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1 Introduction

Despite compelling evidence for its existence the nature of dark matter is still unknown [1].

It is well possible that dark matter (DM) consists of particles which emerge from some

grand unified theory (GUT) and are stable due to a remnant discrete symmetry. The recent

revival of non-supersymmetric GUTs [2–9] motivates us to study dark matter candidates

in a non-supersymmetric GUT with gauge group E6. The exceptional rank-6 group E6 has

one important advantage over the widely studied SU(5) [10] and SO(10) [11] groups when

it comes to dark matter: the fundamental representation of E6 contains, in addition to the

standard model fermions, several exotic fermions. This means that in a E6 GUT we do

not need to add any particles by hand in order to have possible dark matter candidates.

E6 is popular among GUT model builders [12–15], because of attractive features such

as the automatic absence of anomalies [12] and the fact that all standard model fermions

of one generation live in the fundamental representation. In addition, there is one feature
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that really sets E6 apart from all other popular GUT groups: for example, SU(5) is part

of the infinite SU(N) family, SO(10) of the infinite SO(N) family and “describing nature

by a group taken from an infinite family does raise an obvious question — why this group

and not another?” [16]. In contrast, there are only five exceptional groups and the only

one with non-self conjugate representations, which is necessary to avoid complications with

mirror fermions, is E6.

A standard way to ensure the stability of DM is through a discrete symmetry. This

discrete symmetry can arise naturally when a gauge symmetry is spontaneously bro-

ken [17–21]. The idea of a discrete remnant symmetry has been recently incorporated in

SO(10) GUT models [22–24]. We show that the stability of the lightest exotic E6 fermion

can be guaranteed by a remnant discrete symmetry, which is therefore an ideal dark mat-

ter candidate. We start by presenting the particle content of our E6 model and discuss

under which conditions the lightest exotic fermion is stable through a remnant symmetry.

Afterwards, we analyze the Yukawa sector for all allowed breaking chains and discuss the

viability of each exotic fermion as a dark matter candidate.

For the most interesting candidate, the exotic neutrino NE , we discuss an explicit

scenario in which NE is stable and could be detected in the near future. We find that NE

is superheavy 3 · 109 GeV . mDM . 1 · 1013 GeV and therefore similar to superheavy dark

matter candidates proposed in earlier studies [25]. Such a superheavy dark matter particle

can be produced with a correct relic density non-thermally in the early universe.

2 Particle content

The particle content of E6 representations depends on the embedding of the standard model

gauge group GSM ≡ SU(3)C × SU(2)L ×U(1)Y in E6. Our standard model embedding is

specified in appendix A. As usual, the gauge bosons live in the adjoint representation,

which is 78-dimensional for E6. The fermions (all taken to be left-handed) are contained

in the fundamental 27-dimensional representation Ψ of E6. The particle content of the

fermionic 27, for our standard model embedding, is best understood by considering the

decomposition under SO(10)

Ψ = Ψ1 ⊕Ψ10 ⊕Ψ16 . (2.1)

Ψ16 contains the 15 standard model fermions of one generation plus the charge conjugated

right-handed neutrino νcR. The fermions in the 10 are vector-like, because the 10 is a self-

conjugate SO(10) representation. It contains an exotic down-type quark D plus an exotic

lepton doublet (NE , E). In addition, we have an SO(10) singlet s. This is summarized in

table 1.

We assume that all the symmetry breaking is solely done by Higgs fields that couple to

fermions. The corresponding scalar representations are found from the decomposition [26]

27⊗ 27 = 27s ⊕ 351′s ⊕ 351a, (2.2)

where the subscripts s and a denote symmetric and antisymmetric, respectively.
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Name SO(10) 2L2R4C 3C2L1Y Weight

ured
L 16 (2, 1, 4)

(
3, 2, 1

6

)
1, 0,−1, 0, 0, 1

ublue
L 16 (2, 1, 4)

(
3, 2, 1

6

)
− 1, 1,−1, 0, 0, 1

ugreen
L 16 (2, 1, 4)

(
3, 2, 1

6

)
0,−1, 0, 0, 0, 1

dred
L 16 (2, 1, 4)

(
3, 2, 1

6

)
1, 0, 0, 0, 0,−1

dblue
L 16 (2, 1, 4)

(
3, 2, 1

6

)
− 1, 1, 0, 0, 0,−1

dgreen
L 16 (2, 1, 4)

(
3, 2, 1

6

)
0,−1, 1, 0, 0,−1

νL 16 (2, 1, 4)
(
1, 2,−1

2

)
0, 0, 0,−1, 1, 1

eL 16 (2, 1, 4)
(
1, 2,−1

2

)
0, 0, 1,−1, 1,−1

[ured
R ]c 16 (1, 2, 4)

(
3, 1,−2

3

)
− 1, 0, 0, 0, 1, 0

[ublue
R ]c 16 (1, 2, 4)

(
3, 1,−2

3

)
1,−1, 0, 0, 1, 0

[ugreen
R ]c 16 (1, 2, 4)

(
3, 1,−2

3

)
0, 1,−1, 0, 1, 0

[dred
R ]c 16 (1, 2, 4)

(
3, 1, 1

3

)
− 1, 0, 1,−1, 0, 0

[dblue
R ]c 16 (1, 2, 4)

(
3, 1, 1

3

)
1,−1, 1,−1, 0, 0

[dgreen
R ]c 16 (1, 2, 4)

(
3, 1, 1

3

)
0, 1, 0,−1, 0, 0

[νR]c 16 (1, 2, 4) (1, 2, 0) 0, 0,−1, 1, 0, 0

[eR]c 16 (1, 2, 4) (1, 2, 1) 0, 0, 0, 0,−1, 0

Dred 10 (1, 1, 6)
(
3, 1,−1

3

)
1, 0, 0, 0, 0, 0

Dblue 10 (1, 1, 6)
(
3, 1,−1

3

)
− 1, 1, 0, 0, 0, 0

Dgreen 10 (1, 1, 6)
(
3, 1,−1

3

)
0,−1, 1, 0, 0, 0

NE 10 (2, 2, 1)
(
1, 2,−1

2

)
0, 0,−1, 1, 0, 1

E 10 (2, 2, 1)
(
1, 2,−1

2

)
0, 0, 0, 1, 0,−1

[Dred]c 10 (1, 1, 6)
(
3, 1, 1

3

)
− 1, 0, 0, 1,−1, 0

[Dblue]c 10 (1, 1, 6)
(
3, 1, 1

3

)
1,−1, 0, 1,−1, 0

[Dgreen]c 10 (1, 1, 6)
(
3, 1, 1

3

)
0, 1,−1, 1,−1, 0

[NE ]c 10
(
2, 2, 1

2

)
(1, 2, 1) 0, 0, 1, 0,−1,−1

[E]c 10
(
2, 2, 1

2

)
(1, 2, 1) 0, 0, 0, 0,−1, 1

s 1 (1, 1, 1) (1, 1, 0) 0, 0, 0,−1, 1, 0

Table 1. Fermions in the fundamental 27-dimensional representation of E6 with the correspond-

ing SO(10), Pati-Salam and standard model representations. The superscript c denotes charge

conjugation. Our standard model embedding is specified in appendix A.
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3 Stability of the lightest exotic fermion

