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1 Overview and motivation

The quest for integrable deformations [1]–[5] associated to AdS5 × S5 superstring sigma

model has been one of the fascinating areas of modern theoretical investigation during the

last one decade.1 The fact that AdS5 × S5 can be represented by a supercoset and the

string sigma model action constructed in terms of the coset group elements can be shown

to be classically integrable [7], has spawned a plethora of studies based on deformation

of the supercoset. This, in turn, has generated a lot of attention toward geometric defor-

mations of target spaces associated to two-dimensional deformed integrable sigma models.

Recently, the class of Yang-Baxter (YB) deformations [8]–[17] of AdS5 × S5 superstring

sigma model has gained renewed attention due to its several remarkable properties namely,

the existence of Lax connection and the fermionic kappa symmetry. This new class of in-

tegrable deformation is known as the η- deformed sigma model where η is the deformation

1The interested reader can be redirected to [6] and references therein for a recent introduction to the

subject.

– 1 –



J
H
E
P
0
2
(
2
0
1
8
)
0
3
5

parameter that enters into the classical currents which still satisfies the (modified) classical

Yang Baxter equations.

Unlike the existing plane wave limit [20]–[28] for type IIB strings propagating in AdS5×
S5, the corresponding pp wave limit for η deformed AdS5 × S5 is still lacking in the

literature. As a consequence of this, it is completely unclear at the moment whether one

could talk about anything like perturbative plane wave string/gauge theory duality like in

the case for AdS5 × S5 superstrings [29].

The purpose of the present article is basically to address this issue following a different

path and to understand the η deformed sigma models in the light of spin chain/string sigma

model correspondence [30]–[50]. Following the original construction [31], in the present

analysis we consider rotating string configurations on deformed spheres, i.e. (R×S3)η and

(R×S5)η in the fast spinning limit [34] which is analogous to that of taking a BMN limit as

considered by authors in [23]. At this stage it is noteworthy to mention that the anisotropic

Landau-Lifshitz equations corresponding the bosonic sector of η deformed superstrings had

already been explored by authors in [45] where they had mapped the deformed SL(2) and

SU(2) sector of the spin chain to that with the fast spinning limit associated to string sigma

models on time-like warped AdS3 × S1 and R× squashed S3.2 This limit, it seems, only

could be consistently taken when the deformation parameter is small. In our analysis after

taking the fast spinning limit, the η deformed sigma model corresponding to (R × S3)η
could be thought of as being that of the continuum limit of XXZ SU(2) Heisenberg spin

chain (which is a well known integrable model [51]).

For the deformed five-sphere case it is harder to play around with integrability for the

larger sector. The usual bosonic symmetry group of SO(6) has been broken down to U(1)×
U(1)× U(1) isometries for the η deformed case. Still, the classical integrability of the full

background is supposed to be inherited in the deformed theory too. This background has

added nontrivial NS−NS fields associated to the sigma model. A fast spinning string limit

on this generates the usual SU(3) spin chain terms with anisotropies, sans terms that cannot

be reproduced via SU(3) coherent state components up to phases and modulo the exact

two form field of the associated string sigma model. In other words, the full η deformed

sigma model, which is expected to have a quantum group (q-deformed) symmetry, cannot

be expressed in terms of standard SU(3) coherent vectors. The complete understanding of

the q-deformed coherent states, that is expected to resolve this conflict, remains to be a

puzzle at the moment which we leave for the purpose of future investigations.

The organization of the paper is the following. In section 2, we revisit the sigma model

corresponding to fast spinning strings on (R× S3)η. Keeping the spirit of the earlier anal-

ysis [31], we express the spin chain Hamiltonian in terms of usual SU(2) coherent states.

It turns out that η deformations add non trivially to the spin chain Hamiltonian in such a

way so that it takes the form of an anisotropic Heisenberg spin chain having structural sim-

ilarities to the XXZ model. Finally, we calculate the energy corresponding to a particular

class of stringy configuration namely the circular string solutions associated to anisotropic

2For other discussions on fast spinning limits of η deformed models and associated Neumann-Rosochatius

systems, one could look at [46–49].
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SU(2) spin chain model (with periodic boundary conditions) where we find the leading or-

der correction to the energy which turns out to be quadratic in the deformation parameter.

In section 3, we compute the sigma model corresponding to fast spinning strings on

(R × S5)η, which also turns out to have a structure similar to the anisotropic SU(3) spin

chain with an added correction term quadratic in the deformation parameter. Then we

explicitly show that it is not possible to incorporate a correction term having a product of

three components of SU(3) coherent state vector via the usual nearest-neighbor interaction

spin chain picture. Also, the only contribution due to the B field can’t be taken care of

explicitly using this approach, which is not entirely unexpected since the underlying SU(3)

symmetry is broken in the presence of nontrivial background NS fluxes. From the above

discussions, it should also be quite evident that it is the presence of background B field

that creates a clear distinction between the two sigma models corresponding to (R× S3)η
and (R× S5)η from the perspective of a spin chain.

In section 4, we discuss how the integrable models corresponding to fast spinning

string in subsectors of (AdS5 × S5)η can be mapped to other known deformed models

in the literature. It is particularly interesting to see that the Yang-Baxter sigma models

arose out of studies to generalize sigma models on non-symmetric cosets, for example, that

of on the squashed spheres. A closely related example of is that of γ and β deformed

backgrounds ([52, 53]) constructed via series of T dualities and shifts. We comment on

these connections at the level of underlying continuum limits of spin chain picture. We also

unearth a surprising similarity between the purely imaginary β deformed Lunin-Maldacena

background and the η deformed SU(3) theories in the fast spinning limit in relation to the

spinning string solutions in these two. After discussing further open problems, we conclude

our analysis in section 5.

2 Revisiting fast spinning strings on (R × S3)η

The purpose of this section is to revisit the sigma model corresponding to fast spinning

strings on (R×S3)η subsector of the total deformed spacetime and to take a worldsheet fast

spinning string limit. In the case of the undeformed three-sphere [31] this non relativistic

limit maps the system of classical strings propagating in the background to the continuum

limit of the SU(2) Heisenberg spin chain Hamiltonian.

2.1 The sigma model

The η deformed AdS3 × S3 background could be formally expressed as [12],

ds2AdS3×S3 = −h(̺)dt2 + f(̺)d̺2 + ̺2dψ2 + h̃(θ)dϕ2 + f̃(θ)dθ2 + cos2 θdφ2 (2.1)

where, the functions in the metric components above could be explicitly written as,

h =
1 + ̺2

(1− κ2̺2)
, f =

1

(1 + ̺2)(1− κ2̺2)

h̃ =
sin2 θ

(1 + κ2 cos2 θ)
, f̃ =

1

(1 + κ2 cos2 θ)
. (2.2)
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Notice that here the parameter κ is related to the original deformation parameter η

as [13],

κ =
2η

1− η2
. (2.3)

Henceforth, we would denote κ as being the deformation parameter in our analysis.

