec⋆),Vec⋆). To arrive at the form of R⋆, for notational clarity we first consider vectors

z, u, v on which the associator acts trivially (for example basis vectors ∂A, ∂B, ∂C). Then

we reproduce ∇⋆
v(∇

⋆
u z) as the elementary compositions

z ⊗⋆ (u⊗⋆ v)
∇⋆⊗⋆ id

⊗⋆2

7−−−−−−−→ ∇⋆z ⊗⋆ (u⊗⋆ v)
Φ−1

7−−→ (∇⋆z ⊗⋆ u)⊗⋆ v (4.58)

〈 〉⋆⊗⋆ id
7−−−−−−−→ ∇⋆

uz ⊗⋆ v
∇⋆⊗⋆ id7−−−−−→ ∇⋆(∇⋆

u z)⊗⋆ v
〈 〉⋆
7−−−→ ∇⋆

v(∇
⋆
u z) .

This leads to a definition of R⋆ written solely in terms of the connection ∇⋆, the associator

Φ−1, and the equivariant maps studied in section 3, which reads as

R
⋆ := 〈 〉⋆ • (∇

⋆ ⊗ id) • (〈 〉⋆ ⊗ id) • Φ−1
Vec⋆⊗Ω1

⋆,Vec⋆,Vec⋆
• (∇⋆ ⊗ id⊗2) • (id⊗3 − id⊗R τR)

+ 〈 〉⋆ • (∇
⋆ ⊗ id) • (id⊗R [ ]⋆) . (4.59)

Even though the composition • is nonassociative, there is no ambiguity in this definition

because of the equivariance of the maps which are composed and because φaφb = 0 (the

associator being generated by an abelian subalgebra). For these same reasons, there is the

more explicit expression

R
⋆ = 〈 〉⋆◦(

φ1∇⋆⊗id) ◦ (〈 〉⋆ ⊗ id)◦Φ−1
Vec⋆⊗Ω1

⋆,Vec⋆,Vec⋆
◦ (φ2∇⋆⊗id⊗2)◦ φ3◦ (id

⊗3− id⊗τR)

+ 〈 〉⋆ ◦ (∇
⋆ ⊗ id) ◦ (id⊗ [ ]⋆) . (4.60)

As sought, explicit evaluation of R⋆ on z ⊗⋆ (u⊗⋆ v) gives the right-hand side of (4.55):

R
⋆(z, u, v) = 〈 η̄1 φ1∇⋆ η̄2〈 ρ̄1(ϕ̄1 φ2∇⋆ϕ̄2 φ3(1)z) ,

ρ̄2 ϕ̄3(1)
φ3(2)(1) u 〉⋆ ,

η̄3 ρ̄3 ϕ̄3(2)
φ3(2)(2) v 〉⋆

−〈 η̄1 φ1∇⋆ η̄2〈 ρ̄1(ϕ̄1 φ2∇⋆ϕ̄2 φ3(1)z) ,
ρ̄2 ϕ̄3(1)

φ3(2)(1) αv 〉⋆ ,
η̄3 ρ̄3 ϕ̄3(2)

φ3(2)(2)
αu 〉⋆

+ 〈 ϕ̄1∇⋆ϕ̄2z , ϕ̄3 [u, v]⋆ 〉⋆

= 〈 η̄1 κ1 φ̌1 φ
′
1∇⋆ η̄2〈 ρ̄1 ϕ̄1 φ̄1 κ2 φ̌2 φ

′
2∇⋆ζ̄1 ϕ̄2 φ̄2 κ3z , ρ̄2 ζ̄2 ϕ̄3 φ̌3u 〉⋆ ,

η̄3 ρ̄3 ζ̄3 φ̄3 φ
′
3v 〉⋆

−〈 η̄1 κ1 φ̌1 φ
′
1∇⋆ η̄2〈 ρ̄1 ϕ̄1 φ̄1 κ2 φ̌2 φ

′
2∇⋆ζ̄1 ϕ̄2 φ̄2 κ3z , ρ̄2 ζ̄2 ϕ̄3 φ̌3αv 〉⋆ ,

η̄3 ρ̄3 ζ̄3 φ̄3 φ
′
3αu 〉⋆

+ 〈 ϕ̄1∇⋆ϕ̄2z , ϕ̄3 [u, v]⋆ 〉⋆ . (4.61)
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Now the proof that R⋆ is a map in hom⋆(Vec⋆ ⊗⋆ (Vec⋆ ∧⋆ Vec⋆),Vec⋆) requires as a

first step to show that it is a well-defined map on Vec⋆ ⊗⋆ (Vec⋆ ⊗⋆ Vec⋆):

R
⋆(z, u ⋆ f, v) = R

⋆(z, φ1u, φ2f ⋆ φ3v) , (4.62)

so that we get a well-defined map R⋆(z, u⊗⋆ v) = R⋆(z, u, v), and

R
⋆(z ⋆ f, u⊗⋆ v) = R

⋆(φ1z, φ2f ⋆ φ3(u⊗⋆ v)) , (4.63)

so that we get a well-defined map R⋆(z⊗⋆ (u⊗⋆ v)) = R⋆(z, u, v). The star-antisymmetry

of R⋆ under u ⊗⋆ v → αv ⊗⋆ αu then immediately follows, and this implies that R⋆ is

a linear map from Vec⋆ ⊗⋆ (Vec⋆ ∧⋆ Vec⋆) to Vec⋆. The final step is to show that R⋆ ∈

hom⋆(Vec⋆ ⊗⋆ (Vec⋆∧⋆,Vec⋆),Vec⋆), i.e., that it is right A⋆-linear:

R
⋆
(
(z ⊗⋆ (u⊗⋆ v)) ⋆ f

)
= φ̄1R

⋆
(
φ̄2(z ⊗⋆ (u⊗⋆ v))

)
⋆ φ̄3f . (4.64)

In the following we prove right A⋆-linearity (4.64); the remaining A⋆-linearity proper-

ties (4.62) and (4.63) can be established with similar techniques.

For this, we note again that if the star-connection ∇⋆ and the star-Lie derivative

L⋆ = [ ]⋆ were right A⋆-linear maps, then the operator (4.59) would also be right A⋆-

linear because all composite maps would be right A⋆-linear. Hence as before it suffices to

check that the inhomogeneous terms coming from the Leibniz rule for the connection and

the Lie derivative cancel out. We denote by Leib⋆ the projector onto the inhomogeneous

terms. For example

Leib⋆
(
∇⋆(u ⋆ f)

)
= u⊗⋆ df , (4.65)

which induces

Leib⋆
(
∇⋆

v(u ⋆ f)
)
= 〈 Leib⋆(∇⋆(u ⋆ f)) , v 〉⋆ =

ϕ1u ⋆ 〈 ϕ2df , ϕ3v 〉⋆ = Leib⋆
(
∇

⋆
v(u ⋆ f)

)
.

(4.66)

Here we used the fact that in the inhomogeneous term the covariant derivative ∇
⋆
v

from (4.56) acts as a rescaled exterior derivative φ̄1d = ǫ(φ̄1) d, which is UVecF (M)-

equivariant. Furthermore, from (4.39) we also have

Leib⋆
(
[u ⋆ f, v]⋆

)
= φ̄1u ⋆ 〈 φ̄3df , φ̄2v 〉⋆ . (4.67)

The projector Leib⋆ in these examples is a linear operator in u, v and f . We have to show

that Leib⋆
(
R⋆

(
(z ⊗⋆ (v ⊗⋆ u)) ⋆ f

))
= 0 for all z, v, u ∈ Vec⋆ and f ∈ A⋆. Since

(
z ⊗⋆ (v ⊗⋆ u)

)
⋆ f = ϕ1 ρ1z ⊗⋆

(
(ϕ2v ⊗⋆

ρ2u) ⋆ ϕ3 ρ3f
)

= ϕ1 ρ1z ⊗⋆

(
ζ1 ϕ2v ⊗⋆ (

ζ2 ρ2u ⋆ ζ2 ϕ3 ρ3f)
)
, (4.68)

this condition is equivalent to Leib⋆
(
R⋆

(
z ⊗⋆ (v ⊗⋆ (u ⋆ f))

))
= 0 because of linearity

in z, v, u, f . Hence we check that Leib⋆
(
R⋆(z, v, u ⋆ f)

)
= 0, or equivalently, using star-

antisymmetry and linearity again, that Leib⋆
(
R⋆(z, u ⋆ f, v)

)
= 0.
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From (4.55) we write

Leib⋆
(
R

⋆(z, u ⋆ f, v)
)
= Leib⋆

(
κ1 φ̌1 φ

′
1∇

⋆
ρ̄3 ζ̄3 φ̄3 φ′3v

(
ρ̄1 φ̄1 κ2 φ̌2 φ

′
2∇

⋆
ρ̄2 ζ̄2 φ̌3 (u⋆f)

ζ̄1 φ̄2 κ3z
))

+ Leib⋆
(
∇

⋆
[u⋆f,v]⋆

z
)

