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1 Introduction

Numerical conformal bootstrap is a very general and powerful approach to quantum con-

formal filed theories (CFTs), based on the idea of analyzing the crossing symmetry [1–3] of

correlation functions in unitary CFTs by methods of semidefinite programming [4–8]. In re-

cent years, this approach has proven to be extremely useful in extracting non-perturbative

information about concrete CFTs, such as the critical exponents and structure constants

of 3d Ising CFT, O(N) and Gross-Neveu models [6, 7, 9–15], as well as a host of other re-

sults [16–65]. Crossing symmetry of the four-point functions of such fundamental operators

as spin-1 conserved currents or the energy-momentum tensor has also been instrumental

in deriving universal constraints valid for general CFTs [65, 66].

The practical implementation of numerical conformal bootstrap relies heavily on two

technical requirements: the knowledge of conformal blocks and the ability to efficiently solve

the semidefinite programs. An efficient semidefinite solver SDPB, designed specifically for

bootstrap applications, was introduced in [8]. This solver is able to solve the most general

semidefinite programs which typically arise in conformal bootstrap, thus eliminating the

technical obstructions related to semidefinite programming. The situation with conformal

blocks is different. The simplest conformal blocks — those with external scalar operators

— are very well studied by now and there exist simple and efficient techniques for their

computation [6, 67–71]. Some of these techniques, such as Zamolodchikov-like recursion

relations, iterative/analytic solutions of conformal Casimir equations or shadow integrals
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have been extended to conformal blocks of operators with spins [41, 65, 72–77]. Another

approach to spinning conformal blocks is to relate them to simpler conformal blocks by

means of differential operators [13, 78, 79]; recently it was shown that the most general

conformal blocks can be reduced in this way to scalar blocks [80]. While these methods do

allow us to calculate any given non-supersymmetric conformal block, all of them currently

require a nontrivial amount of case-specific analysis.

In order to facilitate the conformal bootstrap studies with spinning operators it is

therefore desirable to have a simple and general algorithm for numerical computation of

conformal blocks which can be implemented on a computer, ideally avoiding the need for

symbolic algebra. The first step in this direction was undertaken in [81], where a general

classification and construction of conformally-invariant tensor structures was given. In this

paper, we take another step towards this goal by formulating a Casimir recursion relation

for the z-coordinate series expansion of general spinning conformal blocks in any number of

dimensions. For a conformal block exchanging a primary operator O, the recursion relation

takes the form

(C(∆p+1, m̃d)− C(O)) Λba
p+1,m̃d

=
∑

md∈ ⊗m̃d

(γ̄p,md,m̃d
Λp,md

γp,md,m̃d
)ba. (1.1)

where the matrices Λp,md
encode the contribution of descendants at level p and in Spin(d)

representationmd in z-coordinates, ∆p = ∆O+p, C give the conformal Casimir eigenvalues,

while γ and γ̄ are some matrices. Similar recursion relations have been recently considered

in [75]. Our improvement over these results is in that the structure of our recursion relation

is much simpler (in particular, it is one-step, i.e. relates levels p and p + 1, similarly to

the scalar recursion relation in [71]) and we are able to remain completely general and

write the coefficients γ and γ̄ in terms 6j symbols (or Racah coefficients) of Spin(d − 1).

Thus, in our form, the Casimir recursion relations can be immediately translated into a

computer algorithm in all cases when the 6j symbols can be computed algorithmically.

This includes the general conformal blocks in 3 and 4 dimensions as well as seed blocks

in higher dimensions. Importantly, since we solve all representation-theoretic questions in

terms of Clebsch-Gordan coefficients and 6j symbols, our analysis is applicable to all spin

representations without any caveats, i.e. it applies equally well to spinor representations and

is free from the redundancies which plague the less abstract approaches in low dimensions.1

This paper consists of three main parts. The first part is section 2 in which we review

the basics of the representation theory of Spin(d) and give a brief summary of the required

facts from the theory of Gelfand-Tsetlin (GT) bases. The advantage of GT bases is that

they allow us to work very explicitly with completely general representations in arbitrary d,

at the same time being perfectly compatible with the conformal frame construction of [81].

Moreover, many explicit formulas for matrix elements and Clebsch-Gordan coefficients are

available in these bases. These facts make them our main computational tool in this paper.

In section 3 we use these tools to study the contribution of a general R × Spin(d)

(dilatations×rotations) multiplet to a given four-point function. In section 3.1 we express

1Assuming, of course, that Clebsch-Gordan coefficients are known.
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the answer in terms of an explicit basis of three- and four-point functions (constructed

using the Clebsch-Gordan coefficients of Spin(d − 1)). The functions P which replace the

Gegenbauer polynomials (which appear in scalar correlation functions) are some particular

matrix elements of eθM12 in a GT basis. In sections 3.2–3.5 we consider the R×Spin(d) con-

tributions in some simple special cases. In section 3.6 we prove the folklore theorem which

states that the number of four-point tensor structures is equal to the number of classes of

conformal blocks. In section 3.7 we study the properties of P -functions and explain how

they can be efficiently computed in practice by organizing them in so-called “matroms” [82]

and deriving a recursion relation for these matroms. We also discuss the simplifications in

the low-dimensional cases of d = 3 and d = 4. In appendix D we relate the functions P to

irreducible projectors studied recently in [76] in the case of tensor representations.

In section 4 we study the Casimir recursion relations for general conformal blocks. We

start by rederiving the scalar result of [71] in section 4.1 using an abstract group-theoretic

approach. In section 4.2 we extend this approach to general representations and derive the

formulas (4.67) and (4.68) for γ and γ̄ in terms of 6j symbols of Spin(d−1). In sections 4.3–

4.4 we discuss how these 6j symbols simplify in the case d = 3 and for the seed blocks in

general d.2 For more specific examples we explicitly work out the recursion relations for

scalar-fermion seed blocks in d = 3 and d = 2n and compare them to the known results.

In section 4.5 we briefly discuss the problems associated with a practical solution of the

Casimir recursion relation and suggest some possible workarounds.

We conclude in section 5. The appendices A and B contain some explicit formulas

and details on our conventions. The appendix C elaborates on comparison to known

results. In appendix D we explain the relation between GT and Cartesian bases for tensor

representations.

2 Representation theory of Spin(d)

We will be studying conformal blocks for the most general representations of Spin(d),

which requires a certain amount of mathematical machinery. In this section we review the

relevant representation theory and establish important notation.

We will be working exclusively in the Euclidean signature (the results can be easily

translated to Lorentz signature by Wick rotation). This means that we work with the

compact real form of Spin(d), which double covers SO(d). As is well known, the basic

properties of these groups depend on the parity of d. If d = 2n, then the Lie algebra of

Spin(d) is the simple3 rank-n Lie algebra Dn with Dynkin diagram shown in figure 1a. If

d = 2n + 1 then the relevant algebra is the simple rank-n Lie algebra Bn with Dynkin

diagram shown in figure 1b.

2We do not discuss the case of general blocks in d = 4, where these 6j symbols are also known, only to

keep the size of the paper reasonable — the application of the general formula is completely mechanical.
3Semi-simple for d = 4: D2 = A1 ⊕A1 is equivalent to two copies of su2 algebra.
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λ1 λ2 λ3
λn−2

λn−1

λn

(a) Dn algebra.

λ1 λ2 λ3 λn−1 λn

(b) Bn algebra.

Figure 1. Dynkin diagrams of so(d) algebras.

It is standard to specify the irreducible representations4 by non-negative integral

Dynkin labels λi associated to the nodes in the Dynkin diagram. The representations

in which only one λi is non-zero and equal to 1 are called the fundamental representations.

The fundamental representation associated with λ1 (i.e. the one with labels λi = δi1) is the

fundamental vector representation R
d.5 More generally, the fundamental representations

associated with λi with i < d/2 − 1 are the exterior powers of the vector representation,

∧i
R
d. The nodes λn−1 = a, λn = c in Dn case correspond to the two chiral spinor repre-

sentations. Similarly, the node λn = b corresponds to the unique spinor representation in

Bn case. A general representation can be obtained by tensoring the above “fundamental”

representations together and taking the irreducible component with the highest weight (i.e.

by imposing the maximal symmetry and tracelessness conditions on the resulting tensors).

For us it will be more convenient to label the representations by generalized Young

diagrams, constructed as follows. To a given set of Dynkin labels of Spin(d) we associate

a vector of numbers md with components, for d = 2n,

md,1 = λ1 + λ2 + . . .+ λn−2 +
a+ c

2
, (2.1)

md,2 = λ2 + λ3 + . . .+ λn−2 +
a+ c

2
, (2.2)

...

md,n−2 = λn−2 +
a+ c

2
, (2.3)

md,n−1 =
a+ c

2
, (2.4)

md,n =
a− c

2
, (2.5)

4We are interested in representations over C, since the physical Hilbert space is complex. However, we

often treat the representations which are real (in the sense of being representable by real matrices) as being

over R.
5Unless d ≤ 4 when λ1 corresponds to one of the spinor representations.
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and for d = 2n+ 1,

md,1 = λ1 + λ2 + . . .+ λn−1 +
b

2
, (2.6)

md,2 = λ2 + λ3 + . . .+ λn−1 +
b

2
, (2.7)

...

md,n−1 = λn−1 +
b

2
, (2.8)

md,n =
b

2
. (2.9)

This gives all possible sequences satisfying

md,1 ≥ md,2 ≥ . . .md,n−1 ≥ |md,n|, for d = 2n,

md,1 ≥ md,2 ≥ . . .md,n ≥ 0, for d = 2n+ 1,
(2.10)

and consisting either entirely of intergers (bosonic representations) or entirely of half-

integers (fermionic representations). The dimensions of these irreducible representations

are given in appendix B.

When md is bosonic, we can think of |md,k| as giving the length of k-th row in a

Young diagram, with the caveat that for d = 2n the diagrams of height n can correspond

to self-dual tensors (md,n > 0) or anti-self-dual tensors (md,n < 0). Because of that, we

will often represent the vectors md by Young diagrams, for example,

(5, 0, 0, . . .) = , (2.11)

(5, 3, 1, 0, . . .) = , (2.12)

(0, 0, . . .) = •. (2.13)

Note that we denote the empty diagram corresponding to the trivial representation by •.
We will also sometimes use the notation

j ≡ · · · (j boxes), (2.14)

(j, ) ≡ · · ·
(j boxes in 1st row). (2.15)

Note, however, that we do not restrict our analysis to bosonic representations only.

For future convenience, we define

|md| =
n∑

k=1

|md,k|, (2.16)

which gives the number of boxes when md can be represented by a Young diagram.
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Examples. For example, consider d = 2. Strictly speaking, this case does not fall under

the above discussion, since Spin(2) is not semi-simple. However, the vectors m2 can still

be used to label the representations, and this will be important to us in the following. The

vectors m2 are one-dimensional, with a single (half-)integral entry m = m2,1. The corre-

sponding representation is the one-dimensional representation which associates to rotation

eφM12 the phase factor e−imφ.6 This is 4π-periodic for half-integral m, corresponding to

the need to consider the double-cover Spin(2) instead of SO(2).

Now consider d = 3 corresponding to B1 case. In this case the vector m3 consists

of a single component equal to b/2, where b is the unique Dynkin label. In other words

m3 = (j) where j is the usual spin of Spin(3).

The case d = 4 corresponds to D2. We have two Dynkin labels, which we will denote

by lL = a/2, lR = c/2. For example, the vector representation is given by (lL, lR) = (12 ,
1
2),

while the Dirac spinors are (12 , 0) ⊕ (0, 12). The vector m4 is two dimensional with the

components,

m4 = (lL + lR, lL − lR). (2.17)

We see that for traceless-symmetric representations with lL = lR we recover the one row

Young diagram, while for example for the representations (1, 0) or (0, 1) we recover the

diagram with self- or anti-self-duality condition.

2.1 Dimensional reduction

Labeling the representations by the vectors md is convenient for describing the rule for

dimensional reduction from Spin(d) to Spin(d−1). More precisely, an irreducible represen-

tation md decomposes into a direct sum of irreducible representations md−1 of Spin(d−1),

which we can write as

md =
⊕

md−1∈md

Nmd
md−1

md−1, (2.18)

where Nmd
md−1

denote the multiplicity with which md−1 appears in the irreducible decom-

position of md. It turns out that all multiplicities are equal to one,

Nmd
md−1

= 1, ∀md−1 ∈ md. (2.19)

We say that dimensional reduction is multiplicity-free. The representations md−1 ∈ md

are described by the following rule [82]

From Spin(2n + 1) to Spin(2n). For an irreducible representation md of Spin(d),

d = 2n+1, and an irreducible representation md−1 of Spin(d− 1) the relation md−1 ∈ md

holds iff both representations are of the same statistics (fermionic or bosonic) and satisfy

md,1 ≥ md−1,1 ≥ md,2 ≥ md−1,2 ≥ . . . ≥ md,n ≥ |md−1,n| ≥ 0. (2.20)

From Spin(2n) to Spin(2n − 1). For an irreducible representation md of Spin(d),

d = 2n, and an irreducible representation md−1 of Spin(d − 1) the relation md−1 ∈ md

holds iff both representations are of the same statistics (fermionic or bosonic) and satisfy

md,1 ≥ md−1,1 ≥ md,2 ≥ md−1,2 ≥ . . . ≥ md−1,n−1 ≥ |md,n| ≥ 0. (2.21)
6We choose the minus sign for future convenience.
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Examples. Consider first the reduction from Spin(4) to Spin(3). The constraint is

m4,1 ≥ m3,1 ≥ |m4,2|, (2.22)

which in terms of j, lL, lR reads

lL + lR ≥ j ≥ |lL − lR|. (2.23)

Together with the constraint that the Fermi/Bose statistics is preserved, we find that

j = |lL − lR|, |lL − lR|+ 1, . . . , lL + lR. (2.24)

This is the same as saying that j ∈ lL ⊗ lR, where lL and lR are interpreted as Spin(3)

spins, which coincides with the familiar reduction rule.

Consider now the reduction from Spin(3) to Spin(2). For a given m3 = (j) we have

the following constraint on m2 = (m),

j ≥ |m| ≥ 0, (2.25)

andm should be (half-)integral simultaneously with j. In other words, m = −j,−j+1, . . . j.

It is no accident that the relation between j and m is the same as in the basis elements

|j,m〉, because the Spin(2) irreps are one-dimensional. This in fact is a very powerful

observation which generalizes to higher dimensions, as we now discuss.

2.2 Gelfand-Tsetlin basis

The fact that the dimensional reduction is multiplicity-free allows one to define a convenient

basis for the irreducible representations of Spin(d). To construct it, one first fixes a sequence

of subgroups

Spin(d) ⊃ Spin(d− 1) ⊃ Spin(d− 2) ⊃ . . . ⊃ Spin(2). (2.26)

In practice, we pick an orthonormal basis e1, . . . ed in R
d, and the Spin(d−k) subgroup in the

above sequence is defined as the one preserving the basis elements e1, . . . , ek. Then, given a

representation md, we can consider an irreducible component md−1 ∈ md with respect to

Spin(d−1). Since the dimensional reduction is multiplicity-free, by specifying the numbers

md−1 we uniquely select an Spin(d−1)-irreducible subspace inside the representation space

Vmd
of the representation md. We can then continue to build a sequence

md ∋ md−1 ∋ md−2 ∋ . . . ∋ m2, (2.27)

which uniquely selects a Spin(2)-irreducible subspace inside Vmd
. Since Spin(2) is abelian,

all such subspaces are one-dimensional. Therefore, if we in addition make a choice of

phases, the above sequence specifies a unit vector in Vmd
.

Let us now denote a sequence of mk, k = d, d−1, . . . , 2 by Md. Call a sequence Md ad-

missible if (2.27) is satisfied. The above construction associates to each admissible sequence

a vector |Md〉 in Vmd
. It is an easy exercise to show that the set of |Md〉 over all admissible

sequences (with md fixed) forms an orthonormal basis in Vmd
. This is the Gelfand-Tsetlin

(GT) basis [83], and the sequences Md are known as Gelfand-Tsetlin patterns.

– 7 –
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Analogously to the well-known formulas for the matrix elements of Spin(3) generators

between the |j,m〉 states, Gelfand and Tsetlin have derived formulas for the matrix ele-

ments of Spin(d) generators in Gelfand-Tsetlin basis for arbitrary representations [82–85].

We provide these formulas for reference in section 2.3 and appendix B. Availability of such

general formulas is one of the reasons why Gelfand-Tsetlin bases are useful. For our pur-

poses the more important reason is that these bases play nicely with the inclusions (2.26),

which appear naturally in construction of conformally invariant tensor structures [81].

Choice of phases. Before proceeding further, let us make a general comment about

the choice of phases for vectors |Md〉. This choice is not going to be important in the

discussion that follows — it only influences the explicit expressions for Spin(d) matrix

elements, Clebsch-Gordan coefficients, etc. Therefore, we should only worry about it when

we compute these quantities, and we can make a choice which is the most convenient for our

purposes. For example the formulas given in appendix B correspond to some particular

choice of phases. We have made this choice so that it is compatible with the explicit

constructions in the examples below, unless explicitly stated otherwise.