In order to proceed further, we fix the coordinates on deformed AdS3 and consider

rotating closed strings propagating in (R×S3)η where we choose an ansatz of the following

form,

t = ξτ, ̺ = 0, θ = θ(σ, τ), ϕ = ϕ(σ, τ), φ = φ(σ, τ). (2.4)

where, ξ is the energy associated with classical stringy configuration and (σ, τ ) are the

world-sheet coordinates. Following the original prescription [31], we consider the change

of coordinates on deformed S3 as,

φ = ξτ +Φ1 +Φ2, ϕ = ξτ +Φ1 − Φ2. (2.5)

Substituting (2.5) into (2.1), the relevant part of the background metric turns out to be,

ds2R×S3 = −ξ2dτ2 + h̃(θ)(ξdτ + dΦ1 − dΦ2)
2 + f̃(θ)dθ2 + cos2 θ(ξdτ + dΦ1 + dΦ2)

2. (2.6)

Considering the conformally flat world-sheet metric, the corresponding Polyakov La-

grangian could be formally expressed as,3

LP =

√
λ̂

4π

[
gττ + gΦ1Φ1

(Φ̇2
1 − Φ′2

1 ) + gΦ2Φ2
(Φ̇2

2 − Φ′2
2 ) + gθθ(θ̇

2 − θ′2)

+2gτΦ1
Φ̇1 + 2gτΦ2

Φ̇2 + 2gΦ1Φ2
(Φ̇1Φ̇2 − Φ′

1Φ
′
2)
]
. (2.7)

Our next step would be to take the large spin limit [31]–[50] corresponding to the

rotating string configuration where we set, ξ → ∞ such that both ξẊµ as well as ξ2κ2 is

finite. In other words, the fast spinning limit corresponds to setting both, Ẋµ, κ2 → 0. One

should note here that the fast spinning string limit additionally constrains the values of

the deformation parameter, which enables us to work in the leading order of κ throughout

the calculation.

Finally, considering the large spin limit the corresponding sigma model La-

grangian (2.7) turns out to be (sans a total derivative term),

LP (1 + κ2 cos2 θ) =

√
λ̂

4π

[
− ξ2κ2 sin2 θ cos2 θ + (1 + κ2 cos4 θ)(−Φ′2

1 − Φ′2
2 + 2ξΦ̇1)

−θ′2 + (κ2 cos4 θ + cos 2θ)(2ξΦ̇2 − 2Φ′
1Φ

′
2)
]

(2.8)

which could be further truncated in the small deformation regime as,

LP =

√
λ

4π

[
− ξ2κ2 sin2 θ cos2 θ − Φ′2

1 − Φ′2
2 + 2ξΦ̇1 − θ′2 + cos 2θ(2ξΦ̇2 − 2Φ′

1Φ
′
2)
]

(2.9)

3Notice that, here λ̂ = λ(1 + κ2) corresponds to the modified string tension [12].
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where, one should notice that in the large λ limit, the term
√
λξ2κ2 still remains finite.

Next, we compute the angular momentum and identify the leading order term,

JΦ1
∼ 2ξR2(1 + κ2)1/2

4πα′

∫ 2π

0
dσ =

ξR2(1 + κ2)1/2

α′ =
√
λξ (2.10)

which clearly diverges in the limit, ξ → ∞ and thereby makes sense of what we call as

fast spinning limit. Notice that, here we have dropped the subleading term which is of the

order ∼
√
λξκ2.

Next, we use one of the Virasoro constraints,

Tστ = 0 (2.11)

in order to eliminate Φ′
1 which yields in the leading order of κ,

Φ′
1 = − cos 2θΦ′

2. (2.12)

Substituting (2.12) into (2.9) we finally write down the Polyakov action in the limit,

SP =

√
λ

4π

∫
dτdσ

(
2ξΦ̇1 + 2ξΦ̇2 cos 2θ − θ′2 − Φ′2

2 sin2 2θ − ξ2κ2 sin2 θ cos2 θ
)

=

∫
dtdσ̃

(
∂tΦ2 cos 2θ −

λ

8π2
(θ′2 +Φ′2

2 sin2 2θ)− κ2

2
sin2 θ cos2 θ

)
(2.13)

where, in the second line we have ignored the total derivative term (i.e. integral over ξΦ̇1)

and rescaled the coordinate σ as [31],

σ̃ =

√
λσξ

2π
=

Jσ

2π
(2.14)

where we define the angular momentum as JΦ1
= J .

We can introduce the new variables,

Φ2 = −Φ

2
, θ =

Θ

2
(2.15)

and the sigma model Lagrangian could be formally expressed as,

SP = −
∫

dtdσ̃

(
1

2
cosΘ∂tΦ+

λ

32π2
(Θ′2 +Φ′2 sin2Θ) +

κ2

8
sin2Θ

)
. (2.16)

Using (2.14), one could re-express the sigma model as,

SP = − J

2π

∫
dtdσ

(
1

2
cosΘ∂tΦ+

λ

8J2
(Θ′2 +Φ′2 sin2Θ) +

κ2

8
sin2Θ

)
(2.17)

where, the ratio λ
J2 is held fixed in the limit, J → ∞. Clearly in the large spin limit the

path integral is dominated by its classical saddle point.

A few important points are to be noted at this stage. First of all, in the limit of the van-

ishing deformation, the above sigma model (2.16) precisely corresponds to the continuum

– 5 –
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limit of long Heisenberg spin chains [31]. However, in the presence of η- deformations this

spin chain gets deformed in a non trivial fashion where the contribution due to background

deformations could be encoded in the deformed Hamiltonian,

HD =
κ2

8

∫ J

0
sin2Θ dσ̃. (2.18)

Before we end this discussion, it is indeed noteworthy to mention that, in (2.2) the polar

angles φ and ϕ are not equivalent coordinates as is the case for an undeformed three-sphere.

In fact one can show that the two 2-spheres on φ and ϕ are related to each other via a

discrete Z2 symmetry in this case [12]. We can choose the ansatz in the opposite way,

ϕ = ξτ +Φ1 +Φ2, φ = ξτ +Φ1 − Φ2 (2.19)

which gives rise to the following string Lagrangian after taking the relevant BMN limit

LP = ξ2κ2 sin2 θ cos2 θ − Φ′2
1 − Φ′2

2 + 2ξΦ̇1 − θ′2 − cos 2θ(2ξΦ̇2 − 2Φ′
1Φ

′
2). (2.20)

Notice that (2.20) differs with (2.9) only by a sign in front of cos 2θ. Now we can again

use the Virasoro constraint as before to find the condition in the leading order of κ,

Φ′
1 = cos 2θΦ′

2, (2.21)

and substitute it back into (2.20) which finally yields the Lagrangian (2.14). This is a nice

fact to note that in the fast spinning string limit, the asymmetry between the φ and ϕ

spheres goes away. Since in [45] the fast spinning string in the deformed three-sphere was

shown to be agreeing with the Landau Lifshitz sigma model on a squashed sphere [40], we

can say that the fast-moving string does not discriminate between two different modes of

squashing. We would elaborate on this point in a later section.

2.2 The anisotropic SU(2) spin chain

We now turn to establishing a precise connection between the string sigma model (2.18)

and that of the continuum limit of SU(2) spin chain Hamiltonian with some nontrivial cor-

rections to it. In our analysis, we follow the same spirit as that of the original analysis [31].

One can always rewrite the contribution (2.18) as (κ2−κ2 cos2Θ) and discard the constant

term without the loss of generality.