(4.69)

and compare the two contributions. The second contribution in (4.69) is equal to

∇
⋆
Leib

⋆([u⋆f,v]⋆)
z = −∇

⋆
φ̄1u⋆〈 φ̄3df , φ̄2v 〉⋆

z

= −
(
κ̄1 ϕ̄1∇

⋆
κ̄2

¯̌φ2 φ̄1u

¯̌φ1 ϕ̄2z
)
⋆ κ̄3

¯̌φ3 ϕ̄3〈 φ̄3df , φ̄2v 〉⋆ , (4.70)

where in the second equality we used the definition (4.56) to rewrite

∇
⋆
u⋆fz = 〈 φ̄1 ϕ̄1∇⋆φ̄2 ϕ̄2z , φ̄3u ⋆ ϕ̄3f 〉⋆

= 〈 φ̄′
1(φ̄1 ϕ̄1∇⋆φ̄2 ϕ̄2z) , φ̄′

2 φ̄3u 〉⋆ ⋆
φ̄′
3 ϕ̄3f

=
(
κ̄1 ϕ̄1∇

⋆
κ̄2

¯̌φ2u

¯̌φ1 ϕ̄2z
)
⋆ κ̄3

¯̌φ3 ϕ̄3f , (4.71)

and then replace u ⋆ f with φ̄1u ⋆ 〈 φ̄3df , φ̄2v 〉⋆. The first contribution in (4.69) can

be rewritten without the first three associator legs κa, φ̌a, φ
′
a, because in the inhomoge-

neous term the covariant derivative κ1 φ̌1 φ
′
1∇

⋆
w again acts as a rescaled exterior derivative

κ1 φ̌1 φ
′
1d = ǫ(κ1) ǫ(φ̌1) ǫ(φ

′
1) d, which is UVecF (M)-equivariant. Therefore the first contri-

bution in (4.69) equals

Leib⋆
(
∇

⋆
ρ̄3 φ̄′3 ζ̄3 η̄3 φ̄3v

(
ρ̄1 φ̄

′
1 φ̄1∇

⋆
ρ̄2 ζ̄2u⋆

φ̄′2 η̄2f

ζ̄1 η̄1 φ̄2z
))

= Leib⋆
(
∇

⋆
ρ̄3 φ̄′3 ζ̄3 η̄3 φ̄3v

(
(κ̄1 ϕ̄1 ρ̄1 φ̄

′
1 φ̄1∇

⋆
κ̄2

¯̌φ2 ρ̄2 ζ̄2u

¯̌φ1 ϕ̄2 ζ̄1 η̄1 φ̄2z) ⋆ κ̄3
¯̌φ3 ϕ̄3 φ̄

′
2 η̄2f

))
(4.72)

= χ1
(
κ̄1 ϕ̄1 ρ̄1 φ̄

′
1 φ̄1∇

⋆
κ̄2

¯̌φ2 ρ̄2 ζ̄2u

¯̌φ1 ϕ̄2 ζ̄1 η̄1 φ̄2z
)
⋆ 〈 χ2 κ̄3

¯̌φ3 ϕ̄3 φ̄
′
2 η̄2df , χ3 ρ̄3 φ̄

′
3 ζ̄3 η̄3 φ̄3v 〉⋆ .

Replacing (u, f, v) with (η̄1u, η̄2f, η̄3v) in (4.72) gives an action of φ̄′
1 ⊗ η̄1 ⊗ ζ̄1 ⊗ φ̄′

2 ζ̄2 η̄2 ⊗

φ̄′
3 ζ̄3 η̄3 which cancels against that of

(
(∆F ⊗ id)∆F (χ1)

)
⊗ χ2 ⊗ χ3 and yields

(
κ̄1 ϕ̄1 ρ̄1 φ̄1∇

⋆
κ̄2

¯̌φ2 ρ̄2 ζ̄2u

¯̌φ1 ϕ̄2 ζ̄1 φ̄2z
)
⋆ 〈 κ̄3

¯̌φ3 ϕ̄3df , ρ̄3 ζ̄3 φ̄3v 〉⋆ (4.73)

=
(
κ̄1 ϕ̄1∇

⋆
κ̄2

¯̌φ2u

¯̌φ1 ϕ̄2z
)
⋆ κ̄3

¯̌φ3 ϕ̄3〈 df , v 〉⋆ ,

thereby cancelling the contribution (4.70) with the same replacement of (u, f, v). This

shows that

Leib⋆
(
R

⋆(z, η̄1u ⋆ η̄2f, η̄3v)
)
= 0 (4.74)

and hence establishes the right A⋆-linearity property (4.64) as required.
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4.6 Ricci tensor

Since the associator acts trivially on the basis dxA and its dual ∂A, the definition of the

Ricci tensor can be given following the noncommutative case studied in [6]. We define

Ric⋆(u, v) := −〈 R⋆(u, v, ∂A) , dx
A 〉⋆ , (4.75)

for all u, v ∈ Vec⋆, where the pairing between a vector field on the left and a form on the

right is given by

〈 u , ω 〉⋆ = 〈 f α(u) , f α(ω) 〉 , (4.76)

similarly to (3.27). The properties of this pairing are completely analogous to those de-

scribed in section 3.5, by simply interchanging forms and vector fields in all expressions

considered there.

We now show that the map (4.75) defines a tensor Ric⋆ ∈ hom⋆(Vec⋆ ⊗⋆ Vec⋆,Vec⋆).

We first prove that it is a map from Vec⋆⊗⋆Vec⋆ to Vec⋆, so that we can write Ric⋆(u, v) =

Ric⋆(u⊗⋆ v); indeed, we have

Ric⋆(u ⋆ f, v) = −〈 R⋆(u ⋆ f, v, ∂A) , dx
A 〉⋆

= −〈 R⋆((u ⋆ f)⊗⋆ (v ⊗⋆ ∂A)) , dx
A 〉⋆

= −〈 R⋆(φ1u⊗⋆ (
φ2f ⋆ φ3(v ⊗⋆ ∂A))) , dx

A 〉⋆

= −〈 R⋆(φ1u⊗⋆ ((
φ2f ⋆ φ3v)⊗⋆ ∂A)) , dx

A 〉⋆

= Ric⋆(φ1u, φ2f ⋆ φ3v) (4.77)

where in the second equality we used (4.51), and in the fourth equality the fact that the

associator acts trivially on ∂A. Next we prove compatibility with the UVecF (M)-action:

ξ
(
Ric⋆(u⊗⋆ v)

)
= ξ(1)Ric⋆

(
ξ(2)(u⊗ v)

)
, (4.78)

which follows from (4.52), iterated use of (2.12) and from ξ(∂A ⊗⋆ dx
A) = ǫ(ξ) ∂A ⊗⋆ dx

A;

this latter property follows from writing the identity map id : Vec⋆ → Vec⋆ as in (4.29)

and using ξid = ǫ(ξ) id, i.e., ξ
(
id(u)

)
= ξ(1) id(ξ(2)u) = id(ξu), for all ξ ∈ UVecF (M) and

u ∈ Vec⋆. Finally, we prove right A⋆-linearity. For this, we notice that

φ1u⊗⋆

(
(φ2v ⋆ φ3f)⊗⋆ ∂A

)
= φ1u⊗⋆

(
φ2v ⊗⋆ (

α∂A ⋆ α
φ3f)

)

= φ1u⊗⋆

(
(φ2v ⊗⋆

α∂A) ⋆
φ3

αf
)

=
(
ϕ̄1 φ1u⊗⋆

ϕ̄2(φ2v ⊗⋆
α∂A)

)
⋆ ϕ̄3 φ3

αf

=
(
u⊗⋆ (v ⊗⋆

α∂A)
)
⋆ αf (4.79)

where we used the fact that the associator commutes with each leg of the R-matrix and

hence it acts trivially on α∂A. Then the proof follows from (4.79) and the centrality of the

tensor ∂A ⊗⋆ dx
A: f ⋆ (∂A ⊗⋆ dx

A) = (α∂A ⊗⋆
βdxA) ⋆ β αf = (∂A ⊗⋆ dx

A) ⋆ f , see (3.16)
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and (3.23), or again (4.29). Explicitly, we have

Ric⋆
(
(u⊗⋆ v) ⋆ f

)
= Ric⋆

(
φ1u⊗⋆ (

φ2v ⋆ φ3f)
)

= −〈 R⋆
(
φ1u⊗⋆ ((

φ2v ⋆ φ3f)⊗⋆ ∂A)
)
, dxA 〉⋆

= −〈 R⋆
(
(u⊗⋆ (v ⊗⋆

α∂A)) ⋆ αf
)
, dxA 〉⋆

= −〈 ϕ̄1R⋆
(
ϕ̄2(u⊗⋆ (v ⊗⋆

α∂A))
)
⋆ ϕ̄3

αf , dxA 〉⋆

= −〈 ϕ̄1
(
R⋆

(
ϕ̄2(u⊗⋆ (v ⊗⋆

α∂A))
))

⋆ ϕ̄3
αf , dxA 〉⋆

= −〈 ϕ̄1 ρ̄1
(
R⋆

(
ϕ̄2u⊗⋆ (

ρ̄2v ⊗⋆
α∂A)

))
, ϕ̄3 ρ̄3

αf ⋆ dxA 〉⋆

= −〈 ϕ̄1 ρ̄1
(
R⋆

(
ϕ̄2u⊗⋆ (

ρ̄2v ⊗⋆
α∂A)

))
, βdxA 〉⋆ ⋆ β α

ϕ̄3 ρ̄3f

= −ϕ̄1 ρ̄1〈 R⋆
(
ϕ̄2u⊗⋆ (

ρ̄2v ⊗⋆ ∂A)
)
, dxA 〉⋆ ⋆

ϕ̄3 ρ̄3f

= ϕ̄1 ρ̄1Ric⋆
(
ϕ̄2u⊗⋆

ρ̄2v
)
⋆ ϕ̄3 ρ̄3f

= ϕ̄1Ric⋆
(
ϕ̄2(u⊗⋆ v)

)
⋆ ϕ̄3f . (4.80)

The coefficients of the Ricci tensor in the coordinate basis are given by

Ric⋆ = RicAD ⋆ (dxD ⊗⋆ dx
A) , (4.81)

where RicBC := Ric⋆(∂B, ∂C); indeed we have

Ric⋆(∂B, ∂C) = 〈 RicAD ⋆ (dxD ⊗⋆ dx
A) , ∂B ⊗⋆ ∂C 〉⋆ = RicBC . (4.82)

