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1 Introduction and discussion

1.1 An overview of black-hole microstates

The realization that black holes are thermodynamic black bodies has reshaped our funda-

mental concept of space and time by introducing profound connections between gravity,

quantum mechanics, statistical mechanics and quantum information theory. The need for

a dramatic reformulation of our understanding of horizon-scale physics follows from the

fundamental conflict between the locality, causality, and unitarity properties of quantum

field theory in the context of black-body (Hawking) radiation emitted by a black hole

as described in General Relativity. Over the years, there has been much debate as to

which fundamental physical principles need to be relaxed in order to formulate a consis-

tent theory of quantum gravity. Investigation of the entanglement structure of Hawking

quanta [1, 2] has sharpened these issues substantially, showing that one cannot simply use

effective quantum field theory in the vicinity of a black hole event horizon.

Gauge/gravity duality [3] strongly suggests that unitarity must survive as a core prin-

ciple, at least for the class of examples encompassed by this duality. This is because the

space-times on the gravity side of the duality have a time-like boundary and the dual field

theories have a standard unitary quantum-mechanical evolution governed by the Hamilto-

nian conjugate to the preferred global time coordinate on the boundary.

The entire framework of statistical mechanics suggests that the thermodynamic entropy

of black holes must be reflected in the statistics of microstate structure. For theories with

a gauge/gravity dual, the underlying density of states is that of the quantum Hilbert

space. The question then arises as to where and how these microstates are encoded in

a black hole. What is the new space-time structure that must emerge at the horizon

scale in order to describe a typical black hole microstate? There are many proposals,

ranging from fuzzballs [1, 4], firewalls [2], Bose-Einstein condensates of gravitons [5], webs

of wormholes [6] or that the information could be encoded in soft photons around the

horizon [7]. The problem is that, with the exception of the fuzzball proposal, none of these

proposals has a mechanism that is capable of supporting horizon-scale structure against

its rapid and inevitable collapse into the black hole.

The fuzzball proposal, and its developments in the microstate geometry programme, re-

place the horizons of black holes by higher-dimensional, horizonless structures that emerge

naturally within string theory. The insistence on horizonless structures comes from requir-

ing that quantum unitarity be preserved [1]. In terms of the detailed physics, the fuzzball

paradigm is that some new phase of matter must emerge at the horizon scale and prevent

the formation of the horizon in the first place. The microstate structure that underpins

the black-hole entropy must then remain accessible to outside observers.

The fuzzball programme contains a broad range of distinct enterprises and so two of the

authors of this paper proposed the following nomenclature [8] to refine the relevant ideas:

1. A Microstate Geometry is a smooth, horizonless solution of supergravity that is valid

within the supergravity approximation to string theory and that has the same mass,

charge and angular momentum as a given black hole.

– 2 –
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2. A Microstate Solution is a formal solution of supergravity equations of motion that

is horizonless and that has the same mass, charge and angular momentum as a given

black hole. Microstate solutions are allowed to have Planck/string-scale curvatures

corresponding to physical brane sources; non-geometric solutions that can be patch-

wise dualized into a smooth solution are also included.

3. A Fuzzball is the most generic horizonless configuration in string theory that has the

same mass, charge and angular momentum as a given black hole. It can involve arbi-

trary excitations of non-supergravity fields corresponding to massive stringy modes

and can be arbitrarily quantum.

Microstate geometries, the first category of microstates above, have been shown to

embody the only semi-classical gravitational mechanism known thus far that can support

horizon-scale microstructure [9] (see also [10, 11]). From the perspective of holographic

field theory, microstate geometries are intended to capture the infra-red physics of the new

phases of matter that emerge at the horizon scale. Thus, one can argue more generally that

the effectiveness of microstate geometries is closely linked to the effectiveness and accuracy

of semi-classical descriptions of holographic field theory.

Building on the work of [4, 12], a growing variety of examples of such geometries have

been constructed. These come in two main classes: “bubbled geometries” where all the

charges are sourced by Chern-Simons interactions of fluxes threading topology [13–17] (see

more recently [18–20]); and those in which one of the charges arises from a momentum

wave on a bubbled geometry [21–25]. This work culminated in some recent key examples

outlined in [26], the details of which we present, and then generalize, in this paper.

The examples of microstate geometries constructed to date are still rather limited, and

it is not clear whether the most general configurations are sufficiently generic to represent

typical microstates of a black hole. They correspond to macroscopic, coherent excitations of

a particular set of modes in the supergravity approximation. Furthermore, even if there are

a macroscopic number of geometric microstates at extremality, it is not clear whether this

property will persist far from extremality, although progress in this direction has recently

been made [27–30].

The transition from microstate geometries to the second category — microstate so-

lutions — is expected to encompass more generic horizon-scale microstructure. For in-

stance, in the two-charge system in the D1-D5 duality frame, the microstate geometries

involve smooth Kaluza-Klein monopole structures, but the curvature of the typical config-

uration lies at the scale where the supergravity approximation breaks down [31, 32] (see

also [33, 34]). In certain situations adding a third charge has been shown to lower the

curvature and smoothen singular two-charge configurations [24]. Thus it is possible that

some portion of the microstate solutions, once fully backreacted, are actually realized as

microstate geometries.

Microstate solutions also include configurations that are only patch-wise geometric.

See for example [35, 36] for attempts to explicitly construct such microstates, in which

different patches of spacetime are glued together by U-dualities [37, 38] and which might

be related to the backreaction of condensates of stretched branes.

– 3 –
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Finally, the third, “Fuzzball”, category is intended to cover the most general situation

that can occur in string theory. Examples include condensates of stretched branes [39]

that capture a finite fraction of black hole entropy in bubbling microstate geometries [40],

and black NS5-branes, whose entropy can be attributed to the Hagedorn phase of “little

strings” [41]. However, the proper way to describe the backreaction of condensates of

stretched branes is not yet known. String theory contains not only massless supergravity

fields but also an infinite tower of massive non-supergravity fields, and it is possible that

they are activated in the most general microstates. In particular, massive stringy modes

can be excited very near the horizon [42–45], and might distinguish black hole microstates

in ways that supergravity cannot. Furthermore, spacetime itself could become highly

quantum, so that classical geometric notions such as locality and causality might cease

to apply.

The divisions between different categories are not hard and sharp. For instance, when

curvature is of the order of the string scale, there is no clear-cut distinction between su-

pergravity modes and stringy modes. In [46] it was argued that fractionation effects could

lead to a geometry which is stringy as seen by some objects and geometrical as seen by

others. Furthermore, one of the authors and Mathur have argued that certain infalling

probes interacting with typical fuzzball microstates may for practical purposes experience

a smooth horizon, for a subset of physical processes [47, 48].

The important role of microstate geometries in this overall program is that they rep-

resent very explicit, computable examples of geometries that are dual to some of the mi-

crostates of black holes. Moreover, microstate geometries are capable of supporting exten-

sive microstate structure through classical and semi-classical excitations as well as proving

invaluable for the study of more “stringy” microstate excitations, as in [39]. Hence, mi-

crostate geometries are the laboratory par excellence for probing and testing ideas about

black-hole microstate structure.

1.2 Developing the new class of black-hole microstate geometries

One of the problems inherent in the early constructions of microstate geometries was that

all known examples carried angular momenta that are large fractions of the maximally

allowed value for the corresponding black holes (see for example [16, 49]). This may have

led to a misconception that microstate geometries only exist because of a finely-tuned

balance between gravity and angular momentum that keeps the constituent branes spread

apart. The main mechanism that supports microstate geometries is, in fact, the non-

trivial interaction of topological magnetic fluxes. This enables such geometries to remain

macroscopic and non-singular for arbitrarily small angular momentum.

Typical black-hole microstates should also be very well-approximated by the black-

hole solution until very close to the horizon. For microstate geometries of extremal black

holes this requires a long, BTZ-like, AdS2 throat. To obtain such a throat, prior work

used bubbling solutions with multiple Gibbons-Hawking (GH) centers [14, 15]; the moduli

space of these solutions includes “scaling” regions [16, 17, 50] in which the GH centers

approach each other arbitrarily closely, whereupon the solution develops the requisite long

AdS2 throat. Quantum effects should set an effective upper bound on the depth of such
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throats [17, 51], and a corresponding lower bound on the energy gap, which matches the

lowest energy excitations of the (typical sector of the) dual CFT.

All the previously-known scaling microstate geometries involve at least three GH cen-

ters [16–20]. Unfortunately, the dual CFT descriptions of these geometries are not yet

known. On the other hand, the holographic dictionary between supergravity solutions and

CFT states has been constructed for the generic two-charge states [52] and for particular

three-charge two-centered solutions [13, 53]. Therefore, we were motivated to construct

new three-charge black-hole microstate solutions by adding momentum excitations to a

certain two-charge, two-center seed solution. We achieved this using “superstratum” tech-

nology [23, 24, 54], which allowed us to introduce momentum-carrying deformations, with

specific angular dependence, that modify the momentum and the angular momenta of the

solution without introducing new singularities in the geometry [25, 26]. The geometries

in [23, 24, 26] were constructed as excitations of the D1-D5 system in the IIB theory. The

holographic duals of the states were identified as particular left-moving momentum and

angular-momentum modes in the D1-D5 CFT [23, 24, 26, 55]. In [25] these results were

generalized to M-theory and the MSW string.

The solutions of this paper depend on several parameters. One parameter lowers the

angular momenta, while another parameter adds momentum without increasing the angular

momenta of the two-charge seed solution. Thus the angular momentum of the solutions

can be parametrically small. These deformations therefore allow us to obtain solutions that

have arbitrarily small angular momenta and describe microstates of the non-rotating D1-

D5-P (Strominger-Vafa) black hole. The solutions have an AdS2 throat, which becomes

longer and longer as the angular momenta j, j̃ → 0, thus classically approximating the

non-rotating black hole to arbitrary precision.

1.3 Near-horizon geometry

In many examples of holography in five and six dimensions, the decoupling limit of the

near-horizon geometry is asymptotically a sphere (S2 or S3) fibered over AdS3, and gravity

is dual to a two-dimensional CFT. In this CFT dual, the asymptotic density of states is

governed by the Cardy formula [56], for instance for asymptotically-AdS3×S3 spacetimes,

SCFT = 2π

[√
c

6

(
L0 −

c

24

)
− j2 +

√
c

6

(
L̃0 −

c

24

)
− j̃2

]
. (1.1)

This formula holds not only for large charges1 [57]; it remains accurate down to the cosmic

censorship bound where SCFT vanishes. At the bound, the naive black hole becomes sin-

gular; below the bound, the geometries can have explicit brane sources, or remain smooth

and supported by fluxes on topological cycles, or can have a combination of both.

In this paper we will focus on BPS black holes and so we will only be concerned with

the first term in (1.1). The näıve phase diagram is depicted in figure 1 and the parabola

at the boundary of the black hole region is the cosmic censorship bound. The Cardy

formula indeed shows that increasing the angular momentum takes away from the free

1Large charges mean those satisfying L0 − c/24− 6j2/c� c/6.
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0

L
2J

unitarity bound

Black Holes

2−charge states

N/4

0

BH

N

S   = 0

L

Figure 1. Phase diagram for the spectrum in the RR sector; note that c = 6N . Generic states

above the cosmic censorship bound, i.e. with c
6 (L0 − c

24 ) � j2L, are microstates with the same

charges as a black hole with rotation on the S3; states below this bound (depicted in blue) are not.

The 1/2-BPS supertube states (on the red line) all lie at or below the bound.

energy available to generate black hole entropy, and takes one closer to a solution with a

naked singularity.

The phase diagram of figure 1 is also an oversimplification. Near the cosmic censorship

bound, there can be a rich variety of phases involving black holes with other horizon topolo-

gies: for instance one can have black holes localized in both AdS3 and the sphere [31, 58];

black holes with supertubes around them; three-charge black rings [59–61]; and multicenter

solutions involving black holes, black rings, and supertubes [62, 63].

To avoid the complications of the phase diagram near extremality with macroscopic

angular momentum, and get deep into the black-hole regime, one would like to be able to

dial the angular momentum to small values, while maintaining a large energy above the

ground state, so that the corresponding black hole has a macroscopic horizon area. This was

another motivation for constructing the new black-hole microstate solutions outlined in [26].

In six dimensions, the near-horizon geometry of a supersymmetric rotating black string

is S3 fibered over the extremal BTZ black hole [64], which has the metric

ds2
BTZ = `2AdS

[
ρ2(−dt2 + dy2) +

dρ2

ρ2
+ ρ2
∗(dt+ dy)2

]
. (1.2)

This metric is locally AdS3 and asymptotes to the standard AdS3 form for ρ� ρ∗. It can

be written as a circle of radius ρ∗ fibered over AdS2 in the near-horizon region ρ� ρ∗ (see,

for example, [65]). Dimensional reduction on this circle yields the AdS2 of the near-horizon

BMPV solution [66]. Following the usual abuse of terminology, we will refer to this region

as the AdS2 throat.

The BTZ parameters and coordinate ρ are related to the supergravity D1, D5, and P

charges Q1, Q5, QP and the radial coordinate r (to be used later) as follows. First, we have

ρ =
r

`2AdS

, `2AdS =
√
Q1Q5 . (1.3)

Next, the horizon radius, ρ∗, of the extremal BTZ solution (1.2) determines the onset of

– 6 –
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the AdS2 throat (and thus the radius of the fibered S1) and is given by

ρ2
∗ =

QP

Q1Q5
. (1.4)

This value is determined by a competition between the momentum charge and the D-brane

charges: the former exerts pressure, thereby expanding the size of the y circle, while the

latter exert tension that tries to shrink the circle.