In order to proceed further, we first define SU(2) coherent state in the spherical polar

coordinates. To do so, let us consider the following unit vector,

~n =
{
sinΘ sinΦ, sinΘ cosΦ, cosΘ

}
. (2.22)

Next we note down the coherent state corresponding to the spin at the kth site [54],

|~nk〉 = D(~nk)|0〉 (2.23)

where, we define the matrix,

D(~nk) = eαk,+Sk,+−αk,−Sk,− , αk,± =
Θk

2
e±iΦk (2.24)

– 6 –



J
H
E
P
0
2
(
2
0
1
8
)
0
3
5

together with the spin operator defined as,

Sk,z|0〉 =
1

2
|0〉. (2.25)

These spin operators could be defined in terms of Pauli matrices,

Sx =
σx
2
, Sy =

σy
2
, Sz =

σz
2
, S+ = Sx − i Sy, S− = Sx + i Sy. (2.26)

Finally, the coherent state corresponding to the full spin chain could be formally expressed

as,

|~n〉 =
L∏

k=1

|~nk〉, (2.27)

where, L stands for the total number of sites on the chain.

Our next task would be to switch to the discrete picture. In the continuum limit which

corresponds to setting the lattice spacing a = 1
L ∼ 0 we get,

nk → n(σ) = n

(
k

L

)
,
L∑

k=1

→ L

∫ 2π

0
dσ. (2.28)

Based on (2.28), we propose the following discrete version corresponding to (2.18)

HD =
J κ2

4π

L∑

k=1

〈~n|Sk,zSk+1,z|~n〉. (2.29)

where we had used the fact,4

〈~nk|Sk,z|~nk〉〈~nk+1|Sk+1,z|~nk+1〉 = cosΘk cosΘk+1. (2.30)

The total Hamiltonian could be formally expressed as,

HP =
J

2π

L∑

k=1

〈~n|
[
λ

J2

(
1

4
− Sk, xSk+1, x − Sk, ySk+1, y − Sk, zSk+1, z

)
− κ2

2
Sk,zSk+1,z

]
|~n〉

(2.31)

which has a structure analogous to the usual XXZ spin chain [56]

HXXZ =
λ

2π J

L∑

k=1

[
1

4
− Sk, xSk+1, x − Sk, ySk+1, y −∆Sk, zSk+1, z

]
. (2.32)

Comparing the two we get,

∆ = 1 +
κ2J2

2λ
(2.33)

4As the term in (2.18) has no derivative, one might be tempted to consider it as a ultra-local term, for

example product of two spin operators at a single site, i.e say S2
k,z. As we have used Pauli matrices for

various Sk, this possibility will be automatically ruled out as the product of two Pauli matrices acting at

the same site will give either identity or a single Pauli matrix.
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i.e the ‘anisotropy’ parameter ∆ > 1 always in the case of our deformed spin chain. Com-

paring with the known structure of anisotropic XXZ spin chain, one can say that the above

system is in the Neel or the anti-ferromagnetic phase. One more thing to note here is that

usually in term of the quantum group parameter q, the anisotropy is written as

∆ =
q + q−1

2
. (2.34)

One can now use the relation q = exp
[
− 2η

g(1+η2)

]
= exp

[
− κ

g
√
1+κ2

]
and expand in small

κ to find exact agreement with the expression of ∆ found the coherent state spin chain

provided we identify g = λ
J2 as the effective coupling.

2.3 Circular string solutions

Now we will move to studying a particular class of classical circular string solutions the

perspective of the anisotropic SU(2) spin chain Hamiltonian constructed in the previous

section. These kind of solutions were first demonstrated in [31] and were further detailed

in [41, 55]. We vary the sigma model (2.17) w.r.t. Φ and Θ in order to obtain the equations

of motion,

−2Θ̇ sinΘ +
λ

J2
∂σ(Φ

′ sin2Θ) = 0

λ

J2
Θ′′ + 2 sinΘΦ̇− λ

J2
sinΘ cosΘΦ′2 − κ2 sinΘ cosΘ = 0. (2.35)

While the first equation is identical to that of [31], the second equation gets modified

due to the presence of background deformations. One can assume that the boundary con-

ditions on the spin chain remains unaltered and consider the deformation as a perturbation

on an otherwise closed periodic chain namely,

Φ(σ + L) = Φ(σ). (2.36)

Hence one consistent ansatz is to consider ∂σΦ = 0, which using the first equation im-

mediately gives ∂tΘ = 0, and this in turn the second equation indicates ∂2
tΦ = 0. This is of

course only one branch of the solution. We will shortly consider the other possibilities also.

In this case however we can assume that the associated classical string solution has a spin-

ning ansatz of the form Φ = ωτ . Then we are lead to only one effective equation of motion

Θ′′ +
2ω

λ̃
sinΘ− κ2

λ̃
sinΘ cosΘ = 0, (2.37)

where we have redefined the effective coupling λ
J2 = λ̃. Comparing with the Jacobi

differential equations, one could easily write an exact solution in κ for the string,

tanΘ(σ) = sn

[√
2ω − κ2

2λ̃
σ | 2ω + κ2

2ω − κ2

]
. (2.38)

– 8 –
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Here, we use the usual elliptic Jacobi functions and the boundary condition

tan θ(σ = 0) = 0. This explicitly brings out the periodic nature of the solution along σ.

But since we are more interested in the conserved quantities of motion, we will start with

Θ′ = ±
[
a+ b cosΘ + c cos2Θ

]1/2
, b =

4ω

λ̃
, c = −κ2

λ̃
. (2.39)

Here a is a constant of integration. The above equation of motion looks like that of a

particle in a trigonometric potential. Since the effective coupling is fixed, we can always

put c to be small. So now there are two cases to be considered, either a > b > c or

b > a > c. For our case, we will consider the former for simplicity. We can now write the

integrals corresponding to the conserved charges associated with the spin chain:

J =

∫
dσ = 4

∫ Θ0

0

dΘ√
a+ b cosΘ + c cos2Θ

JΦ = Sz = −1

2

∫
cosΘ dσ = −2

∫ Θ0

0

cosΘ dΘ√
a+ b cosΘ + c cos2Θ

. (2.40)

We can easily integrate and find out the charges, albeit noting that c is small we can

expand the expressions upto first order in c ,

J =
8√
a+ b

K(x) +
2c√

a+ b(a− b)b2

[
(b2 − 2a2)E(x)− 2a(a− b)K(x)

]
,

Sz = − 4√
a+ b

[
(a+ b)E(x)− aK(x)

]

+
2c

3b3
√
a+ b(a− b)

[
(8a3 − 5ab2)E(x)− (a− b)(8a2 + b2)K(x)

]
,

x =
2b

a+ b
. (2.41)

Therefore, the charges could be schematically expanded as, Q = Q(0) + cQ(1). At this

stage, it is noteworthy to mention that for, c = 0 our solutions are little different from the

ones obtained in [31]. This is due to the fact that here we have used a different inequality

relation between the constants. Here E and K are the usual complete elliptic integrals.

Our next task would be to calculate the total energy associated with the stringy con-

figuration where we remind ourselves that the total Hamiltonian with Φ′ = 0 is given by

H =
1

2

[
λ̃Θ′2 + κ2 sin2Θ

]
. (2.42)

Finally, we can write down the energy integral as follows,

γ = E =
λ̃

2

∫ Θ0

0

(Θ′2 + κ2

λ̃
sin2Θ) dΘ

√
a+ b cosΘ + c cos2Θ

, (2.43)

=
λ̃

8

[
aJ − 2bSz

]
+

λ̃c

2

∫ Θ0

0

cos 2Θ dΘ√
a+ b cosΘ + c cos2Θ

.