Before we discuss possible breaking chains, we derive some restrictions from our require-

ment of a stable dark matter candidate among the exotic fermions. With our restriction

to Higgs fields that couple to fermions, the only viable first intermediate symmetry in ac-

cordance with Michel’s conjecture1 is SO(10) [29], because the 27, 351′ and 351 contain no

singlet under any other viable2 maximal subgroup. (This is a necessary but not sufficient

condition [28]).

When E6 breaks to SO(10), necessarily a U(1) factor gets broken, because the rank

of E6 is 6 and the rank of SO(10) is 5. Therefore it is possible that the vacuum remains

invariant under a discrete remnant symmetry [17]. Under E6 ⊃ SO(10)×U(1) we have the

decompositions [26]

27 = 14 ⊕ 10−2 ⊕ 161 (3.1)

78 = 10 ⊕ 16−3 ⊕ 163 ⊕ 450 (3.2)

351′ = 1−8 ⊕ 10−2 ⊕ 16−5 ⊕ 544 ⊕ 126−2 ⊕ 1441 (3.3)

351 = 10−2 ⊕ 16−5 ⊕ 161 ⊕ 454 ⊕ 120−2 ⊕ 1441 . (3.4)

This tells us, for example, that a remnant Z8 symmetry remains when the SO(10) singlet

in 351′ is responsible for the breaking E6 → SO(10).

Furthermore, when one of the Higgses in the 126 gets a nonzero vacuum expectation

value (VEV), which is necessary for a superheavy Majorana mass of the right-handed

neutrino, we are left with a Z2 symmetry. We have, of course, Z2 ⊂ Z8 and therefore label

each of the representations in eq. (3.1) by their Z2 quantum numbers (denoted with a +

and −). Concretely, we have under SO(10) × Z2:

27 = 1+ ⊕ 10+ ⊕ 16− (3.5)

78 = 1+ ⊕ 16− ⊕ 16
+ ⊕ 45+ (3.6)

351′ = 1+ ⊕ 10+ ⊕ 16
− ⊕ 54+ ⊕ 126

+ ⊕ 144− (3.7)

351 = 10+ ⊕ 16
− ⊕ 16− ⊕ 45+ ⊕ 120+ ⊕ 144− . (3.8)

This Z2 symmetry remains an exact symmetry as long as only Higgs fields with even (+)

Z2 charge get a VEV. In order to have a stable dark matter candidate among the exotic

fermions, we need a breaking chain

E6 → . . .→ U(1)Y × SU(2)L × SU(3)C × Z2 . (3.9)

1Michel’s conjecture states that minima of Higgs potentials correspond to vacuum configurations that

break a given gauge group to a maximal subgroup. Although it is well known that this conjecture is not

universally true [27], “it expresses the maximizing tendency very well. Even the counter-examples are only

slightly less than maximal” [28].
2The 27 branches under F4 ⊂ E6 as 27 = 1⊕ 26 and it is possible to break E6 → F4, for example, when

the linear combination 0, 1, 0,−1, 0, 0 + 1,−1, 0, 1,−1, 0 + − 1, 0, 0, 0, 1, 0 gets a VEV. Nevertheless,

the 26 is a self-conjugate representation and therefore this breaking requires a standard model embedding

such that there isn’t enough space in one 27 for all standard model fermions of one generation. Therefore

F4 is not an attractive intermediate symmetry.
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E6 SO(10)

214

224D

2213

213

2113

2113

(1,3,1) ⊂ 45

(1,1,15) ⊂ 45

(1,1,1) ⊂ 54
(1,3,10) ⊂ 126

(1,3,10) ⊂ 126

(1,3,1) ⊂ 45

(1,1,15) ⊂ 45

(1
,3

,1
) ⊂

 4
5

(1,1,15) ⊂ 45

1⊂ 27
1⊂ 351'

(1,3,10) ⊂ 126

(1,3,10) ⊂ 126

(1
,3

,1
0) ⊂

 1
26

Figure 1. Diagrammatic sketch of possible breaking chains. Here, for example, 213 denotes

SU(2)× U(1)× SU(3) and D denotes D-parity. The first step in our breaking chain E6 → SO(10)

can be achieved either through the SO(10) singlet in 27 or through the SO(10) singlet in 351′. For

all further breaking steps the SO(10) representation and the corresponding Pati-Salam submultiplet

which are responsible for the breaking are shown.

Then the lightest fermion in the reducible 10+⊕1+ representation cannot decay into lighter

fermions in the 16− [21], i.e. into standard model fermions. In other words, then the lightest

fermion in the 10+⊕ 1+ representation is stable. This is only correct if no boson with odd

(−) Z2 charge is lighter than our lightest exotic fermion, which is in accordance with the

extended survival hypothesis [30, 31].3 The stability argument can also be formulated more

compactly, by defining a new Z2 symmetry from the remnant symmetry: Z ′2 = (−1)2sZ2,

where s denotes spin and Z2 the discrete remnant symmetry. Under this new symmetry,

we have for the fermions, 27 = 1− ⊕ 10− ⊕ 16+ whereas the boson charges stay the same.

Thus, we can now simply say that the lightest particle with odd Z ′2 symmetry is stable,

which in our case is a fermion.

4 Breaking chains

Now, we discuss which breaking chains are possible with the Higgs representations with even

Z2 charge as specified in eq. (3.5). It is well known that the Standard Model gauge couplings

do not unify [32]. However, if there is an intermediate symmetry between GSM and the

GUT symmetry, unification is possible. In order to have an intermediate symmetry between

SO(10) and GSM that helps with gauge unification, we need to break SO(10) to a subgroup

with equal rank. This is necessary, because SO(10) has rank 5, the standard model gauge

group rank 4 and there is no viable rank 4 group that helps with gauge unification. The

only two representations in eq. (3.5) with even Z2 charge that can achieve such a breaking

of SO(10) are 54 ⊂ 351′ and 45 ⊂ 351. The possible intermediate symmetries and breaking

chains are shown in figure 1. In the next section, we discuss the implications of the various

breaking chains for the masses of the exotic fermions.