There has been a growing interest in the physical properties of microstate geome-

tries [67–70] (see also the recent work [71, 72]). In particular, based on a perturbative

analysis, it has been argued that supersymmetric microstate geometries are non-linearly

unstable when a small amount of energy is added, potentially leading to formation of a

black hole [67], or an approach to typical microstates [69]. We note that the asymptotically-

flat solutions of this paper break the isometries that were an intrinsic part of the analysis

of [67], so a more detailed analysis is necessary. Furthermore, apparently singular behav-

ior can arise when one oversimplifies the system by ignoring degrees of freedom that are

necessary for the correct description of the physics. Therefore the study of these ques-

tions requires great care and one must correctly take into account the full phase space

of possible configurations explored by the dynamics. The results of this paper advance

our understanding of the phase space of microstate geometries. We intend to investigate

questions of stability and their physical interpretation in a future work [73].

1.4 The structure of this paper

A brief summary of some of the new microstate geometries that are asymptotic to AdS3×S3

appeared in [26]. In this paper we provide a much more detailed description of their

construction, and we generalize these solutions to asymptotically-flat backgrounds.

We work in type IIB string theory on R4,1× S1×M, whereM is T4 or K3. The S1 is

wrapped by n1 D1-branes while n5 D5-branes wrap S1 ×M. We consider the limit where

the volume, V4, of M is microscopic and the radius, Ry, of the S1 (parametrized by the

coordinate y) is macroscopic, such that the ten-dimensional supergravity brane-charges,

Q1 and Q5, are of the same order and macroscopic. In this limit, the D1-branes and D5-

branes provide a heavy background, in which the momentum P along the y direction is a

light excitation. The hierarchy of scales between Ry and V
1/4

4 means that we can reduce

the problem to the low-energy, six-dimensional supergravity theory obtained by reduction

on M. Following the standard solution-building practice [23], we will consider only the

supergravity fields that are both independent of the T 4, or K3, and whose ten-dimensional

fields either have no components along M or are proportional to the volume form on

M. The result is six-dimensional (1, 0) supergravity coupled to two anti-self-dual tensor

multiplets. This system has all the ingredients necessary for the construction of superstrata

and has become the workhorse of the microstate geometry programme [23, 25, 26].

Section 2 contains a summary of the six-dimensional supergravity and the equations

governing BPS solutions. These equations can be organized in successive layers. A zeroth

layer involves non-linear equations defining the metric of the four-dimensional base space

of the solution; in all the solutions in this paper, we will take the same, simple solution for

– 7 –
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this basic layer. The remaining equations are linear and come in two further layers. The

first, which we call Layer 1, is a homogeneous system and, in section 3, we describe how

one can find solutions to this system in two-centered geometries using solution-generating

techniques. Since this layer of equations is linear, the most general solution can then

be obtained from arbitrary superpositions of the simpler solutions obtained by solution-

generating methods. The final layer of BPS equations, which we call Layer 2, is also linear

and is sourced by quadratic combinations of the solutions to Layer 1. In section 4 we

work in a background that is asymptotic to AdS3 × S3 and solve the final layer of BPS

equations when a single mode is excited in Layer 1 of the BPS system. Such single-mode

superstrata solutions are structurally much simpler than their multi-mode counterparts [23]

but illustrate the major points we wish to make here. In section 5 we then generalize single-

mode superstrata to asymptotically-flat backgrounds. Readers whose interest lies in the

new solutions and their properties, rather than in how they are constructed, may wish to

skip directly to sections 4 and 5.

Section 6 contains a review of the structure of the CFT that is dual to string theory on

AdS3×S3 ×M. We identify a particular family of states in the orbifold CFT MN/SN as

the dual to our family of microstate geometries; since the states are BPS, this identification

has meaning even though the states being compared lie in completely different loci of the

moduli space of the theory. The appendices contain some technical details about the

supergravity solutions and the normalization of states in the CFT.

The ultimate purpose of this paper is to provide detailed information about the con-

struction of superstrata in both asymptotically-AdS and asymptotically-flat space-times.

We have provided an extensive introduction so as to set these more technical results in

the larger context of the microstate geometry program and we will therefore eschew a

conclusions section.

2 Supersymmetric D1-D5-P solutions to type IIB supergravity

As we noted in the previous section, we work in type IIB string theory on R4,1 × S1 ×M,

where M is either T4 or K3. Our solutions are independent of M, and are described by

a six-dimensional N = 1 supergravity coupled to two tensor multiplets. The solutions we

construct have nontrivial momentum along the common circle wrapped by both the D1

and D5 branes, which is parametrized by y and has radius Ry. The first superstrata [23]

were constructed in this theory, which contains all the fields expected from D1-D5-P string

emission calculations [74]. The system of BPS equations describing all 1/8-BPS D1-D5-P

solutions of this theory was derived in [75]; this is a generalization of the system discussed

in [76, 77] and simplified in [78].

We work with asymptotically null coordinates u and v, related to y and time t via:

u ≡ 1√
2

(t− y) , v ≡ 1√
2

(t+ y) . (2.1)

The BPS solutions have a null isometry along u.

The type IIB ansatz comprises the following ingredients. The six-dimensional metric

is a fibration over a four-dimensional base space B, with metric ds2
4, which may depend

– 8 –
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on v. The ansatz includes scalars denoted by Z1, Z2, Z4,F ; one-forms on B denoted by

β, ω, a1, a2, a4; two-forms on B denoted by γ1, γ2, δ2; and a three-form on B denoted by x3.

All these quantities may depend on v and the coordinates of B. These quantities obey BPS

equations that we will display momentarily.

We denote the ten-dimensional string-frame metric by ds2
10, the six-dimensional

Einstein-frame metric by ds2
6, the dilaton by Φ, the NS-NS two-form by B and the RR

potentials by Cp. It is convenient to write C6, the 6-form dual to C2, for the purpose of

introducing notation. The full ansatz is [75, appendix E.7]:

ds2
10 =

√
αds2

6 +

√
Z1

Z2
dŝ2

4 , (2.2a)

ds2
6 = − 2√

P
(dv + β)

[
du+ ω +

F
2

(dv + β)
]

+
√
P ds2

4 , (2.2b)

e2Φ =
Z2

1

P
, (2.2c)

B = − Z4

P
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2 , (2.2d)

C0 =
Z4

Z1
, (2.2e)

C2 = − Z2

P
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2 , (2.2f)

C4 =
Z4

Z2
v̂ol4 −

Z4

P
γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) , (2.2g)

C6 = v̂ol4 ∧
[
−Z1

P
(du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

]
, (2.2h)

with

α ≡ Z1Z2

Z1Z2 − Z2
4

, P ≡ Z1 Z2 − Z2
4 . (2.3)

In the above, dŝ2
4 stands for the flat metric on T 4, and v̂ol4 denotes the corresponding

volume form.

2.1 The BPS equations

The BPS equations are organized as follows. The four-dimensional metric, ds2
4, and the

one-form β satisfy non-linear equations; given a solution to this initial set of equations, the

remaining ansatz quantities are organized into two layers of linear equations [75, 78].

In the current paper we build our solutions within a restricted class of solutions to the

non-linear layer of equations, in which the four-dimensional base space is R4 with ds2
4 the

flat metric, and in which β is v-independent. Given this starting point, the BPS equations

for β simply impose that it has a self-dual field strength,

dβ = ∗4dβ , (2.4)

where ∗4 denotes the flat R4 Hodge dual.

– 9 –
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To write the remaining BPS equations, let us introduce the 2-forms

Θ1 ≡ Da1 + γ̇2 , Θ2 ≡ Da2 + γ̇1 , Θ4 ≡ Da4 + δ̇2 . (2.5)

Let us denote the exterior differential on the spatial base B by d̃, and introduce

D ≡ d̃− β ∧ ∂

∂v
. (2.6)

The first layer of the BPS equations is then (the dot denotes ∂
∂v ):2

∗4DŻ1 = DΘ2 , D ∗4 DZ1 = −Θ2 ∧ dβ , Θ2 = ∗4Θ2 ,

∗4DŻ2 = DΘ1 , D ∗4 DZ2 = −Θ1 ∧ dβ , Θ1 = ∗4Θ1 , (2.7)

∗4DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ dβ , Θ4 = ∗4Θ4 .

In (2.7), the first equation on each line involves four component equations, while the

second equation on each line can be thought of as an integrability condition for the first

equation. The self-duality condition reduces each ΘI to three independent components; in-

cluding each corresponding equation for ZI makes four independent functional components,

upon which there are four constraints.

The final set of BPS equations are linear equations for ω and F , the second of which

follows from the vv component of Einstein’s equations:

Dω + ∗4Dω + F dβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 , (2.8)

∗4D ∗4
(
ω̇ − 1

2
DF

)
= ∂2

v(Z1Z2 − Z2
4 )− (Ż1Ż2 − (Ż4)2)− 1

2
∗4
(
Θ1 ∧Θ2 −Θ4 ∧Θ4

)
.

Note that F dβ appears on the left-hand side of the first equation, so as to separate it from

the known sources that arise from the solution to the Layer 1 equations (2.7).

3 First layer of equations: solution-generating technique

In this section we describe the construction of the asymptotically-AdS solutions, focusing

on Layer 1 of the BPS equations. We will discuss Layer 2 in the next section and the

extension of the construction to asymptotically-flat solutions in section 5.

3.1 The solution-generating technique

Our construction proceeds via the solution-generating technique developed in [23], based

on the earlier works [21, 22, 79, 80]. This technique utilizes the symmetry of the simplest

two-charge solution: after the change of coordinates corresponding to the CFT spectral

flow transformation from the R-R to the NS-NS sector, this solution is nothing but pure

AdS3 × S3 and thus has an SL(2,R)L × SL(2,R)R × SU(2)L × SU(2)R isometry group.3

2The BPS equations (2.7), (2.8) can also be expressed in a covariant form [23, 25].
3This symmetry algebra is enhanced to the full Virasoro and current algebras [81], but here we do not

consider them and focus on this “rigid” symmetry group.
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One considers a two-charge solution which is a linear (infinitesimal) fluctuation around

this AdS3 × S3 background geometry. We refer to solutions representing such fluctua-

tions as “seed solutions”. If one acts on this linear solution with SL(2,R)L × SU(2)L
generators,4 then, since the background geometry AdS3 × S3 is invariant, one generates

a new linear fluctuation. When written in the original coordinates describing the R-R

states, this fluctuation has a non-vanishing momentum charge. The original form of the

solution-generating technique [79, 80, 83] constructed solutions that involve infinitesimal

deformations of AdS3 × S3; however we can promote these to solutions involving finite

deformations by using the linear structure of the BPS equations.

Concretely, we start with a particular two-charge seed solution that has a non-trivial

Z4. The relation of the function Z4 to the profile function defining two-charge solutions is

reviewed in section 6.2 below; for more details on the profile function that corresponds to

this solution, see [23, eq. (3.10)].

The metric is described in terms of the ansatz quantities described in section 2 as

follows. The solution has a flat base B = R4 which we write as

ds2
4 = (r2 + a2 cos2 θ)

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2 . (3.1)

Defining

Σ ≡ r2 + a2 cos2 θ , (3.2)

the expression for the one-form β is

β =
Rya

2

√
2 Σ

(sin2 θ dφ− cos2 θ dψ) . (3.3)

We introduce a real parameter b; to start with, we consider this to be the amplitude

of an infinitesimal fluctuation, and so we allow ourselves to write a complex phase in Z4

for the moment. The functions and forms of the seed solution at linear order in b are as

follows [23, eq. (3.11)]:

Z1 =
R2
y a

2

Q5Σ
, Z2 =

Q5

Σ
, Θ1 = Θ2 = 0, (3.4a)

Z4 = Ry b a
k sink θ e−ikφ

(r2 + a2)k/2 Σ
, Θ4 = 0, (3.4b)

ω =
Ry a

2

√
2 Σ

(sin2 θ dφ+ cos2 θ dψ) ≡ ω0 , F = 0 , (3.4c)

where k is a positive integer. To linear order in b, the relation between the parameters

a,Ry and the charges Q1, Q5 is

a2 =
Q1Q5

R2
y

. (3.5)

4Acting also with the right-moving part SL(2,R)R×SU(2)R breaks supersymmetry, and is not considered

in the present paper. Non-extremal linearized solutions where one acts also with SU(2)R have been recently

constructed in [82].
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The “background geometry” obtained by setting b = 0 in the above solution is global

AdS3 × S3. Indeed, in the new coordinates

φ̃ = φ− t

Ry
, ψ̃ = ψ − y

Ry
, (3.6)

the six-dimensional metric becomes

ds2
6 =

√
Q1Q5

(
− r

2 + a2

a2R2
y

dt2 +
r2

a2R2
y

dy2 +
dr2

r2 + a2
+ dθ2 + sin2 θdφ̃2 + cos2 θdψ̃2

)
,

(3.7)

which is nothing but global AdS3 × S3 with radius RAdS3 = RS3 =
√
aRy = (Q1Q5)1/4. In

the dual CFT language, the coordinate transformation (3.6) corresponds to the spectral

flow transformation from the R-R to the NS-NS sector. We will refer to the coordinate

systems (t, y, r, θ, φ, ψ) and (t, y, r, θ, φ̃, ψ̃) as the R and NS coordinate systems, respectively.

The generators of the SL(2,R)L × SU(2)L symmetry of AdS3 × S3 are

L0 =
iRy
2

(∂t + ∂y),

L±1 = ie
± i
Ry

(t+y)
[
−Ry

2

(
r√

r2 + a2
∂t +

√
r2 + a2

r
∂y

)
± i

2

√
r2 + a2 ∂r

]
, (3.8)

J3
0 = − i

2
(∂φ̃ + ∂ψ̃), J±0 =

i

2
e±i(φ̃+ψ̃)(∓i∂θ + cot θ ∂φ̃ − tan θ ∂ψ̃). (3.9)

These satisfy the standard algebra relations

[L0, L±1] = ∓L±1, [L1, L−1] = 2L0, (3.10)

[J3
0 , J

±
0 ] = ±J±0 , [J+

0 , J
−
0 ] = 2J3

0 . (3.11)

The solution-generating technique of [79] adapted to our formulation proceeds as fol-

lows: (i) extract the six-dimensional or ten-dimensional fields from the ansatz quantities

of the seed solution; (ii) rewrite the fields in the NS coordinate system using (3.6); (iii) act

on the fields with the NS generators (3.9) to produce a new linear solution; (iv) use (3.6)

again to bring the solution back in the R coordinate system; and finally (v) recast the

six-dimensional or ten-dimensional fields into the form of the ansatz, and read off the

ansatz quantities.