= E(0) + λ̃cE(1).
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It is therefore straightforward to find out the correction term to energy, which, as we

have seen the Hamiltonian is of O(κ2). This is evident that this correction also bears

contribution J and Sz and the undeformed charges obey the same dispersion relation as

in [31]. Therefore, we can write,

E(1) =
1

8
√
a+ b(a− b)b2

[ (
5ab2 − 2a3

)
E(x) + 2(a− b)

(
a2 − 2b2

)
K(x)

]
(2.44)

where x is the same as we had defined before.

There is of course another set of non-trivial solutions where we can have ∂σΦ 6= 0. In

this case, we could still assume that Θ is a function of σ only, so that the Φ equation of

motion gives,

Φ′ =
A

sin2Θ
, (2.45)

where A is a constant. Using the above, the Θ equation can be written in the form,

λ̃Θ′′ + 2Φ̇ sin θ − λ̃
A cosΘ

sin3Θ
− κ2 sin θ cos θ = 0. (2.46)

It is clear here that one can take an ansatz of the form Φ = ωτ + Φ̃(σ), where Φ̃(σ)

satisfies (2.45). This immediately boils down to the fact that Φ̈ = 0 the Θ equation.

Integrating the above equation of motion, we can write it in the form,

Θ′2 +
A

sin2Θ
− 4ω

λ̃
cosΘ + κ2 cos2Θ = B, (2.47)

where B is another integration constant. By a substitution of x = cosΘ we can right it in

a ‘particle in a potential’ form,

x′2 = ax4 + bx3 + cx2 + dx+ e (2.48)

with a = κ2, b = −d = −4ω
λ̃
, c = −B − κ2, and e = B − A. This is indeed a involved

dynamical system if one tries to solve it in full. A simpler subsector of solutions without

expanding around small κ can be generated by choosing e = 0, in this case, without going

into much details, we can write down a solution for the circular string in the following form,

x = cosΘ(σ) =
γ dn2

[√
γ(α−β)
2 κσ | α(γ−β)γ(α−β)

]

1− γ−β
α−β sn2

[√
γ(α−β)
2 κσ | α(γ−β)γ(α−β)

] (2.49)

Here sn and dn are usual Jacobi elliptic functions, while α, β, γ are roots of the polynomial

g(x) = x3 + b
ax

2 + c
ax− b, with b, c as defined earlier.

3 Fast spinning strings on (R × S5)κ

It is natural to consider larger subsectors of the known theory and try to predict deformed

spin-chain structures in connection with the case elaborated in the last section. We shall

now try to probe the SU(3) case for the deformed theory along the lines of [34].
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3.1 The background

We start with the full deformed metric for the κ deformed AdS5 × S5 [13],

ds2(AdS5)κ
= − 1 + ρ2

1− κ2ρ2
dt2 +

dρ2

(1 + ρ2) (1− κ2ρ2)

+
ρ2

1 + κ2ρ4 sin2 ζ

(
dζ2 + cos2 ζ dψ2

1

)
+ ρ2 sin2 ζ dψ2

2 ,

ds2
(S5)κ

=
1− r2

1 + κ2r2
dφ2 +

dr2

(1− r2) (1 + κ2r2)

+
r2

1 + κ2r4 sin2 ξ

(
dξ2 + cos2 ξ dφ2

1

)
+ r2 sin2 ξ dφ2

2 .

(3.1)

Also we have the B-fields B = 1
2BMN dXM ∧ dXN [13]

B̃(AdS5)κ = +
κ

2

(
ρ4 sin(2ζ)

1 + κ2ρ4 sin2 ζ
dψ1 ∧ dζ +

2ρ

1− κ2ρ2
dt ∧ dρ

)
,

B̃(S5)κ = −κ

2

(
r4 sin(2ξ)

1 + κ2r4 sin2 ξ
dφ1 ∧ dξ +

2r

1 + κ2r2
dφ ∧ dr

)
.

(3.2)

It is easy to see that the contributions of the components Btρ and Bφr to the Lagrangian

are total derivatives, and hence can be ignored.

It is worthwhile to note that the (AdS)η contains a singularity, but we won’t be both-

ered with that part in the present analysis. We can put in ρ = 0 and r = cos θ and perform

the redefinition of the coordinates φ → φ3 and ξ → ψ to write the metric of (R × S5)κ in

the following form,

ds2(R×S5)κ
= −dt2 +

sin2 θ

1 + κ2 cos2 θ
dφ2

3 +
dθ2

1 + κ2 cos2 θ

+
cos2 θ

1 + κ2 cos4 θ sin2 ψ

(
dψ2 + cos2 ψ dφ2

1

)
+ cos2 θ sin2 ψ dφ2

2 .

(3.3)

And also the single surviving component of NS-NS flux takes the form as,

B̃(R×S5)κ = −κ

2

(
cos4 θ sin(2ψ)

1 + κ2 cos4 θ sin2 ψ
dφ1 ∧ dψ

)
. (3.4)

3.2 Constructing the spin chain

Now to study spinning string solutions in this background, we use the Polyakov action

coupled to an antisymmetric B-field,

S =

∫
dσdτ (LG + LB) (3.5)

= −
√
λ̂

4π

∫
dσdτ [

√−γγαβgMN∂αX
M∂βX

N − ǫαβ∂αX
M∂βX

NBMN ] ,
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where
√
λ̂ is the changed ’t Hooft coupling as been described before, γαβ is the worldsheet

metric and ǫαβ is the antisymmetric tensor defined as ǫτσ = −ǫστ = 1.

We now follow the analysis of [34] and start with the spinning string ansatz,

t = ξτ, φ1 = α+ t+ ϕ, φ2 = α+ t− ϕ, φ3 = α+ t+ φ. (3.6)

The ξ here is just a constant parameter, not to be confused with the coordinate we used

earlier. The metric then takes the following form,

ds2(R×S5)κ
= −ξ2dτ2 + gθθdθ

2 + gψψdψ
2 + gφ3φ3(ξdτ + dα+ dφ)2 (3.7)

+gφ1φ1(ξdτ + dα+ dϕ)2 + gφ2φ2(ξdτ + dα− dϕ)2.

Using conformal gauge we can then write down the metric part LG of the Lagrangian

for the bosonic spinning string in the usual way as we had done before. To take the

large spin limit, we again remind ourselves that ξ is large and we can let go of the terms

containing Ẋµ, provided ξẊµ is finite. Taking the limit carefully, we arrive at the following

expression,

LG = −
√

λ̂

4π

[
θ′

2
gθθ − ξ2 + (α′2 + ξ2 − 2ξα̇)(gφ1φ1 + gφ2φ2 + gφ3φ3) (3.8)

−2ξ(gφ1φ1ϕ̇+ gφ3φ3 φ̇− gφ2φ2ϕ̇) + gψψψ
′2 + gφ3φ3φ

′2 + (gφ1φ1 + gφ2φ2)ϕ
′2

+2α′ϕ′(gφ1φ1 − gφ2φ2) + 2α′φ′gφ3φ3

]

We can see the form of the form of the lagrangian that at the limit ξ → ∞ we have to

make sure that ξ2κ2 remains a finite combination, which translates to the condition that

κ → 0. Dropping out the terms solely of O(κ2), throughout without any loss of generality,

we can get the BMN string lagrangian,

LG =

√
λ

4π

[
2ξα̇+ 2ξ cos2 θ cos(2ψ)ϕ̇+ 2ξ sin2 θφ̇− α′2 − θ′2 − cos2 θϕ′2 (3.9)

