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1 Introduction

The evolution of the universe and its origin in a Big Bang (BB) appear to be well described

by the ΛCDM model of inflationary cosmology. This model is based on general relativity

(GR), assuming suitable matter content and initial conditions. Nevertheless, the situation

is not satisfactory. The model requires a dominant role of unknown matter and energy,

while postulating that GR still applies at cosmological scales. At very short distances,

GR quite certainly breaks down, and a quantum theory of gravity must take over. This is

essential to address the local and global singularities of space-time, in particular the BB,

but it also leads to serious fine-tuning problems.

There are strong reasons to expect that in a consistent quantum theory including

gravity, there should be only finitely many degrees of freedom per unit “volume”. While

we do not know the correct micro-structure of space-time, it requires a pre-geometric origin

of space-time. This also seems to be the most reasonable way to resolve the singularities

in black holes and the BB.

Among the many possible approaches to this issue, we will follow an approach based on

matrix models. By their very nature as discrete pre-geometric models, they provide natural

candidates to address the above issues. Among all pure matrix models, the IKKT model [1]

is singled out by virtue of maximal supersymmetry, and it was proposed as a candidate for

a non-perturbative description of IIB string theory. Although there is at present no solid

understanding of this model at a non-perturbative, background-independent level, there is
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a good picture of branes arising as classical solutions, with IIB supergravity interactions

arising at the loop level [1–4]. The effective geometry of such branes (given by some

matrix background1) can be elaborated as noncommutative or semi-classical geometry,

and fluctuations of these backgrounds lead to noncommutative gauge theory coupled to this

geometry [5, 6]. Here the maximal supersymmetry of the matrix model plays an important

role, since otherwise unacceptable large non-local effects due to UV/IR mixing [4, 7, 8])

invalidate the semi-classical picture.

In this paper, we will present explicit and simple brane solutions of the IKKT matrix

model with mass term, which can serve as (toy-) models for cosmological space-times,

and exhibit a BB-like singularity. They have a space-like SO(4) isometry, and reduce to

homogeneous and isotropic FRW cosmologies with k = 1 in the semi-classical limit. These

solutions are obtained from basic quantized (“fuzzy”) homogeneous spaces, specifically the

fuzzy 4-sphere S4
N and the fuzzy 4-hyperboloid H4

n. These turn out to be solutions of

the Lorentzian matrix model in the presence of suitable mass terms, which are different

for the space-like and time-like matrices. The BB arises from a signature change in the

effective metric, taking into account the quantized 4-volume form which arises from the

non-commutative structure of the brane. The point is that the effective metric on the

brane M is not the induced metric, but involves the Poisson structure on the brane in

an essential way2 [9–11]. The Poisson structure gives rise to the frame bundle, and its

flux provides the measure for the integration on M. This determines the conformal factor

of the metric which is singular at the location of signature change, leading to a singular

initial expansion.

It is well-known that fuzzy spaces can be solutions of Lorentzian matrix models, cf. [12–

17]. Even compact solutions were found in [18, 19], where it was pointed out that the

induced metric on the brane can change from Euclidean to Minkowski signature. However,

this alone is not sufficient to obtain a Big Bang, and it does not imply a rapid expansion.

The present work differs from the previous ones in two important ways. First, we obtain

3+1-dimensional space-time solutions which are completely homogeneous and isotropic;

more precisely, they are covariant under SO(4) acting on the spatial S3. Second and most

remarkably, a BB with rapid (singular) initial expansion is shown to arise automatically

on these solutions. These space-times are governed not by GR but by the matrix model.

We provide two basic examples of such cosmological matrix space-times with BB,one

describing a recollapsing universe with a big crunch,and one which is expanding forever.

Although neither seems to agree very well with the standard cosmology (at least under the

present crude analysis),they illustrate how such quantum space-times might look like,and

provide a possible explanation of the BB, beyond postulating that it arises from random

quantum fluctuations as in other approaches [20]. The BB here is simply a feature of the

emergent geometry, which is extended by a Euclidean regime. It arises in the presence of

different space-like and time-like masses m2 6= m2
0 in the matrix model action satisfying

certain conditions. Even though the solutions may not be realistic and stability at the

1Note that the branes should be viewed as classical condensates here, this is not a holographic scenario,

and it does not rely on quantum effects.
2The effective metric can be thought of as open string metric in the Seiberg-Witten limit [11].
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quantum level is not established, they nicely illustrate the appeal and the scope of the

IKKT model (or similar matrix models) as a fundamental theory of space-time and matter.

2 Lorentzian matrix models

We are interested in solutions of the following IKKT-type matrix model [1] with mass terms

S[Y,Ψ] =
1

g2
Tr
(

[Y a, Y b][Y a′ , Y b′ ]ηaa′ηbb′ −m2Y iY i +m2
0Y

0Y 0 + ΨΓa[Y
a,Ψ]

)
. (2.1)

Here ηab = diag(−1, 1, . . . , 1) is interpreted as Minkowski metric of the target space R1,D−1.

Indices i indicate Euclidean directions, and 0 is the time-like direction. Fermions Ψ are

included via the Gamma matrices Γa to enable supersymmetry, however we will focus on

the bosonic sector from now on. The above model leads to the classical equations of motion

−�Y Y
i −m2Y i = 0

�Y Y
0 +m2

0Y
0 = 0 (2.2)

where

�Y = ηab[Y
a, [Y b, .]] (2.3)

plays the role of the d’Alembertian. We will study solutions of these equations which are

interpreted as 3+1-dimensional space-times, more specifically as noncommutative “branes“

embedded in target space.