It is cumbersome but straightforward to carry out this procedure starting with our

seed solution (3.4). This two-charge solution represents a RR ground state, which can

be mapped by spectral flow to an anti-chiral primary state in the NS sector. An anti-

chiral primary is annihilated by J−0 and L1 but generates new (super)descendant states

when acted on by J+
0 and L−1. So, in step (iii) of the above procedure, we act on the

seed solution

m times with J+
0 and n times with L−1 , (3.12)

where m ≤ k, since the action of (J+
0 )k produces the chiral primary state which is annihi-

lated by any further action of J+
0 .
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This procedure results in the following ansatz quantities. First of all, ds2
4, β,

Z1,2, Θ1,2, ω, and F , are unchanged at linear order in b from their values given

in (3.1), (3.3), (3.4a), (3.4c). Next, Z4 and Θ4 become:

Z4 = bRy
∆k,m,n

Σ
e−iv̂k,m,n , (3.13a)

Θ4 = −
√

2 b∆k,m,n

[
i

(
(m+ n) r sin θ + n

(
m

k
− 1

)
Σ

r sin θ

)
Ω(1)

+m

(
n

k
+ 1

)
Ω(2) +

(
m

k
− 1

)
nΩ(3)

]
e−iv̂k,m,n , (3.13b)

where

∆k,m,n ≡
(

a√
r2 + a2

)k ( r√
r2 + a2

)n
cosm θ sink−m θ ,

v̂k,m,n ≡ (m+ n)

√
2 v

Ry
+ (k −m)φ−mψ ,

(3.14)

and where Ω(i) (i = 1, 2, 3) are a basis of self-dual 2-forms on R4:

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dφ ∧ dψ ,

Ω(2) ≡ r

r2 + a2
dr ∧ dψ + tan θ dθ ∧ dφ ,

Ω(3) ≡ dr ∧ dφ
r

− cot θ dθ ∧ dψ .

(3.15)

One can check that the fields (3.13) satisfy the Layer 1 BPS equations (2.7). The Layer 2

equations (2.8) are trivially satisfied by ω = ω0 and F = 0, because the fields Z4, Θ4 are

infinitesimal and hence the source terms on the right hand side of (2.8) are zero.

Let us make a side remark on the CFT state dual to the above solution, to give the

reader some rough intuition. The dual holographic description will be fully fleshed out in

section 6, where the notation used below will be introduced in full. In the NS-NS sector,

the above solution corresponds to a component of the CFT state of the form

(J+
0 )m(L−1)n|00〉NS

k , (3.16)

where |00〉NS
k represents an anti-chiral primary state related to Z4. Spectral-flowed to the

RR sector, the above component becomes

(J+
−1)m(L−1 − J3

−1)n|00〉Rk . (3.17)

In the symmetric orbifold CFT, states generically consist of many strands of different

lengths. The state |00〉NS,R
k corresponds to a single strand of length k and the states (3.16)

and (3.17) represent their superdescendants.
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3.2 Solution to the first layer of the BPS equations

The linear solutions for fields (Z4,Θ4) with quantum numbers (k,m, n) in (3.13), which

were obtained by the solution-generating technique, satisfy the Layer 1 BPS equations (2.7).

Because these equations are linear differential equations, we are free to take an arbitrary

linear superposition of the solution (3.13), with different finite coefficients for different

values of (k,m, n). Therefore, the following represents a very general class of solutions to

the (Z4,Θ4) first layer of the BPS equations:

Z4 =
∑
k,m,n

bk,m,n4 zk,m,n , Θ4 =
∑
k,m,n

bk,m,n4 ϑk,m,n , (3.18)

where we have defined the mode functions

zk,m,n ≡ Ry
∆k,m,n

Σ
cos v̂k,m,n , (3.19)

ϑk,m,n ≡ −
√

2 ∆k,m,n

[(
(m+ n)r sin θ + n

(
m

k
− 1

)
Σ

r sin θ

)
Ω(1) sin v̂k,m,n

+

(
m

(
n

k
+ 1

)
Ω(2) + n

(
m

k
− 1

)
Ω(3)

)
cos v̂k,m,n

]
.

(3.20)

In writing (3.18), we have taken the real part of (3.13). The coefficients bk,m,n4 are

assumed to be real. More generally we could include different phases for different values of

(k,m, n), but we do not consider that generalization in this paper. The zeroth-layer fields,

ds2
4 and β are given by (3.1) and (3.3).

In the symmetric orbifold CFT, having a linear combination of different modes (k,m, n)

corresponds to having multiple strands with different quantum numbers (k,m, n) at the

same time. Schematically, instead of (3.17), the component of the dual CFT state corre-

sponding to the (Z4, Θ4) solution (3.18) is now∏
k,m,n

[
(L−1 − J3

−1)n(J+
−1)m|00〉Rk

]Nk,m,n
, Nk,m,n ∝

(
bk,m,n4

)2
. (3.21)

The fact that the modes are linear fluctuations around AdS3×S3 is reflected in the relation

Nk,m,n � N , which means that this is an infinitesimal excitation above the R ground

state. Although the state (3.17) was a superdescendant of the R ground state |00〉Rk , the

state (3.21) is generically not a superdescendant of any R ground state and thus is much

more general. We will discuss the form of the CFT states in more detail when we describe

the holographic interpretation of these solutions in section 6.

Since the Layer 1 equations (2.7) for (Z1,Θ2) and (Z2,Θ1) are linear and identical to

those for (Z4,Θ4), we can expand Z1,2, Θ1,2 in the same modes. Therefore, a very general

set of the full Layer 1 fields is given by:

Z1 =
Q1

Σ
+
∑
k,m,n

bk,m,n1 zk,m,n , Z2 =
Q5

Σ
+
∑
k,m,n

bk,m,n2 zk,m,n , Z4 =
∑
k,m,n

bk,m,n4 zk,m,n ,

Θ1 =
∑
k,m,n

bk,m,n2 ϑk,m,n , Θ2 =
∑
k,m,n

bk,m,n1 ϑk,m,n , Θ4 =
∑
k,m,n

bk,m,n4 ϑk,m,n .

(3.22)
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In Z1, Z2, we have included the zero mode parts Q1

Σ , Q5

Σ which correspond to empty AdS3×
S3 (note that z0,0,0 ∝ 1

Σ).

Now we re-emphasize the crucial observation made above. A priori, the fields in (3.22)

were obtained assuming that the coefficients bk,m,nI are infinitesimal. However, because

the Layer 1 equations are linear differential equations, even if we make the coefficients

bk,m,nI finite, the fields (3.22) continue to exactly solve the Layer 1 equation when the

zeroth-layer fields, ds2
4 and β, are assumed to be still given by (3.1) and (3.3). So we can

promote bk,m,nI to be finite parameters and the supergravity configuration (3.22) represents

a finite deformation of the empty AdS3 × S3 background (as far as Layer 1 is concerned).

Of course we can perform the same generalization on the CFT side and assume that the

numbers of strands, Nk,m,n in (3.21), is of order N . It is then natural to ask whether, for

the above finite supergravity deformations, there also exists a simple relation between the

CFT and the supergravity parameters. This issue can be clarified by means of precision

holography tests on the 3-point correlators, as discussed in [52, 55, 84]. In particular it is

straightforward to generalize this holographic analysis to the new states with n 6= 0 that are

the focus of this paper. More concretely, in section 6.2, we will work out the holographic

dictionary in detail for some concrete examples and show that the amplitude parameter

in Z4 in supergravity, bk,m,n4 , is linearly related to the amplitude parameter in CFT; the

explicit relation will be given in (6.23).

Thus linearity, which is a result of supersymmetry, has allowed us to promote the

infinitesimal Layer 1 solution generated in the previous subsection to a finite Layer 1 solu-

tion. Once we make bk,m,nI finite, the Layer 2 equations (2.8) require non-trivial solutions

depending quadratically on bk,m,nI . We must compute the Layer 2 quantities, F and ω, by

solving the Layer 2 differential equations (2.8) and by requiring that the resulting space-

time is smooth and free of closed timelike curves. These conditions provide constraints

on the possible values of the bk,m,n. However it can be quite complicated to make these

constraints explicit, since it is usually not obvious how to eliminate singularities in a su-

pergravity solution. In addition, the details of this procedure depend on the choice of the

Layer 0 fields.

A straightforward ansatz for the coefficients bk,m,nI that leads to regular solutions is

suggested by the above solution-generating technique, extrapolated to non-linear order [22,

23]. A systematic procedure to construct exact smooth solutions where the scalars ZI have

the form (3.22), starts from the two-charge seed in [23, eq. (3.11)], where one keeps also the

terms quadratic in b, and acts with a finite SU(2)L rotation5 by an angle χ. The resulting

geometry has a finite number of non-vanishing modes bk,m,n4 . All the modes generated by

this procedure have n = 0, m ≤ k, and the bk,m,n4 coefficients are not all independent since

they contain only two free parameters b and χ.

One can also observe that this procedure results in bk,m,n2 = 0 for any (k,m, n), and

hence all the Z2 modes are trivial. However, the modes of Z1 are nontrivial, and depend

quadratically on the coefficients bk,m,n4 . The relation between the coefficients bk,m,n4 and

5Acting with finite SL(2,R)L transformations generates an infinite number of modes and the resulting

solution is less easy to analyze.
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bk,m,n1 is such that the sources for the second-layer equations (2.8) depend only on the

difference of the modes v̂k,m,n − v̂k′,m′,n′ but not on their sum. The solutions generated in

this way are by construction superdescendants of two-charge states and represent only a

small subset of the general solutions considered above, where one has modes with arbitrary

k,m, n and the coefficients bk,m,n4 are arbitrary. One can however exploit the linearity of

the first layer of equations and extrapolate the structure of the coefficients bk,m,nI found for

superdescendants to a generic superposition of modes. This is the ansatz that was taken

in [23] for constructing superstrata with n = 0, and in the next section we will follow the

same approach.

4 Second layer of the BPS equations: asymptotically AdS

In this section we describe the construction of solutions to Layer 2 of the BPS equations,

focusing on asymptotically-AdS solutions. Asymptotically-flat solutions will be presented

in the next section. However, before we focus on particular asymptotics, we now make

some general remarks outlining some key elements of the structure of the second layer of

BPS equations (2.8) that enable us to break the problem into manageable pieces.

First, the sources on the right-hand side of (2.8) are quadratic in the Z’s and Θ’s,

which means that the sources involve the sums and differences of their Fourier mode de-

pendences, v̂k,m,n. Explicitly, there are two types of source: those with phase dependence

v̂k+k′,m+m′,n+n′ , and those with phase dependence v̂k−k′,m−m′,n−n′ (here we assume that

k − k′ ≥ 0 without loss of generality).

As mentioned at the end of the previous section, for superdescendant states one finds

no sources with phase v̂k+k′,m+m′,n+n′ . Furthermore, based on experience [23], when mode

dependences v̂k,m,n add together, the corresponding solution to Layer 2 (2.8) is generically

singular. In this paper we will always arrange that these Layer 2 sources are absent. Thus

our strategy will be to set the b2-modes to be zero, and to tune the b1-coefficients so as

to cancel the terms with v̂k+k′,m+m′,n+n′ in the Layer 2 sources. Note that for a pair of

modes (k,m, n) and (k′,m′, n′), such a cancellation is not possible if (km′ − k′m)(kn′ −
k′n) 6= 0, unless one excites other fields. Thus, if one allows generic modes to interact, the

construction of regular solutions could prove rather more challenging.

By adjusting the Fourier coefficients in (Z1,Θ2) in terms of those in (Z4,Θ4) in this way,

one can construct fully smooth microstate geometries. This tuning of Fourier coefficients

to create a smooth outcome is known as “coiffuring” [85–87]. Since the sources of Layer 2

are quadratic in ZI and ΘI , the b1 coefficients depend quadratically on the b4 coefficients.

We emphasise that the Fourier coefficients bk,m,n4 of Z4 are allowed to remain arbitrary,

in agreement with the results of IIB string scattering amplitudes [74, 88–90]. We will see

that this choice makes the source terms in the Layer 2 equations particularly simple, and

leads to smooth solutions. Because of the obstruction mentioned above, this approach is not

directly applicable to the most general superposition of modes, depending on both m and n.

However, interactions between multiple Fourier modes were considered in [23] for n = 0 and

that approach should work whenever each pair of modes satisfies (km′−k′m)(kn′−k′n) = 0.
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In particular, we expect that the construction of multi-mode solutions with m = m′ = 0

will be possible using methods very similar to those employed in [23].

To keep things simple, in this paper we will only construct solutions with a single

mode, for which this issue does not arise. For a single Fourier mode, there will be terms

with phase dependence v̂2k,2m,2n, and there will be “RMS” modes, proportional to the

square of the Fourier coefficient (bk,m,n4 )2 but independent of (v, φ, ψ). We will deal with

each separately.

The non-oscillating RMS terms depend only upon (r, θ) and the contributions to ω

and F from these terms simplify to:

ωRMS = ω1(r, θ) dφ + ω2(r, θ) dψ , FRMS = F(r, θ) . (4.1)

As we will see, these equations can be solved completely, albeit in a form involving sums

of multinomial coefficients. Physically, these RMS parts of the solution contain the longer-

distance effects of the oscillations, encoding all the resulting changes (with respect to the

seed solution) in the asymptotic momentum charge and angular momenta.