− sin2 θφ′2 − cos2 θψ′2 − 2 sin2 θα′φ′ − 2 cos2 θ cos(2ψ)α′ϕ′

−ξ2κ2 cos2 θ
(
sin2 θ + sin2 ψ cos2 ψ cos4 θ

)]

Looking at the Lagrangian, we can easily spot that this is the same one derived in [34]

albeit with new O(
√
λξ2κ2) terms added due to the deformation. We can now go back

and discuss about the NS-NS flux contribution to the Lagrangian. One might naively note

that the total Lagrangian starts at the O(
√
λκ), which in our case can be neglected in the

BMN limit. But there is a subtlety here. Putting in the coordinate transformations, the

B-field finally has the form,

B = −κ

2

cos4 θ sin(2ψ)

(1 + κ2 cos4 θ sin2 ψ)
[(dα+ dt+ dϕ) ∧ dψ] (3.10)

Under the BMN limit, we can see one of the flux terms will survive, so we could write

LB = −
√
λκ

4π
(cos4 θ sin(2ψ)) ṫψ′ +O(

√
λξκ3) (3.11)
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We can ignore other terms since they will have Ẋ contribution. We should note here that

ṫ = ξ and of course O(
√
λξκ) terms give finite contribution in the required limit.

As in the case before, the Virasoro constraint Tτσ = 0 gives in the leading order of κ,

2ξα′ + 2ξφ′ sin2 θ + 2ξϕ′ cos2 θ cos(2ψ) = 0 (3.12)

Putting the value of α′ back into the Lagrangian and resorting to target space time coor-

dinate t = ξτ , we can write the total action in the following suggestive form,

S =

√
λξ

2π

∫
dσdt

[
α̇+ sin2 θφ̇+ cos2 θ cos(2ψ)ϕ̇ (3.13)

−κ2

2
cos2 θ

(
sin2 θ + sin2 ψ cos2 ψ cos4 θ)

]

−
√
λ

4πξ

∫
dσdt

[
θ′2 + cos2 θ(ψ′2 + sin2(2ψ)ϕ′2) + sin2 θ cos2 θ(φ′ − cos(2ψ)ϕ′)2

]

−
√
λκ

4πξ

∫
dσdt [cos4 θ sin(2ψ)]ψ′.

Here, we can see that the momentum associated to α is simply Pα =
√
λξ, which we

can identify with the spin chain conserved charge J . Then we can easily write the total

Hamiltonian in the form,

Hκ =
λ

4πJ

∫
dσ

[
θ′2 + cos2 θ(ψ′2 + sin2(2ψ)ϕ′2) (3.14)

+
1

4
sin2(2θ)(φ′ − cos(2ψ)ϕ′)2

]
+

J

2π

∫
dσ

[
κ2

2
cos2 θ

(
sin2 θ + sin2 ψ cos2 ψ cos4 θ)

]

+
λκ

4πJ

∫
dσ [cos4 θ sin(2ψ)]ψ′

= HSU(3) +HD +HB.

Here HSU(3) corresponds to the Hamiltonian of usual SU(3) spin chain in the contin-

uum limit, also HD and HB are the deformation term and the NS-NS flux contribution

respectively. We can note here that the usual SU(3) spin chain has an effective coupling
λ
J , while the NS-NS contribution has an effective coupling λκ

J , so that we can treat it as an

addition of a small interaction to the spin chain. The contribution due to the deformation,

on the other hand, occurs at O(κ2) as was in the case of SU(2). One can easily recover the

results of SU(2) case (up to some re-scalings) by simply putting in ψ = 0.

3.3 Deformed spin chain in terms of coherent states

Next we try to match this Hamiltonian (3.14) as a continuum limit of SU(3) Heisenberg

type model, albeit with added corrections. We proceed pretty much along the lines similar

to the SU(2) case. Here, we start with the SU(3) coherent spin state as described in [34].

It must be noted here that there is no a-priori reason to expect that for the deformed

symmetry the usual coherent state will still be enough to capture the underlying spin

chain, although it is indeed interesting to see how the predicted and actual terms deviate
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from each other in this case. For the action of the (unbroken) symmetry group on the kth

site we get,

|~nk〉 = cos θk cosψke
i ϕk |1〉+ cos θk sinψke

−i ϕk |2〉+ sin θk e
i φk |3〉. (3.15)

With 0 ≤ θ < π, 0 ≤ ψ < 2π, 0 ≤ φi < 2π. The coherent state for the full spin chain is

again,

|~n〉 =
L∏

k=1

|~nk〉. (3.16)

For the κ = 0 part we get back the undeformed SU(3) Heisenberg spin-chain,

Hκ=0 =
λ

2πJ

J∑

k=1

〈~n|
[
4

3
−

8∑

a=1

λk, aλk+1, a

]
|~n〉, (3.17)

which gives the appropriate terms i.e. HSU(3) in L → ∞ limit. Here, λ′
as are the usual

Gell-Mann matrices, a = 1, . . . 8. Details of our convention and action of coherent state on

these matrices are given in the appendix A. Next we try to generate the other terms at the

order of κ and κ2 this coherent state itself. To do so we start with the following general

linear combination,

I =
8∑

ab=1

ab〈nk|λk,b|nk〉〈nk+1|λk+1,b|nk+1〉. (3.18)

Now taking the continuum limit, we get,

I = L

∫
dσ

[
a8
12

+ cos4 θ
(
sin2(2ψ)

(
a2 sin

2(2ϕ) + a1 cos
2(2ϕ)

)
+ a3 cos

2(2ψ)
)

+sin2(2θ)
(
cos2 ψ

(
a4 cos

2(ϕ− φ) + a5 sin
2(ϕ− φ)

)

+sin2 ψ
(
a6 cos

2(ϕ+ φ) + a7 sin
2(ϕ+ φ)

) )
+

1

4
a8 cos(2θ)(3 cos(2θ)− 2)

+
φ′

2L

(
sin2(2θ)

(
(a5 − a4) cos

2 ψ sin 2(ϕ− φ) + (a6 − a7) sin
2 ψ sin(2(ϕ+ φ))

) )

+
ϕ′

2L

(
2 sin(4ϕ)(a1 − a2) cos

4 θ sin2(2ψ) + sin2(2θ)
(
(a4 − a5) cos

2 ψ sin 2(ϕ− φ)

+(a6 − a7) sin
2 ψ sin(2(ϕ+ φ))

))
+

ψ′

L

(
cos4 θ sin(4ψ)

(
− a2 sin

2(2ϕ)

+a3 − a1 cos
2(2α)

)
+ sin2(2θ) sinψ cosψ

(
a4 cos

2(ϕ− φ) + a5 sin
2(ϕ− φ)

−a6 cos
2(ϕ+ φ)− a7 sin

2(ϕ+ φ)
))

+
θ′

4L

(
4 sin(θ) cos3(θ)

(
sin2(2ψ)(cos(4α)

(a1 − a2) + a1 + a2) + a3 cos(4ψ) + a3

)
+ sin(4θ)

(
− 2 cos2(ψ)((a4 − a5) cos(2ϕ− 2φ)

+a4 + a5)− 4 sin2(ψ)
(
a6 cos

2(ϕ+ φ) + a7 sin
2(ϕ+ φ)

)
+ 3a8

)
− 2a8 sin(2θ)

)]
. (3.19)
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Here we have kept terms upto linear derivative and neglected the quadratic derivative

term in the large L limit. Now we focus first how to generate the term coming B field

contribution. We then pick out the ψ′ term in the expansion,

∫
dσ

[
cos4 θ sin(4ψ)

(
−a2 sin

2(2ϕ) + a3 − a1 cos
2(2ϕ)

)
+ 2(cos2 θ − cos4 θ) sin(2ψ)

×
(
a4 cos

2(ϕ− φ) + a5 sin
2(ϕ− φ)− a6 cos

2(ϕ+ φ)− a7 sin
2(ϕ+ φ)

) ]
ψ′,

(3.20)

From (3.20) it is evident we cannot generate only the B field term, as a by-product, other

terms will naturally be there. We rescale all the coefficients ai by a factor of λκ
4πJ to make

connection with the spin chain the sigma model. Then we can set a4 = a5, and a6 = a7.