As emphasized in the introduction, the choice of the matrix model is important. The

picture of classical brane solutionsM is presumably justified only for the maximally super-

symmetric IKKT model with D = 9 + 1 [1], due to UV cancellations of the quantum fluc-

tuations; in fact this model reduces to N = 4 SYM on 4-dimensional backgrounds.3 Thus

although the solutions given below are not supersymmetric, the underlying model (2.1) is,

up to the soft mass terms. Hence SUSY is broken spontaneously and softly, but we expect

that this still ensures sufficient UV cancellations to tame the quantum corrections.

These mass terms are important because they introduce a scale into the model, and

conversely quantum corrections are expected to induce such mass terms on curved back-

grounds. Indeed as discussed in [15–17], after taking into account an IR cutoff and inte-

grating out the scale factor in the matrix path integral

Z =

∫
dY dψeiSIKKT[Y,ψ] (2.4)

the equations of motions (2.2) arise, with m2 6= m2
0 resulting from an IR regularization

which mildly breaks Lorentz invariance. Since we only study classical solutions of (2.2)

and their geometrical properties, we will restrict ourselves to the bosonic part of (2.1),

including the mass terms by hand. Moreover, we will see that a Big Bang arises from

the present solutions only if m2 6= m2
0. In fact there are no finite-dimensional non-trivial

solutions without a mass term, as shown in the appendix.

3This is the only model of a noncommutative gauge theory where quantum corrections are tame and

expected to be perturbatively finite [21].
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3 Recollapsing universe from fuzzy 4-spheres

3.1 The Euclidean fuzzy 4-sphere

We briefly recall the definition of fuzzy 4-spheres [22], cf. [23–27]. The starting point is the

Lie algebra so(6) ∼= su(4), with generatorsMab, a, b = 1, . . . , 6 and commutation relations

[Mab,Mcd] = i(δacMbd − δadMbc − δbcMad + δbdMac) . (3.1)

Now consider the embedding of SO(5) ⊂ SO(6) defined by restricting the indices of Mab

to be in {1, . . . , 5}, and denote the remaining generators as

Xa = rMa6, a = 1, . . . , 5 ,

[Xa, Xb] = Θab = r2Mab (3.2)

Here r is a scale with dimension length. By construction, the Xa transform covariantly

under SO(5) generated by Mab,

[Mab, Xc] = i(gacXb − gbcXa), (3.3)

We fix the SO(6) representation to be H = (0, 0, N) = (C4)⊗SN , which is well-known to

remain irreducible under SO(5). Therefore the radius is a constant,

XaXa = XaXbδab = R21l = r2R2
N1l, R2

N =
1

4
N(N + 4) . (3.4)

The so(6) ∼= su(4) generators Mab ∈ End(H), a, b = 1, . . . , 6 are now understood as

quantized embedding functions

Mab ∼ mab : CP 3 ↪→ so(6) ∼= R15 (3.5)

where mab = r−2θab, and similarly

Xa ∼ xa : CP 3 ↪→ R5 . (3.6)

In the semi-classical limit, the commutators reduce to the Poisson bracket on CP 3, and we

can work with the Poisson structure

{xa, xb} = iθab . (3.7)

Therefore the semi-classical geometry underlying fuzzy S4
N is CP 3, which is an S2− bundle

over S4 carrying a canonical symplectic structure, and xa : CP 3 → S4 ⊂ R5 is nothing

but the Hopf map. This can also be justified e.g. via coherent states |x, ξ〉, which are in

one-to-one correspondence (up to a phase) to points on CP 3 ∼= SU(4)/SU(3)×U(1), which

is locally isomorphic to S4 × S2 3 (x, ξ). It turns out that θab = θab(x, ξ) is tangential

xaθ
ab = 0 on S4, and transforms under the local stabilizer SO(4)x of any point x ∈ S4. More

precisely, it forms a bundle of self-dual bi-vectors θµν on S4, which is locally isomorphic to

S4 × S2. In particular, [θab]S2 = 0 where [.]S2 denotes the averaging over the internal S2.

For more details on fuzzy S4
N we refer to [27–29]. A gentle introduction to the geometrical

concepts of fuzzy spaces can be found e.g. in [30].
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3.2 Lorentzian fuzzy 4-sphere in R1,4

We will show that ellipsoidal deformations of S4
N are exact solutions4 of the model (2.1),

provided m2 6= m2
0. Thus let Mab be hermitian generators of an irrep of SO(6) as above

which remains irreducible under SO(5). Define Y a, a ∈ {0, . . . , 4} by

Y i = Xi, for i = 1, . . . , 4, Y 0 = κX5 (3.8)

for Xa = rMa6 as in (3.2). Clearly the Y i, i = 1, . . . , 4 transform as vectors under SO(4) ⊂
SO(5). We ask these Y a to be solutions of the mass-deformed matrix model (2.1), which

in terms of the Xa variables looks as follows

S =
1

g2
Tr
(

[Xa, Xb][Xa′ , Xb′ ]gaa′gbb′ −m2XiXi + m̃2
0X

0X0
)
, (3.9)

Now the target space metric in these coordinates is

gab = diag(−κ2, 1, 1, 1, 1) , and m̃2
0 = κ2m2

0 . (3.10)

The commutation relations (3.2) give

[Xa, [Xa, Xb]] = ir2[Xa,Mab] = ir2[Mba, Xa] (no sum)

= r2

{
Xb, b 6= a

0, b = a
. (3.11)

Hence the equations of motion

(�X + m̃2
0)X0 = 0 = (�X +m2)Xi (3.12)

imply

4r2 + m̃2
0 = 0 = (3− κ2)r2 +m2 . (3.13)

This clearly requires m2
0 < 0, and

3− κ2

4
=
m2

m̃2
0

=
m2

κ2m2
0

. (3.14)

Hence for any m2
0 < 0 ≤ m2 in the original model (2.1), there is a unique

κ2 ≥ 3, or κ2 = 3 for m = 0 (3.15)

and r2 > 0 so that Y a is a solution of (2.1), or equivalently S4
N with XaXbδab = R2 (3.4)

is a solution of the matrix model with Lorentzian target space metric gab (3.10). There are

also S4
N solutions for m2

0 < m2 < 0 as long as m2

m2
0
≤ 9

16 , but we will see that they do not

4It is well-known that fuzzy S4
N is a solution upon including a quintic term Tr(εY Y Y Y Y ) [26]. However

this is not a soft term, and thus quantum effects are problematic [31]. Here we show that such a term is

not necessary in the presence of a mass term. The 4-dimensional cosmologies in [13] are not fully covariant

but carry Poisson-structures which break SO(4) invariance. This is avoided here.
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acquire a Minkowski metric. However for m2 < m2
0 < 0, we will find expanding universe

solutions with Minkowski metric, which are discussed in section 4.