Notation. As we mentioned above, for us the utility of GT bases comes from their com-

patibility with the nested sequence (2.26), which plays an important role in classification of

conformally-invariant tensor structures [81]. Unfortunately, this means that we will have

to dive into the structure of the sequences Md quite often. Because of that, it is important

to establish a well-defined notation.

Firstly, we will always explicitly write the space dimension d to which a weight md

corresponds as a subscript. Secondly, the GT patterns in representation with highest weight

md will be denoted by the capital Fraktur letter Md. Distinct patterns in the same md will

be distinguished by primes, i.e. M′
d. The subscript on the pattern indicates the dimension

d corresponding to the first weight in the pattern. This weight is kept fixed and equal to

md when we write summation as ∑

Md

. (2.28)

In all summations it is assumed implicitly that only admissible sequences are included.

Furthermore, mk for k ≤ d′ is always used to denote the components of the GT pattern

Md′ . In particular, this means that the pattern Md−1 is the tail7 of the pattern Md and

we have, for example, ∑

Md

≡
∑

md−1

∑

Md−1

. (2.29)

We also occasionally write Md = mdMd−1, etc, arranging the right hand side either

vertically or horizontally, whichever way leads to more compact expressions. We also

sometimes write out the GT patterns explicitly as

Md ≡ md,md−1, . . . ,m2. (2.30)

7This is slightly in tension with our convention on primes. We will understand that M′
d−1 is the tail of

M
′
d, i.e. m

′
d−1 is not necessarily the same as md−1 (which would be the case if we gave the priority to the

prime notation rule and understood M
′
d−1 as another pattern in md−1). Note also that by this convention

m′
d−1 ∈ md, etc.
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If we have mk = •, then necessarily mi = • for i ≤ k. We therefore often write the patterns

out only to the first trivial representation, replacing the rest by dots. For example,

Md = , , •, . . . (2.31)

has mk = • for all k ≤ d− 2.

Different representations and patterns are distinguished either by different letters (i.e.

ud and Ud vs md and Md), accents other than primes (i.e. m̃d and M̃d vs md and Md),

or upper indices (i.e. m1
d and M1

d vs md and Md). To reiterate, the lower index only

“addresses” inside one pattern.

Our final comment concerns the use of GT patterns as indices. We will assume that

the upper GT indices, such as

OMd , (2.32)

behave as ket states |Md〉, while the lower indices behave as the dual bra states 〈Md|, i.e.

[Mµν ,OMd(0)] =
∑

M′
d

〈M′
d|Mµν |Md〉OM′

d(0), (2.33)

[OMd
(0),Mµν ] =

∑

M′
d

〈Md|Mµν |M′
d〉OM′

d
(0). (2.34)

2.2.1 Bilinear parings

The most basic invariants of Spin(d) are the bilinear parings, such as the paring between a

representation and its dual, or the invariant inner product in real representations. A bilinear

pairing between irreducible representations md and ud is a singlet in the tensor product

md ⊗ ud. (2.35)

Schur’s lemma implies that there is at most one such singlet, which exists iff md = ud, i.e.

when the representations are mutually dual (equivalently, complex conjugate). The duality

acts on the Spin(d) irreps as follows. For odd d all irreps are self-dual, m2n+1 = m2n+1,

as well as for d divisible by 4, m4k = m4k. For d = 4k + 2 the duality acts non-trivially

by exchanging the spinor nodes on D2k+1 Dynkin diagram, resulting in

m4k+2,i = m4k+2,i, i < n = 2k + 1, (2.36)

m4k+2,2k+1 = −m4k+2,2k+1. (2.37)

It is quite easy to write down the formula for the singlet in md ⊗ md in GT basis.

Indeed, it has to be singlet under all groups in (2.26) and thus the above discussion implies

that it must be of the form
∑

Md

ζMd
|Md〉 ⊗ |Md〉, (2.38)
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where Md is obtained from GT pattern Md by replacing all representations with their

duals, and the coefficients ζMd
are yet to be determined. Let us define

(−1)m2n+1 = 1, (2.39)

(−1)m4k = 1, (2.40)

(−1)m4k+2 = (−1)m4k+2,2k+1 , (2.41)

(−1)Md =
d∏

k=2

(−1)mk . (2.42)

With the choice of phases as in appendix B, the coefficients ζMd
are proportional to

(−1)Md .8 In what follows, we will use the notation

〈Md,M
′
d|0〉 ≡ ζMd

δMd,M
′
d
, (2.43)

so that the singlet (2.38) can be written as

∑

Md,M′
d

〈Md,M
′
d|0〉 |Md〉 ⊗ |M′

d〉. (2.44)

Note that this is a special case of Clebsch-Gordan coefficients, which suggests the normal-

ization condition

∑

Ud,Md

〈0|Md,Ud〉〈Md,Ud|0〉 ≡
∑

Ud,Md

(〈Md,Ud|0〉)∗〈Md,Ud|0〉 = 1. (2.45)

It corresponds to the requirement that (2.44) has unit norm. This implies

〈Md,M
′
d|0〉 ≡

(−1)Md

√
dimmd

δMd,M
′
d
. (2.46)

Whenever md = md these coefficients have a definite symmetry under permutation of

the two tensor factors. For bosonic representations they are always symmetric, while

for fermionic they are symmetric if d = 0, 1, 7 mod 8 and anti-symmetric for d = 3, 4, 5

mod 8, as can be easily verified by using the explicit formula above.9 Fermionic represen-

tations are never self-dual for d = 2, 6 mod 8.

2.2.2 Vector representation

To gain some familiarity with GT bases, it is perhaps a good idea to start with the vector

representation of Spin(d). The vector representation is also going to play an extremely

important role in section 4.

First of all, for d > 3, under dimensional reduction the d-dimensional vector represen-

tation splits into two irreducible components — a scalar and a (d− 1)-dimensional vector.

8We have not proven this statement, but we have checked it on a large sample of representations in

various dimensions.
9If these coefficients are symmetric, then the self-dual md is real and otherwise it is pseudo-real (quater-

nionic). This statement is specific to Euclidean signature (in Lorentzian dual and complex conjugate

representations are not the same), but the symmetry properties are signature-independent.
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For d = 3 we obtain three representations, the +1, •,−1 representations of Spin(2). This

means that the GT basis for vector representation consists of the following elements,

| , •, •, . . . , •, •〉, (2.47)

| , , •, . . . , •, •〉, (2.48)

| , , , . . . , •, •〉, (2.49)

...

| , , , . . . , , •〉, (2.50)

| , , , . . . , ,+1〉, (2.51)

| , , , . . . , ,−1〉. (2.52)

Given that each sequence contains the d− 1 irreps (2.27), it is easy to see that the above

gives exactly d basis vectors.

Let us consider the element (2.47). By definition, it lives in the trivial representation

of Spin(d−k) for k ≥ 1 and thus has to be proportional to e1. Similarly, (2.48) is invariant

for k ≥ 2 and thus has to be a linear combination of e1 and e2. Since it also has to be

orthogonal to (2.47), it can only be proportional to e2. Repeating this argument, and

making a choice of phases, we find

| , •, •, . . . , •, •〉 = (−1)de1, (2.53)

| , , •, . . . , •, •〉 = (−1)d−1e2, (2.54)

| , , , . . . , •, •〉 = (−1)d−2e3, (2.55)

...

| , , , . . . , , •〉 = (−1)3ed−2, (2.56)

| , , , . . . , ,+1〉 = (−1)2
ed−1 + ied√

2
, (2.57)

| , , , . . . , ,−1〉 = (−1)1
ed−1 − ied√

2
. (2.58)

In the above expressions the phases are chosen to be consistent with the formulas for the

matrix elements in appendix B and the interpretation that Mij “rotates from i to j”,

Mijei = ej . (2.59)

Note that according to our conventions for Spin(2) representations described earlier, we

have

Md−1,d| , , , . . . , ,±1〉 = ∓i| , , , . . . , ,±1〉. (2.60)

This approach generalizes to other representations. In appendix D we consider the relation

between GT and Cartesian bases in tensor representations of Spin(d).

Let us now look at the inner product between vectors. Note that m4k+2,2k+1 is only

non-zero in the GT patterns (2.57) and (2.58) and for k = 0. Thus (−1)Md is −1 for these

two patterns and 1 otherwise. Finally, these two patterns are mutually dual, while all other
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patterns are self-dual, so that according to (2.44) and (2.46) we get the following pairing,

up to normalization,

| , •, . . .〉 ⊗ | , •, . . .〉+ | , , •, . . .〉 ⊗ | , , •, . . .〉+ . . .

− | , . . . , ,+1〉 ⊗ | , . . . , ,−1〉 − | , . . . , ,−1〉 ⊗ | , . . . , ,+1〉. (2.61)

From (2.53)–(2.58) we see that this is equal to

d∑

i=1

ei ⊗ ei, (2.62)

which is the usual pairing between vectors.

2.2.3 General representations in 3 dimensions

We now consider the case of general representations in d = 3 (n = 1). As before, the

representations m3 are labeled by a (half-)integer j ≡ m3,1 ≥ 0, which is the usual spin,

and the representations m2 are labeled by a (half-)integer m ≡ m2,1. The representations

m2 ∈ m3 are given by m = −j,−j + 1, . . . , j. The GT basis vectors are then

|M3〉 ≡ |m3,m2〉 ≡ |j,m〉. (2.63)

We can choose conventions such that this coincides with the basis of Spin(3) representations

familiar from the theory of angular momenta. Indeed, let us first define the anti-Hermitian

generators

Iµ =
1

2
ǫµνλMνλ, (2.64)

which are then subject to the commutation relation (see appendix A),

[Iµ, Iν ] = ǫµνλIλ. (2.65)

Their Hermitian analogues Jµ = iIµ satisfy the familiar Spin(3) commutation relations

[Jµ, Jν ] = iǫµνλJλ. (2.66)

If we now define

1̂ ≡ 2, 2̂ ≡ 3, 3̂ ≡ 1, (2.67)

then the operators Jµ̂ satisfy the same commutation relations. By definition, we have

J3̂|j,m〉 = iI1|j,m〉 = iM23|j,m〉 = i(−im)|j,m〉 = m|j,m〉. (2.68)

We have performed the index relabeling (2.67) precisely so that |j,m〉 are eigenstates of

J3̂, making contact with standard angular momentum conventions. In particular, the

standard [86] formulas for action of Jµ̂ coincide with d = 3 case of formulas in appendix B.
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2.2.4 General representations in 4 dimensions

In d = 4 (n = 2), we have

m4 = (ℓ1, ℓ2) = (lL + lR, lL − lR), (2.69)

m3 = j = |lL − lR|, |lL − lR|+ 1, . . . , lL + lR, ⇔ j ∈ lL ⊗ lR, (2.70)

m2 = m = −j,−j + 1, . . . , j, (2.71)

and thus we can write

|M4〉 ≡ |lL, lR; j,m〉. (2.72)

It will be convenient to connect this to the basis which arises from the exceptional isomor-

phism Spin(4) ≃ SU(2)× SU(2). To define this latter basis, we write

Qµ ≡ M1µ, Iµ ≡ 1

2
ǫµνλMνλ, µ, ν, λ ∈ {2, 3, 4}, (2.73)

where ǫ234 = 1. Then the Hermitian operators

JL
µ ≡ iILµ ≡ i

2
(Iµ +Qµ), JR

µ ≡ iIRµ ≡ i

2
(Iµ −Qµ) (2.74)

obey the commutation relations

[JL
µ , J

L
ν ] = iǫµνλJ

L
λ , (2.75)

[JR
µ , JR

ν ] = iǫµνλJ
R
λ , (2.76)

[JL
µ , J

R
ν ] = 0. (2.77)

We can then define, similarly to 3 dimensions,

1̂ ≡ 3, 2̂ ≡ 4, 3̂ ≡ 2, (2.78)

and construct the conventional basis states for the algebras JL
µ̂ , J

R
µ̂ ,

|lL,mL; lR,mR〉 (2.79)

subject to the usual condition

JL
3̂
|lL,mL; lR,mR〉 = mL|lL,mL; lR,mR〉, (2.80)

JR
3̂
|lL,mL; lR,mR〉 = mR|lL,mL; lR,mR〉. (2.81)

Let us now relate the bases (2.72) and (2.79). First, note that the generators Jµ̂ ≡ iIµ̂
of the Spin(3) which preserves the first axis are given by

Jµ̂ = JL
µ̂ + JR

µ̂ , (2.82)

and thus under this Spin(3) the state (2.79) transforms as a tensor product state in lL⊗ lR.

We can therefore simply set

|lL, lR; j,m〉 ≡
∑

mL+mR=m

〈lL,mL; lR,mR|j,m〉|lL,mL; lR,mR〉, (2.83)
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where

〈lL,mL; lR,mR|j,m〉 (2.84)

are the Clebsch-Gordan coefficients of Spin(3). It is easy to check that this definition is

consistent with the definition of GT basis. Note that (2.83) essentially fixes our choice

of phases through the phases of Spin(3) CG coefficients. The resulting phase conventions

are consistent with appendix B if one uses CG coefficients 〈j1,m1; j2;m2|j,m〉 which differ

from [86] by a factor of ij−j1−j2 .10

For future reference, let us give the expression for M12 = Q2. We have

M12 = Q2 = −iJL
2 + iJR

2 = −iJL
3̂
+ iJR

3̂
. (2.85)

2.3 Clebsch-Gordan coefficients and matrix elements

In the next sections we will find that a lot of calculations (for example, three-point tensor

structures and Casimir recursion relations) involve manipulations with Clebsch-Gordan

coefficients (CG coefficients). In this section we therefore discuss the structure of these

coefficients in GT bases.

CG coefficients essentially establish an equivalence between a tensor product and its

decomposition into irreducible representations,

Vm1
d
⊗ Vm2

d
≃

⊕

md∈m1
d
⊗m2

d

Vmd
. (2.86)

More specifically, we have the relation between basis vectors

|M1
dM

2
d〉 =

∑

md∈m1
d
⊗m2

d

∑

Md

〈Md|M1
dM

2
d〉 |Md〉, (2.87)

where 〈Md|M1
dM

2
d〉 are the CG coefficients. This equation has to be modified somewhat if

there are multiplicities in the tensor product,

|M1
dM

2
d〉 =

∑

(md,t)∈m1
d
⊗m2

d

∑

Md

〈Md, t|M1
dM

2
d〉 |Md, t〉. (2.88)

Here t counts the possible degeneracy. Inverse transformation is given by

|Md, t〉 =
∑

M1
d
M2

d

〈M1
dM

2
d|Md, t〉 |M1

dM
2
d〉, (2.89)

where 〈M1
dM

2
d|Md, t〉 = 〈Md, t|M1

dM
2
d〉∗. Note that there is an ambiguity in the definition

of CG coefficients. Indeed, the decomposition

|M1
dM

2
d〉 =

∑

(md,t)∈m1
d
⊗m2

d

∑

Md,t′

Utt′〈Md, t
′|M1

dM
2
d〉 |Md, t〉, (2.90)

10These CG coefficients will still differ from the vector CG coefficients of B by a factor of −i when j = j1
and j2 = 1, but the matrix elements in 4d will be consistent.
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where U is a unitary matrix, is also perfectly fine from the point of view of Spin(d) invari-

ance. One thus has to fix this freedom for every choice of m1
d and m2

d. We will not try to

fix the general conventions here, and work on a case-by-case basis in the examples.

GT bases exhibit a set of relations between the CG coefficients of the nested

groups (2.26). Indeed, let us write the GT patters in CG coefficients (2.88) in the form

Md = mdMd−1,

〈Md, t|M1
dM

2
d〉 ≡ 〈mdMd−1, t|m1

dM
1
d−1;m

2
dM

2
d−1〉. (2.91)

Thinking about Spin(d− 1)-invariance, we see that must necessarily have

〈mdMd−1 t|m1
d,M

2
d−1;m

2
dM

2
d−1〉 =

∑

t′

(
md

md−1

∣∣∣∣∣
m1

d

m1
d−1

m2
d

m2
d−1

)

tt′

〈Md−1, t
′|M1

d−1M
2
d−1〉

(2.92)

where the constants (
md

md−1

∣∣∣∣∣
m1

d

m1
d−1

m2
d

m2
d−1

)

tt′

(2.93)

are the so-called Spin(d) : Spin(d − 1) isoscalar factors,11 while 〈Md−1, t
′|M1

d−1M
2
d−1〉 are

the CG coefficients of Spin(d − 1). This can be iterated, and since the CG coefficients of

Spin(2) are extremely simple,

〈m|m1m2〉 = δm,m1+m2 , (2.94)

it follows that the knowledge of CG coefficients of Spin groups is equivalent to the knowledge

of the isoscalar factors.

For example, the Spin(3) : Spin(2) isoscalar factors are essentially the Spin(3) CG coef-

ficients, due to the aforementioned triviality of Spin(2) CG coefficients. One can show that

the Spin(4) : Spin(3) isoscalar factors are essentially equivalent to Spin(3) 9j symbols [87].