This will give,

λκ

4πJ

∫
dσ

[
cos4 θ sin(4ψ)

(
−a2 sin

2(2ϕ) + a3 − a1 cos
2(2ϕ)

)

+ 2(a4 − a6)(cos
2 θ − cos4 θ) sin(2ψ)

]
ψ′,

(3.21)

Then we can set a1 = a2 = a3, leaving us with ,

λκ

4πJ

∫
dσ

[
2(a4 − a6)(cos

2 θ − cos4 θ) sin(2ψ)
]
ψ′, (3.22)

So we will have these two term associated with ψ′. Not only that, we still have the following

extra terms also,

λκ

8πJ

∫
dσ

[
sin(2θ)(cos(2θ)(a3 + 2(a6 − a4) cos(2ψ)− 2(a4 + a6) + 3a8) + a3 − a8)

]
θ′

+
λκ

96πJ

∫
dσ

[
3 cos(4θ)(a3 − 2(a4 + a6) + 3a8) + 12(a3 − a8) cos(2θ) + 9a3

+ 12(a4 − a6) sin
2(2θ) cos(2ψ) + 6(a4 + a6) + 11a8

]
. (3.23)

Also it is evident that these extra terms cannot be set to zero entirely. At best we can

choose,

a3 = 2a4 + 2a6 − 3a8, a8 =
a4 + a6

2
. (3.24)

Then we will be left with,

λκ

8πJ

∫
dσ

[
1

3

(
3(a4 − a6) sin

2(2θ) cos(2ψ) + 4(a4 + a6)
)
− (a4 − a6) sin(4θ) cos(2ψ)θ

′
]
.

(3.25)

(3.25) we here we can choose,

a4 = ±1 + a6, a6 = ∓1

2
. (3.26)

So we can’t reproduce our B-field term exactly in this procedure, due to the presence of

extra contributions which can’t be accounted for via the SU(3) symmetry of the coherent
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state. So we end up with spin-chain representation for only a part of the B-field,

λκ

4πJ

∫
dσ [cos4 θ sin(2ψ)]ψ′ = ±λ(1− β)

2πJ
lim
L→∞

L∑

k=1

∑

ab=4,5,6,7

〈nk|λk,b|nk〉〈nk+1|λk+1,b|nk+1〉

+
λκ

4πJ

[ ∫
dσ

(
2 cos2 θ sin(2ψ)ψ′ − 1

4
sin(4θ) cos(2ψ)θ′

+
L

4
sin2(2θ) cos(2ψ)

)]
(3.27)

where we have β = 1 + κ
4 .

Next we try to reproduce the λκ2

J terms. We start with the same linear combina-

tion (3.18). In previous case we kept linear derivative term as they are associated with λκ
J .

But for this case we neglect them as they are multiplied with Jκ2. Then we can easily see

that,

J κ2 L

4π

∫
dσ

[
cos2 θ

(
sin2 θ + sin2 ψ cos2 ψ cos4 θ)

]

=
λ (α− 1)

2πJ
lim
L→∞

L∑

k=1

∑

b=1,2,4,5,6,7

〈nk|λk,b|nk〉〈nk+1|λk+1,b|nk+1〉

− J κ2 L

4π

∫
dσ

[
cos4 θ sin2 θ sin2 ψ cos2 ψ

]
,

(3.28)

where α = 1 + κ2J2

8λ is an anisotropy parameter.

From (3.27) and (3.28) it is evident that are various extra terms left over that cannot

be generated by probing the theory with SU(3) coherent state. This is not surprising fact

as SU(3) symmetry of the Hamiltonian has been broken at the perturbative level. One

can hope to study these terms by starting with quantum deformed coherent state, writing

the full Hamiltonian and then expanding it in terms of the deformation parameter. The

problem of having an extra term at the quadratic order of the deformation parameter was

addressed in [51] via a properly chosen non-unitary transformation on the spin chain and

then taking the continuum limit. We leave these questions open for possible future studies.

As a final step, we collect the parts of the Hamiltonian that can be written in terms

of the SU(3) coherent state and write them as following,

H̃κ =
λ

2πJ

L∑

k=1

〈~n|
[
4

3
−

∑

a=3,8

λk, aλk+1, a − (1−∆±
1 )

∑

b=4,5,6,7

λk, bλk+1, b

− (1−∆2)
∑

c=1,2

λk, cλk+1, c

]
|~n〉,

(3.29)

where, ∆±
1 = (α∓β− 1± 1) and ∆2 = (α− 1) = κ2J2

8λ . So there are two choices for the ∆1,

∆+
1 =

κ2J2

8λ
− κ

4
, ∆−

1 =
κ2J2

8λ
+

κ

4
. (3.30)
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this is evident that there are two situations based on choice of the constants. Now for the

case of ∆+
1 we will have 1 − ∆+

1 > 1 and 1 − ∆2 < 1, so we would get two competing

anisotropy parameters. On the other hand, for ∆−
1 case we will have both 1 − ∆−

1 and

1−∆2 to be less than one. These two regimes of different anisotropies offer a rich physical

structure in the spin chain that we would like to explore in detail elsewhere.

3.4 Circular string solutions

Now, we can discuss the circular string spectrum for the deformed SU(3) model. Let us

start by writing the equations of motion for the deformed action [3.13],

sin(2θ)θ̇ =
λ

4J2
∂σ

[
sin2(2θ)(φ′ − cos(2ψ)ϕ′)

]
, (3.31)

∂t(cos
2 θ cos(2ψ)) =

λ

J2
∂σ

[
cos2 θ sin2(2ψ)ϕ′ +

1

4
sin2(2θ)(φ′ − cos(2ψ)ϕ′) cos(2ψ)

]
,

cos2 θ sin(2ψ)

[
ϕ̇+

λ

J2

(
cos2 θ cos(2ψ)ϕ′2 + sin2 θϕ′φ′)

]
+

λκ

2J2
cos4 θ cos(2ψ)

+
κ2

8
sin(4ψ) cos4 θ =

λ

2J2
∂σ

[
cos2 θψ′ +

κ

2
cos4 θ sin(2ψ)

]
. (3.32)

Also we can write the complicated θ equation in the form

λ

J2
θ′′ + V(θ, ψ, φ, ϕ, κ) = 0 (3.33)

where we have,

V = sin(2θ)

[
φ̇− cos(2ψ)ϕ̇+

λ

2J2

[
ψ′2 + sin2(2ψ)ϕ′2 − cos(2θ)(φ′ − cos(2ψ)ϕ′)2

]]