To study the geometry in more detail, we restrict ourselves to the semi-classical limit

from now on, replacing commutators by Poisson brackets as discussed in section 3.1.

Then (3.6) is replaced by Xa ∼ xa : CP 3 ↪→ S4 ⊂ R1,4. Hence the image of CP 3 in

R1,4 defines a manifold M which is topologically a 4-sphere carrying a bundle of bivec-

tors θµν (which are self-dual w.r.t. its Euclidean SO(5)-invariant metric), but embedded in

Lorentzian target space R1,4. All these structures will play a role, and one must be careful

to use them appropriately.

We are particularly interested in the metric on M. There are in fact two different

metrics on the brane M⊂ R1,4, as in string theory: the induced metric is simply the pull-

back of the constant (”closed string“) metric in target space R1,4, and it will be determined

first. This is distinct from the effective metric, which governs the (noncommutative) gauge

theory on the brane M, which arises from fluctuations5 Xa → Xa + Aa in the matrix

model. This is the analog of the open string metric [11], and it will be determined in a

second step. For a more general discussion of these topics see e.g. [9].

Induced metric. As a warm-up, we compute the induced metric gµν on M ⊂ R1,4.

This clearly has Euclidean signature at x0 = ±R, and Minkowski signature for x0 ≈ 0.

The domains of fixed signature are separated by a space-like S3 ⊂ S4 where the metric is

degenerate. This is the locus on S4 where the tangent space includes a null direction of

R4,1. Using the space-like SO(4) symmetry, we can choose a standard reference point

x = (x0, x1, 0, 0, 0) = R(cos(η), sin(η), 0, 0, 0) ∈ S4 ⊂ R4,1, x2
0 + x2

1 = R2 (3.16)

and use the tangential coordinate

τ = Rη (3.17)

which points in the x0x1 direction,

d

dτ
x = R(− sin(η), cos(η), 0, 0, 0) . (3.18)

Then the induced metric is

gµν = diag(cos2(η)− κ2 sin2(η), 1, 1, 1) (3.19)

in local xµ = (τx2x3x4) coordinates on TpM at the standard reference point (3.16), or

ds2
g = R2(cos2(η)− κ2 sin2(η))dη2 +R2 sin2(η)dΩ2

3

= β2(η)dη2 + α2(η)dΩ2
3 (3.20)

in FRW coordinates where dΩ2
3 is the SO(3) -invariant metric on the unit sphere S3 and

β2(η) =
1

2
R2
(
(κ2 + 1) cos(2η)− (κ2 − 1)

)
, α2 =

1

2
R2(1− cos(2η)). (3.21)

5Note that Aa ∈ End(H) ∼= C(CP 3) describes indeed functions living on M.
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Clearly α ≥ 0 vanishes only on the poles x0 = ±R where η = 0, π. In contrast, β(η∗) = 0

vanishes if

cos(2η∗) =
κ2 − 1

κ2 + 1
, (3.22)

which is η∗ = π
6 for κ2 = 3. Hence there is indeed an interesting transition from Euclidean

to Minkowski signature, however the associated singularity cannot be interpreted as Big

Bang, as there is no rapid initial expansion. Therefore the induced metric does not give

rise to an interesting cosmology. In contrast, we will see that a Big Bang does arise for

the effective metric. The volume-form arising from the 4-form flux will be crucial for

this mechanism.

Effective metric and averaging. We now compute the effective metric onM⊂ R1,4 in

the matrix model. It is easiest to use the xa description where the embedding is spherical,

but the target space metric is gab (3.10). The effective metric Gµν in matrix models is

determined by the kinetic term for a scalar field6 as follows [9, 10, 30]

S[φ] = −Tr[Xa, φ][Xb, φ]gab ∼
dimH

Volω(M)

∫
M
d4x

√
|θµν |−1 γµν∂µφ∂νφ

=

∫
M
d4x

√
|Gµν |Gµν∂µϕ∂νϕ . (3.23)

using greek indices for local coordinates on M = S4. Here ϕ = cφ has dimension mass,√
|θµν |−1 is the SO(5)-invariant Euclidean volume form on S4 ⊂ R5 inherited from the

symplectic form ω on CP 3 ∼ S4 × S2, and

γµν = gµ′ν′ [θ
µ′µθν

′ν ]S2 . (3.24)

This is reminiscent of the open string metric in the Seiberg-Witten limit [11]. The crucial

volume-form arises because Tr ∼
∫
CP 3 ω

∧3 ∼
∫
S4 d

4x
√
|θµν |−1 is an integral over the

symplectic manifold CP 3. Since |θµν | is constant along the internal S2 fiber over S4, the

S2 only contributes an irrelevant constant factor which is dropped. Assuming that low-

energy fields φ(x) are constant along S2, (3.24) follows. Recasting this kinetic term in the

standard covariant metric form, we can read off the conformal factor7

Gµν = α γµν , α =

√
|θµν |
|γµν |

. (3.25)