3We discuss the implications of the extended survival hypothesis for our model in section 6.3.3.
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5 Yukawa sector

The Yukawa sector above the E6 scale reads [33]

LY = ΨT iσ2Ψ(Y27ϕ+ Y351′φ+ Y351ξ) + h.c. , (5.1)

where Ψ denotes the fermionic 27, Yi Yukawa couplings and ϕ, φ and ξ the Higgs repre-

sentations 27, 351′, 351, respectively. For the SO(10) embedding specified in appendix A,

the Higgs fields that can achieve the breaking E6 → SO(10) are

0, 0, 0,−1, 1, 0 ∈ 27

0, 0, 0, 2,−2, 0 ∈ 351′. (5.2)

A VEV for the SO(10) singlet in the 351′ yields a mass for the fermionic SO(10) singlet

s, whereas a VEV for the SO(10) singlet in the 27 yields a mass for the fermions in the

10 ⊂ 27.

From figure 1 we can see that the Pati-Salam submultiplets involved in the further

breaking are (1, 1, 1) ⊂ 54, (1, 3, 1) ⊂ 45, (1, 1, 15) ⊂ 45 and (1, 3, 10) ⊂ 126. These VEVs

yield the following mass terms for the exotic fermions:

• The VEV in the 54 that breaks SO(10)→ 224D reads

〈φ54〉 =

√
5

12
diag

(
2

5
,

2

5
,

2

5
,

2

5
,

2

5
,

2

5
,
−3

5
,
−3

5
,
−3

5
,
−3

5

)
v54 . (5.3)

We have 10 ⊗ 10 = 1s ⊕ 54s ⊕ 45a and therefore this VEV yields mass terms for

the exotic fermions in the 10, with mD = 2
3mL, where L denotes the exotic lepton

doublet (NE , E).

• The VEV for the Standard Model singlet in (1, 3, 1) ⊂ 45 yields a mass for the exotic

lepton doublet (NE , E).

• The VEV for the Standard Model singlet in (1, 1, 15) ⊂ 45 yields a mass for the exotic

quark D.

• The VEV for the Standard Model singlet in (1, 3, 10) ⊂ 126 yields a mass for the

right-handed neutrino νR.

With this information at hand, we can now discuss the viability of the various exotic

fermions as dark matter candidates.

6 Candidates

6.1 The exotic quark D

The exotic down-type quark D carries hypercharge and color-charge, but no weak-isospin.

There are breaking chains where D is the lightest exotic fermion and therefore stable. In

such scenarios dark matter would be bound states involving the lightest exotic quark D.
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However there are strong bounds on strongly interacting dark matter from direct de-

tection experiments. Although the main goal of direct detection experiments is to detect

WIMPs, they are, of course, also sensitive to strongly-interacting dark matter. Such parti-

cles would interact several times in the detector and this, together with a local dark matter

density of approximately 0.3 GeV
cm3 , can be used to exclude large regions of the parameter

space for masses below 1015 GeV [34]. The remaining regions in the parameter space for

strongly-interacting dark matter with a mass below 1015 GeV are ruled out by the IceCube

experiment [35].

The Yukawa couplings of the exotic fermions and the Standard Model fermions have

a common origin above the E6 scale. Therefore, we expect for the lightest generation of

the exotic fermions Yukawa couplings comparable to the Yukawa couplings of the lightest

generation of the Standard Model fermions. This, together with an E6 scale below the

Planck scale, yields a D mass below 1015 GeV. Therefore, in the class of E6 models that we

consider here, all breaking chains where the exotic quark D is the lightest exotic fermion

are ruled out already through direct detection experiments and the IceCube experiment.

6.2 The exotic SO(10) singlet s

From the discussion in section 5, we know the there are two possibilities how the exotic

singlet s can get a mass: through a VEV that breaks E6 or through a VEV that breaks

SU(2)L ×U(1)Y .

In the first case, if additionally all other exotic fermions are heavier,4 we have a viable

but phenomenological rather uninteresting situation. In this scenario, dark matter is a

superheavy (Ms & 1010 GeV) standard model singlet and it is hard to imagine how such a

candidate could ever be detected in experiments.

In the second case, assuming the SO(10) singlet in the 351′ does not get a nonzero

VEV, at tree-level s gets only a mass through the breaking of GSM. In this scenario, the

E6 symmetry is broken through the VEV in the 27 that yields a superheavy mass for all

other exotic fermions. After the breaking of GSM, the exotic singlet mixes with the exotic,

superheavy neutrino NE . Therefore, in the subspace5 (s,NE , N
c
E), the mass matrix reads

M =

 0 m m

m 0 µ

m µ 0

 , (6.1)

where µ denotes the superheavy mass of NE and m is an electroweak scale mass. The

eigenvalues of this mass matrix are m1 = −µ, m2 = 1
2

(
µ+

√
8m2 + µ2

)
≈ µ and

m3 = 1
2

(
µ−

√
8m2 + µ2

)
≈ −2m2

µ . However, in general there are important loop correc-

tions since s is a standard model singlet. For example, at one-loop through a diagram with

4This, of course, requires that both SO(10) singlets 1 ⊂ 27 and 1 ⊂ 351′ develop an E6 scale VEV. Then,

depending on the Yukawa couplings Y27 and Y351′ and the relative magnitude of the VEVs, it is possible

that s is the lightest exotic fermion.
5There is no mixing with the other neutral fermions, because otherwise the remnant Z2 symmetry is

broken.
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Figure 2. Radiative correction that contribute to the mass splitting of a vector-like lepton doublet

(NE , E), with degenerate mass M at tree level.

the right-handed neutrino in the loop, we get a contribution proportional to the superheavy

VEV in the 126. Therefore, without additional input we end up again with a phenomeno-

logical rather uninteresting situation where dark matter is a superheavy standard model

singlet particle.