−κ2

2

[
sin(2θ) cos(2θ)− 6 sin2 ψ cos2 ψ cos5 θ sin θ

]
+

2λκ

J2

[
cos3 θ sin θ cos(2ψ)

]

Solving these equations of motion in full generality appears to be a herculean task. For

simplicity, we will find the energy states analysed in [34] for the SU(3) case. For more gen-

eral string configurations SU(3) spin chains, see for example [57–59]. Let us now consider

a simplified solution where we can consistently employ the ansatz

θ = θ0, ψ = ψ0, ϕ = mσ + gτ, φ = nσ + hτ (3.34)

These m,n are the winding numbers of the circular string and g, h are constants depending

on m,n, and κ. Under this simplification, it is easy to write the conserved charges for the

solution as following,

Pϕ = J cos2 θ0 cos 2ψ0 = J1 − J2 (3.35)

Pφ = J sin2 θ0 = J3
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The Hamiltonian for this case simplifies to the form

Hκ =
λ

2J

[
m2 cos2 θ0 sin

2(2ψ0) +
n2

4
sin2(2θ0) +

m2

4
sin2(2θ0) cos

2(2ψ0) (3.36)

−mn

2
sin2(2θ0) cos(2ψ0)

]
+

[
Jκ2

2
cos2 θ0

(
sin2 θ0 + sin2 ψ0 cos

2 ψ0 cos
4 θ0)

]

One can notice here that the NS flux term does not contribute in this case. We then use

the relations consistent with the definition of charges

J1
J

= cos2 θ0 cos
2 ψ0,

J2
J

= cos2 θ0 sin
2 ψ0,

J3
J

= sin2 θ0, (3.37)

and write the total energy of the string as,

Eκ =
λ

2J

1

J2

[
4m2J1J2 + (m− n)2J1J3 + (m+ n)2J2J3 (3.38)

+
κ2

λ̃

(
J1J2 + J2J3 + J1J3 −

J1J2J3
J

)]

We can easily see that the energy reduces to the exact undeformed value when κ = 0 [34].

The curious thing to note here is that in the deformation term (of O(κ2)) the quadratic

terms of Ji’s explicitly correspond to the terms in the deformed spin chain that can be

written in terms of the SU(3) coherent state. On the other hand the cubic term comes the

Hamiltonian contribution of ∼ cos4 θ sin2 θ sin2 ψ cos2 ψ , which, as we have shown, can’t

be written in terms of the coherent state for SU(3). This term explicitly points to the

quantum group deformed symmetry which we can’t capture in our analysis, at least by

doing so from the undeformed symmetry considerations.

4 Map to other deformed sigma models

The new interest in YB deformed sigma models has taken its course along two different

paths, namely the standard q-deformed theories and the Jordanian deformed theories. In

both of these cases, the structure of classical r-matrices plays the central role in constructing

the deformed sigma model. The point to stress here would be that the former is based on

the modified Classical Yang-Baxter Equation (mCYBE), while the latter is simply based

on the Classical Yang-Baxter Equation (CYBE). The sigma model on the squashed sphere

and that of the η-deformed AdS5 × S5 superstring [10] fall into the standard deformed

category, while the Jordanian deformed theories have been studied in detail, for example,

see [18, 19] and references therein.

The standard q-deformed theories have been discussed in the literature for many years.

At the spin chain level, the connection between fast-spinning string limits of squashed three-

sphere and (R×S3)η was shown in [45]. Sure enough, this connection has deep rooted indi-

cations for the theory. For example, it was beautifully shown in [12] that one could repro-

duce both the (R×S3)η and the Squashed S3 starting the celebrated Fateev O(4) model [60]
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and putting in different values of the squashing parameters. The most general deformation

at the quantum level is that of the low-energy limit of the Leigh-Strassler deformed [61]

one-loop spin-chain [62], which for SU(2) case can be written in the form as following,

λ

16π|q|
L∑

i=1

[(
1 + qq∗

2
+ hh∗

)
I−

(
1 + qq∗

2
− hh∗

)
σz,iσz,i+1 − 2qσ−

i σ
+
i+i − 2q∗σ+

i σ
−
i+i

]
.

(4.1)

Here q and h are the quantum group parameters and σ± = σx + iσy. For example, the

choice q = exp[βI − iβR] and h = 0 produces the general complex β deformed spin chain

model. One can explicitly see that if βR = 0, the fast spinning string limit of the action

corresponding to this geometry is given by,

S = SSU(2) −
λ

16πL

∫
dτdσ β2

I sin
2 2θ, (4.2)

which has exactly the same form as (2.17).

This connection between the continuum spin chain limits of the β deformed models

and η-deformed models also sustain for higher dimensional cases, albeit with some subtlety.

One must mention here the work [63], where the authors generate γ-deformations of the

AdS5×S5 superstring as Yang-Baxter sigma models with classical r-matrices satisfying the

classical Yang-Baxter equation. As an example, let us consider the total Lunin-Maldacena

geometry with complex β deformation5 parameter β = βI − iβR. Again we will consider

the case βR = 0 and the subsector has been shown to preserve integrable motion of classical

strings [39]. However, in [64], the authors have discussed a rather unconventional limit of

the background where βI = 0 and the quantum group parameter is taken as q = exp(iβ),

i.e. the purely imaginary deformation limit. The background metric, in this case, is simply

the real β deformed metric multiplied by a conformal factor, however, the NS fluxes are

more involved. This adds to the fact that a particular deformed SU(3) sector spanned

by an anti-holomorphic field and two holomorphic fields (or vice versa) is supposed to be

integrable for even imaginary β [65]. One must note here that only this does not guarantee

the integrability of the whole model. In fact, the non-integrability of the purely imaginary

β deformed background was argued via chaotic motion of strings in [66].

For this imaginary β case, the fast spinning limit has been considered in [64]. In our

parameterization of the undeformed coherent state, we can explicitly see that in addition

to usual SU(3) terms, the deformation term in their Hamiltonian has a form,

HD ∼ β2
R

2

∫
dσ

[
cos2 θ

(
sin2 θ + sin2 ψ cos2 ψ cos4 θ)

]
(4.3)

which exactly has the similar form to our deformation term. Moreover, the B field term

in this case reads.

HB ∼ βR

[
sin θ cos θ cos2 ψ θ′ + sin2 θ cos2 θ cosψ sinψ ψ′

]
(4.4)

5See appendix B for some details of the background.
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which seems to be different in our case. But this is intriguing that at least the level of

metric, the action for the imaginary β deformation reproduces same deformation term

as is the case of η deformed background in the fast spinning limit. Naively one could

say that the string in this limit does not distinguish between different deformations and

‘perceives’ only the leading order deformed geometry. The other intriguing observation is

that in [64] a spinning string solution for the SU(3) sector has been performed and it has

been explicitly shown that this energy can be reproduced via an algebraic Bethe equation.

And this can be shown to exactly lead to the same correction to the energy quadratic in

the deformation parameter as in (3.38), even with the cubic term in Ji. For some details

on this point, one can have a look at appendix C.

This is a rather new connection between these two drastically different theories, which

is quite surprising since the β deformed background is obtained by T dualities and S

dualities on the target space, while the η deformation is performed purely at the worldsheet

sigma model level. It is a right moment to mention here that a recent analysis [67] of

spinning strings and Normal Variational Equations (NVEs) in the η deformed AdS3 and S3

has puzzlingly found signs of non-integrability. Indeed the method of analysis is similar to

that for non-integrability of imaginary β deformed case [66]. This remains a very mysterious

point that one has to address with all its subtlety via better methods.