The average [θµ
′µθν

′ν ]S2 can be evaluated using the S4
N formula [10][

θabθcd
]
S2

=
1

12
∆4

(
P acS P

bd
S − P bcS P adS + εabcde

1

R
xe
)

(3.26)

where ∆2 = 2rR is the space-time uncertainty scale, and

P acS (x) = δac − 1

R2
xaxc, R2 = δabx

axb (3.27)

6The conformal factor cannot be determined from gauge fields because of conformal invariance.
7The formula given in [9] is modified here due to the averaging over S2.
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is the Euclidean (!) projector P abS δbcP
cd
S = P adS on the tangent space of S4. Note that (3.26)

is the unique SO(5)- invariant tensor which reflects the antisymmetry and selfduality8 of

θab. Then

gabP
ab
S = (−κ2 + 4)− 1

R2
gacx

axc = (−κ2 + 4) +
1

R2
(κ2x2

0 − (R2 − x2
0))

= (−κ2 + 3) + (κ2 + 1) cos2(η) (3.28)

so that

γbd =
1

12
∆4
(
gabP

ab
S P bdS − gacP bcS P adS

)
=:

1

12
∆4γ̃acP

bc
S P

ad
S (3.29)

with

γ̃ac =
(
(1 + κ2) cos2(η) + (3− κ2)

)
PSac − gac . (3.30)

Before continuing with the evaluation, we consider some special cases. On the maximal

space-like S3 with x0 = 0, the first term vanishes, and

γ̃ab = −ηab = diag(κ2,−1− 1,−1,−1), x0 = 0 . (3.31)

This is indeed Lorentzian, as desired. In contrast, for x0 = ±Rx we obtain

γ̃ac =
1

12
∆4
(

4PSac − ηac
)

=
1

12
∆4diag((0, 4, 4, 4, 4)− (−κ2, 1, 1, 1, 1))

κ2=3
=

1

12
∆4diag(3, 3, 3, 3, 3) (3.32)

which is Euclidean. Hence the space-like γ̃ii vanish somewhere in between; therefore there

must be some singularities, which are tentatively interpreted as Big Bang and Big Crunch.

In contrast, the γ̃00 component never vanishes.

Now we determine the effective metric explicitly. We use the local xµ = (τx2x3x4)

coordinates on TpM at the standard reference point (3.16), where PS = diag(1, 1, 1, 1).

Then

γ̃ii = (κ2 + 1) cos2(η) + 2− κ2 =
1

2

(
(κ2 + 1) cos(2η) + (−κ2 + 5)

)
=: 3c(η), i = 2, 3, 4

γ̃ττ =
(
(1 + κ2) cos2(η) + (3− κ2)

)
Pττ − gττ

= 3 (3.33)

using

gττ = (− sin η, cos η)diag(−κ2, 1)(− sin η, cos η)

= (κ2 + 1) cos2 η − κ2 . (3.34)

8One must be careful not to mix up the Euclidean and Lorentzian aspects. Selfduality of course holds

w.r.t. the Euclidean metric. In the same vein, the trace in (3.23) has nothing to do with the target space

metric, and it reduces to the integral over the symplectic CP 3 ∼ S4 × S2 as in the Euclidean case.
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η* η0

Figure 1. Schematic picture of the recollapsing universe with lightcone for gµν , indicating η∗
and η0.

Therefore

γµν =
1

4
∆4diag(1, c(η), c(η), c(η)), (3.35)

consistent with the cases x0 = ±Rx and x0 = 0 since c(0) = 1.

A singularity occurs if the space-components γ̃ii change sign, i.e. for c(η0) = 0. This

happens for

cos(2η0) =
κ2 − 5

κ2 + 1
(3.36)

and is interpreted as Big Bang and Big Crunch. This always has a solution since κ2 ≥
3 (3.15), which occurs always after the signature change (3.22) for the induced metric,

η0 > η∗ (in the expanding phase), as indicated in figure 1. For κ2 = 3, this occurs for

η0 = π
3 . Between Big Bang and Big Crunch, γµν has signature9 (+−−−) since c(η) < 0.

In the same coordinates, the SO(5) -invariant volume form
√
|θµν | ∼ ∆4

4 is constant.

Therefore the conformal factor (3.25) is

α =

√
|θµν |
|γµν |

=
4

∆4
|c(η)|−3/2 , (3.37)

and we obtain the effective metric

Gµν = |c(η)|−3/2 diag(1, c(η), c(η), c(η))

Gµν = |c(η)|3/2 diag(1, c(η)−1, c(η)−1, c(η)−1) . (3.38)

Scale factor. To extract the cosmological evolution, we express this metric in FRW

coordinates,

ds2
G = b2(η)dη2 − ã2(η)dΩ2 = dt2 − a2(t)dΩ2 (3.39)

9Note that the effective metric has the opposite sign of the induced metric. This is due to the Poisson

structure which enters γab.
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where dΩ2 is the length element on a spatial 3-sphere S3 with unit radius. Thus

ã2(η) = R2|c(η)|1/2 = a2(t), b2(η) = R2|c(η)|3/2 (3.40)

in the cosmological era (with Minkowski signature). Note that now both a and b vanish at

the time η0 of the BB, in contrast to the induced metric (3.19). We set R = 1 for simplicity.