6.3 The exotic neutrino NE

In all breaking chains, the exotic electron E and the exotic neutrino NE have exactly

the same tree level mass M before the breaking of SU(2)L × U(1)Y . This degeneracy is

removed by the radiative corrections shown in figure 2. The mass splitting can be calculated

to be [37]

∆M ≡ME −MNE =
αM

2π

∫ 1

0
dx(1 + x)

[
ln

(
x2 +

m2
Z

M2
(1− x)

)
− ln(x2)

]
, (6.2)

which vanishes in the limit of an unbroken SU(2)L symmetry mZ → 0. Moreover, take note

that the contributions from the charged W -boson loops cancel in the formula for ∆M . This

splitting is extremely insensitive to the tree-level mass M and we have ∆M ≈ O(100 MeV).

Therefore the electrically charged E is always heavier than the neutral NE .

An interesting aspect of NE as possible dark matter candidate is that it carries hyper-

charge. Direct detection experiments are capable of detecting hypercharged dark matter

with masses as high as 1010 GeV [38]. The spin-independent cross section for the interac-

tion of a fermionic dark matter particle with hypercharge 1
2 with a nucleus via Z-boson

exchange is given by

σχN =
G2
Fµ

2
N

2π

1

4
(N − (1− 4 sin2 θW )Z)2, (6.3)

where GF denotes the Fermi constant, µN the reduced mass of the nucleus and dark matter

particle, N and Z are the the number of neutrons and protons in the target nucleus and

θW denotes the Weinberg angle. The latest exclusion limits from the LUX experiment [39]

yield a lower bound of 107.8 GeV for hypercharged dark matter. A future experiment like

– 8 –
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DARWIN [40] will be able to detect hypercharged dark matter with a mass as high as

1010 GeV. Therefore, scenarios where NE is the lightest exotic fermion with a mass in

the range 107.8 GeV < NE < 1010 GeV are particularly interesting. In the following, we

discuss one such scenario.

6.3.1 Breaking chain and mass terms

An attractive breaking chain, where it is possible that the lightest exotic particle is the

neutral component of the exotic lepton doublet is

E6 → SO(10)→ SU(2)L ⊗ SU(2)R ⊗ SU(4)C ⊗D → U(1)Y ⊗ SU(2)L ⊗ SU(3)C . (6.4)

As discussed in section 5, there is an SO(10) singlet in the scalar 27 representation and

another one in the scalar 351′ representation. Both could be responsible for the breaking

of E6 → SO(10). The SO(10) singlet in the 351′ yields mass terms for the exotic singlets s

and the SO(10) singlet in the 27 mass terms for all other exotic particles. Furthermore, the

VEV (eq. (5.3)) that breaks SO(10)→ SU(2)L ⊗ SU(2)R ⊗ SU(4)C ⊗D yields additional

contributions to the masses of the exotic quarks and exotic leptons. If this VEV would be

solely responsible for the masses of the exotics, we would have the mass ratio mD = 2
3mL

at the SO(10) scale, where mD denotes the mass matrix of the exotic quarks and mL the

mass matrix of the exotic leptons. Therefore, without the additional contribution from the

SO(10) singlet VEV in the 27, the exotic quarks would be lighter than the exotic leptons.

One could argue that the relation mD = 2
3mL only holds at the SO(10) scale and

could be altered dramatically by the RGE running of the Yukawa couplings. Something

similar happens in SU(5) GUTs, where the GUT scale relation mb = mτ , becomes at the

electroweak scale mb ≈ 3mτ [41]. However, these fermions are much lighter than our exotic

fermions and the majority of this mass difference is a result of the running close to the

electroweak scale where the gauge couplings are sufficiently distinct. We can check that

for the exotic fermions the effect of the RGE running is too small to reverse the situation,

i.e. to yield mL < mD. For the lightest generation of the exotics the dominant terms in

the Yukawa RGEs are proportional to the gauge couplings

16π2 dY
(LE)

351′

d ln(u)
= −

(
9

2
g2

2L +
9

2
g2

2R

)
Y

(LE)
351′ + . . . (6.5)

16π2 dY
(D)

351′

d ln(u)
= −

(
15g2

4C

)
Y

(D)
351′ + . . . . (6.6)

The gauge couplings are unified at the SO(10) scale and therefore are not very different

at scales a few orders of magnitude below the SO(10) scale. In this breaking chain both

D and LE get a mass at the SO(10) scale (≈ 1016 GeV) and therefore a rough estimate

for the mass of the lightest generation is 1010 GeV. The running from the SO(10) scale to

1010 GeV is not enough to yield mL < mD. Therefore, we conclude that in order to get a

scenario where NE is the lightest exotic fermion and we have the breaking chain as given

– 9 –
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in eq. (6.4), the mass matrices are

ms = Y351′〈Φ1〉 , (6.7)

mD = Y27〈ϕ1〉+
1√
15
Y

(D)
351′ v54 , (6.8)

m(NE ,E) = Y27〈ϕ1〉 −
√

3

2
√

5
Y

(LE)
351′ v54 . (6.9)

We can already see here that all exotic fermions are superheavy. This in accordance with

the survival hypothesis [42, 43], which states that the only fermions that remain massless

before electroweak symmetry breaking, are those that cannot get a mass term which is

invariant under the standard model gauge group. All exotic fermions are vector-like and

thus can get standard model invariant mass terms.

6.3.2 Estimation of the masses and direct detection

To get an estimate the masses of the exotic fermions we need two things: the Yukawa

couplings and the VEVs. We can get a realistic estimate of the Yukawa couplings, by

observing that the Yukawa couplings of the standard model particles and of the exotic

fermions have a common origin (cf. eq. (5.1)). After the breaking of the E6 symmetry, the

Yukawa sector reads

LY = Y27ΨT
16iσ2Ψ16ϕ10 + Y351′Ψ

T
16iσ2Ψ16Φ126 + Y351′Ψ

T
10iσ2Ψ10〈Φ54〉 (6.10)

+ Y351′Ψ
T
1 iσ2Ψ1〈Φ1〉+ h.c. , (6.11)

where we neglected all scalar subrepresentations that do not develop a nonzero VEV in

our scenario. We can see that the resulting Yukawa sector for the standard model fermions

is exactly the same as in SO(10) models with scalars in the 10 ⊕ 126 representation. The

corresponding Yukawa couplings can be fitted such that the standard model fermion ob-

servables are correctly reproduced [44]. By assuming that the running of the Yukawa

couplings between the E6 scale and the SO(10) scale is negligible, we can use these fitted

Yukawa couplings to estimate the masses of the exotic fermions. The assumption that the

RGE running is here negligible, is reasonable, because there are at most three order of

magnitude between the GUT scale and the Planck scale and in addition, only one unified

gauge coupling. A fit of the Yukawa couplings in an SO(10) model with scalars in the