For our applications we in principle need the most general CG coefficients of Spin(d−1)

groups — simply the knowledge of all possible conformally-invariant three-point tensor

structures already implies the knowledge of all possible Spin(d − 1) CG coefficients (see

section 3.1). We are not aware of a general formula for Spin(d−1) CG coefficients valid for

general d.12 For the most physically relevant cases d = 4, 3 one can use the well-known CG

coefficients of Spin(3) ≃ SU(2) or the trivial CG coefficients of Spin(2) ≃ U(1). Due to the

exceptional isomorphism Spin(4) ≃ SU(2)×SU(2), we also know the general CG coefficients

of Spin(d−1) for d = 5. Let us note that the case d ≥ 6 is qualitatively different since tensor

products in Spin(5) and larger groups are not multiplicity-free. Luckily, for each particular

choice of a four-point function there is only a finite number of relevant three-point tensor

structures and thus also of Spin(d− 1) CG coefficients. For any given tensor product, the

problem of finding CG coefficients is a finite-dimensional linear algebra problem and can in

principle be solved on a computer, although phase conventions and resolution of multiplic-

ities need to be carefully addressed. See [90] for an approach to Spin(5) CG coefficients.

11Also known as reduced CG, reduced Wigner coefficients, or reduction factors.
12See [88, 89] for partial progress in this direction.
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For the applications to Casimir recursion relations, we will need a special infinite class

of CG coefficients of Spin(d) — the CG coefficients involving a vector representation. The

good news are that these CG coefficients are known for general d in closed form.

Spin(d) matrix elements and Clebsch-Gordan coefficients with vector represen-

tation. It turns out that Clebsch-Gordan coefficients for vector representation are closely

related to the matrix elements of Spin(d) generators. Indeed, let us consider the matrix

elements of M1µ,

M1µ|Md〉 =
∑

M′
d

〈M′
d|M1µ|Md〉 |M′

d〉, m′
d = md. (2.95)

The piece M1µ|Md〉 transforms under Spin(d−1) in the representation ⊗md−1. The vec-

tors on the right, on the other hand, transform in irreducible representations of Spin(d−1).

For fixed md,md−1 this therefore has precisely the form required of a CG decomposition,

so that we have

〈M′
d|M1µ|Md〉 =

(
md

m′
d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)
〈M′

d−1|Md−1, µ〉 (2.96)

for some constants (
m′

d

m′
d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)
(2.97)

known as reduced matrix elements. This is essentially a version of Wigner-Eckart theorem.

Note that the tensor product with vector representation is always multiplicity free and thus

we don’t need any extra labels. This follows from Brauer’s formula [91] and the fact that

all weights in the vector representation have multiplicity 1. The label for M is supposed

to indicate that we are looking at M1µ which is a vector under Spin(d− 1).

Let us consider an example by setting µ = 2 which is equivalent to µ = [ , •, . . .] in
terms of GT patterns. We then find

〈M′
d|M12|Md〉 = (−1)d−1

(
md

m′
d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)
〈M′

d−1|Md−1; , •, . . .〉

= (−1)d−1

(
md

m′
d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)(
m′

d−1

m′
d−2

∣∣∣∣∣
md−1

md−2 •

)
〈M′

d−2|Md−2; •, . . .〉

= (−1)d−1

(
md

m′
d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)(
m′

d−1

m′
d−2

∣∣∣∣∣
md−1

md−2 •

)
δMd−2,M

′
d−2

. (2.98)

Here we used the definition of the isoscalar factor (2.92) and the triviality of CG coefficients

when one of the factors is the trivial representation. We also made use of the relation (2.54).

Note that this implies the constraint m′
d−1 ∈ ⊗md−1. Due to the structure of the nested

sequence (2.26) the matrix elements of Mk,k+1 for all 1 ≤ k ≤ d− 1 follow from the matrix

elements of M12 for Spin(d − k + 1). It is an easy exercise to show that Mk,k+1 generate

the whole Lie algebra of Spin(d).
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We therefore find that the reduced matrix elements (2.97) and the simplest vector

isoscalar factors (
md

md−1 •

∣∣∣∣∣
m′

d

md−1

)
(2.99)

allow the computation of the most general Spin(d) matrix elements. There exist relatively

simple closed-form expressions for these quantities [84, 85], which we provide in appendix B

for the ease of reference.13

These quantities in fact also completely determine the vector CG coefficients. Indeed,

given the isoscalar factor (2.99), it only remains to find the second isoscalar factor14

(
md−1

md−2

∣∣∣∣∣
m′

d−1

m′
d−2

)
. (2.100)

It can be easily computed by considering the expression

〈Md; , •, . . . |M12|M′
d〉 (2.101)

and evaluating it via isoscalar factors and reduced matrix elements in two different ways

(acting with M on the left and on the right). Action on the left produces, among other

terms, the term

〈Md; , , •, . . . |M′
d〉, (2.102)

which is proportional to the sought for isoscalar factor. See appendix B.2 for details.

3 Structure of spinning correlation functions and conformal blocks

In this section we apply the formalism of GT bases to study the general structure of

radially-quantized correlators or conformal blocks. At this stage, no distinction is made

between correlation functions and individual conformal blocks, so we use these two terms

interchangeably.

3.1 Contribution of a R × Spin(d)-multiplet

Consider a 4-point correlation function, radially quantized so that the points 1 and 2 lie

inside the unit sphere, whereas the points 3 and 4 lie outside (or on) the unit sphere.

One can then insert a complete basis of states on the unit sphere, organized in representa-

tions of R× Spin(d) (dilatations × rotations), and ask what is the contribution of a single

representation. This question was answered in [71] for four-point functions with external

scalar operators, exchanging traceless-symmetric tensors on the unit sphere (the only rep-

resentations allowed in this case). The case of four-point functions of tensor operators was

addressed in [75]. Unfortunately, as mentioned in the introduction, the approach of [75]

requires a non-trivial amount of case-by-case analysis and the knowledge of irreducible

projectors. The goal of this section is to give a more general alternative treatment.

13Note that our phase conventions differ from those in [84, 85].
14For d = 3 we can have (±1) instead of lower in (2.100). The corresponding isoscalar factors can

be obtained completely analogously. See appendix B.3.

– 17 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
1

For concreteness, we will work in the radial kinematics of [71].15 Namely, we chose

an orthonormal basis in R
d, labeling the axes by integers from 1 to d, and we introduce a

complex coordinate w in plane 1-2 as

w = x1 + ix2. (3.1)

We then place all four operators in this plane, setting their coordinates to

w1 = −ρ, w2 = ρ w3 = 1, w4 = −1, (3.2)

for some ρ ∈ C. Any non-coincident configuration of four points can be brought to a

configuration of the above form by a conformal transformation, with ρ being related to the

familiar cross-ratios u and v. We assume |ρ| < 1.

We also fix the sequence of groups (2.26), defining Spin(d − k) to be the subgroup

of Spin(d) which fixes the first k axes. This defines for us Gelfand-Tsetlin bases for the

representations of Spin(d). We will accordingly denote the primary operators by

OMi
d

i (wi), (3.3)

where the sequences Mi
d label the Gelfand-Tsetlin basis vectors as in section 2.2, and we

use the upper index i to label the operators in order to avoid confusion with the dimension

label, Mi
d = mi

d,m
i
d−1, . . . ,m

i
2.

We are interested in the radially-quantized four-point function

〈0|OM4
d

4 (−1)OM3
d

3 (1)OM2
d

2 (ρ)OM1
d

1 (−ρ)|0〉. (3.4)

It turns out that it is more convenient to work with

〈0|OM4
d

4 (−1)OM3
d

3 (1)rDeθM12OM2
d

2 (1)OM1
d

1 (−1)|0〉, (3.5)

where ρ = reiθ, D is the dilatation operator and Mµν is the anti-hermitian rotation gener-

ator in the plane µ-ν.16 The relation between (3.4) and (3.5) is given by

〈0|OM4
d

4 (−1)OM3
d

3 (1)rDeθM12OM2
d

2 (1)OM1
d

1 (−1)|0〉 =

= r∆1+∆2

∑

M′1
d
,M′2

d

R
M1

d

M′1
d

(θ)R
M2

d

M′2
d

(θ)〈0|OM4
d

4 (−1)OM3
d

3 (1)OM′2
d

2 (ρ)OM′1
d

1 (−ρ)|0〉, (3.6)

where R are the matrix elements of the rotations in the plane 1-2 in Gelfand-Tsetlin basis,

R
Mi

d

M′i
d

(θ) = 〈M′i
d |eθM12 |Mi

d〉. (3.7)

15The same approach also works in other kinematics. For examples, we will switch to Dolan-Osborn [67,

68] kinematics in section 4. The analysis in that case is only slightly different due to the presence of an

operator at infinity.
16See appendix A for our conventions on conformal algebra. Our definition of Mµν differs by a sign from

e.g. [92].
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Recall that according to our conventions the primed patterns belong to the same represen-

tations as unprimed ones. Clearly, the two forms can be used interchangeably. The reader

may recognize the factor r−∆1−∆2 , which appears in many formulas for scalar four-point

functions, and is often stripped off as in here by multiplying by r+∆1+∆2 . The matrices R

play a similar role for the spinning degrees of freedom.17

Consider now a contribution from a R × Spin(d) multiplet with scaling dimension ∆

and in representation md of Spin(d),

∑

Md

〈0|OM4
d

4 (−1)OM3
d

3 (1)|∆,Md〉〈∆,Md|rDeθM12OM2
d

2 (1)OM1
d

1 (−1)|0〉 = (3.8)

=
∑

Md,M
′
d

r∆〈0|OM4
d

4 (−1)OM3
d

3 (1)|∆,Md〉〈Md|eθM12 |M′
d〉〈∆,M′

d|O
M2

d

2 (1)OM1
d

1 (−1)|0〉.

Here m′
d = md. This expression consists of three main ingredients: the two three-point

functions

〈0|OM4
d

4 (−1)OM3
d

3 (1)|∆,Md〉 and 〈∆,M′
d|O

M2
d

2 (1)OM1
d

1 (−1)|0〉, (3.9)

and the matrix elements

〈Md|eθM12 |M′
d〉. (3.10)

In order to proceed further, we need to understand the structure of these objects.

3.1.1 Three-point functions

The three-point functions (3.9) are some tensors in the Gelfand-Tsetlin indices, whose

values are constrained by the requirement of conformal invariance. To be precise, for

three-point functions involving R× Spin(d) multiplets, the only intrinsic restrictions come

from R×Spin(d) invariance.18 Of these, only the Spin(d−1) subgroup which fixes the first

axis imposes the restriction directly on (3.9), while the other generators in R×Spin(d) can

be used to determine the values of these three-point functions for different positions of Oi

(we have essentially done this above). Even in the case when the R × Spin(d) multiplet

in question is a conformal primary, Spin(d − 1)-invariance is the only restriction on the

tensors (3.9) [81].

In particular, the allowed tensor structures for, e.g.

〈∆,M′
d|O

M2
d

2 (1)OM1
d

1 (−1)|0〉 (3.11)

are in one-to-one correspondence with the Spin(d− 1) invariant subspace

(
md ⊗m1

d ⊗m2
d

)Spin(d−1)
, (3.12)

17Importantly, the action of R here is only on the labels of the external operators. Because it commutes

with the stabilizer group Spin(d−2) of four points, it can be though of as a change of the basis of four-point

tensor structures. We study the matrix elements such as R further in sections 3.1.2 and 3.7.
18The extrinsic restrictions, relating the contribution of the descendant multiplets to the primary, are

discussed in section 4.
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where the bar indicates taking the dual19 representation. Because dimensional reduction

is multiplicity-free, such singlets are in one-to-one correspondence with singlets in

m′
d−1 ⊗m1

d−1 ⊗m2
d−1 (3.13)

over all m′
d−1 ∈ md, mi

d−1 ∈ mi
d. Such a singlet exists whenever m′

d−1 appears in

m1
d−1 ⊗m2

d−2, in which case we write

(m′
d−1, t

′) ∈ m1
d−1 ⊗m2

d−1, (3.14)

where the extra label t′ is needed if m′
d−1 appears in the tensor product with multiplicity.20

If (3.14) holds, we can build an invariant using Spin(d − 1) Clebsch-Gordan coefficients.

More explicitly, we have

〈∆,M′
d|O

M2
d

2 (1)OM1
d

1 (−1)|0〉 =
∑

t′

λ
m1

d−1
,m2

d−1

m′
d−1

,t′
〈M′

d−1, t
′|M1

d−1,M
2
d−1〉, (3.15)

where λ’s are the three-point coefficients unconstrained by symmetry, and we recall that

Md−1 is defined as

Md = md,md−1, . . . ,m2 =⇒ Md−1 ≡ md−1,md−2, . . . ,m2. (3.16)

It is understood that if m′
d−1 /∈ m1

d−1⊗m2
d−1, then the Clebsch-Gordan coefficient vanishes

and the corresponding λ is undefined.

Analogously, for the second three-point function we have21

〈0|OM4
d

4 (−1)OM3
d

3 (1)|∆,Md〉 =
∑

t

λ̄
m3

d−1
,m4

d−1

md−1,t
〈0|M3

d−1,M
4
d−1,Md−1, t〉, (3.17)

where we now have a 3j symbol instead of Clebsch-Gordan coefficients (the distinction is

of course rather formal).

Note that (3.15) and (3.17) give a somewhat unusual way of writing the three-point

function, since the spin indices of the operators directly select which three-point coefficients

λ appear in the right hand side. A perhaps more intuitive equivalent form of (3.15) is

∑

m̃i
d−1

∑

m̃′
d−1

,t′

λ
m̃1

d−1
,m̃2

d−1

m̃′
d−1

,t′

{
δm1

d−1
,m̃1

d−1
δm2

d−1
,m̃2

d−1
δm′

d−1
,m̃′

d−1
〈M′

d−1, t
′|M1

d−1,M
2
d−1〉

}
,

(3.18)

where the object in the curly braces is the three point tensor structure, and it is made

explicit that the three-point coefficients are labeled by two Spin(d − 1) representations

m̃1
d−1 and m̃2

d−1 and a pair (m̃′
d−1, t

′) ∈ m̃1
d−1⊗ m̃2

d−1. We will sometimes use a shorthand

notation to denote such composite labels. Namely, for the right three point function we

use the label

a = (m̃1
d−1, m̃

2
d−1, m̃

′
d−1, t

′), (m̃′
d−1, t

′) ∈ m̃1
d−1 ⊗ m̃2

d−1. (3.19)

19Equivalently complex-conjugate, since all representations of compact Spin(d) are unitary.
20If d ≤ 5, then tensor products in Spin(d− 1) are multiplicity-free and the sum over t′ can be dropped.
21The coefficients λ̄ are in general not complex conjugates of λ.
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Similarly, for the left three-point function we use

b = (m̃3
d−1, m̃

4
d−1, m̃d−1, t), (m̃d−1, t) ∈ m̃3

d−1 ⊗ m̃4
d−1. (3.20)

It is instructive to consider the case of 3 dimensions. In this case, we are considering

the three-point functions

〈∆, j′,m′|Oj2,m2

2 (1)Oj1,m1

1 (−1)|0〉. (3.21)

The Spin(2) invariance basically tells us that the spin projection has to be conserved,

m′ = m1 +m2, and the Spin(2) Clebsch-Gordan coefficients are

〈m′|m1,m2〉 = δm′,m1+m2
. (3.22)

We can therefore write

〈∆, j′,m′|Oj2,m2

2 (1)Oj1,m1

1 (−1)|0〉 = δm′,m1+m2
λm1,m2

m′ . (3.23)

Analogously, for the other three-point function we have

〈0|Oj4,m4

4 (−1)Oj3,m3

3 (−1)|∆, j,m〉 = λ̄m3,m4
m δ0,m3+m4+m. (3.24)

We discuss the 3d case further in section 3.3.

In order to study the most general four-point functions, we need to know the most

general three-point functions (3.15) and (3.17) and thus the most general Spin(d− 1) CG

coefficients. Unfortunately, as discussed in section 2.3, to the best of our knowledge there

is no general closed-form expression for such CG coefficients valid for general d available in

the literature, but there are important special cases when such expressions are available.

Besides the cases considered in section 2.3, an important scenario is when, say, m1
d =

m4
d = •, in which case the required CG coefficients are trivial in any d. This happens, for

example, in a certain choice of four-point functions for the so-called seed blocks. These are

the simplest conformal blocks which exchange a given intermediate Spin(d) representation

md. We discuss this case further in section 3.5.