Then

b = a3 (3.41)

The comoving time parameter t is determined as

η̇ = b−1 = a−3 . (3.42)

We can solve this in the cosmological era recalling (3.36),

a4 = |c(η)| = 1

6

(
(κ2 − 5)− (κ2 + 1) cos(2η)

)
, (3.43)

which gives

4a3ȧ =
1

3
(κ2 + 1) sin(2η)η̇ =

1

3
(κ2 + 1)a−3

√
1− (6a4 − κ2 + 5)2

(κ2 + 1)2
(3.44)

and finally

ȧ =
1

12
a−6
√

(κ2 + 1)2 − (6a4 − κ2 + 5)2 . (3.45)

At early times after the BB, this is approximated by

ȧ = c a−6, c =

√
κ2 − 2

2
√

3
(3.46)

which leads to the initial expansion

a(t) ∼ t1/7 . (3.47)

Hence the scale parameter a(t) exhibits a very rapid (but not exponential) initial expansion,

which slows down naturally. It reaches a maximum amax at

a4
max =

κ2 − 2

3
≥ 1

3
(3.48)

after which the universe starts to contract, and eventually collapses in a Big Crunch. It is

decelerating at all times, ä < 0. The Hubble parameter is

H(t) =
ȧ

a
=

1

12
a−7
√

(κ2 + 1)2 − (6a4 − κ2 + 5)2

∼ t−1, t ≈ 0 (3.49)

for the early universe.
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Figure 2. a(η) for the S4 cosmology with κ2 = 3. The red dashed line describes the Euclidean

caps with imaginary a(η).

To see what this means from the target space point of view, we plot a(η) in figure 2

as a function of the target space angle η, rather than a(t). Then the initial singularity

is milder than in the comoving time t, but still manifest. Note that the scale parameter

a(η) is imaginary for 0 ≤ η < η0, as indicated in figure 2. This gives the Euclidean

effective metric for η < η0. Since the BB (3.36) occurs after the signature change in the

induced metric (3.22) at η∗, there is an era before the BB where the effective metric is

Euclidean but the induced metric is Lorentzian. The induced metric governs the one-loop

corrections, which in the IKKT model essentially gives IIB supergravity in the 10D bulk,

i.e. the closed string sector with short-range r−8 propagators [1–4]. This should entail

some causal connection even before the BB (due to the closed string sector), which might

resolve the horizon problem even in the absence of standard inflation, and thereby explain

the observed uniformity in the CMB.

It is instructive to compare the effective metric Gµν (3.38) with the induced metric

gµν (3.19). The crucial difference lies in the conformal factor, which is responsible for the

expanding BB behavior for Gµν rather than just developing a (0+++) degeneracy for gµν .

We emphasize again that this conformal factor arises from matching the kinetic term in

the matrix model action with a covariant metric expression. Since the matrix model action

involves the trace, it incorporates a measure (a density) which arises from the underlying

symplectic manifold CP 3, corresponding to a quantized 4-form flux on S4.

4 Expanding universe from fuzzy hyperboloids

Now we repeat the above computation for the case of a hyperboloid. We focus on the

fuzzy hyperboloid H4
n as discussed in [32, 33]. Analogous to S4

N , this arises from certain

irreducible representations of the noncompact cousin SO(1, 4) of SO(5), and again there

are magic representations where this structure group is enhanced to SO(2, 4).

4.1 Euclidean fuzzy hyperboloids

To define fuzzy H4
n, let ηab = diag(−1, 1, 1, 1, 1,−1) be the invariant metric of SO(4, 2),

and Mab be hermitian generators of SO(4, 2), which satisfy

[Mab,Mcd] = i(ηacMbd − ηadMbc − ηbcMad + ηbdMac) . (4.1)
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We choose a particular type of (massless discrete series) positive-energy unitary irreps10

Hn known as “minireps” or doubletons [34–36], which have the remarkable property that

they remain irreducible11 under SO(4, 1) ⊂ SO(4, 2). They have positive discrete spectrum

spec(M05) = {E0, E0 + 1, . . .}, E0 = 1 +
n

2
(4.2)

where the eigenspace with lowest eigenvalue of M05 is an n + 1-dimensional irreducible

representation of either SU(2)L or SU(2)R. Then the hermitian generators

Xa := rMa5, a = 0, . . . , 4

[Xa, Xb] = ir2Mab =: iΘab (4.3)

satisfy

ηabX
aXb = XiXi −X0X0 = −R21l (4.4)

with R2 = r2(n2 − 4) [32]. Since X0 = rM05 > 0 has positive spectrum, this describes a

one-sided hyperboloid in R1,4, denoted as H4
n. Analogous to fuzzy S4

N , the semi-classical

geometry underlying H4
n is CP 1,2 [32], which is an S2− bundle over H4 carrying a canonical

symplectic structure. In the fuzzy case, this fiber is a fuzzy 2-sphere S2
n. We work again in

the semi-classical limit. It is important to note that the induced metric on the hyperboloid

M := H4 ⊂ R1,4 is Euclidean, despite the SO(4, 1) isometry. This is obvious at the point

x = (R, 0, 0, 0, 0), where the tangent space is R4
1234.

Thus H4
n has the same local structure as S4

n in the semi-classical limit, with a Poisson

tensor θµν(x, ξ) transforming as a 2-form under the local stabilizer SO(4)x of any point

x ∈ M. This realizes a S2 bundle of self-dual 2-vectors. Then the averaging over S2 can

be achieved using the same local formulas as for S4
N , which will be useful below.

In particular, H4
n has a finite density of microstates just like S4

n, since the number of

states in Hn between two given X0-eigenvalues is finite. This density can in fact be much

smaller than for S4
N , because n is no longer required to be large as we will see.

4.2 Lorentzian fuzzy hyperboloids

In analogy to (3.8), Lorentzian spaces of the above type with suitable rescaling of the

generators Xa are solutions of the same matrix model (2.1), for suitable mass parameters.