5 Summary and final remarks

We now summarize the key observations made in this paper. The purpose of the present

work was to study the η deformed sigma models in the fast spinning limit and to explore

possibilities whether these sigma models have any resemblance to that with the Heisen-

berg spin chain systems in its continuum limit. It turns out, rather expectedly, that

in the fast spinning limit, a part of the string sigma model corresponding to (R × S5)η
could be expressed as the continuum limit of SU(3) Heisenberg-type spin chain with added

anisotropic terms, provided we confine ourselves to nearest neighbor interactions. However,

as a by-product of our analysis, we generate a few additional terms in the sigma model that

eventually survive the BMN limit and cannot be expressed in terms of nearest neighbour

interactions using the standard definition of SU(3) coherent states. Furthermore, as an

interesting observation, we identify these additional contributions in the sigma model to

be identical to that with the corresponding fast spinning strings with imaginary β defor-

mations [64]. The description of this imaginary β model seems also to be plagued by the

presence of terms cubic in coherent vectors of SU(3). Our observation might actually point

towards unveiling a new connection between two apparently drastically different looking

string theories near the BMN limit. However, the reason why one is not able to match the

B-field contributions in the two cases, and how it affects the analysis, eludes us so far.

Before we formally conclude, it is indeed noteworthy to mention that the fast spinning

limit with fermionic excitations has never been explored in the context of q deformed sigma

models. It would be therefore an interesting exercise to extend the entire analysis for the

fermionic sector (following, for example, [68]–[70]) and in particular to explore whether

sigma models with YB deformations has any resemblance to that with the q deformed
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supersymmetric spin chains [71, 72] in its continuum limit. This should be feasible in the

case of η deformation since it allows us to write down a Lagrangian description of the

standard Green-Schwarz type [15] that is quadratic in fermionic excitations. We hope to

address this issue in near future.
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A SU(3) coherent state

We give the details for our convention regarding the Gell -Mann matrices and the action

of SU(3) coherent state that we have used in the main text.

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0


 ,

λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i

0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 ,

λ7 =




0 0 0

0 0 −i

0 i 0


 , λ8 =




1√
3

0 0

0 1√
3

0

0 0 − 2√
3


 .

(A.1)

this we get,

〈nk|λ1|nk〉 = cos(2ϕk) cos
2 θk sin(2ψk), 〈nk|λ2|nk〉 = sin(2ϕk) cos

2 θk sin(2ψk),

〈nk|λ3|nk〉 = cos2 θk cos(2ψk), 〈nk|λ4|nk〉 = sin(2θk) cosψk cos(ϕk − φk),

〈nk|λ5|nk〉 = sin(2θk) cosψk sin(ϕk − φk), 〈nk|λ6|nk〉 = sin(2θk) sinψk cos(ϕk + φk),

〈nk|λ7|nk〉 = − sin(2θk) sinψk sin(ϕk + φk), 〈nk|λ8|nk〉 =
3 cos(2θk)− 1

2
√
3

. (A.2)

Also it can be checked that given the coherent state (3.15), using 〈~nk|~nk+1〉 we can repro-

duce the kinetic term in action (3.13) in the continuous limit.
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B The complex-β deformed theory

In [39], the gravity dual background of the complex β-deformed background corresponding

to deformed N = 4 SYM theory takes the following form:

ds2 =
√
H


ds2AdS5

+

3∑

i=1

(dρ2i +Gρ2i dφ
2
i ) + (γ2 + σ2)Gρ21ρ

2
2ρ

2
3

(
3∑

i=1

dφi

)2

 , (B.1)

B = (γGw2 − 12σw1dψ) , ψ =
1

3
(φ1 + φ2 + φ3), (B.2)

w2 = ρ21ρ
2
2dφ1dφ2 − ρ21ρ

2
3dφ1dφ3 + ρ22ρ

2
3dφ2dφ3, dw1 = cos θ sin3 θ sinφ cosφdθdφ,

eΦ = eΦ0

√
GH,

where the metric, the NS-NS B field and the dilaton have been written. The functions

used here are the following,

G =
1

1 + (γ2 + σ2)Q
, with Q = ρ21ρ

2
2 + ρ22ρ

2
3 + ρ21ρ

2
3, (B.3)

and

H = 1 + σ2Q , (B.4)

where the general complex β can be written as,

β = γ − iσ; . (B.5)

The coordinates are related by the constraint
∑

ρ2i = 1 and we choose to parametrise them

in accordance with our SU(3) coherent state

ρ1 = cos θ cosφ , ρ2 = cos θ sinφ , ρ3 = sin θ . (B.6)

The authors of [64] have considered a subsector of this theory with γ = 0, i.e. purely

imaginary deformation parameter. The metric is indeed same as that of real β but with

the conformal factor
√
H multiplied.

C A Bethe ansatz solution for energy in SU(3) case

For the sake of completeness, let us now discuss the Bethe ansatz solution for the spectrum

of circular spinning strings in the SU(3) subsector. This is important since we will be using

a SU(3)q Bethe ansatz which will hopefully be able to capture the deformed energy of the

circular string in its entirety. In the usual N = 4 theory, the operators corresponding to

these strings are supposed to have a generic form Tr(ΦJ11 ΦJ22 ΦJ33 ), where Ji are the large

R-charge and the long spin chain limit explicitly implies the large J limit. Also as reported

earlier, we consider q = exp
[
− κ

g
√
1+κ2

]
= e−ν/g. Following [64], one could write down the

Bethe ansatz equations as,

K2∏

l 6=k

sinh((λ2,k − λ2,l) +
ν
g )

sinh((λ2,k − λ2,l)− ν
g )

K1∏

j=1

sinh((λ2,k − λ1,j)− ν
2g )

sinh((λ2,k − λ1,j) +
ν
2g )

= 1 , (C.1)

(
sinh(λ1,k − ν

g )

sinh(λ1,k +
ν
g )

)J

=

K1∏

l 6=k

sinh((λ1,k − λ1,l)− ν
g )

sinh((λ1,k − λ1,l) +
ν
g )

K2∏

j=1

sinh((λ1,k − λ2,j) +
ν
2g )

sinh((λ1,k − λ2,j)− ν
2g )

, (C.2)
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Here J = J1 + J2 + J3 is the length of the spin chain. The periodicity condition imposes

the constraint,
K1∏

l

sinh(λ1,l − ν
g )

sinh(λ1,l +
ν
g )

= 1 , (C.3)

For exact values of ν, the energy is given by

E =

K1∑

k=1

ǫk, with ǫk =
λ

8π2

sinh2 νg
sinh(λ1,k +

ν
2g ) sinh(λ1,k − ν

2g )
. (C.4)

For the fast spinning limit of the corresponding string solution in J → ∞, one would have

to take ν
g → 0 (which translates to κ → 0), so that their product remains finite. The way

to take this limit is take a logarithm of the Bethe equations and expand it accordingly. In

this limit, the energy has an expression,

E =
λ

8π2

(
K1∑

k

1

x21,k
+

ν2J2

g2
K1

)
, (C.5)

where xm,k is defined via tanhλm,k = 2iJxm,k tanh
ν
2g , with m = 1, 2. After some strenuous

algebra and identifying J1 = J − K1, J2 = K1 − K2, J3 = K2 [59], we can reach at the

expression for energy which explicitly matches with (3.38) when we identify g = λ
J2 .
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