10⊕ 126 and breaking chain

SO(10)→ SU(2)L ⊗ SU(2)R ⊗ SU(4)C ⊗D → U(1)Y ⊗ SU(2)L ⊗ SU(3)C (6.12)

that takes into account the modified RGEs6 between the Pati-Salam and the GUT scale

was recently done in ref. [45]. To estimate the masses of the exotic fermion, we use the

6These RGEs are also valid in our model, because the exotic fermions do not mix with the standard

model fermions.
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best fit-point of this study:

Y27 '

 2.21 · 10−6 0 0

0 −1.65 · 10−3 0

0 0 −0.508

 , (6.13)

Y351′ '

 3.99 · 10−6− 2.31 · 10−5i 5.74 · 10−6 + 1.32 · 10−4i −1.55 · 10−2− 4.10 · 10−2i

5.74 · 10−6 + 1.32 · 10−4i 8.08 · 10−7 + 4.59 · 10−4i −0.154 + 6.25 · 10−5i

−1.55 · 10−2− 4.10 · 10−2i −0.154 + 6.25 · 10−5i −6.89 · 10−2− 7.58 · 10−5i

,
(6.14)

which was done using MSO(10) ' 1.7 · 1015 GeV, MPS ' 1.5 · 1012 GeV and αSO(10) '
0.027. These values were computed by using the RGEs for the gauge couplings and the

corresponding proton lifetime τP ≈
M4
SO10

m5
pα

2
SO10

is well below the present bound τP & 1.6 ·1034

yrs for the dominant decay mode p → π0e+ in non-supersymmetric GUTs [46]. However,

we will show in section 6.3.4 that the proton lifetime can be long enough through threshold

effects. Therefore, we use in the following instead of MSO(10) ' 1.7 · 1015 GeV a slightly

higher SO(10) scale that is compatible with the current proton decay bounds. As noted

above, usually we can compute the scales in a GUT model by using the RGEs for the gauge

couplings. However, we can not compute the E6 scale, because the couplings are already

unified at the SO(10) scale and therefore there is no boundary condition left. In addition,

as we will discuss below, the solution of the RGEs for the gauge couplings depends on the

masses of the exotic fermions. Therefore, as a first step, we estimate the mass range for the

exotic fermions by using eq. (6.14), eq. (6.7), MSO(10) ' 5 · 1015 and an E6 VEV between

5 · 1015 GeV and the Planck scale. For the mass of the lightest exotic neutrino, we find

3 · 109 GeV . mNE . 1 · 1013 GeV . (6.15)

With this information at hand, we now solve the RGEs for the gauge couplings in a specific

scenario. For7

v54 = −8.5 · 1015 GeV

〈ϕ1〉 = −8.37 · 1015 + 2.79 · 1015i GeV (6.16)

the masses of the exotic quarks and leptons are

{M3
L,M

2
L,M

1
L} = {4.57 · 1015 GeV, 9.02 · 1014 GeV, 5.9 · 109 GeV}

{M3
D,M

2
D,M

1
D} = {5.38 · 1015 GeV, 3.36 · 1014 GeV, 1.89 · 1012 GeV} . (6.17)

Therefore, in this scenario only one generation of the exotic fermions has masses signifi-

cantly below the GUT scale. In the next section, we investigate the influence of the exotic

fermions on the running of the gauge couplings. As already noted NE carries hypercharge

and could therefore be detected in direct detection experiments. The implication of the

mass range in eq. (6.15) is shown in figure 3.
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Figure 3. Exclusion limit at 90% C.L from the LUX experiment [47] and projections for the

XENON1T [48] and DARWIN [40] experiment. The black solid line is the cross section/nucleus for

hypercharged dark matter (eq. (6.3)) and the shaded area indicates our estimate for the mass of

the E6 dark matter candidate NE (eq. (6.15)).

6.3.3 RGE running of the gauge couplings

The two-loop RGEs for the gauge couplings are

dωi(µ)

d lnµ
= − ai

2π
−
∑
j

bij
8π2ωj

, (6.18)

where the indices i, j denote the various subgroups at energy scale µ and

ωi = α−1
i =

4π

g2
i

. (6.19)

The coefficients ai and bij depend on what particles are present at a given energy scale. For

the scalar masses we invoke the extended survival hypothesis, which states that “Higgses

acquire the maximum mass compatible with the pattern of symmetry breaking.” [49].

Another point of view is that this a hypothesis of minimal fine tuning [31], because only

those Higgs fields are light that need to be for the symmetry breaking. The Higgs masses

found using this hypothesis are listed in table 2. Take note that for some representations

the mass scale is not entirely fixed, but small changes to the spectrum will not change our

7Here we used v54 'MSO(10)/
√

4πα.
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E6 SO(10) 2L2R4C 1Y 2L3C Mass Scale

ϕ(27)

ϕ16 ME6

ϕ10

ϕ1
10(1,1,6) MSO(10)

ϕ2
10(2,2,1)

ϕ21
10

(−1
2 , 2, 1

)
MSM

ϕ22
10

(
1
2 , 2, 1

)
MPS

ϕ1 ME6

Φ(351′)

Φ144 ME6

Φ126

Φ1
126(1, 1, 6) MSO(10)

Φ2
126(3, 1, 10)

Φ21
126(−1, 3, 1) MPS

Φ22
126

(−1
3 , 3, 3

)
MPS

Φ23
126

(
1
3 , 3, 6

)
MPS

Φ3
126(1, 3, 10)

*Φ31
126(0, 1, 1) MPS

*Φ32
126(1, 1, 1) MPS

Φ33
126(2, 1, 1) MPS

Φ34
126

(
4
3 , 1, 3

)
MPS

Φ35
126

(
1
3 , 1, 3

)
MPS

*Φ36
126

(−2
3 , 1, 3

)
MPS

Φ37
126

(−4
3 , 1, 6

)
MPS

Φ38
126

(−1
3 , 1, 6

)
MPS

Φ39
126

(
2
3 , 1, 6

)
MPS

Φ4
126(2, 2, 15)

Φ41
126(−12 , 2, 1) MPS

Φ42
126

(
1
2 , 2, 1

)
MPS

Φ43
126

(
7
6 , 2, 3

)
MPS

Φ44
126

(
1
6 , 2, 3

)
MPS

Φ45
126

(−1
6 , 2, 3

)
MPS

Φ46
126

(−7
6 , 2, 3

)
MPS

Φ47
126

(−1
2 , 2, 8

)
MPS

Φ48
126

(
1
2 , 2, 8

)
MPS

Φ54

Φ1
54(3, 3, 1) MSO(10)