Thus we look for solutions of the mass-deformed matrix model given by rescaled generators

Y a, a ∈ {0, . . . , 4}

Y i = Xi, for i = 1, . . . , 4, Y 0 = κX5 . (4.5)

The transform as vectors of SO(4). We can again rewrite the model in the Xa coordinates

as in (3.9), with

gab = diag(−κ2, 1, 1, 1, 1). (4.6)

10Strictly speaking there are two versions HL
n or HR

n with opposite “chirality”, but this distinction is

irrelevant in the present paper and therefore dropped.
11This follows from the minimal oscillator construction of Hn, where all SO(4, 2) weight multiplicities are

at most one. Cf. [36–38].
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The commutation relations now give

[Xa, [Xa, Xb]] = ir2[Xa,Mab] = ir2[Mba, Xa] (no sum)

= r2


Xb, b 6= a 6= 0

−Xb, b 6= a = 0

0, b = a

. (4.7)

Thus the equations of motion

(�X + m̃2
0)X0 = 0 = (�X +m2)Xi (4.8)

reduce to

4r2 + m̃2
0 = 0 = (3 + κ2)r2 +m2 . (4.9)

Now both mass terms need to be negative m2
0 < 0 and m2 < 0, with

3 + κ2

4
=
m2

m̃2
0

=
m2

κ2m2
0

. (4.10)

We will see that a Lorentzian effective metric arises for κ2 > 1 (4.27), i.e. for m2 < m2
0 <

0. Then H4
n with XaXbηab = −R2 (4.4) is indeed a solution of the matrix model with

Lorentzian target space metric gab (3.10), and Y a is a solution of (2.1).

One may worry about possible instabilities in the presence of negative masses. How-

ever, these mass terms are of cosmological scale, and therefore extremely small. Moreover

as shown in the case of S4
N [29], even a positive bare mass term may lead to a radius stabi-

lization at one loop, as the quantum effective action mimics a negative mass for the radial

parameter(s). Thus one may hope that quantum effects stabilize the present solution even

in the presence of positive but different masses. The computation of the effective metric

below would then essentially go through.

Induced metric. Again we compute first the induced metric gµν on H4 ⊂ R1,4, which

clearly has Euclidean signature at x0 = R. Using the space-like SO(4) symmetry, we can

choose a standard reference point

x = (x0, x1, 0, 0, 0) = R(cosh(η), sinh(η), 0, 0, 0) ∈ H4 ⊂ R4,1, x2
0 − x2

1 = R2 . (4.11)

and use the tangential coordinate

τ = Rη (4.12)

which points in the x0x1 direction,

d

dτ
x = R(sinh(η), cosh(η), 0, 0, 0) . (4.13)

Then the induced metric is

gµν = diag(cosh2(η)− κ2 sinh2(η), 1, 1, 1) (4.14)
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in local xµ = (τx2x3x4) coordinates on TpM for the standard reference point (3.16), or

ds2
g = R2(cosh2(η)− κ2 sinh2(η))dη2 +R2 sinh2(η)dΩ3

= β2(η)dη2 + α2(η)dΩ2
3 (4.15)

in FRW coordinates with

β2(η) =
1

2
R2
(
(−κ2 + 1) cosh(2η) + κ2 + 1

)
, α2 =

1

2
R2(1− cosh(2η)). (4.16)

Clearly α ≥ 0 vanishes only for x0 = R where η = 0. In contrast, β(η∗) = 0 vanishes if

cosh(2η∗) =
κ2 + 1

κ2 − 1
. (4.17)

So again there is an interesting transition from Euclidean to Minkowski signature, but the

associated singularity cannot be interpreted as Big Bang. Rather, the Big Bang will arise

for the effective metric.

Effective metric. To obtain the effective metric (3.25) on H4, we need to compute the

average
[
θabθcd

]
S2 for H4. Recall that in the semi-classical limit, the Xa ∼ xa provide an

embedding of H4 as a Euclidean hyperboloid in R1,4, with (anti)selfdual θµν describing an

internal S2 fiber. Therefore the averaging over this fiber is achieved as before12 via[
θabθcd

]
S2

=
1

12
∆4

(
P acH P

bd
H − P bcH P adH ± εabcde

1

R
xe
)
, (4.18)

where now

P acH (x) = ηac +
1

R2
xaxc, ηabx

axb = −R2 (4.19)

is the SO(4, 1)-invariant Euclidean projector on the tangent space of H4 (which is Euclidean

w.r.t. ηab). Note that (4.18) is the unique SO(4, 1)- invariant tensor which reflects the

antisymmetry and (anti)selfduality of θab. Again we shall evaluate this at the reference

point (4.11) on H4. Then

gabP
ab
H = gabη

ab +
1

R2
gabx

axb

= (κ2 + 4) +
1

R2
(−κ2x2

0 + x2
0 −R2)

= (κ2 + 3)− (κ2 − 1) cosh2(η) (4.20)

so that

γbd =
1

12
∆4
(

(gabP
ab
H )P bdH − gacP bcH P adH

)
=:

1

12
∆4γ̃acP

bc
H P

ad
H (4.21)

12This is the reason for using the Xa coordinates. The Minkowskian metric ηab plays no role for this

averaging.
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where

γ̃ac = ((κ2 + 3)− (κ2 − 1) cosh2(η))PHac − gac. (4.22)

For the “undeformed” case κ2 = 1, we recover γ̃ac = 4PHac − gac = 3PHac . For η = 0 i.e.

(x0 = R, x1 = 0) this is Euclidean,

γ̃ac = 4PHac − gac = diag(κ2, 3, 3, 3, 3). (4.23)

More generally, we compute in the local (τx2x3x4) coordinates

γ̃ii = κ2 + 2− (κ2 − 1) cosh2(η) =
1

2

(
κ2 + 5− (κ2 − 1) cosh(2η)

)
=: 3c(η), i = 2, 3, 4

γ̃ττ = ((κ2 + 3)− (κ2 − 1) cosh2(η))PHττ − gττ
= 3 (4.24)

since PHττ = 1 and

gττ = (sinh(η), cosh(η))diag(−κ2, 1)(sinh(η), cosh(η))

= κ2 + (−κ2 + 1) cosh2 η . (4.25)

Therefore ∂τ is always space-like, and

γµν =
1

4
∆4(1, c(η), c(η), c(η)) (4.26)

in the above coordinates. This is consistent with xi = 0 since c(0) = 1. The effective

metric changes signature at c(η0) = 0 i.e.

cosh(2η0) =
κ2 + 5

κ2 − 1
(4.27)

provided κ2 > 1, and the metric is Lorentzian for η > η0 with c(η) < 0. Again, this

happens after the signature change for the induced metric (4.17), as indicated in figure 3.