We use (4.54) together with the fact that the associator acts trivially on basis vectors and

basis 1-forms to calculate explicitly

RicBC = −〈 R⋆(∂B, ∂C , ∂A) , dx
A 〉⋆

= −〈 ∂D ⋆ RD
BCA , dxA 〉⋆

= −αRD
BCA ⋆ 〈 α∂D , dxA 〉⋆

= RA
BAC − iκR

EF
D ∂ER

D
BCA ⋆ 〈 ∂F , dxA 〉⋆

= RA
BAC − iκR

EA
D ∂ER

D
BCA

= ∂AΓ
A
BC − ∂CΓ

A
BA + ΓA

B′A ⋆ ΓB′

BC − ΓA
B′C ⋆ ΓB′

BA

+ iκΓA
B′E ⋆

(
R

EG
A (∂GΓ

B′

BC)− R
EG

C (∂GΓ
B′

BA)
)

+ iκR
EG

A ∂G∂CΓ
A
BE − iκR

EG
A ∂G

(
ΓA
B′E ⋆ ΓB′

BC − ΓA
B′C ⋆ ΓB′

BE

)

+κ2 R
AF

D

(
R

EG
A ∂F (Γ

D
B′E ⋆ ∂GΓ

B′

BC)− R
EG

C ∂F (Γ
D
B′E ⋆ ∂GΓ

B′

BA)
)
. (4.83)

This calculation did not use symmetry of ΓA
BC , i.e., the torsion-free condition (4.34). Indeed

this is the Ricci tensor of an arbitrary affine connection.
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5 Nonassociative Riemannian geometry and gravity

5.1 Metric and torsion-free connection conditions

We shall now discuss the metric aspects of nonassociative differential geometry and how

it can be used to build a theory of nonassociative gravity. For this, notice first of all that

star-symmetric tensors are of the form T ⊗⋆ T
′ + αT ′ ⊗⋆ αT . A metric tensor is an element

g⋆ ∈ Ω1
⋆ ⊗⋆ Ω

1
⋆ which can be written in the basis dxA as g⋆ = gAB ⋆ (dxA ⊗⋆ dx

B) with

real-valued components gAB = gBA ∈ A⋆ (the bracketing here is immaterial due to the

basis 1-forms). We can regard it as a map g⋆ ∈ hom⋆(Vec⋆ ⊗⋆ Vec⋆, A⋆) which on vector

fields u, v ∈ Vec⋆ gives the function

g⋆(u, v) = 〈 g⋆ , u⊗⋆ v 〉⋆ . (5.1)

It is star-symmetric: g⋆(u, v) = g⋆(αv, αu), and one easily confirms that g⋆(∂A, ∂B) = gAB.

As usual we assume that g⋆ is nondegenerate: g⋆(u, v) = 0 for all v ∈ Vec⋆ if and only

if u = 0.

Let us now study the metric compatibility condition for a connection ∇⋆ : Vec⋆ →

Vec⋆⊗⋆Ω
1
⋆. The connection ∇⋆ gives a connection ∇⋆ : Vec⋆⊗⋆Vec⋆ → (Vec⋆⊗⋆Vec⋆)⊗⋆Ω

1
⋆

on the tensor product Vec⋆⊗ ⋆Vec⋆, defined as in section 4.3. The space Ω1
⋆⊗⋆Ω

1
⋆ is dual to

Vec⋆⊗⋆Vec⋆ and hence ∇⋆ : Vec⋆⊗⋆Vec⋆ → (Vec⋆⊗⋆Vec⋆)⊗⋆Ω
1
⋆ induces a dual connection

⋆∇ : Ω1
⋆⊗⋆Ω

1
⋆ → (Ω1

⋆⊗⋆Ω
1
⋆)⊗⋆Ω

1
⋆ as in (4.14), now with ω ∈ Ω1

⋆⊗⋆Ω
1
⋆ and u ∈ Vec⋆⊗⋆Vec⋆.

We can then state the metric compatibility condition as

⋆∇g⋆ = 0 . (5.2)

We shall now show that, as in the classical case, this condition together with the torsion-free

condition uniquely determine the connection in terms of the metric.

We start by using (4.14) with ω = g⋆ ∈ Ω1
⋆ ⊗⋆ Ω

1
⋆ and u = ∂A ⊗⋆ ∂B ∈ Vec⋆ ⊗⋆ Vec⋆

to get

dgAB = d〈 g⋆ , ∂A ⊗⋆ ∂B 〉⋆

= 〈 ⋆∇g⋆ , ∂A ⊗⋆ ∂B 〉⋆ + 〈 φ1g⋆ , φ2∇⋆(φ3(∂A ⊗⋆ ∂B)) 〉⋆

= 〈 g⋆ , ∇⋆(∂A ⊗⋆ ∂B) 〉⋆ , (5.3)

where we used gAB = gBA and the fact that the associators act trivially on the basis

vectors. We can write this more explicitly as

dgAB = 〈 g⋆ , ∇⋆∂A ⊗⋆ ∂B + α∂A ⊗⋆ α∇
⋆∂B 〉⋆

= 〈 g⋆ , ∇⋆∂A ⊗⋆ ∂B + αγ∂A ⊗⋆ α∇
⋆
γ∂B 〉⋆

= 〈 g⋆ , ∇⋆∂A ⊗⋆ ∂B + α∂A ⊗⋆ α(∇
⋆∂B) 〉⋆

= 〈 g⋆ , (∂C ⊗⋆ Γ
C
A)⊗⋆ ∂B + α∂A ⊗⋆ α(∂D ⊗⋆ Γ

D
B ) 〉⋆

= 〈 g⋆ , (∂C ⊗⋆ Γ
C
A)⊗⋆ ∂B + α∂A ⊗⋆ (∂D ⊗⋆ αΓ

D
B ) 〉⋆

= 〈 g⋆ , ∂C ⊗⋆ (
α∂B ⊗⋆ αΓ

C
A) +

α∂A ⊗⋆ (∂D ⊗⋆ αΓ
D
B ) 〉⋆
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= 〈 g⋆ , ∂C ⊗⋆ (
α∂B ⊗⋆ αΓ

C
A) + ∂D ⊗⋆ (

α∂A ⊗⋆ αΓ
D
B ) 〉⋆

= 〈 g⋆ , ∂C ⊗⋆ (
α∂B ⊗⋆ αΓ

C
A + α∂A ⊗⋆ αΓ

C
B) 〉⋆

= 〈 gMC ⋆ dxM , α∂B ⊗⋆ αΓ
C
A + α∂A ⊗⋆ αΓ

C
B 〉⋆

= gMN ⋆
(
〈 dxM , α∂B 〉⋆ ⋆ αΓ

N
A + 〈 dxM , α∂A 〉⋆ ⋆ αΓ

N
B

)
, (5.4)

where in the first equality we used (4.23) and the fact that the R-matrix acts trivially

on a pair of basis vectors, so that β∂A ⊗⋆ β∂B = ∂A ⊗⋆ ∂B. In the second equality we

used ξ(∇⋆∂B) =
ξ(1)∇⋆(ξ(2)∂B) (as for all linear maps acting from the left), the coproduct

action (2.19) on the R-matrix, and again triviality of the action of R as well as of the

associator on ∂A ⊗⋆ ∂B. In the sixth line we used the fact that α∂A is again a basis vector

and then star-symmetry of the metric.

We similarly calculate

〈 dxM , α∂B 〉⋆ ⋆ αΓ
N
A = 〈 dxM , α∂B 〉⋆ ⋆ α(Γ

N
AC ⋆ dxC)

= 〈 dxM , β γ∂B 〉⋆ ⋆ βΓ
N
AC ⋆ γdx

C

= 〈 dxM , β∂B 〉⋆ ⋆
(
βΓ

N
AC ⋆ dxC

)

=
(
〈 dxM , β∂B 〉⋆ ⋆ βΓ

N
AC

)
⋆ dxC

= 〈 dxM , ΓN
AC ⋆ ∂B 〉⋆ ⋆ dx

C , (5.5)

where as usual we used again (2.19) together with α∂A ⋆ αdx
B = ∂A ⋆ dxB for our cochain

twist (2.1). We can finally write

dgAB = gMN ⋆ 〈 dxM , ΓN
AC ⋆ ∂B 〉⋆ ⋆ dx

C + gMN ⋆ 〈 dxM , ΓN
BC ⋆ ∂A 〉⋆ ⋆ dx

C . (5.6)

We now contract the expression (5.6) with ∂D using the star-pairing to obtain

∂DgAB = 〈 dgAB , ∂D 〉⋆ = gMN ⋆
(
〈 dxM , ΓN

AD ⋆ ∂B 〉⋆ + 〈 dxM , ΓN
BD ⋆ ∂A 〉⋆

)
. (5.7)

We write the expression (5.7) two more times, with the indices A,B,D cyclically permuted,

and consider the combination ∂DgAB+∂AgBD−∂BgDA. Using the fact that the connection

coefficients are symmetric for vanishing torsion (see (4.34)), we obtain

gMN ⋆ 〈 dxM , ΓN
AD ⋆ ∂B 〉⋆ =

1
2 (∂DgAB + ∂AgBD − ∂BgAD) . (5.8)

The left hand side equals 〈 gMN ⋆ dxM ⋆ ΓN
AD , ∂B〉⋆, so star-multiplying (5.8) by any

vB ∈ A⋆ gives

〈 gMN ⋆ dxM ⋆ ΓN
AD , v 〉⋆ =

1
2 (∂DgAB + ∂AgBD − ∂BgAD) ⋆ v

B , (5.9)

with v = ∂B ⋆ vB ∈ Vec⋆. Since the vector field v is arbitrary and the star-pairing is

nondegenerate, this shows that

gMN ⋆ dxM ⋆ ΓN
AD = 1

2 (∂DgAB + ∂AgBD − ∂BgAD) ⋆ dx
B . (5.10)
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Since moreover the metric g⋆ is nondegenerate, the expression (5.10) uniquely defines the

torsion-free metric compatible connection in the nonassociative case.