3.1.2 Matrix elements

Consider now the matrix elements (3.10). An important feature is that the Spin(d) element

eθM12 commutes with the standard Spin(d−2) subgroup which fixes the axes 1 and 2. On the

other hand, the Spin(d) representation md decomposes into irreducibles under Spin(d−2),

and by Schur’s lemma this implies that eθM12 acts by identity times a constant inside of

these irreducible components. More precisely, we have

〈Md|eθM12 |M′
d〉 = P

md,md−2

md−1,m
′
d−1

(θ)δMd−2,M
′
d−2

. (3.25)

One can arrive at the same conclusion by examining (2.98). The functions P
md,md−2

md−1,m
′
d−1

(θ)

will play the role of Gegenbauer polynomials for the spinning conformal blocks. We will

describe their structure, basic properties, and how to compute them in section 3.7. For now,
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note that they are labeled by an Spin(d) representation md, two Spin(d−1) representations

md−1,m
′
d−1 ∈ md, and one Spin(d− 2) representation md−2 ∈ md−1,m

′
d−1.

It is again useful to look at the case of three dimensions. Here, Spin(d− 2) = Spin(1)

is trivial, and according to (3.25) we have (recall that m3 ≡ j and m2 ≡ m)

P j
m,m′(θ) = 〈j,m|eθM12 |j,m′〉 = 〈j,m|e−iθJ

2̂ |j,m′〉 = djm,m′(−θ), (3.26)

where djm,m′(θ) is the small Wigner d-matrix familiar from the representation theory of

Spin(3). For other examples see section 3.7 and appendix D.

3.1.3 Putting everything together

We can now combine (3.15), (3.17) and (3.25) to rewrite (3.8) in the following terrifying

form,

∑

Md

〈0|OM4
d

4 (−1)OM3
d

3 (1)|∆,Md〉〈∆,Md|rDeθM12OM2
d

2 (1)OM1
d

1 (−1)|0〉 =

=
∑

m̃i
d−1

∑

md−1,t

m
′
d−1

,t′

∑

md−2

λ
m̃1

d−1
,m̃2

d−1

m′
d−1

,t′
λ̄
m̃3

d−1
,m̃4

d−1

md−1,t
r∆P

md,md−2

md−1,m
′
d−1

(θ)×

×
[
M3

d

M4
d

∣∣∣
m̃3

d−1

m̃4
d−1

md−1, t
∣∣∣md−2

∣∣∣m′
d−1, t

′ m̃
1
d−1

m̃2
d−1

∣∣∣M
1
d

M2
d

]
, (3.27)

where following selection rules on the summation variables hold,

m̃i
d−1 ∈ mi

d,

(m′
d−1, t

′) ∈ m̃1
d−1 ⊗ m̃2

d−1,

(md−1, t) ∈ m̃3
d−1 ⊗ m̃4

d−1,

md−2 ∈ md−1,m
′
d−1 ∈ md. (3.28)

Using the shorthand notation (3.19) and (3.20) for the three-point tensor structures, we

can rewrite (3.27) as

=
∑

a,b

∑

md−2

λaλ̄br∆P
md,md−2

md−1,m
′
d−1

(θ)×
[
M3

d

M4
d

∣∣∣b
∣∣∣md−2

∣∣∣a
∣∣∣M

1
d

M2
d

]
. (3.29)

We have also introduced a four-point tensor structure

[
M3

d

M4
d

∣∣∣
m̃3

d−1

m̃4
d−1

md−1, t
∣∣∣md−2

∣∣∣m′
d−1, t

′ m̃
1
d−1

m̃2
d−1

∣∣∣M
1
d

M2
d

]
(3.30)

which we will define momentarily. Before doing that, let us comment briefly on the structure

of (3.27) and (3.29).

There are two complications compared to the case of external scalar operators. First,

there are many possible three-point tensor structures, and we have to sum over the con-

tributions from different pairs of three-point structures. This is done in the first two
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sums in (3.27) or equivalently the first sum in (3.29). Indeed, according to the discussion

around (3.15), the set a = (m̃1
d−1, m̃

2
d−1,m

′
d−1, t) such that m′

d−1, t selects an irreducible

component in m̃1
d−1⊗ m̃2

d−1 uniquely determines a three-point tensor structure for the op-

erators 1 and 2, and an analogous statement holds for b and the operators 3 and 4. Second,

there are many four-point structures, and a single pair of three-point structures can con-

tribute to many four-point structures. This is the last sum in (3.27) and (3.29). As we dis-

cuss below, the role of md−2 representation is to specify a way of gluing the two three-point

structures into a four-point structure. Note that the three-point structures do not depend

on md−2, but the angular functions P and the four-point tensor structures do. We stress

that the structures (3.30) form a basis of all four-point tensor structures, as we now explain.

The definition of (3.30) follows straightforwardly from the construction,

[
M3

d

M4
d

∣∣∣
m̃3

d−1

m̃4
d−1

md−1, t
∣∣∣md−2

∣∣∣m′
d−1, t

′ m̃
1
d−1

m̃2
d−1

∣∣∣M
1
d

M2
d

]
=

=
∑

Md−2,M
′
d−2

〈0|M3
d−1,M

4
d−1,Md−1, t〉δMd−2,M

′
d−2

〈M′
d−1, t

′|M1
d−1,M

2
d−1〉×

× δm1
d−1

,m̃1
d−1

δm2
d−1

,m̃2
d−1

δm3
d−1

,m̃3
d−1

δm4
d−1

,m̃4
d−1

. (3.31)

Here m′
d−2 = md−2. Note that for every choice of m̃i

d−1,md−1,m
′
d−1,md−2, t, t

′, this is a
function of Mi

d, i.e. an element of

m1
d ⊗m2

d ⊗m3
d ⊗m4

d. (3.32)

Furthermore, it is clear from the definition that it is Spin(d − 2) invariant. This means

that it is an element of
(
m1

d ⊗m2
d ⊗m3

d ⊗m4
d

)Spin(d−2)
, (3.33)

which is the space of four-point tensor structures [81, 93].

The set of structures (3.31) with the parameters restricted by (3.28) spans (3.33).

Indeed, we have

(
m1

d ⊗m2
d ⊗m3

d ⊗m4
d

)Spin(d−2)
=

⊕

m
12
d−1

∈m
1
d
⊗m

2
d

m
34
d−1

∈m
3
d
⊗m

4
d

(m12
d−1 ⊗m34

d−1)
Spin(d−2), (3.34)

where the sum is taken with multiplicities. Because the dimensional reduction is

multiplicity-free, we have that Spin(d − 2) singlets in m12
d−1 ⊗ m34

d−1 are in one-to-one

correspondence with m1234
d−2 ∈ m12

d−1,m
34
d−1.

This enumeration is implemented by (3.28) as follows. By specifying

m̃1
d−1, m̃

2
d−1,m

′
d−1, t

′ we first select a general Spin(d− 1) representation m12
d−1 ≃ m′

d−1 in

m1
d ⊗m2

d. Similarly, m̃3
d−1, m̃

4
d−1,md−1, t select a general Spin(d− 1) irrep m34

d−1 ≃ md−1

in m3
d ⊗m4

d. The “gluing” representation m1234
d−2 is then identified with md−2.
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3.2 Example: scalar correlators

Let us see how we can recover the Genegenbauer expansion for scalar four-point functions.

For scalars we have mi
d = (0, . . . 0) = •, and the only Gelfand-Tsetlin patterns are [•] ≡

(•, . . . •). Similarly, m̃i
d−1 = •. In (3.27) we only need to sum over m′

d−1 ∈ m̃1
d−1 ⊗ m̃2

d−1,

thus only m′
d−1 = • is allowed and there is no need in t′ label. Similarly, md−1 = •. The

sum over md−2 is restricted to md−2 ∈ md−1,m
′
d−1, and thus we only have md−2 = •.

The unique component of the unique four-point structure is

[
[•]
[•]

∣∣∣•• •
∣∣∣ •

∣∣∣ • •
•
∣∣∣ [•]
[•]

]
= 1. (3.35)

Equation (3.27) collapses then to

∑

Md

〈0|O[•]
4 (−1)O[•]

3 (1)|∆,Md〉〈∆,Md|rDeθM12O[•]
2 (1)O[•]

1 (−1)|0〉 = λ•,•
• λ̄•,•

• r∆Pmd,••,• (θ).

(3.36)

We need md−1,m
′
d−1 ∈ md, and thus for scalars we get the condition md ∋ •, which is only

satisfied if md is traceless-symmetric, md = j = (j, 0, . . . , 0). Finally, as we show in (3.99)

later in this section, P j,•
•,•(θ) is proportional to a Gegenbauer polynomial. Taking (3.99)

into account, we reproduce the result of [71]

∑

Md

〈0|O[•]
4 (−1)O[•]

3 (1)|∆,Md〉〈∆,Md|rDeθM12O[•]
2 (1)O[•]

1 (−1)|0〉 = λ•,•
• λ̄•,•

• r∆
C

(ν)
j (θ)

C
(ν)
j (1)

.

(3.37)

3.3 Example: general 3d correlators

Consider now the case d = 3. Let us first write the four-point tensor structure (3.31). Since

d = 3, the sums in (3.31) are trivial, as well as md−2 is. Furthermore, Spin(d−1) = Spin(2)

tensor products are multiplicity-free, so the labels t and t′ are also trivial. We then find,

using (3.24) and (3.23),

[
j3,m3

j4,m4

∣∣∣m̃3

m̃4
m
∣∣∣
∣∣∣m′ m̃1

m̃2

∣∣∣j1,m1

j2,m2

]
= δm′,m1+m2

δ0,m+m3+m4
δm1,m̃1

δm2,m̃2
δm3,m̃3

δm4,m̃4
.

(3.38)

Since the tensor product of Spin(2) representations m̃1, m̃2 contains only one representa-

tion, m̃1 + m̃2, we do not need to specify m′ separately. The same holds for m. We can

thus simplify this tensor structure as

[
j3,m3

j4,m4

∣∣∣m̃3

m̃4

m̃1

m̃2

∣∣∣j1,m1

j2,m2

]
≡ δm1,m̃1

δm2,m̃2
δm3,m̃3

δm4,m̃4
. (3.39)

Before moving further, let us understand the meaning of this expression. It is a four-point

tensor structure in the sense that by fixing m̃i we have a tensor with indices mi, i.e. an

element of

j1 ⊗ j2 ⊗ j3 ⊗ j4. (3.40)
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Note that these structures form a complete basis for such tensors, which is consistent with

the fact that Spin(d − 2) = Spin(1) is trivial and so there is no invariance constraint on

conformal frame four-point structures [81].22

As noted above, we can essentially drop md−1,m
′
d−1,md−2, t, t

′ in (3.27). Using (3.26)

and (3.39) we can rewrite (3.27) as

∑

m

〈0|Oj4,m4

4 (−1)Oj3,m3

3 (1)|∆, j,m〉〈∆, j,m|rDeθM12Oj2,m2

2 (1)Oj1,m1

1 (−1)|0〉 =

=
∑

m̃i

λm̃1,m̃2 λ̄m̃3,m̃4r∆dj−m̃3−m̃4,m̃1+m̃2
(−θ)

[
j3,m3

j4,m4

∣∣∣m̃3

m̃4

m̃1

m̃2

∣∣∣j1,m1

j2,m2

]
, (3.41)

where summation is over

m̃i = −ji,−ji + 1, . . . ji, (3.42)

and the last line of (3.28) also restricts

|m̃1 + m̃2|, |m̃3 + m̃4| ≤ j (3.43)

as well as that m̃1 + m̃2 and m̃3 + m̃4 are integral or half-integral simultaneously with j,

so that small Wigner d-matrix is well-defined.

3.4 Example: general 4d correlators

We now consider the case of the general correlation functions in d = 4. The usefulness of

this example comes from the fact that while being not very different from the most general

case, it can still be formulated using only the familiar ingredients from representation

theory of Spin(d− 1) = Spin(3) ≃ SU(2).

First, we need to construct the three-point tensor structures. Consider for example

the right tensor structure (3.15) parametrized by the data (3.19). We can write in 4d

a = (j̃1, j̃2, j̃
′), (3.44)

where j̃i ∈ liL ⊗ liR and j̃′ ∈ lL ⊗ lR where (lL, lR) is the representation of the exchanged

operator. The constraint in (3.19) then takes form j̃′ ∈ j̃1 ⊗ j̃2. In particular, we do not

need a multiplicity label because the tensor products in Spin(3) are multiplicity-free. The

three-point functions take the form

〈∆, lL, lR; j
′,m′|Oj2,m2

2 (1)Oj1,m1

1 (−1)|0〉 = λ(j1,j2,j′)〈j′,m′|j1,m1; j2,m2〉
=

∑

a=(j̃1 ,̃j2 ,̃j′)

λ(j̃1 ,̃j2 ,̃j′)
{δj1j̃1δj2j̃2δj′j̃′〈j

′,m′|j1,m1; j2,m2〉}. (3.45)

Here, for notational simplicity, we have omitted the mi
4 part of the GT pattern for

the primary operators Oi. The second line of this equation gives the more traditional

form of the three-point functions as a sum over tensor structures labeled by a. Finally,

22One can be more pedantic by taking Spin(1) = Z2, in which case there is a constraint which simply

says that m̃1 + m̃2 + m̃3 + m̃4 (equivalently, j1 + j2 + j3 + j4) must be an integer, i.e. the correlator should

contain an even number of fermions.
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〈j′,m′|j1,m1; j2,m2〉 is the SU(2) Clebsch-Gordan coefficient. Similarly, for the left three-

point function we have

〈0|Oj4,m4

4 (−1)Oj3,m3

3 (1)|∆, lL, lR; j,m〉 = λ̄(j3,j4,j)〈0|j4,m4; j3,m3; j,m〉
=

∑

b=(j̃3 ,̃j4 ,̃j)

λ(j̃3 ,̃j4 ,̃j)
{δj3 ,̃j3δj4 ,̃j4δj,̃j〈0|j4,m4; j3,m3; j,m〉}, (3.46)

and the constraint from (3.20) is simply j̃ ∈ j̃3⊗ j̃4 since all SU(2) irreps are self-conjugate.

Here 〈0|j4,m4; j3,m3; j,m〉 is essentially the SU(2) 3j symbol. Note that this parametriza-

tion of three-point structures is essentially the same as the one mentioned in [94].

The four-point tensor structures (3.31) can also be computed as

[
j3,m3

j4,m4

∣∣∣
j̃3

j̃4
j
∣∣∣m

∣∣∣j′
j̃1

j̃2

∣∣∣j1,m1

j2,m2

]
=〈0|j4,m4;j3,m3;j,m〉〈j′,m|j1,m1;j2,m2〉δj1 ,̃j1δj2 ,̃j2δj3 ,̃j3δj4 ,̃j4 .

(3.47)

Recall that the labels mi parametrize the representations of the Spin(2) which rotates in

the plane 3-4. This plane is orthogonal to the plane 1-2 in which we place our operators,

and thus this Spin(2) it the stabilizer group of the four points and, as usual, the four-point

tensor structures have to be invariant under it. Using the constraints m4 + m3 + m = 0

and m = m1+m2 coming from the CG coefficients, we find m4+m3+m2+m1 = 0 which

is precisely the required invariance condition. Of course, this comes as no surprise since

it was guaranteed by construction. Note that this basis of four-point tensor structures is

different from the one in [94], since it is not an eigenbasis for rotations in plane 1-2.

The final formula (3.27) takes the following form in 4d,

∑

j,m

〈0|Oj4,m4

4 (−1)Oj3,m3

3 (1)|∆,lL,lR;j,m〉〈∆,lL,lR;j,m|eθM12rDOj2,m2

2 (1)Oj1,m1

1 (−1)|0〉=

=
∑

a,b

∑

m

λaλ̄b

[
j3,m3

j4,m4

∣∣∣b
∣∣∣m

∣∣∣a
∣∣∣j1,m1

j2,m2

]
P lL,lR;m

j̃,̃j′
(θ), (3.48)

where the four-point tensor structure and the three-point labels a, b are described above,

while the P -function is given below in section 3.7 by equation (3.109). The range of

summation over m is restricted to be −min(j̃, j̃′),−min(j̃, j̃′) + 1, . . . ,min(j̃, j̃′).