To solve the equations for oscillating sources one can use a gauge invariance of (2.8)

to set6

Fosc = 0 . (4.2)

Having made this gauge choice, one can write (2.8) in terms of differential operators acting

on each component of ω. From experience [23], one typically finds that this system can

first be reduced to a Laplacian on the sum of components (ωψ+ωφ), and once this equation

is solved, with a little guesswork one can leverage this to find the complete solution for all

the components of ω. We will describe this procedure in more detail in section 5.3.

With only a single mode, and for asymptotically-AdS solutions, the coiffuring results

in a complete cancellation of the mode dependence in the metric. Hence the metric is

completely independent of (v, ψ, φ). In these solutions, the tensor fields still oscillate as

functions of (v, ψ, φ), but the coiffuring cancels these oscillations in the energy-momentum

tensor and so the gravitational field does not oscillate. The gravitational field does re-

spond to the fluctuations, but only through their RMS effects. Thus, the single-mode

asymptotically-AdS superstrata which we construct in this section are the simplest of their

kind, and their second-layer equations (2.8) have only non-oscillating, RMS sources.

To obtain asymptotically-flat superstrata, one must “add 1’s” to Z1 and Z2, and this

creates new source terms that depend explicitly upon the oscillations in (v, ψ, φ). This

requires us to find new families of solutions to (2.8). These solutions will be constructed

in section 5 and, as we will see, their metric will depend non-trivially upon (v, ψ, φ) even

after coiffuring.

4.1 Solution to the second layer of the BPS equations

Following [23] we set the oscillations in (Z2,Θ1) to zero, since this choice emerges naturally

from the non-linear solution-generating method described at the end of section 3.2. We also

6Note that this choice is only possible for modes that have a non-trivial v-dependence, of the type we

will consider in this paper.
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specialize to a single-mode superstratum, which means reducing to single Fourier modes

in (3.22). The structure of the quadratic sources in Layer 2 means that it is natural for the

modes of (Z1,Θ2) to have twice the mode numbers of (Z4,Θ4). Since we now specialize to

a single mode, we suppress the (k,m, n) indices on bk,m,nI . Thus we take the full Layer 1

fields to have the form:

Z1 =
Q1

Σ
+
b1R

2
y

2Q5

∆2k,2m,2n

Σ
cos v̂2k,2m,2n , Z2 =

Q5

Σ
,

Z4 = Ry b4
∆k,m,n

Σ
cos v̂k,m,n ,

(4.3)

with

Θ1 = 0 , Θ2 =
b1Ry
2Q5

ϑ2k,2m,2n , Θ4 = b4 ϑk,m,n . (4.4)

With these choices, the sources of the Layer 2 BPS equations have an oscillating part

that depends only upon v̂2k,2m,2n as well as an RMS part. As in [23], we find that such

oscillating sources generically lead to singular angular momentum vectors, ω. However,

the Fourier coefficient of the oscillating source is proportional to b1 − b24 and so we take:

b1 = b24 . (4.5)

This coiffuring of the modes removes the singular oscillating parts and leaves us with only

the RMS sources. As we will see, this leads to a smooth solution.

The solution for ω and F is now given by the sums of the original supertube solutions

and the solution for the RMS pieces, as in (3.4c) and (4.1):

ωAdS = ω0 + ωRMS , F = FRMS . (4.6)

The equations (2.8) for ωRMS now reduce to:

dωRMS + ∗4dωRMS + F dβ =
√

2Ry b
2
4

∆2k,2m,2n

Σ

(
m(k + n)

k
Ω(2) − n(k −m)

k
Ω(3)

)
,

(4.7)

L̂ F =
4b24

r2 + a2

1

cos2 θΣ

[(
m(k + n)

k

)2

∆2k,2m,2n +

(
n(k −m)

k

)2

∆2k,2m+2,2n−2

]
,

(4.8)

where L̂ is the scalar Laplacian on the base space B:

L̂F ≡ 1

rΣ
∂r
(
r(r2 + a2) ∂rF

)
+

1

Σ sin θ cos θ
∂θ
(

sin θ cos θ ∂θF
)
. (4.9)

Since the right-hand side of (4.7) has no component in the Ω(1) direction, we can set

the components ωr = ωθ = 0. We write

ωRMS ≡ µk,m,n(dψ + dφ) + ζk,m,n(dψ − dφ) . (4.10)

Inspired by the results of [23, 91], we define

µ̂k,m,n ≡ µk,m,n +
Ry

4
√

2

r2 + a2 sin2 θ

Σ
Fk,m,n +

Ry b
2
4

4
√

2

∆2k,2m,2n

Σ
, (4.11)
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where Fk,m,n ≡ F is the solution of (4.8). Then µ̂k,m,n satisfies

L̂ µ̂k,m,n =
Ry b

2
4√

2

1

(r2 + a2)

1

cos2 θΣ

(
(k −m)2(k + n)2

k2
∆2k,2m+2,2n +

(nm)2

k2
∆2k,2m,2n−2

)
.

(4.12)

Once µk,m,n has been computed, ζk,m,n is determined by substituting (4.10) into (4.7),

which gives (sθ = sin θ, cθ = cos θ)

∂rζk,m,n =
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂rµk,m,n −
r sin 2θ

r2 + a2s2
θ

∂θµk,m,n

+

√
2Ry r

Σ(r2 + a2s2
θ)

[
b24

(
ms2

θ + nc2
θ −

mn

k
cos 2θ

)
∆2k,2m,2n

−
a2(2r2 + a2)s2

θc
2
θ

Σ
Fk,m,n

]
,

∂θζk,m,n =
r(r2 + a2) sin 2θ

r2 + a2s2
θ

∂rµk,m,n +
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂θµk,m,n

+
Ry sin 2θ√

2 Σ (r2 + a2s2
θ)

[
b24

(
−mr2 + n(r2 + a2)− mn

k
(2r2 + a2)

)
∆2k,2m,2n

+
a2r2(r2 + a2) cos 2θ

Σ
Fk,m,n

]
.

(4.13)

To solve the equations for F and µ̂k,m,n, we must find the function F2k,2m,2n that solves

the equation

L̂F2k,2m,2n =
∆2k,2m,2n

(r2 + a2) cos2 θ Σ
. (4.14)

In appendix A, we find that the solution to this problem is given by

F2k,2m,2n = −
j1+j2+j3≤k+n−1∑

j1,j2,j3=0

(
j1 + j2 + j3
j1, j2, j3

)

×
(

k+n−j1−j2−j3−1
k−m−j1,m−j2−1,n−j3

)2(
k+n−1

k−m,m−1,n

)2 ∆2(k−j1−j2−1),2(m−j2−1),2(n−j3)

4(k + n)2(r2 + a2)
, (4.15)

where (
j1 + j2 + j3
j1, j2, j3

)
≡ (j1 + j2 + j3)!

j1!j2!j3!
. (4.16)

In terms of F2k,2m,2n, the form of F ≡ Fk,m,n and µk,m,n for general k,m, n is

Fk,m,n = 4b24

[
m2(k + n)2

k2
F2k,2m,2n +

n2(k −m)2

k2
F2k,2m+2,2n−2

]
, (4.17)

µk,m,n =
Ry b

2
4√

2

[
(k −m)2(k + n)2

k2
F2k,2m+2,2n +

m2n2

k2
F2k,2m,2n−2

− r2 + a2 sin2 θ

4 Σ
b−2
4 Fk,m,n −

∆2k,2m,2n

4 Σ
+
xk,m,n

4 Σ

]
. (4.18)
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In this expression for Fk,m,n and µk,m,n it should be understood that, when the coefficient of

an F function is zero, the term is zero. The term proportional to xk,m,n is a harmonic piece

that we can freely add to the solution of the Poisson equation for µ̂k,m,n. The coefficient

xk,m,n will be fixed by regularity in the next subsection.

At this point, the equations (4.13) for ζk,m,n can be solved by quadrature.

Having obtained the asymptotically-AdS solutions, the conserved charges can be com-

puted from supergravity in order to be compared to the dual CFT states. However, it

is simpler to obtain these charges from the asymptotically-flat solutions that will be con-

structed in the next section (yielding the same values of the charges), so we postpone the

analysis until that point.

4.2 Regularity

Regularity of the solution requires that the metric and all other ten-dimensional fields

never diverge and that the components of the metric and the forms are well-behaved at

points where our coordinate system degenerates. There are potential divergences at the

supertube location Σ = 0 (r = 0, θ = π/2), which must be taken care of; the smoothness

analysis follows the pattern familiar from the study of two-charge supertube solutions. The

loci where our coordinate system degenerates are: (i) the plane θ = 0, where the φ-cycle

shrinks, (ii) the plane θ = π/2, where the ψ-cycle shrinks, (iii) the point (r = 0, θ = 0)

where the whole angular S3 shrinks. Functions of φ and ψ must vanish sufficiently fast on

the planes (i) and (ii) to be smooth: more precisely e±imφ (e±imψ) must vanish at least

like θm ((θ−π/2)m) for θ → 0 (θ → π/2). Analogous, but more stringent, conditions apply

to forms with legs along φ and/or ψ: the general requirement is that components of forms

must be regular when expressed in a well-behaved local orthonormal frame. It is easy to

verify that our solutions satisfy these requirements: for example the θ-dependence of the

factor ∆k,m,n guarantees that the function ∆k,m,n cos v̂k,m,n is well-behaved on the planes

(i) and (ii). The analysis of the point (r = 0, θ = 0) requires more care and will be discussed

in more detail below. One should also verify that the metric has no CTCs: as is usual, a

complete proof valid for the general class of solutions would be complicated, however we

can show that the metric is well-behaved in the most dangerous regions (r = 0, θ = 0) and

(r = 0, θ = π/2), and there is no reason to expect problems elsewhere. Furthermore, for

the explicit example sub-family of (k,m, n) = (1, 0, n) that we shall present, we will prove

the absence of CTCs.

4.2.1 Near (r = 0, θ = 0)

The point (r = 0, θ = 0) represents the origin of polar coordinates on the flat R4 base;

to analyze the behaviour of the solutions around this point it is convenient to switch to

ordinary polar coordinates (r̃, θ̃) and take the limit r̃ → 0 with fixed θ̃. In this limit one has

r ≈ r̃ cos θ̃ , sin θ ≈ r̃ sin θ̃

a
. (4.19)

Moreover the one-form β introduces a mixing between v and ψ (as can be seen from

dv + β ≈ dv −Ry/
√

2 dψ), so that it is convenient to work with the coordinate

ṽ ≡ v − Ry√
2
ψ (4.20)
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around this point. Then the combination that appears in the scalars Z4 and Z1,

∆k,m,n cos v̂k,m,n ∼ r̃n+k−m cosn θ̃ sink−m θ̃ cos

[
(m+ n)

√
2 ṽ

Ry
+ nψ + (k −m)φ

]
,(4.21)

satisfies the criterion for regularity around r̃ = 0. For one-forms with legs along φ and ψ,

further conditions have to be met. In solutions with a single mode, ω does not depend on

v, φ or ψ, so a sufficient condition for regularity is that both the φ and ψ components of

ω vanish for r̃ → 0. For the component along dφ + dψ, we can use the general expression

given in (4.18). Requiring that µk,m,n vanishes for (r = 0, θ = 0) fixes the value of the

constant xk,m,n that was left undetermined in (4.18):

x−1
k,m,n =

(
k

m

)(
k + n− 1

n

)
. (4.22)

As we do not have a general closed-form expression for the dφ − dψ component of ω, its

vanishing has to be checked case by case: for example this condition is satisfied by the

example sub-family of (k,m, n) = (1, 0, n) that will be given in (4.26).

4.2.2 Near (r = 0, θ = π/2)

When (r = 0, θ = π/2), both the scalars Z1, Z2 and Z4 and the one-forms β and ω diverge,

and these divergences must cancel for the metric to be smooth. It turns out to be sufficient

to require the cancellation of the divergent part in the (dφ+dψ)2 component of the metric.

The resulting condition is

Q1Q5

R2
y

= a2 +
b2

2
, b2 = xk,m,n b

2
4 , (4.23)

with xk,m,n given in (4.22). This condition can be thought of as determining the non-

oscillating part of Z1, which is proportional to Q1. All other divergences cancel as a

consequence of this condition. For solutions with only one mode, the condition (4.23) also

ensures that the warp factor Z1 is everywhere positive, no matter how large the amplitude

of the fluctuations. Indeed the minimal value of Z1 is attained for cos v̂2k,2m,2n = −1, and

then the identity

∆2k,2m,2n

xk,m,n
≤
∞∑
k′=1

∞∑
n′=0

k′∑
m′=0

δk′+n′,k+n
∆2k′,2m′,2n′

xk′,m′,n′
=

a2

(r2 + a2)
≤ 1 (4.24)

guarantees that b24 ∆2k,2m,2n < b2 and hence Z1 > 0 for all our three-charge solutions.

4.3 Examples

The class of solutions with n = 0 was described in detail in [23] where several examples

were discussed. A family of solutions where all three quantum numbers are non-trivial

(k = 2, m = 1 and n arbitrary) can be found in [71]. Here we focus on the class m = 0,

presenting some examples in closed form and a general algorithm that can be used to

generate further solutions.
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4.3.1 The m = 0 class

For k = 1, m = 0 and generic n, one finds

F1,0,n = − b24
a2

(
1− r2n

(r2 + a2)n

)
(4.25)

and integrating for ζ yields ω1,0,n:

ω1,0,n =
b24Ry√

2 Σ

(
1− r2n

(r2 + a2)n

)
sin2 θ dφ . (4.26)

For k=2, m=0, one finds:

F2,0,n = − b24
(n+ 1)2 a4

[
na2 − r2

(
1− r2n

(r2 + a2)n

)
+

((
1− r2n

(r2 + a2)n

)
(2r2 + (2n+ 1)a2)− 2na2 − n2a4 r2n

(r2 + a2)n+1

)
sin2 θ

]
,

ω2,0,n =
Ry√
2 Σ

{
b24

(n+ 1)2

[
(n+ 1)

(
1− r2n

(r2 + a2)n
− na2 r2n

(r2 + a2)n+1

)
−
(
r2

a2

(
1− r2n

(r2 + a2)n

)
− n

)
cos2 θ

]}
sin2 θ dφ

− Ry√
2 Σ

b24
(n+ 1)2

[
r2

a2

(
1− r2n

(r2 + a2)n

)
− n r2n+2

(r2 + a2)n+1

]
sin2 θ cos2 θ dψ .