From a target space point of view, the size of the universe at the BB may or may not be

large depending on κ, but it is small in the effective metric.

In the same coordinates, the SO(1, 4) -invariant volume form
√
|θµν | ∼ ∆4

4 is constant.

Hence the conformal factor (3.25) is

α =

√
|θµν |
|γµν |

=
4

∆4
|c(η)|−3/2 (4.28)

and the effective metric is obtained as

Gµν = |c(η)|3/2 diag(1, c(η)−1, c(η)−1, c(η)−1) . (4.29)
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Figure 3. Schematic picture of the expanding universe with lightcone for gµν , indicating η∗ and η0.

Scale factor. Extracting the cosmological evolution proceeds as in section 3.2. We ex-

press the metric in FRW coordinates,

ds2
G = b2(η)dη2 − ã2(η)dΩ2 = dt2 − a2(t)dΩ2 (4.30)

where dΩ2 is the length element on a spatial 3-sphere S3 with unit radius. Thus

ã2(η) = R2|c(η)|1/2 = a2(t), b2(η) = R2|c(η)|3/2 (4.31)

in the cosmological era (with Minkowski signature). Again both a and b vanish at the time

η0 of the BB, in contrast to the induced metric. We set R = 1 for simplicity. Then

b = a3 . (4.32)

The comoving time parameter t is determined from

η̇ = b−1 = a−3 . (4.33)

We can solve this again in the cosmological era

a4 = |c(η)| = 1

6

(
− (κ2 + 5) + (κ2 − 1) cosh(2η)

)
, (4.34)

which gives

ȧ =
1

12
a−6
√

(κ2 + 5 + 6a4)2 − (κ2 − 1)2 . (4.35)

This shows the same initial a ∼ t1/7 expansion as in (3.47). However for large t, we obtain

ȧ ≈ 1

2
a−2 (4.36)

so that

a(t) ∼ t1/3 (4.37)
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Figure 4. a(η) and a(t) for the H4 cosmology with κ2 = 3. The red dashed line is the Euclidean

era with imaginary a(η).

for the late-time evolution. The expansion is somewhat slower than for a matter-dominated

universe, which would be a(t) ∼ t2/3. The Hubble parameter for large t is

H =
ȧ

a
≈ 1

2
a−3 ∼ t−1 , (4.38)

and it is again decelerating at all times, ä < 0.

To illustrate the expansion, we plot a(η) as well as a(t) in figure 4. From the target

space point of view, the BB singularity of a(η) is milder than in the t variables, but still

manifest. Again, the scale parameter a(η) is imaginary before the BB for 0 ≤ η < η0,

covering the entire H4. Accordingly, the effective metric is Euclidean for η < η0. The

apparent acceleration of a(η) in figure 4 is however an artifact, and there is no acceleration

in the comoving time a(t). Nevertheless, it suggests that some mild corrections of the metric

may easily modify this conclusion; see e.g. [13] for a related discussion in 2 dimensions.

Some other aspects of this solutions will be discussed below.

4.3 Outlook

Excitation modes. The above solutions define not only geometrical space-times M;

the bosonic and fermionic excitation modes on these backgrounds in the matrix model

define gauge theories living on M. These fluctuations can be understood in terms of

the noncommutative algebra of functions, which is End(H) ∼ Fun(CP 1,2) for H4
n, and

End(H) ∼ Fun(CP 3) for S4
N . Since these are equivariant (“twisted”) bundles over M4,

the harmonics on the fiber S2 lead to higher spin modes onM (in contrast to Kaluza-Klein

modes which arise on ordinary compactifications). Explicitly, functions Φ ∈ End(Hn) can

be expanded in the form

Φ = φ(x) + φab(x)Mab + . . . . (4.39)

This amounts to a decomposition into higher spin modes as in [10, 45], whose propagation

is governed by �Y (2.3), hence by the effective metric Gµν . In particular, the tangential

fluctuations Y µ +Aµ include the modes

Aµ = θµνhνρ(x)P ρ
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where Pµ ∈ so(4, 1) is the local generator of translations, cf. [10]. The symmetric part of

hµν could naturally play the role of the spin 2 graviton. Whether or not this leads to an

acceptable gravity will be examined elsewhere.

De Sitter and other solutions. It is natural to wonder about de Sitter branes. There

are indeed candidates for fuzzy de Sitter space based on the principal series representations

of SO(4, 1) [12, 32, 39–42], some of which should be solutions of the matrix model for

m2
0 = m2; see also [43] for related work. However then the effective metric would coincide

with the induced one, without BB. Even for m2
0 6= m2, it is hard to see how a BB might

arise in this case. Therefore we will not consider this case in the present paper. There are

also mathematical issues, such as the expected non-compact nature of the internal space,

which makes the averaging procedure problematic for de Sitter-type spaces.

It may also be possible to find a twisted embedding along the lines of [44] to obtain a

matrix realization of a covariant space-time with big bounce.13

5 Discussion

We presented a novel and simple mechanism how a cosmological Big Bang could arise in the

context of Yang-Mills matrix models. The BB arises from a signature change in the effective

metric on noncommutative space-time branes embedded in Lorentzian target space, taking

into account the quantized 4-volume form. The underlying brane is completely regular, at

least in the present simplified treatment. The rapid initial expansion arises from a singular

conformal factor, which follows from the quantized flux in conjunction with the signature

change. There is a period “before” the BB where the effective metric is Euclidean but the

embedding (“closed string“) metric still has Minkowski signature. One may hope that this

helps to avoid the horizon problem, possibly even in the absence of exponential inflation.