*Φ2
54(2, 2, 6) MSO(10)

Φ3
54(1, 1, 20′) MSO(10)

Φ4
54(1, 1, 1) MSO(10)

*Φ16 ME6

Φ10 ME6

*Φ1 ME6

Table 2. Higgs masses according to the extended survival hypothesis. MSM denotes the standard

model scale and MPS the Pati-Salam scale. Because of D parity the Higgs in the (3, 1, 10) have the

same mass as the Higgs in the (1, 3, 10), although they do not develop a vev. The (2, 2, 15) isn’t

superheavy because a small induced vev for this representation is needed in realistic models [52]. In

addition, we assume that only one Higgs doublet remains light. The fields marked with an asterisk

correspond to Goldstone bosons.
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results dramatically. The coefficients for the standard model RGEs are [50]

aSM =
(

41
10 ,−

19
6 ,−7

)
, bSM =

 199
50

27
10

44
5

9
10

35
6 12

11
10

9
2 −26

 . (6.20)

These are valid up to 5.9 · 109 GeV, where the additional lepton doublet must be taken

into account. For simplicity, we use one-loop RGEs above this scale. Using the formulas

in ref. [51] we compute

aSM+L =
(

43
10 ,−

5
2 ,−7

)
. (6.21)

In addition, above 1.9 · 1012 GeV the coefficients change again because of the addi-

tional quark

aSM+L+D =
(

79
18 ,−

5
2 ,−

19
3

)
. (6.22)

Finally, above the Pati-Salam scale we must take additional scalars and gauge bosons into

account

aPS =
(

28
3 ,

28
3 , 2

)
. (6.23)

For the numerical integration of eq. (6.18) we need the boundary conditions [53]

ω1Y (MZ) = 59.0116 (6.24)

ω2L(MZ) = 29.5874 (6.25)

ω3C(MZ) = 8.4388 (6.26)

MZ = 91.1876 GeV. (6.27)

In addition, we need the appropriate matching conditions for two-loop RGEs in the

MS renormalization scheme for the case that a group G breaks into several factors

G→
∏
iGi [54]:

ωG −
CG
12π

= ωGi −
CGi
12π

, (6.28)

where CG and CGi are the quadratic Casimir invariants of G and Gi, respectively. These

only hold if the smaller group Gi comes from one grand group G, as it is the case for

SU(4)C → SU(3)C . In contrast, the group U(1)Y comes from SU(4)C and SU(2)R and the

correct matching condition reads

ω1Y =
3

5

(
ω2R −

C2

12π

)
+

2

5

(
ω4C −

C4

12π

)
. (6.29)

The result of the numerical integration is shown in figure 4 and yields for the Pati-Salam

scale MPS ' 6.4 · 1013 GeV and for the SO(10) scale MSO(10) ' 1.1 · 1015 GeV. This

is almost the same result as in models without exotic fermions [50]. This means the

exotic fermions alone are not enough to yield a proton lifetime above the present bound

from Super-Kamiokande τP & 1.6 · 1034 yrs for the dominant decay mode p → π0e+ in

non-supersymmetric GUTs [46]. However it is well known that threshold correction can

alter these results significantly [55] and we estimate the magnitude of these effects in the

next section.
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Figure 4. Running of the gauge coupling without threshold corrections. The E6 scale can not be

calculated as we have no boundary condition left. It is shown here for illustration purposes only.

6.3.4 Threshold corrections

It is unlikely that all scalars masses at a given symmetry breaking scale are all exactly

degenerate and thus, for a large number of scalars, there are possibly large threshold

corrections that can change the proton lifetime significantly. These threshold corrections

can be written in terms of modified matching conditions [54]

ωi(µ) = ωG(µ)− λi(µ)

12π
, (6.30)

where

λi(µ) = (CG − Ci)︸ ︷︷ ︸
λGi

+Tr

(
t2iSPGB ln

MS

µ

)
︸ ︷︷ ︸

λSi

. (6.31)

S denotes the scalar particles that are integrated out at the matching scale µ, tiS are the

generators of Gi for the heavy scalar representations and we omitted possible additional

contributions from spin 1 and spin 1
2 particles. PGB is an operator that projects out the

Goldstone bosons. The traces of the quadratic generators are often called Dynkin indices

and can be found, for example, in ref. [26]. We define ηaj = ln(
Mj

Ma
), where j denotes a

Higgs multiplet and a is either i or u, which denote the intermediate and unification scale,

respectively. For our model we have

λiS3C = 3ηiΦ22
126

+15ηiΦ23
126

+ ηiΦ34
126

+ ηiΦ35
126

+ 5ηiΦ37
126

+ 5ηiΦ38
126

+ 5ηiΦ39
126

+ 2ηiΦ43
126

+ 2ηiΦ44
126

+ 2ηiΦ45
126

+2ηiΦ46
126

+ 12ηiΦ47
126

+ 12ηiΦ48
126

λiS2L = ηiϕ22
10

+ 4ηiΦ21
126

+12ηiΦ22
126

+ 24ηiΦ23
126

+ηiΦ41
126

+ηiΦ42
126

+ 3ηiΦ43
126

+ 3ηiΦ44
126

+ 3ηiΦ45
126

+ 3ηiΦ46
126

+8ηiΦ47
126

+ 8ηiΦ48
126
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λiS1Y =
1

5

(
3ηiϕ22

10
+ 18ηiΦ21

126
+ 6ηiΦ22

126
+ 12ηiΦ23

126
+ 24ηiΦ33

126
+ 32ηiΦ34

126
+ 2ηiΦ35

126

+64ηiΦ37
126

+ 4ηiΦ38
126

+ 16ηiΦ39
126

+ 3ηiΦ41
126

+ 3ηiΦ42
126

+ 49ηiΦ43
126

+ ηiΦ44
126

+ ηiΦ45
126

+ 49ηiΦ46
126

+24ηiΦ47
126

+ 24ηiΦ48
126

)
(6.32)

and

λuS4C = 2ηuϕ1
10

+ 2ηuΦ1
126

+ 16ηΦ3
54

λuS2L = 12ηuΦ1
54

λuS2R = 12ηuΦ1
54
. (6.33)