(4.27)

There appears to be an alternative straightforward algorithm for generating solutions

with m = 0, general n and larger values of k. One first defines:

ωk,0,n = ω̂
(φ)
k,0,n sin2 θ dφ + ω̂

(ψ)
k,0,n cos2 θ dψ . (4.28)

and then makes independent Ansätze for Fk,0,n, ω̂
(φ)
k,0,n and ω̂

(ψ)
k,0,n of the form:

k−1∑
j=0

Fj(r) sin2j θ , (4.29)

for some undetermined functions, Fj(r). As noted above in (4.7) and (4.8), the BPS equa-

tions for these RMS pieces of ω and F are relatively simple. One begins by substituting the

Ansatz for F into (4.8). The result is a coupled set of ODEs involving only the functions

Fj(r) that, being “upper triangular”,7 can iteratively solved for all the arbitrary functions.

The integration constants in these solutions are determined by requiring that solutions

are regular at infinity. Given F , (4.7) becomes a coupled set of first-order equations for

the components of ω. It is then relatively easy to cross eliminate to obtain second-order

differential equations for either ω̂
(φ)
k,0,n or ω̂

(ψ)
k,0,n alone. One then follows the same proce-

dure as that used for F to determine the functions of r and integration constants in the

Ansatz (4.29).

We have implemented this procedure explicitly for k = 3 and it generates a smooth,

albeit complicated, solution that we will not present here.

7That is, the equation for Fj(r) only involves the F`(r) for ` ≥ j, and so one starts with the equation

for Fk−1(r) alone and then uses it to find Fk−2(r), and in this way one continues to the lower Fj(r).
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4.4 The structure of the metric

We now discuss the structure of the asymptotically-AdS3 metrics. For concreteness we focus

on the (1, 0, n) family of solutions. For this family of solutions, one can prove the global

absence of closed timelike curves by completing the squares on the periodic coordinates.

To display the metric in this form, following [71] we introduce the convenient quantity

Λ ≡
√
P Σ√
Q1Q5

=

√
1− a2 b2

(2a2 + b2)

r2n

(r2 + a2)n+1
sin2 θ . (4.30)

Then the metric can be written as

ds2 = − Λ√
Q1Q5

2a2(r2 + a2)

2a2 + b2F0(r)
dt2 +

√
Q1Q5 Λ

(
dr2

r2 + a2
+ dθ2

)
+

√
Q1Q5

Λ
sin2 θ

(
dφ− 2a2

2a2 + b2
dt

Ry

)2

(4.31)

+
R2
y√

Q1Q5 Λ

(
a2 +

b2

2
F1(r)

)
cos2 θ

(
dψ −

(
2a2 + b2F0(r)

)
dy + b2F0(r)dt

(2a2 + b2F1(r))Ry

)2

+
1√

Q1Q5 Λ

r2
(
2a2 + b2F0(r)

)
F2(r, θ)

2a2 (r2(2a2 + b2) + a2(2a2 + b2F0(r))

(
dy +

b2F0(r)

2a2 + b2F0(r)
dt

)2

where we have used the shorthand notation

F0(r) = 1− r2n

(r2 + a2)n
, F1(r) = 1− a2

r2 + a2

r2n

(r2 + a2)n
,

F2(r, θ) = r2(2a2 + b2) + a2

(
2a2 + b2

(
1− r2n

(r2 + a2)n
sin2 θ

))
. (4.32)

We now observe that all of the angular terms have coefficients that are globally non-

negative, and the only places where the coefficients vanish are at the standard degeneration

of angular coordinates at θ = 0 and θ = π/2, and where the y circle shrinks smoothly at

r = 0. Thus the geometry has no closed timelike curves.

To illustrate the structure of the solution, it is instructive to examine the coefficient

of (dy + · · · )2 in the last line of (4.31). This controls the smooth shrinking of this fiber at

r = 0, its stabilization at finite size in the AdS2 region, and its growth in the AdS3 region.

In figure 2 we depict this as follows. We plot the proper length of a curve where

dt = dr = dθ = 0, where dφ and dψ are chosen to make the second and third lines of (4.31)

vanish, and where the curve traverses once around the y circle. One sees the central AdS2

region, where this circle has constant proper length. The regions of linear growth are the

asymptotic AdS3 region and the global AdS3-like cap.

5 Asymptotically-flat solutions

5.1 Novel features of the asymptotically-flat solutions

In order to construct asymptotically-flat solutions, we add 1’s to the warp factors Z1 and

Z2. This in turn modifies the coiffuring structure and introduces extra oscillatory terms in
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Figure 2. Left plot: log-log plot of the proper length of a curve around the y circle as described

in the text (vertical axis), as a function of r in units of a (horizontal axis), where we set θ = π/4.

Right: linear plot detailing the behaviour in the cap region. Parameters chosen: k = 1, m = 0,

n = {4, 9, 16} (from bottom to top); a = 1,
√
Q1 =

√
Q5 = 105, Ry = 107, so that b '

√
2× 103.

(Z1,Θ2) and (Z4,Θ4). The first layer is simply (4.3) and (4.4) with the 1’s added:

Z1 = 1 +
Q1

Σ
+
b1R

2
y

2Q5

∆2k,2m,2n

Σ
cos(v̂2k,2m,2n) , Z2 = 1 +

Q5

Σ
,

Z4 = b4Ry ∆k,m,n cos(v̂k,m,n) ,

(5.1)

with

Θ1 = 0 , Θ2 =
b1Ry
2Q5

ϑ2k,2m,2n , Θ4 = b4 ϑk,m,n . (5.2)

as in (4.4).

The sources for the second layer of BPS equations are now considerably more

complicated:

Z1Θ1 + Z2Θ2 − 2Z4Θ4

=
√

2 Ry ∆2k,2m,2n

(
b24 − b1

Σ
− b1
Q5

)
×
[(

(m+ n) r sin θ + n

(
m

k
− 1

)
Σ

r sin θ

)
Ω(1) sin v̂2k,2m,2n

+
(
m
(n
k

+ 1
)

Ω(2) + n
(m
k
− 1
)

Ω(3)
)

cos v̂2k,2m,2n

]
+
√

2Ry b
2
4

∆2k,2m,2n

Σ

(
m

(
n

k
+ 1

)
Ω(2) + n

(
m

k
− 1

)
Ω(3)

)
,

(5.3)

while the right-hand side of the second equation in (2.8) reduces to:

4

(
b24 − b1

Σ
− b1
Q5

)
(m+ n)2∆2k,2m,2n

Σ
cos v̂2k,2m,2n

+
2 b24
k2

∆2k,2m,2n

Σ

(
(k −m)2n2

r2 sin2 θ
+

(k + n)2m2

(r2 + a2) cos2 θ

)
.

(5.4)
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The last terms in (5.3) and (5.4) do not depend on (v, φ, ψ) and represent the RMS

effect of the modes. These were solved in the previous section. The new feature are the

terms that depend on v̂2k,2m,2n, that have coefficient:(
b24 − b1

Σ
− b1
Q5

)
. (5.5)

The constant term proportional to b1 term is a new contribution, coming from the 1’s

in the ZI ’s, while the (b24 − b1) term was removed earlier by coiffuring. Because of the

explicit (r, θ)-dependence of the complete coefficient, (5.5), the oscillating modes cannot

be completely removed via coiffuring. The second layer of BPS equations must therefore

be solved directly, with all the sources, and a modified coiffuring condition will then be

determined by removing singularities from the complete solution.

5.2 The second layer of equations

We now focus entirely on the oscillating parts of (5.3) and (5.4). These are consistent with

the Ansatz:

ωosc = (ω̂r dr + ω̂θ dθ) sin v̂2k,2m,2n + (ω̂1 dφ+ ω̂2 dψ) cos v̂2k,2m,2n ,

Fosc = F̂ cos v̂2k,2m,2n .
(5.6)

One then decomposes this equation into differential operators

Dωosc + ∗4Dωosc + Fosc dβ = (r2 + a2) cos θ sin v̂2k,2m,2n Ω(1) L(2k,2m,2n)
1

+
1

r
(r2 + a2) cos θ cos v̂2k,2m,2n Ω(2) L(2k,2m,2n)

2

+ r sin θ cos v̂2k,2m,2n Ω(3) L(2k,2m,2n)
3 ,

∗4D ∗4
(
ω̇osc − 1

2
DFosc

)
=

1

2
cos v̂2k,2m,2n L

(2k,2m,2n)
4 ,

(5.7)

where

L(2k,2m,2n)
1 = (∂rω̂θ − ∂θω̂r)

− 2

r (r2 + a2) sin θ cos θ

[(
(m+ n)r2 − nΣ

)
ω̂1

+
(
(k + n)Σ− (m+ n)(r2 + a2)

)
ω̂2

]
,

L(2k,2m,2n)
2 =

1

cos θ
∂rω̂2 +

r

(r2 + a2) sin θ
∂θω̂1

− 2

Σ sin θ cos θ

[
r cos θ

(r2 + a2)

(
(k + n)Σ− (m+ n)(r2 + a2)

)
ω̂θ

− sin θ
(
(m+ n)r2 − nΣ

)
ω̂r

]
+

√
2Ry a

2 r cos θ

Σ2
F̂ ,
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L(2k,2m,2n)
3 =

1

sin θ
∂rω̂1 −

1

r cos θ
∂θω̂2

− 2

Σ r sin θ cos θ

[
r cos θ

(
(k + n)Σ− (m+ n)(r2 + a2)

)
ω̂r

+ sin θ
(
(m+ n)r2 − nΣ

)
ω̂θ

]
−
√

2Ry a
2 r sin θ

Σ2
F̂ ,

L(2k,2m,2n)
4 = L(2k,2m,2n)

0 F̂ − 4
√

2 (m+ n)

Ry
div(2k,2m,2n)ω̂ , (5.8)

and

L(2k,2m,2n)
0 F̂ ≡ 1

Σ

[
1

r
∂r
(
r(r2 + a2)∂rF̂

)
+

1

sin θ cos θ
∂θ
(

sin θ cos θ ∂θF̂
)

− 4

(
n2 a2

r2
− (k + n)2 a2

(r2 + a2)
+

(k −m)2

sin2 θ
+

m2

cos2 θ

)
F̂

]
,

div(2k,2m,2n)ωosc ≡ 1

Σ

[
1

r
∂r
(
r(r2 + a2)ω̂r

)
+

1

sin θ cos θ
∂θ
(

sin θ cos θ ω̂θ
)

− 2

(r2 + a2) sin2 θ

(
(k + n)Σ− (m+ n)(r2 + a2)

)
ω̂1

+
2

r2 cos2 θ

(
(m+ n)r2 − nΣ

)
ω̂2

]
.

(5.9)

Using the sources (5.3) and (5.4) we arrive at the following equations:

L(2k,2m,2n)
1 =

√
2 Ry ∆2k,2m,2n

(r2 + a2) cos θ

(
b24 − b1

Σ
− b1
Q5

)(
(m+n) r sin θ + n

(
m

k
−1

)
Σ

r sin θ

)
,

L(2k,2m,2n)
2 =

√
2 Ry r∆2k,2m,2n

(r2 + a2) cos θ

(
b24 − b1

Σ
− b1
Q5

)
m

(
n

k
+ 1

)
,

L(2k,2m,2n)
3 =

√
2 Ry ∆2k,2m,2n

r sin θ

(
b24 − b1

Σ
− b1
Q5

)
n

(
m

k
− 1

)
,

L(2k,2m,2n)
4 =

8 (m+ n)2 ∆2k,2m,2n

Σ

(
b24 − b1

Σ
− b1
Q5

)
. (5.10)

Given that the BPS solution is u independent, any BPS solution is invariant under the

following reparametrization of u:

u→ u+ U(xi, v) , ω → ω − dU + U̇ β , F → F − 2 U̇ , (5.11)

This leads to the gauge invariance:

ωosc → ωosc + (∂rf dr + ∂θf dθ) sin v̂2k,2m,2n

+
f

Σ

[(
(k −m)(r2 + a2)− a2(k + n) sin2 θ

)
dφ

−
(
mr2 − na2 cos2 θ

)
dψ

]
cos v̂2k,2m,2n ,

F̂ → F̂ +
2
√

2 (m+ n)

Ry
f , (5.12)
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for any function, f(r, θ). For our oscillating modes we will use this gauge invariance to set:

F̂ = Fosc = 0 . (5.13)

5.3 Solving the second layer

The standard route to solving the system (5.10) is to observe that the equations involving

L(2k,2m,2n)
2 and L(2k,2m,2n)

3 do not involve derivatives of ω̂r and ω̂θ. One then uses these

equations to obtain expressions for ω̂r and ω̂θ and then substitutes them back into the

other two equations to obtain two second order differential equations for ω̂1 and ω̂2. Rather

remarkably, one then finds that the combination ω̂1+ω̂2 satisfies a straightforward harmonic

equation involving L(2k,2m,2n)
0 .

From the equations above, we find:

L(2k,2m,2n)
0 (ω̂1 + ω̂2)

= 2
√

2Ry ∆2k,2m,2n

(
a2 (m+ n)(b24 − b1)

Σ2
− b1
k Q5

(m(k + n)− n(k −m))

)
.