The initial sector of the brane is a Euclidean cap. This is somewhat reminiscent of an

instanton,14 however the path integral (2.4) is always over eiS .

Note that the mechanism does not apply to more traditional brane-world scenarios,

where the effective metric is the induced (pull-back) metric from the target space metric.

In such a scenario, a signature change would not lead to a rapid initial expansion.

The late-time behavior found in the solutions under consideration is different from the

currently accepted ΛCDM model, even for the solution based on H4 which is expanding

forever. For example, we can compute the age of universe in terms of the present Hubble

parameter, assuming that the early phase of the universe is negligible:

t =

∫
da

aH(a)
=

1

3H(t)
. (5.1)

This deviates from the accepted values by a factor ≈ 3. Also, equation (4.38) is rather

strange compared with the Friedmann equations. On the other hand, the analysis of the

13Note that the mechanism in [44] is different from the present one and essentially relies on the embedding

metric, which can be the effective one only assuming a certain complexification.
14This aspect is somewhat reminiscent of Vilenkin’s “tunneling from nothing” proposal [20]. I would like

to thank H. Kawai for pointing this out.
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model is very crude: the influence of matter or radiation, and even gravity in the ordinary

sense, are completely ignored. It is therefore remarkable that semi-realistic cosmologies

including a BB nevertheless arise, without any reference to the Friedmann equations and

GR. Hence basic cosmology might have a simple and robust origin in this scenario.

Of course a space-time by itself does not provide a full cosmology. To obtain interesting

physics, gravity must of course be present, at least for intermediate scales. As explained in

section 4.3, spin 2 modes which could play the role of gravitons do indeed arise, however

this needs to be re-examined carefully for the present Lorentzian backgrounds.15 Along

with the other excitation modes, this will clearly affect the expansion of the universe. Loop

corrections will also modify the geometry of the brane solution, e.g. via corrections to the

mass parameters in the model, which might even depend on time. Fuzzy extra dimensions

realized along the lines of [28] may also affect the expansion. Finally, the BB entails high

temperatures, which will certainly have an impact on the early expansion. Therefore the

quantitative results should be taken with much caution.

There is also a more basic issue which needs to be clarified. We have determined the

conformal factor of the metric by matching the kinetic term with the standard covariant

metric form (3.23). If we would repeat this procedure for a naive mass term, we would

obtain a different conformal factor. This may be reconciled noting that the mass terms for

matter should in fact not arise from the bare matrix model but from spontaneous symmetry

breaking as in the standard model, which would presumably lead to a consistent picture.

Therefore the present approach seems justified; note also that there is no issue for gauge

fields due to conformal invariance. Nevertheless, the treatment of the conformal factor may

need some refinement, which could have a non-trivial effect on the late-time cosmology.

From a more formal perspective, the present solutions are also very interesting. In

particular, the solutions provide simple examples for a homogeneous and isotropic quantum

space-times with Minkowski signature, with intrinsic IR and UV cutoff16 in the S4
N case, and

a UV cutoff in the H4
n case. Hence the mathematical tools and techniques for field theory

on such a space can be worked out, including the appropriate boundary conditions and

the iε prescription for loop integrals. This would allow to compute quantum corrections to

the geometry as well as for field theory in a clear-cut way, notably for the supersymmetric

IKKT model. In particular, the stabilization mechanism in [29] should apply in some

way. On the other hand, the H4
n solution is perhaps the most reasonable noncommutative

cosmological solution available up to now, and it is very promising from the point of view

of emergent gravity, due to the presence of spin 2 modes.

In summary, the main message of this paper is a conceptually very appealing mecha-

nism for a Big Bang within the matrix model, based on a quantum structure of space-time.

A large universe arises quite naturally, determined only by a discrete choice of the repre-

sentation, as well as a parameter κ which can be of order 1. The mechanism is robust and

essentially classical (unlike e.g. Vilenkin’s “universe from nothing” proposal [20] for the

15While for undeformed S4
N this does not appear to be realistic [45], the case of deformed H4

n with small

n looks very promising.
16There is some superficial similarity with [46], however that approach is still based on the infinite-

dimensional algebra of functions on a classical Euclidean manifold.
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BB), and does not rely on general relativity. However, a more detailed understanding of

the associated physics is required, which needs much more work.
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A No finite-dimensional solutions of massless Lorentzian Yang-Mills ma-

trix models

We show the following simple result, which explains the presence of m2 in (2.2):

Lemma. Let �X = ηab[X
a, [Xb, .]] for ηab = diag(−1, 1, . . . , 1). Assume that X0, X i are

finite-dimensional hermitian matrices which are solution of

�XX
0 = 0 = �XX

i . (A.1)

Then all matrices Xi, X0 commute with each other.

Proof. The eom for X0 implies

−tr(X0�XX
0) = 0 =

∑
i

tr(([X0, X i])2 =
∑
i

trA2
i (A.2)

where Ai := i[X0, Xi] = A†i is hermitian. It follows that

0 = trA2
i ∀i (A.3)

and therefore Ai = 0. This means that

[X0, Xi] = 0 . (A.4)

Then the equations of motion for Xi imply

±trXi�XX
i = 0 =

∑
j

tr(([Xj , X i])2 for each i . (A.5)

This implies

[Xi, Xj ] = 0 ∀i, j (A.6)

as before, and all matrices commute.

However, there are finite-dimensional non-commutative solutions in the presence of

masses, as illustrated in this paper.
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