3.5 Example: seed conformal blocks in general dimensions

Our last example concerns an especially simple case which occurs for every d. The sim-

plification is based on the fact that the CG coefficients are trivial when one of the repre-

sentations is trivial. Choosing two of the four operators to be scalars, we can ensure that

the CG coefficients for both the right and the left three-point function simplify, with the

correlator itself still being sufficiently general. If fact, as will be clear from the construction,

the so-called seed blocks for arbitrary intermediate representations can be chosen to be of

this form.
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Let us choose the operators O1 and O3 to be scalars. Then the general result (3.27)

simplifies as

∑

Md

〈0|OM4
d

4 (−1)O3(1)|∆,Md〉〈∆,Md|rDeθM12OM2
d

2 (1)O1(−1)|0〉 =

=
∑

m̃i
d−1

∑

md−2

λ
•,m̃2

d−1

m̃2
d−1

λ̄
•,m̃4

d−1

m̃4
d−1

r∆P
md,md−2

m̃2
d−1

,m̃4
d−1

(θ)×

×
[

•
M4

d

∣∣∣ •
m̃4

d−1

m̃4
d−1

∣∣∣md−2

∣∣∣m̃2
d−1

•
m̃2

d−1

∣∣∣ •
M2

d

]
, (3.49)

with the four point-structures given by the specialization of (3.31),

[
•
M4

d

∣∣∣ •
m̃4

d−1

m̃4
d−1

∣∣∣md−2

∣∣∣m̃2
d−1

•
m̃2

d−1

∣∣∣ •
M2

d

]
=

=
∑

Md−2,M
′
d−2

〈0|M4
d−1,Md−1〉δMd−2,M

′
d−2

〈M′
d−1|M2

d−1〉δm2
d−1

,m̃2
d−1

δm4
d−1

,m̃4
d−1

=

=
∑

Md−2,M
′
d−2

(−1)M
4
d−1

√
dim m̃4

d−1

δ
M4

d−1
,Md−1

δMd−2,M
′
d−2

δM′
d−1

,M2
d−1

δm2
d−1

,m̃2
d−1

δm4
d−1

,m̃4
d−1

=

=
(−1)M

4
d−1

√
dim m̃4

d−1

δm2
d−1

,m̃2
d−1

δm4
d−1

,m̃4
d−1

δm4
d−2

,md−2
δm2

d−2
,md−2

δ
M4

d−2
,M2

d−2

, (3.50)

where we made use of (2.46). The constraints (3.28) reduce in this case to

m̃i
d−1 ∈ mi

d, i = 2, 4, (3.51)

md−2 ∈ m̃2
d−1 ∈ md, (3.52)

md−2 ∈ m̃4
d−1 ∈ md. (3.53)

Note that for any md there exists a choice of mi
d such that these constraints can

be satisfied, and thus arbitrary intermediate representations can be exchanged in this

simplified setup. In fact, for a given md, in even d, we can always choose mi
d so that there

is a unique choice available for m̃i
d−1 (and thus a unique three-point function on either

side). For this, set, for example23

m2
d,k = md,k+1, 1 ≤ k < n,

m2
d,n = 0 or

1

2
,

m4
d = m2

d, (3.54)

23This is choice is different from the one used in d = 4 in [94]. In fact, in even d it doesn’t matter

what we choose m2
d,n to be, and the choice in [94] corresponds to m2

d,n = |md,n|. Our choice (3.54) has

the advantage that is also works in odd dimensions, see below. Also, note that there is some freedom in

choosing m4
d independently of m2

d.
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where the choice in the second equality is determined by the statistics of md. In odd d,

this only reduces down to two choices for each of m̃i
d−1 if the representations are fermionic

(but still one choice for bosonic representations). This is because in the case of odd d the

outer automorphism of Spin(d − 1) (given by reflection) necessarily acts non-trivially on

fermionic representations of Spin(d − 1), but trivially on the representations of Spin(d).

Therefore, the number of three-point tensor structures involving fermionic representations

is always even, and we simply cannot have less than 2 non-trivial structures.

If we think about the state |∆,Md〉 as being a conformal primary, then the choices of

external representations described above give us a valid choice for the so-called seed blocks

for exchange of primary md — they lead to the minimum number of three-point tensor

structures on both sides of the four-point function. The equations (3.49) and (3.50) then

give the leading contribution to the OPE limit of such seed conformal blocks.

As a concrete example, consider the scalar-fermion blocks in even dimensions. Specif-

ically, we take

m2
d =

(
1

2
, . . . ,

1

2
,+

1

2

)
, (3.55)

m4
d =

(
1

2
, . . . ,

1

2
,−1

2

)
. (3.56)

This is slightly different from the prescription (3.54) unless d = 4k + 2, but it is more

convenient to have a uniform choice of representations for all even d. Under dimensional

reduction both m2
d and m4

d restrict to a single representation, and thus necessarily

m̃2
d−1 = m̃4

d−1 =

(
1

2
, . . . ,

1

2

)
. (3.57)

These representations further restrict to a direct sum of (12 , . . . ,+
1
2) and (12 , . . . ,−1

2) in

d− 2 dimensions, so that there are two four-point tensor structures

t± ≡
[ •
M4

d

∣∣∣ •
(12 , . . . ,

1
2)

(
1

2
, . . . ,

1

2

) ∣∣∣
(
1

2
, . . . ,±1

2

) ∣∣∣
(
1

2
, . . . ,

1

2

) •
(12 , . . . ,

1
2)

∣∣∣ •
M2

d

]
. (3.58)

Correspondingly, there are two types of md that can be exchanged, each with a single

three-point tensor structure on either side,

m±
d =

(
j,
1

2
, . . . ,±1

2

)
. (3.59)

From (3.27) we find that the contribution of the representation m±
d to the four-point

function (3.5) is given by

∑

±
Λ±r

∆

(
P

(j, 1
2
,...,± 1

2
),( 1

2
,...,+ 1

2
)

( 1
2
,..., 1

2
)( 1

2
,..., 1

2
)

(θ)t+ + P
(j, 1

2
,...,± 1

2
),( 1

2
,...,− 1

2
)

( 1
2
,..., 1

2
)( 1

2
,..., 1

2
)

(θ)t−

)
, (3.60)

where

Λ± = λ
•,m̃2

d−1

m̃2
d−1

,m±
d

λ̄
•,m̃4

d−1

m̃4
d−1

,m±
d

. (3.61)

Here m±
d index of OPE coefficients labels the exchanged representation. We find explicit

expressions for the above P -functions in section 3.7.3, with the result given in (3.93).
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3.6 Example: conformal block/four-point tensor structure correspondence

As another simple application of the above formalism, let us discuss the folklore theorem

which states that the number of classes of conformal blocks which contribute to a given

four-point function is equal to the number of four-point tensor structures [95, 96]. We will

consider the simplest case where the only relevant symmetry is the connected conformal

group (i.e. no space parity or permutation symmetries for identical operators). In our

formalism this theorem becomes essentially a tautology. Because of that, this section

basically reiterates what was already said, with a slightly different focus.

First, let us explain what is meant by classes of conformal blocks. Each conformal

block contributing to a four-point function is parametrized by the dimension ∆ and the

Spin(d) representation md of the exchanged primary operator, as well as by a pair of three-

point functions a and b. From the previous discussion, we can parametrize the three-point

functions as follows,

a = (m̃1
d−1, m̃

2
d−1,m

′
d−1, t

′),

b = (m̃3
d−1, m̃

4
d−1,md−1, t), (3.62)

subject to (3.28). In particular, the constraint

m̃i
d−1 ∈ mi

d (3.63)

gives us finitely many choices for m̃i
d−1 for fixed mi

d and the constraints

(m′
d−1, t

′) ∈ m̃1
d−1 ⊗ m̃2

d−1,

(md−1, t) ∈ m̃3
d−1 ⊗ m̃4

d−1, (3.64)

thus give us finitely many choices of (m′
d−1, t

′) and (md−1, t). The intermediate represen-

tation is then constrained by md−1,m
′
d−1 ∈ md. This leaves infinitely many choices of md

for a given four-point function. However, the allowed md organize into natural families.

Indeed, let us denote md = (j, m̃d−2), i.e. j is the length of the first row of the generalized

Young diagram of j and m̃d−2 encodes the remaining rows.24 The following two statements

are then equivalent,

md−1,m
′
d−1 ∈ md = (j, m̃d−2) ⇐⇒ m̃d−2 ∈ md−1,m

′
d−1 and j ≥ md−1,1,m

′
d−1,1.

(3.65)

This leaves only a finite number of choices for m̃d−2.

The infiniteness of the number of conformal blocks is therefore only due to the generic

parameters ∆ and j. If we consider any two conformal blocks differing by only these two

parameters to belong to the same class, we obtain a finite set of classes parametrized by a

pair of three-point structures (3.62) subject to (3.63)–(3.64) and a m̃d−2 subject to

m̃d−2 ∈ md−1,m
′
d−1. (3.66)

24Note that indeed m̃d−2 is always a dominant weight for Spin(d− 2).
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The statement of the theorem is that the number of such classes is equal to the number

of four-point tensor structures. Indeed, we already saw that the four-point tensor struc-

tures (3.31) are parameterized by exactly the same data.

For conformal blocks this statement is, strictly speaking, only a counting statement

and thus it would be interesting to get a more physical understanding of this. Note however

that the matroms Pmd−1,m
′
d−1

, as discussed in section 3.7.3 link together, in some sense,

the spaces of R× Spin(d) blocks and four-point tensor structures.

3.7 P -functions

In this section we discuss general properties of the GT matrix elements P , as well as

their explicit calculation in various situations. This section is rather technical and mostly

independent from the sections to follow, and thus can be skipped on the first reading.

3.7.1 Basic properties

First, recall the definition (3.25)

〈Md|eθM12 |M′
d〉 = P

md,md−2

md−1,m
′
d−1

(θ)δMd−2,M
′
d−2

. (3.67)

There are a lot of properties of P which follow immediately from this definition as a matrix

element. For example, the simplest property of P is given by substituting θ = 0,

P
md,md−2

md−1,m
′
d−1

(0) = δmd−1,m
′
d−1

. (3.68)

Furthermore, P is 2π-periodic for bosonic representations and 2π-antiperiodic for fermionic

representations. More generally, we know from the standard representation theory argu-

ments that the spectrum of iM12 consists of (half-)integers ranging from −md,1 to md,1,

and thus all P -functions have the form

P
md,md−2

md−1,m
′
d−1

(θ) =

md,1∑

m=−md,1

cmeimθ, (3.69)

where cm are coefficients which depend on the indices of P , some of which may vanish.

Reality properties can be obtained by applying Hermitian conjugation to the definition

above and noting that Mµν are anti-Hermitian, resulting in, for real θ,

(
P

md,md−2

md−1,m
′
d−1

(θ)
)∗

= P
md,md−2

m′
d−1

,md−1
(−θ). (3.70)

Note that we also have

∑

M′
d

〈0|MdM
′
d〉〈M′

d|eθM12 |M′′
d〉 =

∑

M′
d

〈0|M′
dM

′′
d〉〈M′

d|e−θM12 |Md〉 (3.71)

due to the invariance of 〈0|MdM
′
d〉. Contracting with 〈M′′′

d M
′′
d|0〉 on both sides we find

dimmd

∑

M′
d
,M′′

d

〈0|MdM
′
d〉〈M′

d|eθM12 |M′′
d〉〈M′′′

d M
′′
d|0〉 = 〈M′′′

d |e−θM12 |Md〉. (3.72)

– 30 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
1

This implies, in terms of P -functions,

(−1)md−1−m′
d−1P

md,md−2

md−1,m
′
d−1

(θ) = P
md,md−2

m′
d−1

,md−1
(−θ) =

(
P

md,md−2

md−1,m
′
d−1

(θ)
)∗

. (3.73)

The group composition property for the matrix elements

∑

M′
d

〈Md|eθ1M12 |M′
d〉〈M′

d|eθ2M12 |M′′
d〉 = 〈Md|e(θ1+θ2)M12 |M′′

d〉 (3.74)

gives the sum rule

∑

m′
d−1

P
md,md−2

md−1,m
′
d−1

(θ1)P
md,md−2

m′
d−1

,m′′
d−1

(θ2) = P
md,md−2

md−1,m
′′
d−1

(θ1 + θ2). (3.75)

In particular, substituting θ2 = −θ1, m
′′
d−1 = md−1, we find, for real θ,

∑

m′
d−1

|Pmd,md−2

md−1,m
′
d−1

(θ1)|2 = 1, (3.76)

and thus

|Pmd,md−2

md−1,m
′
d−1

(θ)| ≤ 1. (3.77)

3.7.2 Orthogonality relations

The matrix elements of group representations obey Schur orthogonality relations which

read as ∫

Spin(d)
〈Md|R|M′

d〉(〈M̃d|R|M̃′
d〉)∗dR =

1

dimmd
δ
Md,M̃d

δ
M′

d
,M̃′

d

. (3.78)

Here the δ-symbols also compare md with m̃d. The group integral in the left hand side is

understood to be over Haar measure normalized as
∫

Spin(d)
dR = 1. (3.79)

Let us set Md−1 = M̃d−1 and M′
d−1 = M̃′

d−1 in (3.78) and do Spin(d − 1) sums. Equa-

tion (3.78) then becomes

∑

Md−1,M
′
d−1

∫

Spin(d)
〈mdMd−1|R|mdM

′
d−1〉〈m̃dM

′
d−1|R−1|m̃dMd−1〉dR =

=
dimmd−1 dimm′

d−1

dimmd
δmd,m̃d

. (3.80)

We then write R as R = KAK ′, where A = eθM12 for some θ and K,K ′ ∈ Spin(d−1).25 In

the left hand side K and K ′ cancel out due to Spin(d− 1) invariance of the contractions,

25This follows from a standard choice of coordinates on Spin(d), which follows from Spin(d)/Spin(d−1) =

Sd−1: an element on the sphere can be obtained from a fixed point by KA and K′ comes from Spin(d− 1)

equivalence class.
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resulting in

∑

Md−1,M
′
d−1

∫

Spin(d)
〈mdMd−1|eθ(R)M12 |mdM

′
d−1〉〈m̃dM

′
d−1|e−θ(R)M12 |m̃dMd−1〉dR =

=
∑

md−2

dimmd−2

∫

Spin(d)
P

md,md−2

md−1,m
′
d−1

(θ(R))
(
P

m̃d,md−2

md−1,m
′
d−1

(θ(R))
)∗

dR. (3.81)

By using explicit coordinates on Spin(d) one can show that, for d > 2

∫

Spin(d)
f(θ(R))dR =

Γ(d2)√
πΓ(d−1

2 )

∫ π

0
sind−2 θf(θ)dθ. (3.82)

Putting everything together, we obtain the following orthogonality relation

∑

md−2

dimmd−2

∫ π

0
P

md,md−2

md−1,m
′
d−1

(θ)
(
P

m̃d,md−2

md−1,m
′
d−1

(θ)
)∗

sind−2 θdθ =

=

√
πΓ(d−1

2 )

Γ(d2)

dimmd−1 dimm′
d−1

dimmd
δmd,m̃d

. (3.83)

3.7.3 Computational techniques

In the remainder of this section we discuss how P -functions can be computed in practice,

first in general and then in specific examples.

The conceptually simplest computational scheme follows immediately from the defini-

tion (3.25) as a matrix element of eθM12 . Indeed, since we know the matrix elements of

M12 (see section 2.3 and appendix B), we can find the matrix corresponding to M12 in any

given representation and then exponentiate it by the standard methods. When doing this,

one can reduce the amount of calculation by taking note of the structure of the right hand

side of (3.25). Following this strategy, we simultaneously produce

P
md,md−2

md−1,m
′
d−1

(θ) (3.84)

with fixed md and md−2 for all choices of md−1 and m′
d−1.

This strategy is therefore somewhat of an overkill for our purposes, since in a four-point

function the possible choices of representations md−1 and m′
d−1 are prescribed by the spins

of external representations, while md and md−2 take on all the values allowed by each pair

of md−1 and m′
d−1.

26 Fortunately, there exist techniques which compute P
md,md−2

md−1,m
′
d−1

(θ) for

fixed md−1 and m′
d−1.

Let us fixmd−1 andm′
d−1. Furthermore, writemd = (j, m̃d−2), i.e. define j ≡ md,1 and

think of the rest of md as a (d−2)-dimensional weight m̃d−2. Note that md−1,m
′
d−1 ∈ md

requires j ≥ max(md−1,1,m
′
d−1,1). Assuming that this holds, it is easy to check that the

following two statements are equivalent,

md ∋ md−1,m
′
d−1 ⇐⇒ m̃d−2 ∈ md−1,m

′
d−1. (3.85)

26Also, the size of the matrix which one needs to exponentiate grows with the spin md,1, which makes

this approach computationally more intensive.
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In other words, m̃d−2 satisfies the same requirements as md−2. This means that we can

arrange P
(j,m̃d−2),md−2

md−1,m
′
d−1

(θ) into a square matrix Pj
md−1,m

′
d−1

(θ) with rows and columns la-

beled by m̃d−2 and md−2 respectively. Such matrices are discussed, for example, in [82]

(and references therein), where they are shown to satisfy certain second-order matrix dif-

ferential equations, and methods for solving these equations were developed. Following the

terminology of [82], we will refer to these matrices as “matroms”. Note that the size of the

matrom is independent of j and is only determined by md−1 and m′
d−1. Furthermore, all

(if any) components of a given matrom appear in a given four-point function.

Potentially, the results described in [82] may allow one to find analytic in j expressions

for the matroms Pj
md−1,m

′
d−1

in terms of known special functions. Unfortunately, we were

not able to devise a complete computational algorithm based on these results.27 However,

since in numerical applications one requires Pj
md−1,m

′
d−1

for all j up to a certain cutoff, it

is convenient to use a recursion relation in j as described below. Expressions analytic in j

can still be obtained in a number of cases, as we discuss in the next subsections.