(5.14)

It is elementary to solve this and we find the following particular solution:

(ω̂1 + ω̂2) = − Ry

2
√

2
∆2k,2m,2n

(
(b24 − b1)

Σ
− b1
k2Q5

(m(k + n)− n(k −m))

)
. (5.15)

The next step is slightly more of an art than a science. The individual equations for

ω̂1 and ω̂2 separately are very complicated. However, based on experience, the form of

ω̂1 + ω̂2, and how ω̂1 and ω̂2 should behave in various limits, one is naturally led to

ω̂1 =
Ry

2
√

2
∆2k,2m,2n

(
−(b24 − b1)

(r2 + a2)

a2 Σ
+
b1
Q5

m(k + n)

k2

)
,

ω̂2 =
Ry

2
√

2
∆2k,2m,2n

(
(b24 − b1)

r2

a2 Σ
− b1
Q5

n(k −m)

k2

)
.

(5.16)

These manifestly add to (5.15), however these expressions are not the solutions for general

(k,m, n) but they are solutions for either m = 0 or m = k. Thus we will preserve the

appearance of m in our formulae with the understanding, for the moment, that we are

considering m = 0 or m = k. Presumably there are more complicated recurrence relations

for solutions with intermediate values of m.

Armed with expressions for ω̂1 and ω̂2, one can now substitute back into the equations

in (5.10) involving L(2k,2m,2n)
2 and L(2k,2m,2n)

3 and solve for ω̂r and ω̂θ algebraically. The

general result is a mess, but there are simple formulae that work for m = 0, k:

ω̂r = − b1Ry

2
√

2Q5

∆2k,2m,2n
k(m+ n)r2 + n(k −m)a2

k2 r(r2 + a2)
,

ω̂θ =
Ry

2
√

2

∆2k,2m,2n

k2 a2 sin θ cos θ

(
k(2m− k)(b24 − b1)

+
b1 a

2

Q5

(
(m+ n)((k −m) sin2 θ −m cos2 θ

)
+m(k −m)

)
.

(5.17)

So far (5.16), (5.17) and (5.13) define complete solutions for ωosc for m = 0 and m = k.

– 27 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
4

The careful reader might note that we have added a seemingly redundant m(k −m)

term to the expression for ω̂θ. This is because if one substitutes (5.16), (5.17) and (5.13)

into (5.10) then the result either vanishes or is proportional to

m(k −m)

(
(b24 − b1)− b1 a

2

Q5

(m+ n)

k

)
. (5.18)

Thus (5.16), (5.17) and (5.13) provides a solution for all (k,m, n) provided that(
(b24 − b1)− b1 a

2

Q5

(m+ n)

k

)
= 0 . (5.19)

As we will see below, this is the new coiffuring constraint required by regularity of the

solution and so we actually have the complete, regular solution for all (k,m, n) !

The way we first arrived at this complete solution was to find the coiffuring constraint

for m = 0 and m = k, and from this we inferred the general coiffuring relation (5.19). Then

we used ω̂1 and ω̂2 in (5.10) to solve for ω̂r and ω̂θ algebraically and then imposed (5.19).

This led to the complete expressions for ω̂r and ω̂θ. The complete solution for ωosc is given

by (5.6) with components given by (5.16) and (5.17).

Putting the components together and using the coiffuring constraint (5.19), we can

simplify ωosc to:

ωosc = − b1
Q5

Ry

2
√

2
∆2k,2m,2n

{(
(m+ n)

k

a2 sin2 θ

Σ
+
n(k −m)

k2

)
cos v̂2k,2m,2n dφ

+

(
(m+ n)

k

a2 cos2 θ

Σ
− m(k + n)

k2

)
cos v̂2k,2m,2n dψ

+

(
r2 (m+ n)

k
+ a2n(k −m)

k2

)
1

r(r2 + a2)
sin v̂2k,2m,2n dr (5.20)

+

(
n(k −m)

k2
cot θ − m(k + n)

k2
tan θ

)
sin v̂2k,2m,2n dθ

}
.

Finally, we note that the coiffuring condition may be re-written as:

b1

(
1 +

a2

Q5

m+ n

k

)
= b24 . (5.21)

This form is useful because a2/Q5 is a small dimensionless parameter in the near-

decoupling limit.

5.4 Asymptotically-flat solutions: regularity and conserved charges

The complete asymptotically-flat solution to the second layer of the BPS equations is

given by:

ω = ω0 + ωRMS + ωosc , F = FRMS , (5.22)

where the individual pieces are given by (3.4c), (4.10) and (5.20).

The general conditions for regularity have been discussed in section 4.2. We verify here

that these conditions are satisfied also by the asymptotically-flat extension of our solutions.

We focus on the two potentially problematic points: the center of R4 (r = 0, θ = 0) and

the supertube location (r = 0, θ = π/2).
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5.4.1 Near (r = 0, θ = 0)

In the asymptotically-flat solution the one-form ω acquires a new contribution ωosc that

depends on v̂2k,2m,2n, and the analysis of its behaviour around the point (r = 0, θ = 0),

where the polar coordinates degenerate, requires some extra care. Notice first of all that

ωosc is finite at (r = 0, θ = 0), since the 1/r and 1/ sin θ poles inside the curly bracket

in (5.20) are canceled by ∆2k,2m,2n. This is not enough however to conclude that ωosc is

smooth: we should check that its components with respect to a local orthonormal frame

are finite. Switching to the coordinates (r̃, θ̃) and ṽ defined in (4.19) and (4.20), we find

ωosc ∼ n(k −m)

k2
∆2k,2m,2n

[
2 sin v̂2k,2m,2n

(
dr̃

r̃
+ cot 2θ̃ dθ̃

)
+ cos v̂2k,2m,2n (dφ+ dψ)

]
∼ 1

k2
Im

[
e
i(m+n) 2

√
2 ṽ

Ry

(
(k −m)(r̃ sin θ̃eiφ)2(k−m) d(r̃ cos θ̃eiψ)2n

+n(r̃ cos θ̃eiψ)2n d(r̃ sin θ̃eiφ)2(k−m)
)]
. (5.23)

Since r̃ sin θ̃eiφ and r̃ cos θ̃eiψ are linear combinations of well-behaved Cartesian coordinates

around (r = 0, θ = 0), the identity above shows that ωosc is smooth at the center of space.

5.4.2 Near (r = 0, θ = π/2)

Near r = 0, θ = π/2, one can make the coordinate transformation

r = aλ cosχ , θ =
π

2
− λ sinχ (5.24)

where we consider λ to be a small parameter.

Recalling that near r = 0, θ = π/2, ∆2k,2m,2n behaves like

∆2k,2m,2n ∼ r2n(cos θ)2m , (5.25)

and noting that we always have at least one of n or m greater than zero, we see that in the

above coiffured ωosc there are no terms that scale as λ−1 when λ → 0 and that the first

terms start at λ0. Thus, near Σ = 0, ω is well-approximated by ωRMS.

Therefore the requirement that the 1/Σ terms in the metric near Σ = 0 vanish is the

same as in the asymptotically-AdS solutions, and leads to the constraint (4.23). Having

ensured this, the solution is smooth in the neighborhood of Σ = 0.

5.5 Conserved charges

The global charges are read off from the asymptotically-flat solution in a straightforward

way. The oscillating terms average to zero when integrated over the S1 and hence give

vanishing contributions to the global charges. Only the RMS modes, which were derived

in section 4, are therefore relevant for this computation. Moreover, since the interaction

between different modes produces terms with a non-trivial v-dependence which also do not

contribute to the charges, the relations valid for general multi-mode solutions are given by

simply summing the contributions of the single modes that we write below.
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The D1 and D5 supergravity charges Q1 and Q5 are given by the 1/r2 terms in the

large r expansion of the warp factors Z1 and Z2. As was noted before, regularity imposes

the constraint (4.23) on Q1 and Q5. The dimensionful momentum charge Qp is likewise

encoded in the function F as F ≈ −2Qp/r
2. The expansion of (4.17) gives

Qp =
(
bk,m,n4

)2 m+ n

2k

(
k

m

)−1(k + n− 1

n

)−1

. (5.26)

The dimensionful angular momenta J , J̃ can be extracted from the ψ + φ component of

the one-form β + ω:

βψ + ωψ + βφ + ωφ ≈
√

2
J − J̃ cos 2θ

r2
, (5.27)

of which we know a closed form expression for any k,m, n, given in (3.3), (3.4c), (4.18).

One finds

J =
Ry
2

[
a2 +

(
bk,m,n4

)2 m
k

(
k

m

)−1(k + n− 1

n

)−1
]
, J̃ =

Ry
2
a2 . (5.28)

One can check that the charges computed from the asymptotically-flat solution are

identical to those obtained from the AdS geometry. These can be compared with the

charges of the dual CFT states. In section 6, we will see that the supergravity and CFT

charges agree if we assume simple linear relations between the amplitude parameters in

supergravity, a, bk,m,n4 , and the corresponding parameters in CFT.

The most significant feature of our solutions is that they can be taken to lie deep within

the black hole regime n1n5np−j2 > 0, i.e. the regime of parameter space where black holes

with a regular horizon exist. We observe that our solutions lie within this bound for

b2

a2
>

k

n+
√

(k −m+ n)(m+ n)
. (5.29)

6 CFT states dual to the Asymptotically-AdS solutions

The geometries we have constructed have macroscopic brane charges. As is usual in

gauge/gravity duality, one can go to a region of the moduli space where the geometry

near the branes decouples from the ambient spacetime, and correspondingly the dynamics

on the branes decouples from gravity in the asymptotically-flat region. Quantum gravity in

the near-source geometry is then dual to a non-gravitational theory [3]. The asymptotically-

AdS3 solutions of section 4 are dual to states in the 2d CFT that arises as the low-energy

limit of the gauge theory on the underlying system of branes. In the next subsection we

review some basic properties of this CFT and in sections 6.2 and 6.3 we identify the CFT

states dual to the geometries we construct.

6.1 The CFT moduli space and the symmetric orbifold

In the weak-coupling limit of the dynamics of n5 D5-branes, the n1 D1-branes bind to the

D5 branes by dissolving into them as instanton strings [3, 92, 93]. The corresponding CFT
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is thus often thought of as a sigma model on the moduli space of n1 instantons in U(n5)

gauge theory onM = T4 or K3. This description of the CFT is however an approximation

adapted to a particular corner of the CFT moduli space. Consider for instance supergravity

compactified on T4 × S1
y; it has a moduli space

(
E6(6)

USp(8)

)/
E6(6)(Z) . (6.1)

The decoupling limit takes Ry/`str →∞ holding the energy scale ERy and the T4 volume

v4 ≡ V4/`
4
str fixed; one is effectively going to the cusp in the moduli space where Ry is

asymptotically large, and in particular
√
Q1Q5 � Ry. In the geometry sourced by the

branes, the limit isolates the region r2 � Q1, Q5.

The decoupling limit breaks the duality symmetry to SO(5, 5;Z), and the remaining

moduli in the cusp parametrize the space(
SO(5, 5)

SO(5)× SO(5)

)/
SO(5, 5;Z) . (6.2)

The 27 of wrapped brane and momentum charges on T4×S1 splits up into 10⊕16⊕1, where

the 10 consists of branes wrapping S1 which become infinitely heavy in the decoupling limit,

and thus are part of the background data of the CFT; the 16 consists of the assortment of

branes wrapping T4 but not S1; and the 1 is the momentum charge on S1. The background

of n5 D5-branes and n1 D1-branes breaks the duality symmetry further; of the 25 moduli

in (6.2), five are frozen by the attractor mechanism [94, 95], and the duality group is broken

to the subgroup HΓ of the duality “little group” SO(5, 4;Z) which fixes the ten-component

background charge vector Γ. Similar considerations hold for M = K3. In the end, for

M = T4 the CFT has a 20-dimensional moduli space of couplings

MX =

(
SO(5, 4)

SO(5)× SO(4)

)/
HΓ . (6.3)

The structure is conveniently seen by isolating an SO(2, 2;Z) = SL(2,Z)L × SL(2,Z)R
subgroup of the modular group that acts on the moduli τ = C0+i/gs by gR fractional linear

transformations and τ̃ = C4 + iv4/gs by gL fractional linear transformations (when all the

other antisymmetric tensor moduli are set to zero). The background charges (ñ1, n1, ñ5, n5)

of fundamental and D-strings, NS5 and D5-branes, respectively, can be packaged into

a matrix

Q =

(
ñ1 n1

−n5 ñ5

)
(6.4)

which transforms under duality as Q → gLQg
t
R and in particular preserves N = det(Q);

we are interested in the duality frames where ñ1 = ñ5 = 0 and n1n5 = N . The attractor

mechanism then relates τ and τ̃ via τ̃ = τd1/d5.
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(2,3)

orbifold locus

(6,1)

(1,6)

(3,2)

Figure 3. The moduli space of the coupling τ = C0 + i/gs (here mapped from the upper half-plane

to the Poincaré disk) has a cusp for every decomposition of N into two factors (n1, n5) such that

N = n1n5. This slice of the moduli space is the fundamental domain of the congruence subgroup

Γ0(N) of SL(2,Z); n5 copies of the SL(2,Z) fundamental domain meet at the cusp corresponding

to backgrounds with n5 fivebranes. Here we illustrate the structure for N = 6.

The moduli space has a cusp for every factorization of the integer N into a pair of

integers n1 and n5 [96, 97], see figure 3.8 One sees this from the duality rotation with

gL =

(
an5 bn1

1 1

)
, gR =

(
a b

n1 n5

)
(6.5)

which maps the D1-D5 charges (n1, n5) to (n1n5, 1), and relates a cusp at τ = a
n1

to the cusp

at τ = i∞, and a cusp at τ = b
n5

to the cusp at τ = 0. Note that these two cusps are always

separated by a
n1
− b

n5
= 1

n1n5
. While this is not a duality transformation that preserves

the background, the fact that the moduli space is a symmetric space under the action of

continuous duality rotations in SO(5, 4) means that if there is a cusp for a particular choice

of charges (n1, n5), then there is another cusp with the charges (n1n5, 1), or for that matter

any pair of integers whose product is N . To get from one to the other involves moving a

macroscopic distance through the moduli space from one cusp to another.