It remains to explicitly solve for the connection coefficients ΓN
AD from (5.10). For this,

we use (3.16) to rewrite (5.10) as

dxM ⋆ GMN ⋆ ΓN
AD = dxM ⋆ 1

2

(
∂DgAM + ∂AgMD − ∂MgAD

+ iκR
EF

M (∂E∂DgAF + ∂E∂AgDF )
)
, (5.11)

with

GMN = gMN + iκR
EF

M ∂EgNF , (5.12)

where the associators act trivially due to the basis vector fields and basis 1-forms. The

tensor GMN is nondegenerate but not symmetric; it can be thought of as a realisation the

R-flux corrected “effective metric” anticipated from the string theory perspective [14]. We

then use the star-pairing to contract (5.11) from the left with ∂C and obtain

GCN ⋆ ΓN
AD = 1

2

(
∂DgAC + ∂AgDC − ∂CgAD + iκR

EF
C (∂E∂DgAF + ∂E∂AgDF )

)
. (5.13)

We are now faced with the problem of extracting the connection coefficients ΓN
AD

from (5.13).

5.2 Inversion in A⋆

Before tackling the matrix equation (5.13), let us consider a simpler problem involving

ordinary functions: start from the equation

h ⋆ g = w , (5.14)

where h, g, w ∈ A⋆ are functions, the star-product is given by (3.6), and h is invertible with

respect to the usual pointwise product of functions. From (5.14) we would like to uniquely

determine g in terms of h and w.

Recalling the factorization (2.3) of the cochain twist F , let ∗ := ⋆F be the star-product

induced by the twist F from (2.4); this is of course just the canonical associative Moyal-

Weyl star-product on phase space: f ∗ g = f α(f) · f α(g). All the R-flux dependence is

contained in the twist FR from (2.5). Let h−1 be the usual pointwise inverse of the function

h: h−1 ·h = h ·h−1 = 1. Then h is also ∗-invertible [7], and we write h∗−1 for the ∗-inverse

function:

h∗−1 ∗ h = h ∗ h∗−1 = 1 . (5.15)

It can be expressed explicitly as a power series [7]

h∗−1 = h−1 +
∞∑

n=1

h−1 ∗
(
1− h ∗ h−1

)∗n
, (5.16)

where, since
(
1− h ∗ h−1

)∗n
is of order O(~n), in order to get h∗−1 up to order O(~n) we

only have to compute the finite sum h−1 +
∑n

k=1 h−1 ∗
(
1 − h ∗ h−1

)∗k
. This enables one
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to uniquely determine the function h∗−1 order by order in ~. If no R-flux is present, the

equation (5.14) becomes h ∗ g = w which has the unique solution

g = 1 ∗ g = (h∗−1 ∗ h) ∗ g = h∗−1 ∗ (h ∗ g) = h∗−1 ∗ w . (5.17)

In the absence of R-flux, the problem of determining g from the functions h and w has

been solved in a very specific way: by determining a function h∗−1 whose star-product ∗

with w gives g. As similarly observed in [14], in general we cannot solve the equation (5.14)

in the nonassociative algebra A⋆ in this way. If a function h is invertible, and hence ∗-

invertible, then one can recursively construct a right ⋆-inverse h⋆−1
r ∈ A⋆ for h: writing the

power series expansion

h⋆−1
r =

∞∑

n=0

h⋆−1(n)
r , (5.18)

where h
⋆−1(n)
r is of order O(κn), by using the fact that h∗−1 is unique one can solve the

equation h ⋆ h⋆−1
r = f

α
R(h) ∗ fRα(h

⋆−1) = 1 order by order in κ to obtain the iterative

solution

h⋆−1(0)
r = h∗−1 ,

h⋆−1(n)
r = −h∗−1 ∗

n−1∑

k=0

f
n−k
R (h) ∗ fRn−k

(
h⋆−1(k)

)
, n ≥ 1 , (5.19)

where the terms of order O(κn−k) of the twist F−1
R are denoted f

n−k
R ⊗ fRn−k (with

summation understood). Similarly, one can construct a left ⋆-inverse h⋆−1
l ∈ A⋆ such that

h⋆−1
l ⋆ h = 1. However, in general

h⋆−1
r = (h⋆−1

l ⋆ h) ⋆ h⋆−1
r = φ1h⋆−1

l ⋆ (φ2h ⋆ φ3h⋆−1
r ) 6= h⋆−1

l (5.20)

so that the left and right ⋆-inverses do not generally coincide. Moreover,

g = 1 ⋆ g = (h⋆−1
l ⋆ h) ⋆ g = φ1h⋆−1

l ⋆ (φ2h ⋆ φ3g) (5.21)

and so in general the equation (5.14) cannot be solved by using the left ⋆-inverse.

In any nonassociative unital algebra which is alternative, i.e., for which (a a) b = a (a b)

and (b a) a = b (a a), for all algebra elements a and b, the theory of inverses is identical

to that in associative algebras (see e.g. [28]): inverses of elements when they exist are

unique, and equations such as (5.14) have unique solutions exactly as in the associative

case. However, the nonassociative algebra A⋆ is not alternative, see e.g. [18, 23], with

the violations always being due to explicit dependence on momentum coordinates pµ of

phase space. The basic counterexample to alternativity in this case is the function ~x 2 :=∑d
µ=1 xµ xµ for which

~x 2 ⋆ (~x 2 ⋆ ~x 2) = (~x 2 ⋆ ~x 2) ⋆ ~x 2 + 3 i ~κ2RµνρRλνρ δµσ x
σ pλ . (5.22)

While the equation (5.14) cannot be solved in general by taking ⋆-inverses in A⋆, in

the spirit of [7] we can regard the star-product operation h⋆g = f α(h) · f α(g) as the action
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of the differential operator h⋆ = f α(h) f α on the function g, and we can then consider

the inverse of the differential operator h⋆ with respect to the usual associative composition

product of differential operators. We can actually refine this procedure by recalling the

factorization F−1 = F−1 F−1
R and the ∗-inverse expression (5.16) for the Moyal-Weyl twist

F . We therefore write

h ⋆ g = f
α
R(h) ∗ fRα(g) (5.23)

and star-multiply with ∗ from the left by h∗−1. This gives

h∗−1 ∗ (h ⋆ g) = h∗−1 ∗ f
α
R(h) ∗ fRα(g) , (5.24)

so that by defining the differential operator

Yh := f β
(
h∗−1 ∗ f

α
R(h)

)
f β fRα (5.25)

we have

Yh(g) = h∗−1 ∗ f
α
R(h) ∗ fRα(g) = h∗−1 ∗ (h ⋆ g) . (5.26)

The differential operator Yh can be regarded as a power series expansion in κ (or equiva-

lently in the R-flux) given by

Yh = 1 +

∞∑

n=1

1

n!

( iκ

2

)n

ε
A1B1 · · · εAnBn f β

(
h∗−1 ∗ (∂A1 · · ·∂Anh)

)
f β ∂B1 · · ·∂Bn

=:
∞∑

n=0

( iκ)n

n!
Y

(n)
h , (5.27)

with

(
∂A

)
=

(
Rµνρ pν ∂ρ

∂µ

)
and

(
ε
AB

)
=

(
0 1d

−1d 0

)
. (5.28)

The operator Yh is invertible as a formal power series in κ because it starts with the zeroth

order term Y
(0)
h = 1; the first order term is

Y
(1)
h = 1

2 f
β
(
h∗−1 ∗ (Rµνρ pν ∂ρh)

)
f β ∂µ − 1

2 f
β
(
h∗−1 ∗ (∂µh)

)
f β R

µνρ pν ∂ρ . (5.29)

We define

Xh =
∞∑

n=0

( iκ)n

n!
X

(n)
h (5.30)

as the formal power series in κ with coefficients in differential operators that satisfies (with

composition ◦ of operators understood)

XhYh = id . (5.31)

Then we can finally invert (5.14) to obtain the unique solution in terms of h and w:

g = (XhYh)(g) = Xh

(
Yh(g)

)
= Xh

(
h∗−1 ∗ w

)
. (5.32)
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Crucially, this inversion cannot be written in general as g = h̃ ⋆ w where h̃ is a function

depending on h; the inversion formula (5.32) uses differential operators rather than the

nonassociative algebra A⋆ of functions on its own.

To explicitly construct Xh, we expand the left-hand side of (5.31) as a power series in

κ and equate it order by order with the right-hand side. The order zero term is X
(0)
h = 1,

while the n-th order equation for n ≥ 1 is

n∑

k=0

(
n

k

)
X

(n−k)
h Y

(k)
h = 0 . (5.33)

Since Y
(0)
h = 1, this yields a recursion relation for the differential operators X

(n)
h given by

X
(n)
h = −

n∑

k=1

(
n

k

)
X

(n−k)
h Y

(k)
h . (5.34)

One easily shows by induction on n that the solution to the recursion relation (5.34) with

the initial condition X
(0)
h = 1 is

X
(n)
h =

∑

|~λ |=n

(−1)l(
~λ ) n!

~λ !
Y

(~λ )
h , (5.35)

where the sum runs over all unordered sequences ~λ = (λ1, λ2, . . . , λl) of positive integers

λi > 0 with length l(~λ ) = l ≤ n that partition n, i.e., |~λ | := λ1+λ2+ · · ·+λl = n, and we

defined

Y
(~λ )
h = Y

(λ1)
h Y

(λ2)
h · · ·Y

(λl)
h and ~λ ! = λ1!λ2! · · ·λl! . (5.36)

The first few orders are given by

X
(0)
h = 1 ,

X
(1)
h = −Y

(1)
h ,

X
(2)
h = −Y

(2)
h + 2Y

(1)
h Y

(1)
h ,

X
(3)
h = −Y

(3)
h + 3Y

(1)
h Y

(2)
h + 3Y

(2)
h Y

(1)
h − 6Y

(1)
h Y

(1)
h Y

(1)
h . (5.37)

Altogether, for the power series expansion (5.30) we obtain

Xh = 1 +
∑

~λ

( iκ)|
~λ |

~λ !
(−1)l(

~λ ) Y
(~λ )
h , (5.38)

where here the sum runs through all unordered finite sequences ~λ of positive integers.