The basic idea is to consider the product

〈Md|eθM12 |M′
d〉〈 , •, . . . |eθM12 | , •, . . .〉 = 〈Md|eθM12 |M′

d〉 cos θ. (3.86)

The left hand side is a matrix element in md ⊗ and thus can be decomposed as a sum

of matrix elements in various irreducible representations,

〈Md|eθM12 |M′
d〉〈 , •, . . . |eθM12 | , •, . . .〉 =

=
∑

m̃d∈md⊗
〈m̃dMd−1|eθM12 |m̃dM

′
d−1〉

(
md

md−1 •

∣∣∣∣∣
m̃d

md−1

)(
md

m′
d−1 •

∣∣∣∣∣
m̃d

m′
d−1

)∗

. (3.87)

One can easily see that in terms of matroms this leads to the following recursion relation,

A+
j P

j+1 +A−
j P

j−1 +BjP
j = cos θPj , (3.88)

where A±
j , B

j are some matrices,28 and we have suppressed the dependence of everything

on md−1,m
′
d−1 for simplicity of notation. Starting from the smallest possible j (for which

we can computePj by, say, exponentiation), one can use this relation to findPj for higher j.

As an example, consider the matroms in d = 2n withmd−1 = m′
d−1 = (12 , . . . ,

1
2), which

will be useful in the example of section 3.5. There are two representations in the dimensional

reduction of md−1 = m′
d−1, md−2 = (12 , . . . ,±1

2), i.e. the two fermionic representations in

d− 2 dimensions. We therefore have a 2× 2 matrom

Pj =



P

(j, 1
2
,...,+ 1

2
),( 1

2
,...,+ 1

2
)

( 1
2
,..., 1

2
),( 1

2
,..., 1

2
)

(θ) P
(j, 1

2
,...,+ 1

2
),( 1

2
,...,− 1

2
)

( 1
2
,..., 1

2
),( 1

2
,..., 1

2
)

(θ)

P
(j, 1

2
,...,− 1

2
),( 1

2
,...,+ 1

2
)

( 1
2
,..., 1

2
),( 1

2
,..., 1

2
)

(θ) P
(j, 1

2
,...,− 1

2
),( 1

2
,...,− 1

2
)

( 1
2
,..., 1

2
),( 1

2
,..., 1

2
)

(θ)


 . (3.89)

27It is an interesting problem to complete the results described in [82] to find a general algorithm for

constructing analytic expressions for generic matroms.
28The matrices A are, importantly, diagonal, which makes it easy to invert A+

j .
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For example, one can easily check that for any d

P
1

2 =

(
e−iθ/2 e+iθ/2

e+iθ/2 e−iθ/2

)
. (3.90)

By using the explicit formulas for the isoscalar factors from appendix B.2, one can show

that the recursion relation (3.88) reduces in this case to

j + 2n− 3
2

j + n− 1
2

Pj+1+
j − 1

2

j + n− 3
2

Pj−1+
n− 1

(j + n− 1
2)(j + n− 3

2)

(
0 1

1 0

)
Pj = 2 cos θPj , (3.91)

where n = d/2. For instance, applying this relation twice, we find

P2+ 1

2 =
n− 1

2n− 1

(
1
2
n+1
n−1e

− 5

2
iθ + e−

1

2
iθ + 1

2e
+ 3

2
iθ 1

2
n+1
n−1e

+ 5

2
iθ + e+

1

2
iθ + 1

2e
− 3

2
iθ

1
2
n+1
n−1e

+ 5

2
iθ + e+

1

2
iθ + 1

2e
− 3

2
iθ 1

2
n+1
n−1e

− 5

2
iθ + e−

1

2
iθ + 1

2e
+ 3

2
iθ

)
, (3.92)

valid for any d = 2n. The general solution can be expressed in terms of Jacobi polynomials

as29

Pj =
(j − 1

2)!

(n− 1
2)j− 1

2

[
cos

θ

2
P

(n− 3

2
,n− 1

2
)

j− 1

2

(cos θ)

(
1 1

1 1

)
+ sin

θ

2
P

(n− 1

2
,n− 3

2
)

j− 1

2

(cos θ)

(
−i i

i −i

)]
.

(3.93)

3.7.4 Contribution of R × Spin(d) multiplets in terms of matroms

Having introduced the matroms P in the previous subsection, it makes sense to reanal-

yse (3.29) in terms of them. For fixed a and b as in (3.19) and (3.20) denote by

Tba (3.94)

the column vector built out of four-point tensor structures

[
M3

d

M4
d

∣∣∣b
∣∣∣md−2

∣∣∣a
∣∣∣M

1
d

M2
d

]
(3.95)

with md−2 running through all allowed values. Also, denote Pj
ba ≡ Pj

md−1,m
′
d−1

. Finally, let

Λba
j (3.96)

be the row vector built out of

λ̄b
∆,md

λa
∆,md

(3.97)

corresponding to all md = (j, m̃d−2) which can contribute to the given pair a, b according

to (3.28), summed over degenerate multiplets. If we are considering the contribution of a

29To find this solution, we first diagonalized the recursion relation and then matched it to the recur-

sion relation for Jacobi polynomials. The Jacobi polynomials entering this expression can in principle be

expressed in terms of linear combinations of Gegenbauer polynomials.
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single R × Spin(d) multiplet, then this vector contains a single non-zero element, but at

this point it is convenient to also allow several contributions. We then have

∑

md,md,1=j

∑

a,b

∑

md−2

λ̄b
∆,md

λa
∆,md

r∆P
md,md−2

md−1,m
′
d−1

(θ)×
[
M3

d

M4
d

∣∣∣b
∣∣∣md−2

∣∣∣a
∣∣∣M

1
d

M2
d

]
=

= r∆
∑

a,b

Λba
j ·Pj

ba(θ) ·Tba. (3.98)

As we discuss in section 3.6, in this equation Λba
j correspond, roughly speaking, to

the space of conformal blocks, while Tba correspond to the space of four-point tensor

structures. The matroms link these two spaces together, giving a realization of the folklore

theorem [95, 96] (see section 3.6).

In the rest of this section we consider some more explicit examples. First, we recover the

Gegenbauer polynomials relevant to the scalar correlation functions and then we consider

the low-dimensional cases d = 3 and d = 4.

3.7.5 Scalar matrom

Let us consider the simplest P -function P j,•
•,•(θ), which is the only component of the simplest

scalar matrom Pj
•,•(θ). Analogously to the example considered above, we could write down

the recursion relation (3.88) for this matrom and recognize that, together with the initial

condition P •,•
•,• (θ) ≡ 1, it is solved by

P j,•
•,•(θ) =

C
(ν)
j (cos θ)

C
(ν)
j (1)

, (3.99)

where ν = (d− 2)/2. However, it is instructive to take another approach to arrive at this

result. Consider the tensor given by

eµ1

1 · · · eµj

1 − traces. (3.100)

Obviously, this tensor is an element of j of Spin(d). On the other hand, it transforms under

the trivial representation of Spin(d− 1). Therefore, we have

eµ1

1 · · · eµj

1 − traces ∝ |j, •, . . .〉. (3.101)

Acting with eθM12 , we find that

eθM12 |j, •, . . .〉 ∝ eµ1

1 (θ) · · · eµj

1 (θ)− traces, (3.102)

where e1(θ) = cos θe1 + sin θe2. This implies

P j,•
•,•(θ) = 〈j, •, . . . |eθM12 |j, •, . . .〉 ∝ (e1,µ1

· · · e1,µj
− traces)(eµ1

1 (θ) · · · eµj

1 (θ)− traces).

(3.103)

The right hand side of this equation is known to be proportional to the Gegenbauer poly-

nomial C
(ν)
j (e1 · e1(θ)) = C

(ν)
j (cos θ). Combining this with the normalization condition

P j,•
•,•(0) = 1, we recover (3.99).

This strategy generalizes to other tensor representations and also allows one to relate

P -functions to the irreducible projectors studied recently in [76]. We discuss this further

in appendix D.
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3.7.6 3 dimensions

We now consider the case d = 3. As discussed in section 3.1, the 3-dimensional GT matrix

elements P j
m,m′(θ) are given by (3.26),30

P j
m,m′(θ) = 〈j,m|eθM12 |j,m′〉 = 〈j,m|e−iθJ

2̂ |j,m′〉 = djm,m′(−θ). (3.104)

Note that in 3d all matroms are 1× 1 and coincide with the above functions. There is not

much to add here, except for the explicit formula for the small Wigner d-matrix djm,m′(θ),

djm,m′(θ)=(−1)m−m′

√
(j+m′)!(j−m′)!
(j+m)!(j−m)!

(
sin

β

2

)m′−m(
cos

β

2

)m′+m

P
(m′−m,m′+m)
j−m′ (cosθ),

(3.105)

where in this expression P
(a,b)
n are the Jacobi polynomials.

3.7.7 4 dimensions

In 4d we have the following definition of GT matrix elements P lL,lR;m
j,j′ (θ),

P lL,lR;m
j,j′ (θ) = 〈lL, lR; j,m|eθM12 |lL, lR; j′,m〉. (3.106)

We can compute them by going to the SU(2)× SU(2) basis,

P lL,lR;m
j,j′ (θ) = 〈lL, lR; j,m|eθM12 |lL, lR; j′,m〉

=
∑

mL+mR=m

∑

m′
L
+m′

R
=m

〈lL,mL; lR,mR|eθM12 |lL,m′
L; lR,m

′
R〉×

× 〈j,m|lL,mL; lR,mR〉〈lL,m′
L; lR,m

′
R|j′,m〉. (3.107)

Using (2.85), we find

〈lL,mL; lR,mR|eθM12 |lL,m′
L; lR,m

′
R〉 = 〈lL,mL; lR,mR|e−iθJL

3̂
+iθJR

3̂ |lL,m′
L; lR,m

′
R〉

= e−i(mL−mR)δmLm
′
L
δmRm′

R
, (3.108)

and thus

P lL,lR;m
j,j′ (θ) =

lL+lR∑

k=−lL−lR

〈
j,m

∣∣∣lL,
m+ k

2
; lR,

m− k

2

〉〈
lL,

m+ k

2
; lR,

m− k

2

∣∣∣j′,m
〉
e−ikθ.

(3.109)

Note that in this formula the summation is over (half-)integral values of k for (half-)integral

values of ℓ1 = lL+lR, and whenever the Clebsch-Gordan coefficient is undefined, we assume

that it is equal to zero. Thus the range of summation is effectively restricted to

{−2lL −m, . . . , 2lL −m} ∩ {−2lR +m, . . . , 2lR +m}. (3.110)

For example, if m = lL + lR, then only k = lL − lR enters the sum. (Also necessarily

j = j′ = lL + lR.)

30We use the convention consistent with Mathematica’s WignerD[{j,m,m′},θ].
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4 Casimir equation

In this section we derive Casimir recursion relation for the series expansion of spinning

conformal blocks. We first rederive the results of [71] for scalar conformal blocks in a more

streamlined way and then extend these results to arbitrary spinning conformal blocks. As

an example, we explicitly work out the recursion relations for general 3d conformal blocks

and for general seed blocks in arbitrary d.

In this section we will work in coordinates different from those in section 3. In partic-

ular, we set

w1 = 0, w2 = z, w3 = 1, w4 = +∞. (4.1)

We use the following definition of O4(+∞),

O4(+∞) ≡ lim
L→+∞

L2∆4O4(Le1). (4.2)

Note that we do not act in any way on the spin indices of O4 when taking this limit.31

The results of section 3 translate to this case without essential modification (except for

changing the insertion point of the operators in all formulas).

We use (4.1) because the Casimir recursion relations take the simplest form in these

coordinates, analogously to the case of scalar blocks [71]. The recursion relations in ρ-

coordinates, unfortunately, take a much more complicated form [70, 75].

4.1 Review of scalar conformal blocks

Consider the scalar conformal block for exchange of a primary operator O

GO(s, φ) ≡ 〈0|φ4(∞)φ3(1)|O|sDeθM12φ2(1)φ1(0)|0〉, (4.3)

where z = seiθ, we have used the convention (3.5) for writing the four-point functions,32

and |O| is the projection operator on the conformal family of O,

|O| =
∑

p≥0,md,Md,q

|∆p,Md, q〉〈∆p,Md, q|, (4.4)

where the sum is over an orthonormal basis of descendants of O. Here ∆p = ∆O +

p is the scaling dimension of a level-p descendant, md is the Spin(d) representation of

the descendant, and q labels the possible degeneracies which arise when there are several

descendants in representation md at level p.

The results of section 3 and in particular 3.2 tell us what is the most general contri-

bution of a single term of (4.4) to (4.3). We therefore have

GO(s, φ) =
∞∑

p=0

∞∑

j=0

∑

q

λ•,•
•,p,j,qλ

•,•
•,p,j,qs

∆pP j,•
•,•(θ) =

∞∑

p=0

∞∑

j=0

Λp,js
∆O+p

C
(ν)
j (cos θ)

C
(ν)
j (1)

. (4.5)

31When O4 is tensor, one often acts on its indices with reflection along e1 when taking this limit. This

is done because O4(∞) defined our way effectively transforms in the representation reflected to m4
d. When

m4
d is tensor, its reflection is equivalent to m4

d and thus one may find it convenient to act on O4 with the

map which furnishes this equivalence. More generally, the reflected representation can be different from m4
d

and thus there is no benefit in acting on spin indices of O4 within our general treatment.
32In the scalar case (3.5) differs from (3.4) only by the factor s∆1+∆2 .
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We have defined

Λp,j ≡
∑

q

λ•,•
•,p,j,qλ

•,•
•,p,j,q. (4.6)

The range of j is in fact restricted by the spectrum of descendants at each level p so that

|j − jO| ≤ p, but we will ignore this by assuming that Λp,j = 0 for p, j outside this range.

While this expansion respects R×Spin(d) symmetry, it doesn’t tell us what the coefficients

Λp,j are.

These coefficients are constrained by consistency of expansion (4.4) with the full con-

formal symmetry. It was noticed in [68] that it suffices to ensure consistency with the

action of the quadratic conformal Casimir operator. Usually this is condition is formulated

in a form of differential equation [68, 69]. When applied to (4.5), this equation immediately

yields a one-step recursion relation for the coefficients Λp,j [71],

(Cp,j − C0,jO)Λp,j = Γ+
p−1,j−1Λp−1,j−1 + Γ−

p−1,j+1Λp−1,j+1, (4.7)

where coefficients Γ±
p,j are given by33

Γ+
p,j =

(∆p + j −∆12)(∆p + j +∆34)(j + d− 2)

2j + d− 2
,

Γ−
p,j =

(∆p − j − d+ 2−∆12)(∆p − j − d+ 2 +∆34)j

2j + d− 2
, (4.8)

with ∆ij = ∆i −∆j , while the Casimir eigenvalues are given by

Cp,j = ∆p(∆p − d) + j(j + d− 2). (4.9)

This result is remarkably simple, much simpler than the intermediate steps in the

derivation of [71] would suggest. In fact, it is not a priori obvious from that derivation

that the recursion relation should take such a simple form. For example, when repeated in

ρ-coordinates, essentially the same derivation leads to a much more complicated recursion

relation. We are therefore motivated to look for a more conceptual derivation of (4.7),

which manifests this simple structure.