In each cusp, there is a codimension-four singular locus where the system is neutrally

stable and can fragment by breaking apart into separate charge centers [96, 97]. For

instance, the long string sector of perturbative string theory in AdS3 × S3 [96, 98], which

describes fundamental strings propagating out to the AdS3 boundary in the background of

electric and magnetic NS 3-form flux, is precisely such an instability. This pathology can

8We assume that in the prime factorization of N , no prime occurs more than once, so that in every cusp,

n1 and n5 are coprime, so that the brane background is truly bound and cannot fragment into smaller pieces.
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be avoided by turning on any of the four moduli (for instance the combination of C0 and

C4 which preserves the fixed scalar condition) that take the theory away from the singular

locus. In the slice of the moduli space depicted in figure 3, there is a singular locus at

<(τ) = 0 (the red dashed line) and at each of the images of this line under the maps

that permute the weak-coupling cusps (in this example, the magenta dashed arc between

τ = 1/2 and τ = 1/3).

The description of the CFT in terms of a sigma model on the moduli space of n1 in-

stantons in U(n5) gauge theory is an approximate weak-coupling description in a particular

cusp, corresponding to a particular choice of factorization. In the cusp where n5 = 1 and

n1 = N , there is a (codimension four) weak-coupling locus where the sigma model target

space X is the symmetric product orbifold [99, 100] (see also the review [101])

X0 =
(
MN

)
/SN (6.6)

which is a solvable conformal field theory. Note that the map (6.5) does not imply that

there is a symmetric orbifold description for every cusp; in fact it is rather unlikely that

there is one. The analysis in [97] of the masses of states carrying conserved charges in

the 16 of branes and momenta on the T4 showed that the energetics was consistent with

the corresponding charges in the symmetric orbifold only if the latter was a weak-coupling

limit in the cusp where n1 = N and n5 = 1. The sigma model on the moduli space of

instantons may be a weak-coupling description of other cusps, but it does not reduce to

the symmetric product orbifold at low energies.

The symmetric orbifold is a nonsingular, parity-invariant CFT. In the cusp corre-

sponding to n5 = 1 the parity-invariant points are at C0 = 0 and C0 = 1/2. The former is

the singular locus, which leaves C0 = 1/2 as the orbifold locus. The SL(2,Z) map (6.5) from

the cusp at τ = i∞, corresponding to the symmetric orbifold, to a cusp at τ ∼ a
n1

, with

macroscopic charges (n1, n5) (where the supergravity description is valid) has an5−bn1 = 1.

The cusp is a macroscopic distance in the natural hyperbolic metric |dτ |2
(=τ)2

from any point

along the orbifold locus.

The regions of the moduli space admitting a low-energy supergravity description are

distant from the solvable locus X0, and hence it is not possible in general to relate states in

the solvable CFT with particular supergravity backgrounds. Nevertheless for BPS states

one can compare quantities such as conformal dimensions and three-point correlators, which

are protected by supersymmetry against renormalization as we move across the moduli

space [102]. In this section we provide a dictionary between the asymptotically-AdS ge-

ometries of section 4 and particular CFT states in the RR sector of the orbifold CFT. This

dictionary should be interpreted in the following sense: the three-point correlators between

these RR states and any chiral primary operator can be calculated either holographically

using the supergravity solutions, or at the orbifold point using the free-field realization of

the CFT, and the two results match. This point of view was introduced in [52] in the sector

of the RR ground states that are dual to two-charge geometries, and was extended in [55]

to the three-charge geometries of [23]. Of course for non-protected quantities, such as

four-point functions, the effects of wavefunction renormalization generically become visible

and the relation between the gravity solutions and the orbifold CFT states described here
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becomes less useful. With this understood, we now identify and discuss the holographic

dictionary; our notation and conventions mostly follow [24, 55].

6.2 Dual states

The twisted-sector ground states of the symmetric orbifold (M)N/SN CFT in the RR sec-

tor are 1
4 -BPS, and map to known supergravity supertube geometries [103, 104]. There is

an independent twisted sector for each conjugacy class in the symmetric group. Symmetric

group elements consist of words which are products of (non-overlapping) cyclic permuta-

tions of the copies of M. The conjugacy class of a word is characterized by the number

Nk of cycles of length k in the word, with the total length (including cycles of length one)

being
∑

k kNk = N .

When k copies of the CFT onM are sewn together by a cyclic permutation boundary

condition, the result can be thought of as the CFT on M on the k-fold covering of the

coordinate cylinder on which the CFT lives. The supersymmetric ground states of the

k-cyclic twisted sector are thus the same as those of M. ForM = T4, these ground states

consist of ultrashort multiplets labelled by spin-1/2 doublets α, α̇ under the SU(2)×SU(2)

R-symmetry, and A,B under an auxiliary SU(2)A:

|αα̇〉k , |AB〉k , |αB〉k , |Aα̇〉k ; (6.7)

The highest-weight states of the first two of these multiplets are bosonic, while in the last

two they are fermionic. We will focus on two ground states in particular — the highest-

weight state |++〉k of the R-symmetry bispinor multiplet (the first one in (6.7)), and the

singlet combination of the auxiliary SU(2)A bispinor (the second one in (6.7)),

|00〉k ≡ εAB|AB〉k . (6.8)

The full ground state is then a tensor product of ground states for the cyclic twists in the

symmetric group conjugacy class, having N
(s)
k copies of k-cycle ground states (6.7) of the

polarization state s. We often refer to the cycles of the symmetric product as ‘strands’ of

the dual CFT. The class of states we are interested in thus takes the form

ψ{Ns
k} ≡

∏
k,s

(
|s〉k

)Ns
k . (6.9)

The role of the various polarizations of cyclic twist is illustrated by the map between

the 1
4 -BPS states and their dual geometries [52, 55, 84]:

Z2 = 1 +
Q5

L

∫ L

0

1

|xi − gi(v′)|2
dv′ , Z4 = −Q5

L

∫ L

0

ġ5(v′)

|xi − gi(v′)|2
dv′ , (6.10a)

Z1 = 1 +
Q5

L

∫ L

0

|ġi(v′)|2 + |ġ5(v′)|2

|xi − gi(v′)|2
dv′ , dγ2 = ∗4 dZ2 , dδ2 = ∗4 dZ4 , (6.10b)

A = − Q5

L

∫ L

0

ġj(v
′) dxj

|xi − gi(v′)|2
dv′ , dB = − ∗4dA , ds2

4 = dxidxi , (6.10c)

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , a1 = a4 = x3 = 0 , (6.10d)
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where the dot on the profile functions indicates a derivative with respect to v′, L ≡
2πQ5/Ry, and ∗4 is the Hodge dual with respect to the flat R4 metric ds2

4 = dxidxi.

One can expand the two-charge profile functions in Fourier series

g1 + ig2 =
∑
`>0

(
a++
`

`
e

2πi`
L
v′ +

a−−`
`
e−

2πi`
L
v′
)
,

g3 + ig4 =
∑
`>0

(
a+−
`

`
e

2πi`
L
v′ +

a−+
`

`
e−

2πi`
L
v′
)
,

g5 = −Im

[∑
`>0

a00
`

`
e

2πi`
L
v′

]
. (6.11)

subject to the constraint on the overall amplitude∑
`

(
|a++
` |

2 + |a−−` |
2 + |a+−

` |
2 + |a−+

` |
2 + |a00

` |2
)

=
Q1Q5

R2
y

. (6.12)

The specific solutions of section 4 are built starting from the ground states

a++
1 ≡ a , a00

k ≡ bk = bk,0,04 (6.13)

with all other coefficients equal to zero.

As we see from (6.10), the numbers N i
k of cycles with polarization σiαα̇|αα̇〉k in the num-

ber eigenstates (6.9) determine the amplitudes of the Fourier coefficients of the functions

gi(v) and thus specify gyrations of the brane bound state in the four dimensions transverse

to its worldvolume. Having only |++〉1 strands corresponds to a round supertube rotating

in the x1-x2 plane. The |00〉k strands carry no transverse angular momentum, and so do

not affect the shape of the supertube. Their numbers N00
k do however determine the am-

plitudes of the Fourier coefficients of the function g5 which specifies the harmonic function

Z4 and therefore affects the antisymmetric tensor fields of the supergravity background.

Because the fields of the supergravity solution have both a well-defined amplitude and

phase, they are represented as coherent states built from the number eigenstates ψ{N(s)
k }

(see for instance equations (3.6)–(3.12) of [55]).

The three-charge states dual to the geometries of sections 3 and 4 are built on these

unexcited (m = n = 0) round supertubes. The momentum-generating excitation labelled

by m in supergravity adds JL charge and P charge in equal proportion to the harmonic

function Z4; one can identify it as corresponding to the action of J+
−1 on the |00〉 strands

of the 1
4 -BPS ground state [23].

Under spectral flow to the NS-NS sector, |00〉k is mapped into an anti-chiral primary

state |00〉NS
k with h = −j3 = k/2, and J+

−1 is mapped to J+
0 . Because |00〉NS

k is the lowest-

weight state of SU(2)L, it can be acted on by J+
0 a maximum of k times, which means that

m ≤ k. Similarly, the generalization to n > 0 involves additional CFT excitations which

carry n units of momentum but no angular momentum; it is natural to identify them with

the mode operator (L−1 − J3
−1), which commutes with J+

−1. This discussion is completely
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in parallel to the one we gave on the gravity side in section 3. Thus we are led to the set

of states

ψ{N1,Nk,m,n} ≡
(
|++〉1

)N1
∏
k,m,n

(
(J+
−1)m

m!

(L−1 − J3
−1)n

n!
|00〉k

)Nk,m,n
. (6.14)

This is the more precise version of the “intuitive” formula that we presented in (3.21). The

numbers {N1, Nk,m,n} specify the number of strands with particular quantum numbers and

must satisfy9

N1 +
∑
k,m,n

kNk,m,n = N . (6.15)

In (6.14), we considered only the ground state |00〉k with excitations on it, but we can in

principle include all the other ground states in (6.7).10

The classical supergravity dual does not correspond to the state (6.14) with fixed

numbers {N1, Nk,m,n} but rather to its coherent superposition [52, 84, 104]. We introduce a

set of dimensionless parameters {A1, Bk,m,n}, which are closely related to the supergravity

mode amplitudes a and bk,m,n4 of (3.18). The state dual to the coiffured supergravity

solution can be written, generalizing the n = 0 expression in [55], as

ψ({A1, Bk,m,n}) =
∑′

{N1,Nk,m,n}

AN1
1

[ ∏
k,m,n

(Bk,m,n)Nk,m,n

]
ψ{N1,Nk,m,n} , (6.17)

where the sum is restricted to {N1, Nk,m,n} satisfying (6.15). In the large N limit this

sum is dominated by a stationary point {N1, Nk,m,n} which can be found by calculating

the norm |ψ({A,Bk,m,n})|2 and taking its variation with respect to {N1, Nk,m,n}. In order

to do this, we need to derive the effect of the momentum-carrying perturbations J+
−1 and

(L−1 − J3
−1) on the normalization of the state (6.14). For n = 0 the result is given in

equation (3.17) of [55] and the generalization to n 6= 0 is given in appendix B. Using the

result, the saddle-point values are found to be

N1 = |A|2 , kNk,m,n =

(
k

m

)(
n+ k − 1

n

)
|Bk,m,n|2 . (6.18)

Thus far, we have been considering the general set of states that have strands with dif-

ferent quantum numbers (k,m, n); namely, Nk,m,n 6= 0 for multiple sets of values (k,m, n).

9On the supergravity side, this constraint can be understood as the level-matching constraint on the

worldsheet of the F1-P supertube which is in the same duality orbit as the 1
4
-BPS D1-D5 supertube

ground state.
10The generalization of (6.14) and (6.15) to include all ground states is

ψ{Ns
k,m,n

} ≡
∏

k,m,n,s

(
(J+
−1)m

m!

(L−1 − J3
−1)n

n!
|s〉k

)Ns
k,m,n

,
∑

k,m,n,s

kNs
k,m,n = N . (6.16)

From this perspective, the numbers N1 and Nk,m,n in (6.14) should more consistently be denoted by N++
1,0,0

and N00
k,m,n, respectively. The supergravity solutions dual to the more general states will have base space

data, (B, β), that is more complicated than the base space used in this paper. In [24], another set of special

states for which the data (B, β) remain simple (called “Style 1” states) are discussed.
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Now, let us focus on the special states (6.14) where Nk,m,n is non-zero only for one partic-

ular set of values (k,m, n), which can be written as

ψ
N1,Nk,m,n

≡
(
|++〉1

)N1

(
(J+
−1)m

m!

(L−1 − J3
−1)n

n!
|00〉k

)Nk,m,n
. (6.19)

In this expression, k,m, n are not summed over, but are fixed numbers. The corresponding

coherent state (6.17) can be written in terms of two quantities A1, Bk,m,n as

ψ(A1, Bk,m,n) =
∑′

N1,Nk,m,n

AN1
1 (Bk,m,n)Nk,m,n ψ

N1,Nk,m,n
, (6.20)

where the two numbers N1, Nk,m,n satisfy

N1 + kNk,m,n = N . (6.21)

We propose that the states (6.20) are the holographic duals of the single-mode supergravity

superstrata that we constructed in section 4. The saddle point values for A1, Bk,m,n are

determined by (6.18). If we substitute N1, Nk,m,n in (6.21) with their saddle point values,

we obtain

|A1|2 +

(
k

m

)(
n+ k − 1

n

)
|Bk,m,n|2 = N. (6.22)

If we compare this with (4.23), we find that the dimensionless coefficients A1, Bk,m,n of the

CFT are related to the corresponding Fourier coefficients a and bk,m,n4 in supergravity via

|A1| = R

√
N

Q1Q5
a , |Bk,m,n| = R

√
N

2Q1Q5

(
k

m

)−1(n+ k − 1

n

)−1

bk,m,n4 . (6.23)

The explicit proposal for the CFT states dual to the microstate geometries we con-

structed allows one to perform quantitative AdS/CFT studies that generalize those of [55].