Let us look at an explicit example. For the tachyon vertex operators h(x) = e i kµ xµ
,

using antisymmetry of Rµνρ we easily obtain from (5.27) the differential operator

Y e i kµ xµ = exp
(
− κRµνρ kµ pν ∂ρ

)
(5.39)
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with inverse

X e i kµ xµ = exp
(
κRµνρ kµ pν ∂ρ

)
. (5.40)

Then the equation e i kµ xµ
⋆ g = w has the unique solution

g(x, p) =
(
e− i kµ xµ

∗ w
)(
x+ κR(k, p) , p

)
= e− i kµ xµ

w
(
x+ κR(k, p) , p− ~

2 k
)

(5.41)

where R(k, p)µ := Rµνρ kν pρ. When restricted to the zero momentum leaf of phase space,

this yields g(x, 0) = e− i kµ xµ
w
(
x,−~

2 k
)
, which for functions w(x) depending only on

spacetime coordinates further reduces to g(x, 0) = e− i kµ xµ
w(x).

5.3 Levi-Civita connection

It is straightforward to extend the analysis of section 5.2 to construct a nonassociative

version of the Levi-Civita connection in Riemannian geometry. If the differential operator

Yh is also matrix-valued, then we just have to interpret products as the composition of

operators together with matrix multiplication; the algebraic manipulations of section 5.2

are identical because h, g and w were treated there as abstract symbols and not as com-

muting functions. Hence all formulas are also valid if h, g and w in (5.14) are matrix-valued

functions and matrix multiplication is understood in star-products. Therefore we will only

sketch the main steps.

Let G−1 =
(
GMN

)
be the inverse matrix of the matrix G = (GMN ) describing the

string effective metric: GMC · GCN = GNC · GCM = δMN . There is the closed expression

G−1 =
(
12d + iκ g−1

R ∂g
)−1

g−1 , (5.42)

where R ∂g =
(
REF

M ∂EgNF

)
while g−1 =

(
gMC

)
is the inverse of g = (gCN ):

gMC · gCN = gNC · gCM = δMN , (5.43)

and (12d + iκ g−1 R ∂g)−1 is understood as a geometric series, so that

GMC = gMC − iκ gMN
R

AB
N (∂AgBE) g

EC + O(κ2) . (5.44)

Let G∗−1 =
(
G∗MN

)
be the ∗-inverse of the matrix G = (GMN ):

G∗MC ∗ GCN = GNC ∗ G∗CM = δMN . (5.45)

It can be expressed explicitly as a power series in ~ given by [7]

G∗MN = GMN +
∞∑

n=1

GMC ∗
(
12d − G ∗ G−1

)∗n
C
N . (5.46)

Let YG be the matrix-valued differential operator defined by

YG :=
(
YG

M
N

)
, YG

M
N := f β

(
G∗MC ∗ f

α
R(GCN )

)
f β fRα =:

∞∑

n=0

( iκ)n

n!
Y

(n)
G

M
N , (5.47)
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so that acting on a function g gives YG
M
N (g) = G∗MC ∗ f

α
R(GCN ) ∗ fRα(g). The zeroth and

first order terms are given by

Y
(0)
G

M
N = δMN ,

Y
(1)
G

M
N = 1

2 f
β
(
G∗MC ∗ (Rµνρ pν ∂ρGCN )

)
f β ∂µ − 1

2 f
β
(
G∗MC ∗ (∂µGCN )

)
f β R

µνρ pν ∂ρ

= 1
2 ε

AB f β
(
G∗SC(0) ∗ ∂AgCM

)
f β ∂B , (5.48)

where in the last equality we used the notation (5.28).

Following the formalism of section 5.2, we determine from (5.13) the connection coef-

ficients

ΓS
AD = G∗SC ∗WCAD +

∑

~λ

( iκ)|
~λ |

~λ !
(−1)l(

~λ ) Y
(~λ )
G

S
M

(
G∗MC ∗WCAD

)
(5.49)

where

WCAD = 1
2

(
∂DgAC + ∂AgDC − ∂CgAD + iκR

EF
C (∂E∂DgAF + ∂E∂AgDF )

)
(5.50)

and

Y
(~λ )
G

S
M = Y

(λ1)
G

N1
M ◦Y

(λ2)
G

N2
N1

◦ · · · ◦Y
(λl)
G

S
Nl−1

(5.51)

for ~λ = (λ1, λ2, . . . , λl). We also recall from section 5.2 the notation ~λ ! = λ1!λ2! · · ·λl!

and |~λ | = λ1 + λ2 + · · · + λl, and that the sum in (5.49) runs over all finite sequences ~λ

of positive integers. In particular, for |~λ | = 1 the only contribution to the sum is given by

the term Y
(1)
G

M
N in (5.48).

In order to understand better the expansion (5.49) of the Levi-Civita connection, we

will now extract the leading non-trivial terms. For this, we have to expand every tensor

entering into this expression up to first order in κ and first order in ~; we expect non-trivial

nonassociativity contributions in the O(κ ~) = O(ℓ3s) terms. For any tensor T we write

T =
∞∑

n=0

T (n) with T (n) =
∞∑

m=0

T (n,m) , (5.52)

where by T (n) we understand the term in the power series expansion of T which is of n-th

order in κ, and T (n,m) is the term in the double power series expansion of T which is n-th

order in κ and m-th order in ~. We write (5.50) as

WCAD = gCM ΓLCM
AD + iκR

EF
C ∂E

(
gFM ΓLCM

AD

)

=: W
(0)
CAD +W

(1)
CAD , (5.53)

where

ΓLCM
AD = 1

2 g
MQ (∂DgAQ + ∂AgDQ − ∂QgAD) (5.54)

is the usual classical Levi-Civita connection, which is zeroth order in κ and zeroth order in

~ if the metric gMN is independent of κ and ~. Then the definition in (5.53) is exact in κ,
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i.e., there are no higher order terms (W
(n)
CAD = 0 for n ≥ 2). The effective metric has the

expansion

GMN = gMN + iκR
EF

M ∂EgNF

=: G
(0)
MN + G

(1)
MN , (5.55)

GSC = gSC − iκ gSM R
EF

M (∂EgNF ) g
NC + O(κ2)

=: GSC(0) + GSC(1) + O(κ2) . (5.56)

Recalling (5.48) we can now write the expansion of ΓS
AD in (5.49) up to first order in κ and

first order in ~ as

Γ
S(0)
AD = G∗SC(0) ∗W

(0)
CAD

=: Γ
S(0,0)
AD + Γ

S(0,1)
AD + O(~2) , (5.57)

Γ
S(1)
AD = G∗SC(0) ∗W

(1)
CAD + G∗SC(1) ∗W

(0)
CAD

− iκ
2 ε

KL G∗SQ(0) ∗ ∂KgQM ∗ ∂L

(
G∗MC(0) ∗W

(0)
CAD

)

=: Γ
S(1,0)
AD + Γ

S(1,1)
AD + O(~2) . (5.58)

To explicitly calculate these terms we observe from (5.46) that

G∗SC = 2GSC − GSP ∗ GPQ ∗ GQC + O(~2) , (5.59)

so that

G∗SC(0) = 2 gSC − gSP ∗ gPQ ∗ gQC +O(~2)

= gSC − i ~
2

(
∂µg

SP ∂̃µgPQ − ∂̃µgSP ∂µgPQ

)
gQC + O(~2)

=: G∗SC(0,0) + G∗SC(0,1) + O(~2) , (5.60)

G∗SC(1) = 2GSC(1) − gSP ∗ gPQ ∗ GQC(1) − gSP ∗ G
(1)
PQ ∗ gQC− GSP (1) ∗ gPQ ∗ gQC+O(~2)

= − iκR
EF

M gSM (∂EgNF ) g
NC

− ~κ
2 R

EF
M

(
∂EgNF

(
gQM gNC (∂µg

SP ∂̃µgPQ − ∂̃µgSP ∂µgPQ)

+ gSM gQC (∂µg
NP ∂̃µgPQ − ∂̃µgNP ∂µgPQ) + ∂µg

SM ∂̃µgNC − ∂̃µgSM ∂µg
NC

)

− (∂µ∂EgNF ) (g
SM ∂̃µgNC − gNC ∂̃µgSM )

+ (∂̃µ∂EgNF ) (g
SM ∂µg

NC − gNC ∂µg
SM )

)
+ O(~2)

=: G∗SC(1,0) + G∗SC(1,1) + O(~2) . (5.61)

We can now compute the first non-trivial terms of the Levi-Civita connection as defined
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in (5.57) and (5.58). We obtain

Γ
S(0,0)
AD = ΓLCS

AD , (5.62)

Γ
S(0,1)
AD = i ~

2

(
− (∂µg

SP ∂̃µgPQ − ∂̃µgSP ∂µgPQ) Γ
LCQ
AD

+ ∂µg
SC ∂̃µ(gCM ΓLCM

AD )− ∂̃µgSC ∂µ(gCM ΓLCM
AD )

)

= − i ~
2 gSP

(
(∂µgPQ) ∂̃

µΓLCQ
AD − (∂̃µgPQ) ∂µΓ

LCQ
AD

)
, (5.63)

Γ
S(1,0)
AD = iκRαβγ

(
g̃Sγ gβN

(
∂αΓ

LCN
AD

)
− gSM pβ (∂γgMN ) ∂αΓ

LCN
AD

)
, (5.64)