Let us start from the definition of the conformal Casimir operator,

C = D(D − d) + CSpin(d) − P ·K, (4.10)

where CSpin(d) is the Spin(d) quadratic Casimir defined as

CSpin(d) = −1

2
MµνM

µν . (4.11)

The key property of C is that it commutes with all conformal generators and thus acts on all

the descendants of O by the same eigenvalue as on O. That eigenvalue can be computed by

C|O〉 =
(
D(D − d) + CSpin(d) − P ·K

)
|O〉 = C(O)|O〉, (4.12)

C(O) = ∆O(∆O − d) + CSpin(d)(m
O
d ), (4.13)

33In [71] these coefficients are given with ∆12 = ∆34 = 0, but it is trivial to generalize their argument.
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where we used Kµ|O〉 = 0, and CSpin(d)(md) is the Spin(d) quadratic Casimir eigenvalue

corresponding to the Spin(d) representation md. It is given by

CSpin(d)(md) =

⌊d/2⌋∑

k=1

md,k(md,k + d− 2k). (4.14)

For future convenience, let us define for any (not necessarily primary) R × Spin(d)

multiplet the number

C(∆,md) ≡ ∆(∆− d) + CSpin(d)(md). (4.15)

It is the eigenvalue of the operator

C̃ ≡ C + P ·K = D(D − d) + CSpin(d). (4.16)

Note that P · K = K† · K � 0 for ∆ above unitarity bound and thus we always have in

such cases

C̃ � C. (4.17)

Since C takes the same eigenvalue on all states in a conformal multiplet, we have

|O|C = |O|C(O). (4.18)

This implies the following operator version of the Casimir equation,

〈0|φ4φ3|O|CsDeθM12φ2φ1|0〉 = C(O)〈0|φ4φ3|O|sDeθM12φ2φ1|0〉. (4.19)

For notational simplicity, we have omitted the positions of the operators, which are the

same as in (4.3). The standard Casimir differential equation can be obtained by acting with

C on the right in the left hand side of this equation and expressing this action in terms of

derivatives in θ and s. We will take another approach, rewriting the left hand side instead as

〈0|φ4φ3|O|CsDeθM12φ2φ1|0〉 = 〈0|φ4φ3|O|(C̃ − PµKµ)s
DeθM12φ2φ1|0〉

= 〈0|φ4φ3|O|C̃sDeθM12φ2φ1|0〉 − 〈0|φ4φ3|O|PµKµs
DeθM12φ2φ1|0〉

= 〈0|φ4φ3|O|C̃sDeθM12φ2φ1|0〉 − 〈0|φ4φ3P
µ|O|Kµs

DeθM12φ2φ1|0〉, (4.20)

where in the last line we have used the conformal invariance of the projector |O|, i.e. that
it commutes with all conformal generators. Rearranging, we find

〈0|φ4φ3|O|(C̃ − C)sDeθM12φ2φ1|0〉 = 〈0|φ4φ3P
µ|O|Kµs

DeθM12φ2φ1|0〉. (4.21)

We will now derive the recursion relation (4.7) by evaluating both sides of this equation

with the help of (4.4).
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4.1.1 Left hand side

To warm up, let us consider the left hand side of this equation first. Using (4.4), we find

〈0|φ4φ3|O|(C̃−C)sDeθM12φ2φ1|0〉
=

∑

p,md,Md,q

〈0|φ4φ3|∆p,Md,q〉〈∆p,Md,q|(C̃−C)sDeθM12φ2φ1|0〉

=
∑

p,md,Md,q

(C(∆p,md)−C(∆O,jO))〈0|φ4φ3|∆p,Md,q〉〈∆p,Md,q|sDeθM12φ2φ1|0〉

=
∞∑

p=0

∞∑

j=0

(Cp,j−C0,jO)Λp,js
∆O+p

C
(ν)
j (cosφ)

C
(ν)
j (1)

, (4.22)

where the last line follows similarly to (4.5), and we also made use of the fact that we

arranged the descendants into R× Spin(d) multiplets. We can already see that we are on

the right track — the coefficients in this expansion exactly reproduce the left hand side of

the recursion relation (4.7).

4.1.2 Right hand side

Let us now analyze the less trivial right hand side of (4.21). We first look at the contribution

of a single term of (4.4). For simplicity of notation, we will omit the degeneracy index q

for now and restore it later. We thus consider

∑

Md

〈0|φ4φ3P
µ|∆p,Md〉〈∆p,Md|Kµs

DeθM12φ2φ1|0〉. (4.23)

Left three-point structure. We will first evaluate the left three-point function by com-

muting P on the left. We have (see appendix A for our conventions on conformal algebra)

〈0|φ4(∞)φ3(1)Pµ|∆p,Md〉 = −〈0|φ4(∞)∂µφ3(1)|∆p,Md〉. (4.24)

The crucial point is that the knowledge of 〈0|φ4(∞)φ3(1)|∆p,Md〉 and R× Spin(d) invari-

ance allow us to evaluate

〈0|φ4(∞)φ3(x)|∆p,Md〉 (4.25)

for any x ∈ R
d. In particular, we can compute the right hand side of (4.24). For example,

note that

〈0|φ4(∞)∂1φ3(1)|∆p,Md〉 = −〈0|φ4(∞)φ3(1)(D +∆3 −∆4)|∆p,Md〉
= −(∆p +∆3 −∆4)〈0|φ4(∞)φ3(1)|∆p,Md〉. (4.26)

Here the first equality follows from action of D on the left while the second equality follows

from action on the right. The minus sign in front of ∆4 is due to the fact that we placed

O4 at infinity. Analogously, for µ 6= 1,

〈0|φ4(∞)∂µφ3(1)|∆p,Md〉 = −〈0|φ4(∞)φ3(1)M1µ|∆p,Md〉. (4.27)
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Here we can act with M1µ on the right by using the representation md for M1µ. As

we discussed in section 2.3, such actions can be described by means of a reduced matrix

element,

〈M′
d|M1Ud−1 |Md〉 =

(
md

m′
d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)
〈M′

d−1|Md−1Ud−1〉. (4.28)

We conclude

〈0|φ4(∞)φ3(1)P
Ud |∆p,Md〉 =

∑

M′
d

(
md

m′
d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)
〈M′

d−1|Md−1Ud−1〉×

× 〈0|φ4(∞)φ3(1)|∆p,M
′
d〉, (4.29)

where ud = ud−1 = .

Note that the states PUd |∆p,Md〉 are just some other descendants ofO. It is convenient

to decompose them into the irreducible representations of Spin(d) by defining the states

|P,∆p,md; M̃d〉 ≡
∑

Md,Ud

〈MdUd|M̃d〉 PUd |∆p,Md〉, (4.30)

where m̃d ∈ ⊗md and 〈MdUd|M̃d〉 are the vector Clebsch-Gordan coefficients. We can

decompose this sum according to Spin(d− 1) symmetry of the three-point functions as

|P,∆p,md; M̃d〉 =
∑

Md

P ,•,...|∆p,Md〉〈Md; , •, . . . |M̃d〉

+
∑

Md,Ud
ud−1=

PUd |∆p,Md〉〈MdUd|M̃d〉,

= P ,•,...|∆p,md M̃d−1〉
(

md

m̃d−1 •

∣∣∣∣∣
m̃d

m̃d−1

)

+
∑

Md,Ud
ud−1=

PUd |∆p,Md〉
(

md

md−1

∣∣∣∣∣
m̃d

m̃d−1

)
〈Md−1Ud−1|M̃d−1〉. (4.31)

Here we made use of (2.92) and of the triviality of CG coefficients involving the trivial

representation. Using equations (2.53), (4.26) and (4.29) we then find

〈0|φ4(∞)φ3(1)|P,∆p,md; M̃d〉 =
[
m̃d md

m̃d−1

]34

p

〈0|φ4(∞)φ3(1)|∆p,md M̃d−1〉, (4.32)

where

[
m̃d md

m̃d−1

]34

p

= (−1)d(∆p +∆3 −∆4)

(
md

m̃d−1 •

∣∣∣∣∣
m̃d

m̃d−1

)

+
∑

md−1

(
md

m̃d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)(
md

md−1

∣∣∣∣∣
m̃d

m̃d−1

)
. (4.33)
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As we discuss in appendix B.4, the two terms in the last expression are in fact proportional

to each other,

∑

md−1

(
md

m̃d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)(
md

md−1

∣∣∣∣∣
m̃d

m̃d−1

)
= (−1)d−1(md |m̃d)

(
md

m̃d−1 •

∣∣∣∣∣
m̃d

m̃d−1

)
,

(4.34)

where (md |m̃d) is given by (B.27)–(B.29). This leads to

[
m̃d md

m̃d−1

]34

p

= (−1)d
(
∆p +∆34 − (md |m̃d)

)
(

md

m̃d−1 •

∣∣∣∣∣
m̃d

m̃d−1

)
. (4.35)

Note that we have not yet actually specialized to the case of scalar operators, except in

deriving (4.29).34 Let us do this now.

We start by observing that we necessarily have m̃d−1 = • in order for both sides

of (4.32) to be non-trivial — both sides are proportional to Spin(d − 1) CG coefficient

〈•, . . . ; •, . . . |M̃d−1〉 which defines the three-point structures, see equation (3.17). The

selection rule m̃d ∈ md⊗ , combined with the requirement that in the scalar case md = j

and m̃d are both traceless-symmetric, leaves only two options, m̃d = j(±1), in notation of

appendix B. We therefore only need to compute

[
j(±1) j

•

]34

p

. (4.36)

According to (4.35) we have

[
j(±1) j

•

]34

p

= (−1)d
(
∆p +∆34 − (j |j(±1)

)
(
j

• •

∣∣∣∣∣
j(±1)

•

)
(4.37)

By using the explicit expressions from appendix B we find

[
j(−1) j

•

]34

p

= (−1)d(∆p +∆34 − j − d+ 2)

√
j

2j + d− 2
(4.38)

[
j(+1) j

•

]34

p

= (−1)d(∆p +∆34 + j)

√
j + d− 2

2j + d− 2
(4.39)

One can already recognize here parts of the recursion coefficients Γ±
p in (4.8). In order to

obtain the complete expressions, we need to consider the right three-point structure.

Right three-point structure. We now consider the right part of (4.23),

〈∆p,Md|Kµs
DeθM12φ2φ1|0〉 = s∆p+1〈∆p,Md|Kµe

θM12φ2φ1|0〉. (4.40)

Let us denote

〈∆p,Md;K,Ud| ≡ 〈∆p,Md|KUd
, (4.41)

34For more general operators there will be extra contributions (which we discuss in section 4.2) to (4.29)
and thus also to (4.32). The formula (4.35) for the universal contribution (4.32) will remain the same.

– 42 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
1

and write

〈∆p,Md|KUd
eθM12φ2φ1|0〉 =

∑

M′
d
,U′

d

〈MdUd|eθM12 |M′
dU

′
d〉×

× 〈∆p,M
′
d|KU′

d
φ2φ1|0〉. (4.42)

We first compute 〈∆p,M
′
d|KU′

d
φ2φ1|0〉 in the same way as we computed the left three-point

function. We can make a shortcut by noting

〈∆p,M
′
d|KU′

d
φ2φ1|0〉 =

(
〈0|φ2φ1P

U′
d |∆,M′

d〉
)∗

(4.43)

and reusing the results for the left three-point function. This gives us

〈K,∆p,md; M̃
′
d|φ2φ1|0〉 =



[
m̃′

d md

m̃′
d−1

]21

p




∗

〈∆p,md M̃
′
d−1|φ2φ1|0〉, (4.44)

where [
m̃′

d md

m̃′
d−1

]21

p

(4.45)

is given by an analogue (4.35) with ∆3,∆4 replaced by ∆2,∆1, and we defined

〈K,∆p,md; M̃
′
d| =

∑

M′
d
U′
d

〈M̃′
d|M′

dU
′
d〉〈∆p,M

′
d|KU′

d
. (4.46)

Finally, note that we can rewrite the Spin(d) matrix element in (4.42) as

〈MdUd|eθM12 |M′
dU

′
d〉 =

∑

m̃d=m̃′
d

∑

M̃d,M̃
′
d

〈MdUd|M̃d〉〈M̃d|eθM12 |M̃′
d〉〈M̃′

d|M′
dU

′
d〉, (4.47)

where the summation is over m̃d ∈ md ⊗ . Note that the CG coefficients here are the

same as in (4.30) and (4.46), explaining the usefulness of these definitions.

Combining the results. By combining equations (4.30), (4.32), (4.42), (4.44), (4.46)

and (4.47) we can rewrite (4.23) as

∑

Md

〈0|φ4φ3Pµ|∆p,Md〉〈∆p,Md|KµsDeθM12φ2φ1|0〉 =

= s∆p+1
∑

m̃d∈ ⊗md

∑

M̃d,M̃
′
d

[
m̃d md

m̃d−1

]34

p



[
m̃d md

m̃′
d−1

]21

p




∗

×

× 〈0|φ4(∞)φ3(1)|∆p,md M̃d−1〉×
× 〈M̃d|eθM12 |M̃′

d〉×
× 〈∆p,md M̃

′
d|φ2(1)φ1(0)|0〉. (4.48)

Here m̃′
d = m̃d. The right hand side of (4.48) now has the same form as the generic

contribution (3.8), except that the state (∆p,md) now contributes as a state with dimension
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∆p+1 and spin m̃d ∈ ⊗md with a relative coefficient determined by the representation-

theoretic data through (4.35). In the scalar correlator case these contributions have the

form determined by (3.36). It is trivial to account for possible degeneracies and arrive at

the following result

∑

p,md,Md,q

〈0|φ4φ3Pµ|∆p,Md, q〉〈∆p,Md, q|KµsDeθM12φ2φ1|0〉 =

=
∞∑

p=0

∞∑

j=0

(Γ+
p−1,j−1Λp−1,j−1 + Γ−

p−1,j+1Λp−1,j+1)s
∆O+p

C
(ν)
j (cos θ)

C
(ν)
j (1)

, (4.49)

where

Γ±
p,j =

[
j(±1) j

•

]34

p

([
j(±1) j

•

]21

p

)∗

. (4.50)

Given the definition of (4.45) together with the formulas (4.38) and (4.39) we immediately

recover the result (4.8) of [71]. By comparing (4.49) with (4.22) we also recover the required

recursion relation (4.7).

This derivation may seem much more elaborate than that of [71]. However, it has

several advantages. The first is that the recursion relation is determined not by some

particular identities satisfied by Gegenbauer polynomials,35 but instead by a simple set of

representation-theoretic data — by the reduced matrix elements and isoscalar factors. The

second is that it is completely general and only a few modifications are required to find the

recursion relations for the most general conformal blocks, as we now discuss.

4.2 Spinning conformal blocks

4.2.1 Difference from the scalar case

Let us now consider the general case of spinning conformal blocks. Looking at the derivation

of scalar recursion relation, one can see that the first essential deviation in the spinning

case happens in (4.27), which needs to be replaced by (recall that µ 6= 1 in this context)

〈0|OM4
d

4 (∞)∂µOM3
d

3 (1)|∆p,Md〉 = −〈0|OM4
d

4 (∞)OM3
d

3 (1)M1µ|∆p,Md〉 (4.51)

−
∑

M′3
d

〈M′3
d |M1µ|M3

d〉〈0|O
M4

d

4 (∞)OM′3
d

3 (1)|∆p,Md〉

+
∑

M′4
d

〈M′4
d |M1µ|M4

d〉〈0|O
M′4

d

4 (∞)OM3
d

3 (1)|∆p,Md〉.

Analogously to (4.26), the relative sign for action on O4 is required because we have

placed that operator at infinity. This forces this operator to transform in the reflected

representation, which is essentially defined by replacing the generators for M1µ with −M1µ,

35Of course, given the representation-theoretic interpretation of Gegenbauer polynomials from (3.99),
the identities satisfied by Gegenbauer polynomials can also be understood from representation-theoretic

point of view.
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hence the relative sign.36 Note that this does not affect the Spin(d − 1) representations,

and so the results of section 3 regarding three-point functions still hold.

To proceed, we need to put these new contributions into a form similar to (4.32). Let

us focus on the contribution from O3 which is proportional to

∑

M′3
d

〈M′3
d |M1Ud−1 |M3

d〉〈0|O
M4

d

4 (∞)OM′3
d

3 (1)|∆p,Md〉. (4.52)

As is already familiar, we start by writing out the matrix element as

〈M′3
d |M1Ud−1 |M3

d〉 =
(

m3
d

m′3
d−1

∣∣∣∣∣M
∣∣∣∣∣
m3

d

m3
d−1

)
〈M′3

d−1|M3
d−1Ud−1〉. (4.53)

We then recall from (4.31) that in the end we would like to contract (4.52) with

〈Md−1Ud−1|M̃d−1〉. We are therefore led to consider the combination (we have temporarily

omitted the summation over m′3
d−1 and md−1)

∑

Ud−1M
′3
d−1

Md−1

〈M′3
d−1|M3

d−1Ud−1〉〈Md−1Ud−1|M̃d−1〉〈0|O
M4

d

4 (∞)OM′3
d

3 (1)|∆p,Md〉 = (4.54)

At this point, we should recall the structure of the three-point functions (3.17), leading to

=
∑

Ud−1M
′3
d−1

Md−1,t

〈M′3
d−1|M3

d−1Ud−1〉〈Md−1Ud−1|M̃d−1〉〈0|M4
d−1M

′3
d−1Md−1, t〉λ̄

m′3
d−1

,m4
d−1

md−1,t
.

(4.55)

By separating the sum over t, we find the objects

∑

Ud−1M
′3
d−1

Md−1

〈M′3
d−1|M3

d−1Ud−1〉〈Md−1Ud−1|M̃d−1〉〈0|M4
d−1M

′3
d−1Md−1, t〉 = (4.56)

These objects have the same invariance properties as 3j symbols, and thus should be

expressible in terms of them,

=
∑

t′

{
m4

d−1 m3
d−1 m̃d−1

md−1 m′3
d−1

}(3)

tt′

〈0|M4
d−1M

3
d−1M̃d−1, t

′〉. (4.57)

The constants {
m4

d−1 m3
d−1 m̃d−1

md−1 m′3
d−1

}(3)

tt′

(4.58)

are known as 6j-symbols or Racah coefficients of Spin(d− 1).37,38 We added a label (3) to

the notation for the 6j symbol to distinguish its definition from the definitions (4.69)–(4.72)

36This is most easily understood by considering the radial quantization as the limit of NS quantization [97]

with poles at the positions of O1 and O4 as O4 is taken to +∞.
37Up to inessential normalization conventions. We will not make a distinction between the two terms.
38Interestingly, a different kind of 6j symbols recently played an important role in another approach to

conformal blocks [80].
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for the operators 1, 2, 4 which will appear later.39 Note that we can represent this equality

schematically as

m4
d−1

m3
d−1

md−1

m′3
d−1

m̃d−1

=
{
. . .