We leave such an interesting investigation for future work.

6.3 Comparison of conserved charges

We can now compare the CFT parameters to those of the supergravity solutions. From

the expression for Z1 in (6.10) we see that the D1 charge of the 1
4 -BPS ground states is

given by

Q1 =
Q5

L

∫ L

0

(
|ġi(v′)|2 + |ġ5(v′)|2

)
dv′. (6.24)

The supergravity charges Q1, Q5 are related to the quantized D1 and D5 numbers, n1 and

n5, by

Q1 =
(2π)4 n1 gs α

′3

V4
, Q5 = n5 gs α

′ , (6.25)

where V4 is the coordinate volume of T 4. The relation between Qp and the quantized

momentum number np is

Qp =
(2π)4 np g

2
s α
′4

V4R2
y

=
Q1Q5

R2
yN

np . (6.26)
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The dimensionful angular momenta J , J̃ defined in (5.27) are related to the quantized ones

j, j̃ by

J =
(2π)4g2

sα
′4

V4Ry
j =

Q1Q5

RyN
j , J̃ =

(2π)4g2
sα
′4

V4Ry
j̃ =

Q1Q5

RyN
j̃ . (6.27)

By using the dictionary between bulk and CFT quantities introduced in the previous

section it is possible to match the supergravity and CFT calculations of the conserved

charges and of the three-point functions of chiral primary operators [55, 103, 104]. Here we

focus on the conserved charges; these can be derived by using the average number of each

type of strands derived in (6.18). For instance, in the class of states we considered, each

strand of the type |00〉k carries (m+ n) units of momentum, thus the total momentum is

equal to (m+ n) times the average number, Nk,m,n

np = (m+ n)Nk,m,n =
R2
yN

Q1Q5

[
m+ n

2k

(
k

m

)−1(n+ k − 1

n

)−1

(bk,m,n4 )2

]
. (6.28)

In the last step we used (6.18) and (6.23) in order to show that the result matches per-

fectly (5.26). Similarly for the angular momenta, we find

j =
1

2
N1 +mNk,m,n =

R2
yN

2Q1Q5

[
a2 +

m

k

(
k

m

)−1(n+ k − 1

n

)−1

(bk,m,n4 )2

]
,

j̃ =
1

2
N1 =

R2
yN

2Q1Q5
a2 ,

(6.29)

which exactly match the supergravity results in (5.28).
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A Derivation of the explicit form of the function F
(p,q,s)
k,m,n

In constructing the solution to the Layer 2 equations, one encounters the problem of finding

the function F
(p,q,s)
k,m,n (r, θ) satisfying

L̂(p,q,s)F
(p,q,s)
k,m,n =

∆k,m,n

(r2 + a2) cos2 θ Σ
, (A.1)

where ∆k,m,n and the scalar Laplacian with wave numbers (p, q, s), L̂(p,q,s), are defined

in (3.14) and (5.9) respectively. In this appendix we derive the explicit form of the solution

F
(p,q,s)
k,m,n (r, θ). In section 4.1, we gave the explicit expression for F2k,2m,2n ≡ F

(0,0,0)
2k,2m,2n.

The derivation below is a straightforward generalization of the derivation of F
(p,q)
k,m done in

ref. [23]. For some intermediate steps that are not spelled out in the derivation below, see

appendix B there.

Let us first define

Gk,m,n =
∆k,m,n

r2 + a2
, Sk,m,n =

∆k,m,n

(r2 + a2) cos2 θΣ
. (A.2)

It is straightforward to check that these functions satisfy the following recursion relation:

L̂(p,q,s)Gk,m,n = (n2 − s2)Sk+2,m+2,n−2 + ((p+ s)2 − (k + n+ 2)2)Sk+2,m+2,n

+((k −m)2 − (p− q)2)Sk,m+2,n + (m2 − q2)Sk,m,n . (A.3)

Introducing the generating functions

F(κ, µ, ν) ≡
∑
k,m,n

F
(p,q,s)
k,m,n ekκ+mµ+nν ,

G(κ, µ, ν) ≡
∑
k,m,n

Gk,m,n e
kκ+mµ+nν ,

S(κ, µ, ν) ≡
∑
k,m,n

Sk,m,n e
kκ+mµ+nν ,

(A.4)

we can rewrite the equation we want to solve, (A.1), as

L̂(p,q,s)F(κ, µ, ν) = S(κ, µ, ν) , (A.5)

and the recursion relation (A.3) as

L̂(p,q,s)G(κ, µ, ν) =
[
e−2κ−2µ+2ν((∂ν + 2)2 − s2) + e−2κ−2µ((p+ s)2 − (∂κ + ∂ν)2)

+ e−2µ((∂κ − ∂µ + 2)2 − (p− q)2) + (∂2
µ − q2)

]
S(κ, µ, ν) . (A.6)

Since L̂(p,q,s) commutes with ∂κ, ∂µ, ∂ν , the above equation means that

F = −
[
e−2κ−2µ((∂κ + ∂ν)2 − (p+ s)2)− e−2µ((∂κ − ∂µ + 2)2 − (p− q)2)

− (∂2
µ − q2)− e−2κ−2µ+2ν((∂ν + 2)2 − s2)

]−1
G
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= −
∞∑
i=0

[
e2κ (∂κ − ∂µ + 2)2 − (p− q)2

(∂κ + ∂ν + 2)2 − (p+ s)2
+ e2κ+2µ

∂2
µ − q2

(∂κ + ∂ν + 2)2 − (p+ s)2

+ e2ν ((∂ν + 2)2 − s2)

(∂κ + ∂ν + 2)2 − (p+ s)2

]i
e2κ+2µ 1

(∂κ + ∂ν + 2)2 − (p+ s)2
G . (A.7)

Expanding in a multinomial expansion and examining the coefficient of ekκ+mµ+nν ,

one finds:

F
(p,q,s)
k,m,n = −1

4

∞∑
i=0

∞∑
j1+j2+j3=i

(
i

j1, j2, j3

)

×
j1︷ ︸︸ ︷

(k+ −m+)(k+ −m+ − 1) · · ·
j1︷ ︸︸ ︷

(k− −m−)(k− −m− − 1) · · ·

×
j2︷ ︸︸ ︷

(m+ − 1)(m+ − 2) · · ·
j2︷ ︸︸ ︷

(m− − 1)(m− − 2) · · ·
j3︷ ︸︸ ︷

n+(n+ − 1) · · ·
j3︷ ︸︸ ︷

n−(n− − 1) · · ·

× 1

(k+ + n+)(k+ + n+ − 1) · · ·︸ ︷︷ ︸
i

(k− + n−)(k− + n− − 1) · · ·︸ ︷︷ ︸
i

×Gk−2(j1+j2+1),m−2(j2+1),n−2j3

= −1

4

∞∑
i=0

∞∑
j1+j2+j3=i

(
i

j1, j2, j3

)
(k+ −m+)!

(k+ −m+ − j1)

(k− −m−)!

(k− −m− − j1)

× (m+ − 1)!

(m+ − j2 − 1)!

(m− − 1)!

(m− − j2 − 1)!

n+!

(n+ − j3)!

n−!

(n− − j3)!

× (k+ + n+ − j1 − j2 − j3 − 1)!

(k+ + n+)!

(k− + n− − j1 − j2 − j3 − 1)!

(k− + n−)!

×Gk−2(j1+j2+1),m−2(j2+1),n−2j3 (A.8)

where (
i

j1, j2, . . . , jn

)
≡ i!

j1!j2! · · · jn!
, i = j1 + · · ·+ jn (A.9)

is the multinomial coefficient, and where we defined

k± ≡
k ± p

2
, m± ≡

m± q
2

, n± ≡
n± s

2
. (A.10)

In fact, the sum can be simplified because
∑∞

i=0

∑∞
j1+j2+j3=i =

∑∞
j1,j2,j3=0. Using the

definition (A.9), we find that the explicit expression for F
(p,q,s)
k,m,n (r, θ) is

F
(p,q,s)
k,m,n = − 1

4(k+ + n+)(k− + n−)

∑
j1,j2,j3=0

(
j1 + j2 + j3
j1, j2, j3

)

×

( k++n+−j1−j2−j3−1
k+−m+−j1, m+−j2−1, n+−j3

)( k−+n−−j1−j2−j3−1
k−−m−−j1, m−−j2−1, n−−j3

)( k++n+−1
k+−m+, m+−1, n+

)( k−+n−−1
k−−m−, m−−1, n−

)
×Gk−2(j1+j2+1),m−2(j2+1),n−2j3 (A.11)
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where the sum is over

j1, j2, j3 ≥ 0, j1 + j2 + j3 ≤ min(k+ + n+, k− + n−)− 1. (A.12)

In particular, when p = q = s = 0,

F
(0,0,0)
2k,2m,2n = − 1

4(k + n)2

j1+j2+j3≤k+n−1∑
j1,j2,j3=0

(
j1 + j2 + j3
j1, j2, j3

)( k+n−j1−j2−j3−1
k−m−j1, m−j2−1, n−j3

)2(
k+n−1

k−m, m−1, n

)2
×G2(k−j1−j2−1),2(m−j2−1),2(n−j3) . (A.13)

B Normalization of CFT states

In this appendix, we compute the normalization of the CFT states (6.14). Because the

states we consider are obtained by exciting the 1/4-BPS states (6.9), it is useful to recall

the norm of (6.9):

NST ≡ |ψ{Ns
k}|

2 =
N !∏

k,sN
s
k ! kN

s
k
. (B.1)

This given by the number of ways one can partition N to obtain the desired distribution

of strands; for details, see section 3 (in particular eq. (3.4)) of [55].

The normalizations of the excited states obtained by the action of J+
−1 and (L−1−J3

−1)

are determined in terms of those of the ground state, (B.1), through the commutation

relations of the N = 4 superconformal algebra,

[Lm, Ln] = (m− n)Lm+n +
k

2
m(m2 − 1)δm,−n ,

[Jam, J
b
n] = iεabcJcm+n +

k

2
mδm,−nδ

ab , (B.2)

[Lm, J
a
n ] = −nJam+n ,

where k is the level of the SU(2) current algebra and c = 6k is the Virasoro central charge.

On a strand of length k, the positive integer k is indeed the level of the diagonal sum of

the k copies of the N = 4 algebra being wound together by the Zk cyclic twist. Define

J± = J1 ± iJ2 and consider the following state:

J−1 (J+
−1)m|00〉

k
=
(
−2J3

0 + k + J+
−1J

−
1

)
(J+
−1)m−1|00〉

k
; (B.3)

the J3
0 operator evaluates to m−1 acting on the right. Proceeding iteratively one arrives at

J−1 (J+
−1)m|00〉

k
=

[
−2

m−1∑
`=0

`+mk

]
(J+
−1)m−1|00〉

k

= m
(
k − (m− 1)

)
(J+
−1)m−1|00〉

k
. (B.4)

Iterating this again for (J−1 )m acting from the left, one finds

k
〈00|(J−1 )m (J+

−1)m|00〉
k

= m!
(
k − (m− 1)

)(
k − (m− 2)

)
· · ·
(
k
)

= m!
k!

(k −m)!
. (B.5)
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One finds similarly

(L1 − J3
1 ) (L−1 − J3

−1)n|00〉
k

=

(
2L0 − 2J3

0 +
k

2
+ (L−1 − J3

−1)(L1 − J3
1 )

)
(L−1 − J3

−1)n−1|00〉
k

=
[(

2(n− 1) + k
)

+
(
2(n− 2) + k

)
+ · · ·+

(
2(0) + k

)]
(L−1 − J3

−1)n−1|00〉
k

= n
(
k + (n− 1)

)
(L−1 − J3

−1)n−1|00〉
k

; (B.6)

once again iterating for the nth power of the lowering operator one finds

k
〈00|(L1 − J3

1 )n (L−1 − J3
−1)n|00〉

k
= n!

(
k + (n− 1)

)(
k + (n− 2)

)
· · ·
(
k + (0)

)
= n!

(k + n− 1)!

(k − 1)!
. (B.7)

Combining the results (B.1), (B.5), (B.7), one finds the norm of the state (6.14):

|ψ{N1,Nk,m,n}|
2 =

N !

N1!

∏
k,m,n

1

Nk,m,n!

[
1

k

(
k

m

)(
n+ k − 1

n

)]Nk,m,n
. (B.8)

The classical supergravity dual does not correspond to the state (6.14) but rather to

its coherent superposition ψ({A1, Bk,m,n}) given in (6.17). The norm of this state is, using

the results above,

|ψ({A1, Bk,m,n})|2 =
∑′

{N1,Nk,m,n}

|A1|2N1

[ ∏
k,m,n

|Bk,m,n|2Nk,m,n
]

× N !

N1!

∏
k,m,n

1

Nk,m,n!

[
1

k

(
k

m

)(
n+ k − 1

n

)]Nk,m,n
, (B.9)

where the sum is over {N1, Nk,m,n} satisfying the constraint (6.15). In the large N limit,

the sum is dominated by a stationary point {N1, Nk,m,n}, which can be obtained by setting

to zero the variation with respect to {N1, Nk,m,n} of the summand and using the Stirling

formula. The result is

N1 = |A|2 , kNk,m,n =

(
k

m

)(
n+ k − 1

n

)
|Bk,m,n|2 , (B.10)

which is a generalization of equation (3.21) of [55]. The strand multiplicities {N1, Nk,m,n}
are not independent variables but satisfy the constraint (6.15). However this constraint

applies to the average values {N1, Nk,m,n} and so we have

|A|2 +
∑
k,m,n

(
k

m

)(
n+ k − 1

n

)
|Bk,m,n|2 = N . (B.11)
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