To approximate the threshold corrections we choose the scalar masses randomly in a given

range MS = RMV , where previous studies used, for example, R ∈ [ 1
10 , 10] [56, 57] or more

conservative R ∈ [ 1
10 , 2] [52]. With a given randomized set of scalar masses it is possible

to compute λSi , which then can be used to compute the updated scales MPS , MSO(10) and

the updated proton lifetime τP . For a fixed set of randomized Higgs masses the process is

iterated until convergence is reached. We have already seen that the effect of the exotic

fermions on the RGE running is small and therefore the results of the parameter scan do

not depend significantly on the masses of the exotics. The following results are for fixed

masses of the exotic fermions as given in eq. (6.17). We only consider gauge mediated

proton decay and the corresponding partial decay width for the dominant decay channel

is given by [58]

Γ(p→ π0e+) =
πmp α

2
G

4f2
π

|α|2A2
L(D + F + 1)2 (6.34)

×

A2
SR

(
1

M2
(X′,Y ′)

+
1

M2
(X,Y )

)2

+
4A2

SL

M4
(X,Y )

 ,

where mp is the proton mass, αG is the unified gauge coupling at the GUT scale and

fπ = 139 MeV, α = 0.009 GeV3 [59] and D + F = 1.267 [60] are phenomenological factors

obtained in chiral perturbation theory and lattice studies. M(X,Y ) and M(X′,Y ′) denote

the masses of the gauge bosons with standard model quantum numbers (3, 2,−5/6) and

(3, 2,+1/6). The renormalization group running of the effective proton decay operator

from the proton mass to the electroweak scale is taken into account by AL ≈ 1.4 [61] and

the running from the GUT scale to the electroweak scale by ASR and ASL [62]:

ASL(R) =
n∏
i=1

MZ≤ms<MU∏
s

[
αi(ms+1)

αi(ms)

] γL(R)(s)i
ai(ms+1−ms)

where

γL(MZ) = γL(MD1 ) = γL(ML1 ) =

{
23

20
,

9

4
, 2

}
;

γR(MZ) = γR(MD1 ) = γR(ML1 ) =

{
11

20
,

9

4
, 2

}
; (6.35)

and

γL/R(MPS) =

{
15

4
,

9

4
,

9

4

}
. (6.36)
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(a) R ∈
[

1
10
, 2
]

(b) R ∈
[
1
5
, 2
]

Figure 5. Proton lifetime τP ≈ M4
SO10

m5
pα

2
SO10

, where αSO10 denotes the unified coupling constant

and mp the proton mass, as a function of the Pati-Salam scale MPS for randomized Higgs masses

MS = RMV and two different ranges R. The solid black line denotes the present bound from

Super-Kamiokande and the dashed lines the result when all scalars have exactly the same mass.

A future proton decay experiment like Hyper-Kamiokande [63] will be able to probe the complete

parameter space for the conservative range R ∈ [ 15 , 2] and almost all possible configurations for

R ∈ [ 1
10 , 2].

Here the ai’s are again the one-loop beta-function coefficients as given in eq. (6.20)–(6.23)

and the relevant scales (s = 1, 2, 3, 4, 5) are MU ,MPS ,MD1 ,ML1 ,MZ . The proton lifetime

and Pati-Salam mass scale range, resulting from randomized Higgs masses, are shown in

figure 5. We can see that even for a very conservative range R ∈ [1
5 , 2] several configurations

are in agreement with the latest Super-Kamiokande data. This confirms the findings of a

recent study [52] and shows that the proton lifetime can be long enough in our model. The

maximal SO(10) scale for this range is Mmax
SO(10) ≈ 9 · 1015 GeV and the maximal proton

lifetime τmax
p ≈ 2.5·1035 yrs. A future proton decay experiment like Hyper-Kamiokande will

reach a comparable sensititvity [63] and is therefore able to probe the complete parameter

space for this scenario. As a consequence of the threshold correction the scales are no

longer where the coupling constants meet at a point, but lie above or below these points.

An example plot for the coupling strengths for a randomized set of Higgs masses is shown

in figure 6.

7 Production

The exotic neutrino NE can only be a realistic dark matter candidate if it can be produced

with a correct relic density. As discussed above, we expect that even the lightest generation

of the exotic neutrinos is superheavy. At a first glance this could be problematic, because

there is an upper bound on the mass of dark matter candidates mDM < 340 TeV from

unitarity [64].

However, this bound only holds for dark matter particles that were in thermal equi-

librium in the early universe and it was shown in refs. [25, 65, 66] that superheavy dark

matter can be produced non-thermally with a correct relic abundance.
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Figure 6. Running of the gauge couplings with threshold corrections. The symmetry breaking

scales are no longer where the couplings meet, but can lie above or below these points. The E6

scale can not be calculated as we have no boundary condition left. It is shown here for illustration

purposes only.

In principle, superheavy dark matter can be produced through scattering during the

reheating process or gravitationally at the end of inflation [65]. However, for dark matter

masses below 1011 GeV the non-thermal production from the thermal bath dominates [38].

An interesting aspect of this production mechanism is that it could be used to probe

the reheating temperature TRH , because demanding a correct dark matter relic density

yields 30 . MDM
TRH

. 103.5 [38]. For a dark matter particle with a mass near the lower end

of the range in eq. (6.15) this implies a reheating temperature in conflict with the lower

bound for thermal leptogensis TRH & 4 ·108 GeV [67–69]. In contrast, for a NE mass above

1011 GeV the reheating temperature can be well above this bound.

8 Conclusions and discussion

In summary, we have shown that E6 unification incorporates an inherent, viable dark

matter candidate that could be detected in the near future. We have argued that the

lightest exotic fermion can be stable through a remnant Z2 symmetry and discussed which

breaking chains are possible with Higgs representations that couple to the fermions and

leave the Z2 symmetry unbroken. Moreover, we have computed the consequences of the

various breaking chains on the Yukawa sector. With these information at hand, we have

discussed the viability of all exotic fermions as dark matter candidates and argued that only

the neutral component NE of the exotic lepton doublet is a viable, interesting candidate.

Then we have presented a scenario where NE is the lightest exotic fermion and therefore

stable. The masses of the exotic fermions were estimated by using the fit results of a recent

study for the Yukawa couplings and we have found 6 · 108 GeV . mNE . 5 · 1012 GeV.