Γ
S(1,1)
AD = ~κ

2 Rαβγ
[
− ∂µg̃

S
γ ∂̃

µ ∂α(gβN ΓLCN
AD ) + ∂̃µg̃Sγ ∂µ∂α(gβNΓLCN

AD )

+
(
∂µg

SP ∂̃µgPQ − ∂̃µgSP ∂µgPQ

)
g̃Qγ ∂α(gβN ΓLCN

AD )

+ ∂µ(g̃
S
γ g

NC ∂αgNβ) ∂̃
µ(gCT ΓLCT

AD )− ∂̃µ(g̃Sγ g
NC ∂αgNβ) ∂µ(gCT ΓLCT

AD )

− ∂αgNβ

(
g̃Sγ (∂µg

SP ∂̃µgPQ − ∂̃µgSP ∂µgPQ) Γ
LCN
AD

+ g̃Sγ (∂µg
NP ∂̃µgPQ − ∂̃µgNP ∂µgPQ) Γ

LCQ
AD

+(∂µg̃
S
γ ∂̃

µgNC − ∂̃µg̃Sγ ∂µg
NC) gCT ΓLCT

AD

)

+(∂µ∂αgNβ)
(
g̃Sγ (∂̃

µgNC) gCT ΓLCT
AD − (∂̃µg̃Sγ) Γ

LCN
AD

)

− (∂̃µ∂αgNβ)
(
g̃Sγ (∂µg

NC) gCT ΓLCT
AD − (∂µg̃

S
γ) Γ

LCN
AD

)

+ pβ

(
∂µ(g

SQ ∂γgQP ) ∂̃
µ∂αΓ

LCP
AD − ∂̃µ(gSQ ∂γgQP ) ∂µ∂αΓ

LCP
AD

)

+ pβ g
SQ (∂γgQP ) ∂α

(
∂µg

PC ∂̃µ(gCT ΓLCT
AD )− ∂̃µgPC ∂µ(gCT ΓLCT

AD )

− (∂µg
PX ∂̃µgXY − ∂̃µgPX ∂µgXY ) Γ

LCY
AD

)

+ pβ

(
∂µg

SQ ∂̃µ∂γgQP − ∂̃µgSQ ∂µ∂γgQP

)
∂αΓ

LCP
AD

− pβ

(
∂µg

SM ∂̃µgMN − ∂̃µgSM ∂µgMN

)
gNQ (∂γgQP ) ∂αΓ

LCP
AD

+(∂αg
SQ) (∂βgQP ) ∂γΓ

LCP
AD

]
, (5.65)

where g̃Sγ = gSM δM,x̃γ is the part of the inverse metric tensor gMN with at least one index

in momentum space.

We offer the following remarks on the expanded Levi-Civita connection:

1. Terms that are of type (0, 1) and (1, 0), i.e., proportional to ~ or to κ alone, are

imaginary; this is analogous to what happens in gravity theories on Moyal-Weyl

spaces [7]. On the other hand, the term of type (1, 1), i.e., proportional to ~κ = ℓ3s
6 ,

is real; it represents the non-trivial nonassociativity contribution.

2. If we restrict ourselves to a metric that does not depend on the momenta pµ,

then (5.63) vanishes and all terms but ℓ3s
6 Rαβγ (∂αg

SQ) (∂βgQP ) ∂γΓ
LCP
AD in (5.65)

vanish. This remaining term is just the associator acting on a product of classical

metric tensors and the classical Levi-Civita connection (5.54), as is anticipated from

the way in which we extracted the connection coefficients ΓS
AD from (5.13).
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3. If we restrict to a metric with no indices in momentum space, i.e., g̃Sγ = 0, then

many terms in (5.65) vanish. The terms that remain are those linear in momenta

pβ and the associator term ℓ3s
6 Rαβγ (∂αg

SQ) (∂βgQP ) ∂γΓ
LCP
AD . If we further restrict

to a momentum-independent metric and constrain it to the zero momentum leaf in

phase space, we obtain a real-valued Levi-Civita connection on spacetime which is

independent of ~ and with a non-trivial R-flux dependence due to nonassociativity.

However, we must keep the momentum arbitrary for the time being as such terms

will make non-trivial contributions to the Ricci tensor below.

5.4 Einstein equations

Given an arbitrary metric tensor g on phase space M with nonassociative deformation

induced by a constant R-flux, we have constructed its unique Levi-Civita connection in

section 5.3. Recalling the definition of the Ricci tensor from section 4.6, we can therefore

consider the vacuum Einstein equations on this nonassociative deformation of M. They

read Ric⋆ = 0, or in components as

RicBC = 0 . (5.66)

This equation is a deformation in κ and ~ of the usual vacuum Einstein equations

for gravity. It is easy to see that the flat space metric gAB = ηAB gives a vanishing

Levi-Civita connection and hence solves the vacuum equations (5.66). Indeed, in this case

GAB = ηAB and all star-products reduce to the usual pointwise products, because there is

no dependence on the phase space coordinates x and p at all.

A more general solution can be easily obtained by considering metrics gAB(p) that

depend only on the momentum coordinates. For these metrics we have GAB = gAB and

the usual inverse GAB = gAB is also the ⋆-inverse. Indeed here too all star-products drop

out because the twist FR always involves vector fields ∂µ and so acts trivially. Moreover,

the Moyal-Weyl twist F also acts trivially on functions that depend only on the momentum

coordinates: each summand in (2.4) contains always at least one vector field ∂µ that acts

trivially in this case. This implies that if a metric gAB(p) solves the vacuum Einstein

equations in the classical case, then it remains a solution of the vacuum Einstein equations

also when the R-flux is turned on and hence it is also a solution of (5.66). See [3] for further

details in the noncommutative case.

5.5 Spacetime field equations

Recall that our original motivation was to obtain a nonassociative theory of gravity on

spacetime. The correct way in which to obtain a reduction to spacetime dynamics from

the nonassociative phase space formalism was explained in [5]: we start from tensors on

M = R
d, lift them to tensors on M = T ∗M = R

d×(Rd)∗, construct new composite tensors

using the nonassociative deformation of the geometry of M, reorder the result using the

associator, and then project back to M . The lift from M to M for functions and more

generally for forms is just the pullback of forms using the canonical projection π : M =

T ∗M → M . In the opposite direction, using the embedding σ : M → M = R
d × (Rd)∗
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given by the zero section x 7→ σ(x) = (x, 0), we pull back forms on M to forms on M . For

example, the n-product of functions on M defined in ([5], eq. (3.7)) immediately extends

to the n-exterior product of forms on M as

∧
(n)
⋆ (ω1, ω2, . . . , ωn) := σ∗

[(
···((π∗ω1 ∧⋆ π

∗ω2) ∧⋆ π
∗ω3) ∧⋆ · · ·

)
∧⋆ π

∗ωn

]
. (5.67)

The lifts of vector fields are obtained by considering a foliation of M via constant mo-

mentum leaves, with each leaf being diffeomorphic to M . Explicitly, the coordinate basis

vector field ∂µ on M lifts to the coordinate basis vector field ∂µ on M, and more generally

vµ(x) ∂µ 7→ π∗(vµ)(x, p) ∂µ, where π∗(vµ)(x, p) = (vµ)(π(x, p)) = vµ(x). In the opposite

direction, vector fields on M are projected to vector fields on M via the zero section

σ : M → M as vµ(x, p) ∂µ + ṽµ(x, p) ∂̃
µ 7→ vµ(x, 0) ∂µ.

The lift of a metric tensor on M to a metric tensor on M requires an additional

structure: a nondegenerate bilinear form on the cotangent bundle M = T ∗M , i.e., a

bilinear form on each cotangent space T ∗
xM , which we denote by h(x)µν dx̃µ ⊗ dx̃ν . Then

a metric gµν(x) dx
µ ⊗ dxν on M is lifted to the metric ĝMN dxM ⊗ dxN on M given by

(
ĝMN (x)

)
=

(
gµν(x) 0

0 hµν(x)

)
. (5.68)

Next we rewrite ĝMN dxM ⊗ dxN in terms of the star-tensor product as

ĝMN dxM ⊗ dxN = gMN ⋆ (dxM ⊗⋆ dx
N ) . (5.69)

We thus obtain metric coefficients that have a linear correction in the R-flux given by

(
gMN (x)

)
=

(
gµν(x)

iκ
2 Rσνα ∂σgµα

iκ
2 Rσµα ∂σgαν hµν(x)

)
. (5.70)

Then the Ricci tensor on spacetime is the pullback

Ric⋆
◦ := σ∗(Ric⋆) . (5.71)

Recalling the expansion (4.81) of the Ricci tensor in the good basis, we obtain

Ric⋆
◦ = Ric◦µν dx

µ ⊗ dxν , (5.72)

where the products are the usual undeformed products because the 3-tensor product in a

good basis is the usual tensor product:

⊗
(3)
⋆ (f, dxµ, dxν) := σ∗

(
(π∗f ⊗⋆ π

∗dxµ)⊗⋆ π
∗dxν

)
= f dxµ ⊗ dxν . (5.73)

Comparing (5.71) with (4.81) and (5.72) leads to the simple result that the nonassociative

spacetime Ricci tensor is obtained form the phase space Ricci tensor simply by restricting

the components RicMN to spacetime directions and setting the momentum dependence

to zero:

Ric◦µν(x) = σ∗(Ricµν)(x, p) = Ricµν(x, 0) . (5.74)
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The spacetime vacuum equations for nonassociative gravity then read as

Ric◦µν = 0 . (5.75)

We observe that the flat metric gµν(x) = ηµν , h
µν(x) = ηµν is a solution of (5.75). More

generally, every solution of the phase space Einstein equations (5.66) leads to a solution

of (5.75). On the other hand, not all solutions of (5.75) can be lifted to solutions of

the phase space vacuum Einstein equations (5.66). Whether or not such a condition on

solutions should be imposed, i.e., that the dynamics is completely determined on phase

space, is presently unclear and should be ultimately prescribed by which procedure correctly

matches the expectations from non-geometric string theory. We do not address further this

salient point in the present paper.