Moreover, we calculated the RGEs for the gauge couplings in the presence of one generation

of the exotic fermions and checked that the proton lifetime can be long enough through
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Figure 7. Embedding of SO(10) in E6.

threshold corrections. The exotic superheavy neutrino NE carries hypercharge and its

cross section for scattering with Xenon is σDMXe ' 1.68 · 10−31 cm2. Therefore it could

be detected by the next generation of direct detection experiments, like XENON1T [70]

or DARWIN [40]. Moreover, it can be produced non-thermally with a correct relic density

and a its detection could be used to deduce the reheating temperature.
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A Standard model and subgroup embeddings

The computations in this section where done using LieArt [71]. In order to specify the

particle content of an E6 representation, we must specify the embedding of GSM in E6.

This means we need to identify the standard model Cartan generators among the E6 Cartan

generators. It is then convenient to define the corresponding dual Cartan generators h̃i.

These act on an arbitrary weight µ in the Dynkin basis via the usual Euclidean scalar

product and yield the eigenvalue of µ corresponding to the Cartan generator Hi

h̃i · µ = Hi(µ).

These dual Cartan generators are often called charge axes, because acting with these on a

weight in the Dynkin basis yields the corresponding quantum numbers.

We present now our embedding of GSM in E6 that can be used in models with SO(10)

as intermediate symmetry. By looking at the Dynkin diagrams of E6 and SO(10), we can

identify how SO(10) can be embedded in E6. One possibility is shown in figure 7.

We need an embedding of GSM, which does not get broken by the breaking E6 →
SO(10). In figure 7 we can see that the first three nodes and the sixth node remain

unchanged, whereas the fourth and fifth node become one. Each node corresponds to

a simple root αi and a Cartan generator Hαi . Therefore, the standard model Cartan

generators must correspond to nodes that remain intact at the SO(10) scale. One possibility

to accomplish this is that in the E6 diagram the first two nodes correspond to SU(3)C and

– 19 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
6

Figure 8. One possible embedding of GSM in E6.

the sixth node to SU(2)L. (The standard model hypercharge U(1)Y is more complicated

as it is a linear combination of U(1) factors.) This is shown in figure 8.

The dual standard model Cartan generators corresponding to this embedding are

h̃
SU(3)c
1 =

1

2
(1, 1, 0, 0, 0, 0) (A.1)

h̃
SU(3)c
2 =

1

2
√

3
(1,−1, 0, 0, 0, 0) (A.2)

h̃
SU(2)L
1 =

1

2
(0, 0, 0, 0, 0, 1) (A.3)

Ỹ =

(
−1

3
,−2

3
,−1,−1,−1,−1

2

)
. (A.4)
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[62] C. Muñoz, Enhancement Factors for Supersymmetric Proton Decay in SU(5) and SO(10)

With Superfield Techniques, Phys. Lett. B 177 (1986) 55 [INSPIRE].

[63] K. Abe et al., Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and

Physics Potential —, arXiv:1109.3262 [INSPIRE].

[64] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter

Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].

[65] D.J.H. Chung, Classical Inflation Field Induced Creation of Superheavy Dark Matter, Phys.

Rev. D 67 (2003) 083514 [hep-ph/9809489] [INSPIRE].

– 23 –

http://dx.doi.org/10.1103/PhysRevLett.118.021303
https://arxiv.org/abs/1608.07648
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.07648
https://doi.org/10.1088/1475-7516/2016/04/027
https://arxiv.org/abs/1512.07501
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07501
https://doi.org/10.1016/0550-3213(81)90266-2
https://doi.org/10.1016/0550-3213(81)90266-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B177,60%22
https://doi.org/10.1103/PhysRevD.46.2261
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D46,2261%22
https://doi.org/10.1103/PhysRevD.25.581
https://doi.org/10.1103/PhysRevD.25.581
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D25,581%22
http://dx.doi.org/10.1103/PhysRevD.92.075018
https://arxiv.org/abs/1507.06712
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.06712
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1016/0550-3213(81)90498-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B178,75%22
https://doi.org/10.1103/PhysRevD.40.3765
https://doi.org/10.1103/PhysRevD.40.3765
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D40,3765%22
https://doi.org/10.1103/PhysRevD.47.264
https://arxiv.org/abs/hep-ph/9204234
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9204234
https://doi.org/10.1016/0370-2693(87)90597-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B196,163%22
https://doi.org/10.1016/j.physrep.2007.02.010
https://arxiv.org/abs/hep-ph/0601023
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0601023
https://doi.org/10.1103/PhysRevD.70.111501
https://arxiv.org/abs/hep-lat/0402026
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0402026
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://arxiv.org/abs/hep-ph/0307298
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0307298
https://arxiv.org/abs/hep-ph/0004266
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0004266
https://doi.org/10.1016/0370-2693(86)90013-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B177,55%22
https://arxiv.org/abs/1109.3262
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3262
https://doi.org/10.1103/PhysRevLett.64.615
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,64,615%22
https://doi.org/10.1103/PhysRevD.67.083514
https://doi.org/10.1103/PhysRevD.67.083514
https://arxiv.org/abs/hep-ph/9809489
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9809489


J
H
E
P
0
2
(
2
0
1
8
)
0
1
6

[66] D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1999)

023501 [hep-ph/9802238] [INSPIRE].

[67] M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174

(1986) 45 [INSPIRE].

[68] W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann.

Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

[69] S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105

[arXiv:0802.2962] [INSPIRE].

[70] XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment,

Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].

[71] R. Feger and T.W. Kephart, LieART — A Mathematica application for Lie algebras and

representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379]

[INSPIRE].

– 24 –

https://doi.org/10.1103/PhysRevD.59.023501
https://doi.org/10.1103/PhysRevD.59.023501
https://arxiv.org/abs/hep-ph/9802238
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9802238
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0370-2693(86)91126-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B174,45%22
https://doi.org/10.1146/annurev.nucl.55.090704.151558
https://doi.org/10.1146/annurev.nucl.55.090704.151558
https://arxiv.org/abs/hep-ph/0502169
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0502169
https://doi.org/10.1016/j.physrep.2008.06.002
https://arxiv.org/abs/0802.2962
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2962
https://doi.org/10.1007/978-94-007-7241-0_14
https://arxiv.org/abs/1206.6288
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6288
https://doi.org/10.1016/j.cpc.2014.12.023
https://arxiv.org/abs/1206.6379
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6379

	Introduction
	Particle content
	Stability of the lightest exotic fermion
	Breaking chains
	Yukawa sector
	Candidates
	The exotic quark D
	The exotic SO(10) singlet s
	The exotic neutrino N(E)
	Breaking chain and mass terms
	Estimation of the masses and direct detection
	RGE running of the gauge couplings
	Threshold corrections


	Production
	Conclusions and discussion
	Standard model and subgroup embeddings