Recalling our discussion from section 2.3, it is also interesting to examine projections

of the field equations (5.66) with respect to other polarisations of phase space in the R-

flux frame. For instance, we could alternatively choose to foliate phase space with respect

to constant position leaves rather than constant momentum leaves, and hence to reduce

the dynamics from nonassociative phase space onto momentum space. This corresponds

to embedding momentum space M̃ , with local coordinates x̃µ = pµ, in phase space via

σ̃ : M̃ → M, x̃ 7→ σ̃(x̃) = (0, x̃). Correspondingly, we can restrict the classical metric

to the same block diagonal form (5.68), but with the components now dependent only

on momentum. By our general discussion from section 5.4 it follows that there are no

R-flux corrections to the classical Ricci tensor on momentum space, so that momentum

space geometry is uncorrected by stringy contributions; in particular, the string effective

metric (5.12) coincides with the classical metric. This would appear to imply the expected

result that there are no nonassociative or noncommutative corrections to the spacetime field

equations in a geometric (H-flux or f -flux) frame obtained by an O(d, d)-rotation of the

R-flux frame. It would be interesting to understand how this perspective ties in precisely

with the possibility of Born geometry and dynamical phase space discussed in [21] using

curved momentum space geometry (see [5] for further discussion of this latter point).

5.6 First order corrections

We will now study the vacuum Einstein equations (5.66) and (5.75) in more detail by

determining the first non-trivial correction terms to the classical Einstein equations. For

this, we expand the Ricci tensor from (4.83) as

RicBC = ∂AΓ
A
BC − ∂CΓ

A
BA + ΓA

B′A ⋆ ΓB′

BC − ΓA
B′C ⋆ ΓB′

BA − iκR
EG

C ΓA
B′E ⋆ ∂GΓ

B′

BA

+ iκR
EG

A

(
∂G∂CΓ

A
BE − ∂GΓ

A
B′E ⋆ ΓB′

BC + ∂GΓ
A
B′C ⋆ ΓB′

BE + ΓA
B′C ⋆ ∂GΓ

B′

BE

)

+O(κ2)

=: Ric
(0,0)
BC + Ric

(0,1)
BC + Ric

(1,0)
BC + Ric

(1,1)
BC + O(κ2, ~2) (5.76)

by expanding the star-products ⋆ and using the expansion of the Levi-Civita connection

from section 5.3. For the undeformed contribution we obtain the usual Ricci tensor of the

classical Levi-Civita connection (5.54):

Ric
(0,0)
BC = RicLCBC := ∂AΓ

LCA
BC − ∂CΓ

LCA
BA + ΓLCA

B′A ΓLCB′

BC − ΓLCA
B′C ΓLCB′

BA . (5.77)
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For the order ~ contribution we have

Ric
(0,1)
BC = ∂AΓ

A(0,1)
BC − ∂CΓ

A(0,1)
BA + Γ

A(0,1)
B′A ΓLCB′

BC + ΓLCA
B′A Γ

B′(0,1)
BC

+ i ~
2

(
∂µΓ

LCA
B′A ∂̃µΓLCB′

BC − ∂̃µΓLCA
B′A ∂µΓ

LCB′

BC

)
− Γ

A(0,1)
B′C ΓLCB′

BA

−ΓLCA
B′C Γ

B′(0,1)
BA − i ~

2

(
∂µΓ

LCA
B′C ∂̃µΓLCB′

BA − ∂̃µΓLCA
B′C ∂µΓ

LCB′

BA

)
, (5.78)

where to obtain the explicit expression in terms of the classical metric tensor and Levi-

Civita connection one has to insert (5.63) in (5.78). Notice that Ric
(0,1)
BC is imaginary.

Likewise, the order κ contribution is given by

Ric
(1,0)
BC = ∂AΓ

A(1,0)
BC − ∂CΓ

A(1,0)
BA + Γ

A(1,0)
B′A ΓLCB′

BC + ΓLCA
B′A Γ

B′(1,0)
BC (5.79)

+ iκRαβγ pβ
(
∂γΓ

LCA
B′A ∂αΓ

LCB′

BC − ∂γΓ
LCA
B′C ∂αΓ

LCB′

BA

)

−Γ
A(1,0)
B′C ΓLCB′

BA − ΓLCA
B′C Γ

B′(1,0)
BA − iκRαβγ δC,x̃γ Γ

LCA
B′α ∂βΓ

LCB′

BA

+ iκRαβγ δA,x̃γ

(
∂β∂CΓ

LCA
Bα − ∂βΓ

LCA
B′α ΓLCB′

BC + ∂βΓ
LCA
B′C ΓLCB′

Bα + ΓLCA
B′C ∂βΓ

LCB′

Bα

)
,

where here one has to insert (5.64) to obtain the explicit expression in terms of classical

quantities. Notice that Ric
(1,0)
BC is also imaginary.

Finally, the order κ ~ = ℓ3s
6 contribution is given by

Ric
(1,1)
BC = ∂AΓ

A(1,1)
BC − ∂CΓ

A(1,1)
BA + Γ

A(1,0)
B′A Γ

B′(0,1)
BC + Γ

A(0,1)
B′A Γ

B′(1,0)
BC

+ΓLCA
B′A Γ

B′(1,1)
BC + Γ

A(1,1)
B′A ΓLCB′

BC − Γ
A(1,0)
B′C Γ

B′(0,1)
BA

−Γ
A(0,1)
B′C Γ

B′(1,0)
BA − ΓLCA

B′C Γ
B′(1,1)
BA − Γ

A(1,1)
B′C ΓLCB′

BA

+ i ~
2

(
∂µΓ

A(1,0)
B′A ∂̃µΓLCB′

BC + ∂µΓ
LCA
B′A ∂̃µΓ

B′(1,0)
BC

− ∂̃µΓ
A(1,0)
B′A ∂µΓ

LCB′

BC − ∂̃µΓLCA
B′A ∂µΓ

B′(1,0)
BC

)

− i ~
2

(
∂µΓ

A(1,0)
B′C ∂̃µΓLCB′

BA + ∂µΓ
LCA
B′C ∂̃µΓ

B′(1,0)
BA

− ∂̃µΓ
A(1,0)
B′C ∂µΓ

LCB′

BA − ∂̃µΓLCA
B′C ∂µΓ

B′(1,0)
BA

)

+ iκRαβγ pβ
(
∂γΓ

A(0,1)
B′A ∂αΓ

LCB′

BC + ∂γΓ
LCA
B′A ∂αΓ

B′(0,1)
BC

− ∂γΓ
A(0,1)
B′C ∂αΓ

LCB′

BA − ∂γΓ
LCA
B′C ∂αΓ

B′(0,1)
BA

)

− κ ~

2 Rαβγ pβ
(
∂µ∂γΓ

LCA
B′A ∂̃µ∂αΓ

LCB′

BC − ∂̃µ∂γΓ
LCA
B′A ∂µ∂αΓ

LCB′

BC

− ∂µ∂γΓ
LCA
B′C ∂̃µ∂αΓ

LCB′

BA + ∂̃µ∂γΓ
LCA
B′C ∂µ∂αΓ

LCB′

BA

)

− iκRαβγ
(
δA,x̃γ

(
∂βΓ

LCA
B′α Γ

B′(0,1)
BC + ∂βΓ

A(0,1)
B′α ΓLCB′

BC

)

+ δC,x̃γ

(
ΓLCA
B′α ∂βΓ

B′(0,1)
BA + Γ

A(0,1)
B′α ∂βΓ

LCB′

BA

))

+ κ ~

2 Rαβγ
(
δA,x̃γ

(
∂µ∂βΓ

LCA
B′α ∂̃µΓLCB′

BC − ∂̃µ∂βΓ
LCA
B′α ∂µΓ

LCB′

BC

)

+ δC,x̃γ

(
∂µΓ

LCA
B′α ∂̃µ∂βΓ

LCB′

BA − ∂̃µΓLCA
B′α ∂µ∂βΓ

LCB′

BA

))

+ iκRαβγ δA,x̃γ

(
∂β∂CΓ

A(0,1)
Bα + ∂βΓ

LCA
B′C Γ

B′(0,1)
Bα + ∂βΓ

A(0,1)
B′C ΓLCB′

Bα

+ΓLCA
B′C ∂βΓ

B′(0,1)
Bα + Γ

A(0,1)
B′C ∂βΓ

LCB′

Bα

)

− κ ~

2 Rαβγ δA,x̃γ

(
∂µ∂βΓ

LCA
B′C ∂̃µΓLCB′

Bα − ∂̃µ∂βΓ
LCA
B′C ∂µΓ

LCB′

Bα

+ ∂µΓ
LCA
B′C ∂̃µ∂βΓ

LCB′

Bα − ∂̃µΓLCA
B′C ∂µ∂βΓ

LCB′

Bα

)
, (5.80)
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where again the explicit expression in terms of the classical metric and connection is ob-

tained after inserting (5.63)–(5.65). Like the undeformed contribution (5.77), the expres-

sion (5.80) is real.

We now consider metrics of the form (5.70) with the natural choice hµν(x) = ηµν . The

pointwise inverse metric gMN has an expansion in κ, which up to first order is given by

(
gMN (x)

)
=

(
gµν(x) − iκ

2 Rανγ gµρ ∂αgργ

− iκ
2 Rαµγ ∂αgγρ g

ρν ηµν

)
+ O(κ2) . (5.81)

One caveat is that the κ-dependence of (5.70) and (5.81) will now reorder the expansion

of the Levi-Civita connection in (5.62)–(5.65); for example, the classical contributions

Γ
S(0,0)
AD = ΓLCS

AD in (5.62) will receive both type (0, 0) and (1, 0) terms. These additional

contributions can be easily accounted for by using the fact that there is no momentum

dependence in (5.70) and (5.81), and our results below take this reordering into account.

After summing up all expressions, the proper expansion of the connection coefficients

is as follows: for the classical contribution Γ
S(0,0)
AD the only non-zero components of the

classical Levi-Civita connection in this case are

ΓLC ρ
µν = 1

2 g
ρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (5.82)

Using (5.63) one can check that all contributions Γ
S(0,1)
AD vanish. The only non-zero com-

ponents of the corrections Γ
S(1,0)
AD from (5.64) are

Γρ(1,0)
µν = − iκRαβγ pβ g

ρσ (∂γgστ ) ∂αΓ
LC τ
µν ,

Γ
x̃ρ(1,0)
µν = − iκ

2 Rαρσ gγσ ∂αΓ
LC γ
µν ,

Γ
ρ(1,0)
x̃µ,ν

= iκ
2 Rαµγ gσρ ∂α

(
gστ Γ

LC τ
γν

)
,

Γ
ρ(1,0)
µ,x̃ν

= iκ
2 Rανγ gρσ ∂α

(
gστ Γ

LC τ
µγ

)
, (5.83)

while the remaining correction terms Γ
S(1,1)
AD from (5.65) have non-vanishing contributions

Γρ(1,1)
µν = ~κ

2 Rαβγ (∂αg
ρσ) (∂βgστ ) ∂γΓ

LC τ
µν . (5.84)

The non-zero components of the classical Ricci tensor are then

RicLCµν = ∂ρΓ
LC ρ
µν − ∂νΓ

LC ρ
µρ + ΓLC ρ

σρ ΓLCσ
µν − ΓLC ρ

σν ΓLCσ
µρ . (5.85)

Although the expanded formula for RicBC appears to be unwieldy and very difficult to

analyse in general, in this case all correction terms Ric
(0,1)
BC vanish, while the non-zero
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components of Ric
(1,0)
BC are

Ric(1,0)µν = iκRαβγ pβ

(
− ∂ρ

(
gρσ (∂γgστ ) ∂αΓ

LC τ
µν

)
+ ∂ν

(
gρσ (∂γgστ ) ∂αΓ

LC τ
µρ

)

−ΓLCω
µν gρσ (∂γgστ ) ∂αΓ

LC τ
ωρ − ΓLC ρ

ρω gωσ (∂γgστ ) ∂αΓ
LC τ
µν

+ΓLCω
µρ gρσ (∂γgστ ) ∂αΓ

LC τ
ων + ΓLC ρ

ων gωσ (∂γgστ ) ∂αΓ
LC τ
µρ

+
(
∂γΓ

LC ρ
σρ

)
∂αΓ

LCσ
µν −

(
∂γΓ

LC ρ
σν

)
∂αΓ

LCσ
µρ

)
, (5.86)

Ric
(1,0)
µ,x̃ν

= iκ
2 Rανγ

(
∂ρ
(
gρσ ∂α(gστ Γ

LC τ
γµ )

)
+ gρσ ΓLCω

ρω ∂α(gστ Γ
LC τ
γµ )

− gρσ ΓLCω
µρ ∂α(gστ Γ

LC τ
γω ) + 2ΓLC ρ

σα ∂γΓ
LCσ
µρ

)
, (5.87)

Ric
(1,0)
x̃µ,ν

= iκ
2 Rαµγ

(
∂ρ
(
gρσ ∂α(gστ Γ

LC τ
γν )

)
− ∂ν

(
gρσ ∂α(gστ Γ

LC τ
γρ )

)

+ gρσ ΓLCω
ρω ∂α(gστ Γ

LC τ
γν )− gρσ ΓLCω

ρν ∂α(gστ Γ
LC τ
γω )

)
. (5.88)

Notice that all terms of type (1, 0) are imaginary. Finally, the only non-zero components

of Ric
(1,1)
BC are given by

Ric(1,1)µν = ~κ
2 Rαβγ

(
∂ρ
(
∂αg

ρσ (∂βgστ ) ∂γΓ
LC τ
µν

)
− ∂ν

(
∂αg

ρσ (∂βgστ ) ∂γΓ
LC τ
µρ

)

+ ∂γgτω
(
∂α(g

στ ΓLC ρ
σν ) ∂βΓ

LCω
µρ − ∂α(g

στ ΓLC ρ
σρ ) ∂βΓ

LCω
µν

+(ΓLCσ
µρ ∂αg

ρτ − ∂αΓ
LCσ
µρ gρτ ) ∂βΓ

LCω
σν

− (ΓLCσ
µν ∂αg

ρτ − ∂αΓ
LCσ
µν gρτ ) ∂βΓ

LCω
σρ

))
. (5.89)

Now we apply the reduction described in section 5.5, and altogether we find for the

Ricci tensor Ric◦µν on spacetime M up to first order:

Ric◦µν = RicLCµν + ℓ3s
12 R

αβγ
(
∂ρ
(
∂αg

ρσ (∂βgστ ) ∂γΓ
LC τ
µν

)
− ∂ν

(
∂αg

ρσ (∂βgστ ) ∂γΓ
LC τ
µρ

)

+ ∂γgτω
(
∂α(g

στ ΓLC ρ
σν ) ∂βΓ

LCω
µρ − ∂α(g

στ ΓLC ρ
σρ ) ∂βΓ

LCω
µν

+(ΓLCσ
µρ ∂αg

ρτ − ∂αΓ
LCσ
µρ gρτ ) ∂βΓ

LCω
σν

− (ΓLCσ
µν ∂αg

ρτ − ∂αΓ
LCσ
µν gρτ ) ∂βΓ

LCω
σρ

))
(5.90)

for µ, ν = 1, . . . , d. One readily checks that the linear R-flux correction to the classical

Ricci tensor is not a total derivative: while the first two lines of the correction in (5.90)

are total derivatives, the last two lines are not. The consistent reduction to spacetime

has thus achieved two remarkable and desirable features: not only do we find that the

nonassociative R-flux gravitational corrections lead to non-trivial dynamical consequences

on spacetime, but they are also independent of ~ and real-valued, in contrast to what

happens in the usual metric formulations of noncommutative gravity [7]. Notice that this

latter feature in itself singles out the zero momentum leaf among all constant momentum

leaves: pulling back to a leaf of constant momentum p = p◦ generally gives a non-vanishing

imaginary contribution Ric
(1,0)
µν

∣∣
p=p◦

from (5.86) to the spacetime Ricci tensor (5.90); indeed,
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in that case the pullback via the phase space star-product ⋆ yields associative Moyal-Weyl

star-product deformations of the usual closed string scattering amplitudes with constant

bivector θαβ = 2κRαβγ p◦γ [5], and Ric
(1,0)
µν

∣∣
p=p◦

coincides with the first order contribution

to the noncommutative Ricci tensor from [7]. The potential physical significance of the

p◦ 6= 0 leaves is discussed in [5].

It would be interesting to confirm explicitly that these features all persist to higher

orders, and to find explicit solutions of the spacetime vacuum equations (5.75) for nonas-

sociative gravity. Note that these equations are linear in the R-flux, whereas the H-flux

modified Einstein equations at leading order in string worldsheet perturbation theory and

for constant dilaton read RicLCµν = 1
4 Hµαβ Hν

αβ which by T-duality would naively imply

that the leading corrections should be of quadratic order in the R-flux. Here the first

non-trivial contribution to the spacetime curvature tensor is of order O(κ ~) which is the

order in which the first nonassociative contributions appear. As this is a second order

contribution when one expands the twist element (2.3), it is natural that the curvature

(and torsion) have corrections at this order.

6 Conclusions

In this paper we have provided and developed a formalism leading to a consistent approach

to nonassociative gravity induced by locally non-geometric constant R-flux backgrounds

of string theory in the parabolic phase space model of [25]. The construction relied on

the proper characterization of tensor fields in nonassociative geometry as well as their

covariance under the quasi-Hopf algebra generated by infinitesimal diffeomorphisms on

twisted nonassociative phase space. The unique Levi-Civita connection of any metric g has

been determined at all orders in the nonassociative deformation parameters. The vacuum

Einstein equations have been obtained also at all orders, and the first order corrections to

the classical equations explicitly calculated, which is the order at which the corresponding

string theory calculations are reliable.

We have then pulled back the vacuum Einstein equations on phase space M to space-

time M via the zero momentum section σ : M → M. General covariance of these latter

equations is on the one hand guaranteed by the geometric pullback operation. On the

other hand, it could be studied explicitly by considering the projection of the quantum Lie

algebra of nonassociative diffeomorphisms from section 3.7 to the zero momentum leaf, as

pursued in [5], where it was illustrated how nonassociativity survives in the action of diffeo-

morphisms on spacetime. Ultimately, these symmetries should be compared to the classical

diffeomorphism symmetries of closed string theory and to the generalised diffeomorphism

symmetries of double field theory.

Further insights into this nonassociative theory of gravity on spacetime should be ob-

tained by studying the pullbacks to spacetime also of the torsion and the Riemann curvature

tensors. Additional investigations relating the curved phase space geometry to the curved

spacetime geometry, and in particular the other possible spacetime geometries obtained by

considering different foliations of the manifold M, and not only those defined by constant

momentum leaves and constant position leaves, are left for future work. These investi-
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gations, and the construction of a dynamical action principle for nonassociative gravity,

should clarify the expected relevance in the contexts of closed string theory and double

field theory of the field equations we have obtained, and in particular their interpretations

as low-energy effective field equations of closed string theory.
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[6] P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Noncommutative geometry and gravity,

Class. Quant. Grav. 23 (2006) 1883 [hep-th/0510059] [INSPIRE].

[7] P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp and J. Wess, A Gravity
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