} m4
d−1

m3
d−1

m̃d−1

. (4.59)

Restoring the OPE coefficients and the summations over t,md−1 and m′3
d−1, and adding

the isoscalar factor from (4.31) we find

∑

M′3
d
,Md,Ud−1

〈M′3
d |M1Ud−1 |M3

d〉〈0|O
M4

d

4 (∞)OM′3
d

3 (1)|∆p,Md〉〈Md−1Ud−1|M̃d−1〉 (4.60)

×
(

md

md−1

∣∣∣∣∣
m̃d

m̃d−1

)
= 〈0|OM4

d

4 (∞)OM3
d

3 (1)|∆p,md M̃d−1〉′,

where prime on the three-point function indicates that the OPE coefficients λ̄ have been

replaced with λ̄′ defined as

(λ̄′)
m3

d−1
,m4

d−1

m̃d−1,t′
(4.61)

=
∑

md−1,m
′3
d−1

,t

(
m3

d

m′3
d−1

∣∣∣∣∣M
∣∣∣∣∣
m3

d

m3
d−1

)(
md

md−1

∣∣∣∣∣
m̃d

m̃d−1

){
m4

d−1 m3
d−1 m̃d−1

md−1 m′3
d−1

}

tt′

λ̄
m′3

d−1
,m4

d−1

md−1,t
.

We can easily perform a similar analysis for the contribution of O4 as well as for the

operators O1 and O2 in the right three-point function. Note that the right hand side

in (4.60) has essentially the same form as the universal contribution (4.32), and thus we

can continue to derive the recursion relation in an exact analogy with the scalar case.

4.2.2 The general form of the recursion relation

It is now straightforward to finish the derivation of the Casimir recursion relation. The

operator version of the Casimir equation is given by the spinning analogue of (4.21),

〈0|OM4
d

4 OM3
d

3 |O|(C̃ − C)sDeθM12OM2
d

2 OM1
d

1 |0〉 = 〈0|OM4
d

4 OM3
d

3 Pµ|O|Kµs
DeθM12OM2

d

2 OM1
d

1 |0〉.
(4.62)

39Of course, there is only one type of 6j symbols for a given group, and this label is superficial. The 6j sym-

bols with different labels can be obtained from the 6j symbols of the form (4.58) by certain permutations

of columns and introduction of normalization factors. Such relations are, however, convention-dependent,

and we therefore avoid using them and instead use the labels such as (3).
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Completely analogously to the scalar case, the contribution of a single term of (4.4) to the

left hand side of this equation is given by (3.27) multiplied by the difference of C̃ and C
eigenvalues,

∑

Md

〈0|OM4
d

4 OM3
d

3 |∆p,Md〉〈∆p,Md|(C̃ − C)sDeθM12OM2
d

2 OM1
d

1 |0〉 =

=
∑

m̃i
d−1

∑

md−1,t

m
′
d−1

,t′

∑

md−2

(C(∆p,md)− C(O))λ
m̃1

d−1
,m̃2

d−1

m′
d−1

,t′
λ̄
m̃3

d−1
,m̃4

d−1

md−1,t
s∆pP

md,md−2

md−1,m
′
d−1

(θ)×

×
[
M3

d

M4
d

∣∣∣
m̃3

d−1

m̃4
d−1

md−1, t
∣∣∣md−2

∣∣∣m′
d−1, t

′ m̃
1
d−1

m̃2
d−1

∣∣∣M
1
d

M2
d

]
. (4.63)

Introducing the shorthand notation (3.19) and (3.20), restoring the dependence of λ on

p,md and q, and summing over the possible degeneracies q we find

∑

Md,q

〈0|OM4
d

4 OM3
d

3 |∆p,Md, q〉〈∆p,Md, q|(C̃ − C)sDeθM12OM2
d

2 OM1
d

1 |0〉 = (4.64)

=
∑

a,b

∑

md−2

(C(∆p,md)− C(O)) Λba
p,md

s∆pP
md,md−2

md−1,m
′
d−1

(θ)

[
M3

d

M4
d

∣∣∣b
∣∣∣md−2

∣∣∣a
∣∣∣M

1
d

M2
d

]
,

where the OPE matrix Λ is defined as

Λba
p,md

≡
∑

q

λa
p,md,q

λ̄b
p,md,q

. (4.65)

Following the discussion of scalar recursion relations in section 4.1 and the modifications

mentioned in the beginning of this section, we can find

∑

Md,Ud

〈0|OM4
d

4 OM3
d

3 PUd |∆p,Md〉〈∆p,Md|KUd
sDeθM12OM2

d

2 OM1
d

1 |0〉 = (4.66)

=
∑

m̃d∈ ⊗md

∑

a,b

∑

md−2

(γ̄p,md,m̃d
λ̄)b(λγp,md,m̃d

)as∆p+1P
m̃d,md−2

md−1,m
′
d−1

(θ)

[
M3

d

M4
d

∣∣∣b
∣∣∣md−2

∣∣∣a
∣∣∣M

1
d

M2
d

]
.

Here the matrix γ is defined as

(λγp,mdm̃d
)
m

1
d−1m

2
d−1

m̃
′

d−1
,t′′

=(−1)d
(
∆p−∆12−(md |m̃d)

∗
)
(

m̃d

m̃′

d−1

∣∣∣∣∣
md

m̃′

d−1 •

)
λ
m

1
d−1m

2
d−1

m̃
′

d−1
,t′′

(4.67)

+
∑

m
′2
d−1

,t′,m′

d−1

(
m2

d

m2
d−1

∣∣∣∣∣M
∣∣∣∣∣
m2

d

m′2
d−1

)
∗
(

m̃d

m̃′

d−1

∣∣∣∣∣
md

m′

d−1

){
m̃′

d−1 m2
d−1 m1

d−1

m′2
d−1 m′

d−1

}(2)

t′t′′

λ
m

1
d−1,m

′2
d−1

m
′

d−1
,t′

−
∑

m
′1
d−1

,t′,m′

d−1

(
m1

d

m1
d−1

∣∣∣∣∣M
∣∣∣∣∣
m1

d

m′1
d−1

)
∗
(

m̃d

m̃′

d−1

∣∣∣∣∣
md

m′

d−1

){
m̃′

d−1 m2
d−1 m1

d−1

m′1
d−1 m′

d−1

}(1)

t′t′′

λ
m

′1
d−1,m

2
d−1

m
′

d−1
,t′

,
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while the matrix γ̄ is defined as

(γ̄p,mdm̃d
λ̄)

m
3
d−1m

4
d−1

m̃d−1,t′
=(−1)d

(
∆p+∆34−(md |m̃d)

)
(

md

m̃d−1 •

∣∣∣∣∣
m̃d

m̃d−1

)
λ̄
m

3
d−1m

4
d−1

m̃d−1,t′
(4.68)

+
∑

m
′3
d−1

,t,md−1

(
m3

d

m′3
d−1

∣∣∣∣∣M
∣∣∣∣∣
m3

d

m3
d−1

)(
md

md−1

∣∣∣∣∣
m̃d

m̃d−1

){
m4

d−1 m3
d−1 m̃d−1

md−1 m′3
d−1

}(3)

tt′

λ̄
m

′3
d−1,m

4
d−1

md−1,t

−
∑

m
′4
d−1

,t,md−1

(
m4

d

m′4
d−1

∣∣∣∣∣M
∣∣∣∣∣
m4

d

m4
d−1

)(
md

md−1

∣∣∣∣∣
m̃d

m̃d−1

){
m4

d−1 m3
d−1 m̃d−1

md−1 m′4
d−1

}(4)

tt′

λ̄
m

3
d−1,m

′4
d−1

md−1,t
.

The 6j symbols are defined as solutions to the following equations
∑

M′1
d−1

,U′
d−1

,M′
d−1

〈M′
d−1, t

′|M2
d−1M

′1
d−1〉〈M′1

d−1U
′
d−1|M1

d−1〉〈M̃′
d−1|M′

d−1U
′
d−1〉 =

=
∑

t′′

{
m̃′

d−1 m2
d−1 m1

d−1

m′1
d−1 m′

d−1

}(1)

t′t′′

〈M̃′
d−1, t

′′|M2
d−1M

1
d−1〉, (4.69)

∑

M′2
d−1

,U′
d−1

,M′
d−1

〈M′
d−1, t

′|M′2
d−1M

1
d−1〉〈M′2

d−1U
′
d−1|M2

d−1〉〈M̃′
d−1|M′

d−1U
′
d−1〉 =

=
∑

t′′

{
m̃′

d−1 m2
d−1 m1

d−1

m′2
d−1 m′

d−1

}(2)

t′t′′

〈M̃′
d−1, t

′′|M2
d−1M

1
d−1〉, (4.70)

∑

M′3
d−1

,Ud−1,Md−1

〈0|M4
d−1M

′3
d−1(Md−1, t)〉〈M′3

d−1|M3
d−1Ud−1〉〈Md−1Ud−1|M̃d−1〉 =

=
∑

t′

{
m4

d−1 m3
d−1 m̃d−1

md−1 m′3
d−1

}(3)

tt′

〈0|M4
d−1M

3
d−1(M̃d−1, t

′)〉, (4.71)

∑

M′4
d−1

,Ud−1,Md−1

〈0|M′4
d−1M

3
d−1(Md−1, t)〉〈M′4

d−1|M4
d−1Ud−1〉〈Md−1Ud−1|M̃d−1〉 =

=
∑

t′

{
m4

d−1 m3
d−1 m̃d−1

md−1 m′4
d−1

}(4)

tt′

〈0|M4
d−1M

3
d−1(M̃d−1, t

′)〉. (4.72)

Reintroducing the degeneracy index q in (4.66) we find

∑

Md,Ud,q

〈0|OM4
d

4 OM3
d

3 PUd |∆p,Md〉〈∆p,Md|KUd
sDeθM12OM2

d

2 OM1
d

1 |0〉= (4.73)

=
∑

m̃d∈ ⊗md

∑

a,b

∑

md−2

(γ̄p,md,m̃d
Λp,md

γp,md,m̃d
)bas∆p+1P

m̃d,md−2

md−1,m
′
d−1

(θ)

[
M3

d

M4
d

∣∣∣b
∣∣∣md−2

∣∣∣a
∣∣∣M

1
d

M2
d

]
.

Comparing (4.64) and (4.73) we arrive at the following recursion relation

(C(∆p+1, m̃d)− C(O)) Λba
p+1,m̃d

=
∑

md∈ ⊗m̃d

(γ̄p,md,m̃d
Λp,md

γp,md,m̃d
)ba. (4.74)

Equation (4.74) represents the main result of this paper. It gives a recursion relation for

the power series coefficients Λ of a completely general conformal block. This relation has
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the same structure as the scalar recursion relation (4.7) and can be solved starting from

p = 0 in a straightforward way. The main difficulty lies in evaluation of the coefficient

matrices γ and γ̄, so let us discuss this in some more detail.

Suppose that we have chosen a concrete four-point function for which we wish to evalu-

ate the conformal blocks, i.e. we made a choice of mi
d. If we look at, say, (4.68), we see that

all the sums are finite and the number of terms is independent ofmd,1 or m̃d,1, which are the

only weights that can be arbitrarily large for the given four-point function. Moreover, each

term contributes to a single element of the matrix γ̄. Furthermore, we see that md and m̃d

only enter into the simple quantities (isoscalar factors for vector representation and reduced

matrix elements) for which closed-form expressions are known (see appendix B). Similar

remarks apply to (4.67). This means that if we compute for the given four-point function

a finite number of 6j symbols (4.69)–(4.72), we can then express the matrices γ and γ̄ as

closed-form analytic expressions in md and m̃d, thus obtaining a closed-form analytic ex-

pression for the recursion relation (4.74). If we know all the CG coefficients in (4.69)–(4.72),

then the calculation of a finite number of 6j symbols is a simple linear algebra problem,

so we can assume their knowledge to be equivalent to the knowledge of CG coefficients.

As discussed in section 2.3, in several important cases the CG coefficients are known

analytically (and so are 6j symbols). In these cases we can write closed-form expressions

for γ̄ and γ. In the rest of this section we consider two such situations: general blocks in

d = 3 and seed blocks for general d.

4.3 Example: general conformal blocks in 3 dimensions

As discussed above, the only non-trivial ingredients in the recursion relation (4.74) are the

6j symbols entering the expressions (4.67) and (4.68). In d = 3 these symbols simplify

dramatically. However, before computing them, we need to understand a small subtlety

which arises in d = 3.

In the derivation of the recursion relation, we have encountered isoscalar factors such as

(
md

md−1

∣∣∣∣∣
m′

d

m′
d−1

)
. (4.75)

In d = 3 this presents a problem since we should instead use the isoscalar factors

(
m3

m2 ±1

∣∣∣∣∣
m′

3

m′
2

)
, (4.76)

because the vector representation is reducible in 2d. One can still use the formulas of

appendix B to compute the value of (4.75), but we need to interpret it in terms of (4.76).

Such an interpretation, together with a analogous discussion for reduced matrix elements

is given in B.3. Using these, one can check that (4.33) still holds in d = 3 and we can

still simplify it using the sum rule from appendix B.4. The formulas of section 4.2 can

also be seen to remain valid if we interpret the sum over U2 in (4.69)–(4.72) as a sum over

u2 = (+1) and u2 = (−1).
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Consider, for example, the equation (4.69) for the 6j symbol related to O1,

∑

M′1
d−1

,U′
d−1

,M′
d−1

〈M′
d−1, t

′|M2
d−1M

′1
d−1〉〈M′1

d−1U
′
d−1|M1

d−1〉〈M̃′
d−1|M′

d−1U
′
d−1〉 =

=
∑

t′′

{
m̃′

d−1 m2
d−1 m1

d−1

m′1
d−1 m′

d−1

}(1)

t′t′′

〈M̃′
d−1, t

′′|M2
d−1M

1
d−1〉. (4.77)

In d = 3, taking into account the subtlety discussed above, this equation simplifies to

∑

u′=±1

δm′,m2+m′
1
δm′

1+u′,m1
δm̃′,m′+u′ =

{
m̃′ m2 m1

m′
1 m′

}(1)

δm̃′,m2+m1
. (4.78)

It is solved by

{
m̃′ m2 m1

m′
1 m′

}(1)

=

{
1, m1 −m′

1 = m̃′ −m′ = ±1

0, otherwise
. (4.79)

Similarly, we find

{
m̃′ m2 m1

m′
2 m′

}(2)

=

{
1, m2 −m′

2 = m̃′ −m′ = ±1

0, otherwise
, (4.80)

{
m4 m3 m̃

m m′
3

}(3)

=

{
1, m′

3 −m3 = m̃−m = ±1

0, otherwise
, (4.81)

{
m4 m3 m̃

m m′
4

}(4)

=

{
1, m′

4 −m4 = m̃−m = ±1

0, otherwise
. (4.82)

Recall that the right OPE coefficients in 3d are parametrized as λm1m2 . We then have,

according to (4.67) for j̃ = j ± 1,

(λγp,j,j±1)
m1m2 = (4.83)

− (∆p −∆12 ± j − δ±,−)

√
(j −m1 −m2 + δ±,+)(j +m1 +m2 + δ±,+)

(2j + 1)(j + δ±,+)
λm1m2

−
∑

u=±1

±
√

(j2 + um2)(j2 − um2 + 1)(j ± um1 ± um2)(j ± um1 ± um2 + 1)

4(j + δ±,+)(2j + 1)
λm1(m2−u)

+
∑

u=±1

±
√

(j1 + um1)(j1 − um1 + 1)(j ± um1 ± um2)(j ± um1 ± um2 + 1)

4(j + δ±,+)(2j + 1)
λ(m1−u)m2 ,

– 50 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
1

and for j̃ = j

(λγp,j,j)
m1m2 = (4.84)

− (∆p −∆12 − 1)
m1 +m2√
j(j + 1)

λm1m2

+
∑

u=±1

u

√
(j2 + um2)(j2 − um2 + 1)(j + um1 + um2)(j − um1 − um2 + 1)

4j(j + 1)
λm1(m2−u)

−
∑

u=±1

u

√
(j1 + um1)(j1 − um1 + 1)(j + um1 + um2)(j − um1 − um2 + 1)

4j(j + 1)
λ(m1−u)m2 .

Similarly, from (4.68) we find

(γ̄p,j,j±1λ̄)
m3m4 = (4.85)

− (∆p +∆34 ± j − δ±,−)

√
(j −m3 −m4 + δ±,+)(j +m3 +m4 + δ±,+)

(2j + 1)(j + δ±,+)
λ̄m3m4

−
∑

u=±1

±
√

(j3 − um3)(j3 + um3 + 1)(j ∓ um3 ∓ um4)(j ∓ um3 ∓ um4 + 1)

4(j + δ±,+)(2j + 1)
λ̄(m3+u)m4

+
∑

u=±1

±
√

(j4 − um4)(j4 + um4 + 1)(j ∓ um3 ∓ um4)(j ∓ um3 ∓ um4 + 1)

4(j + δ±,+)(2j + 1)
λ̄m3(m4+u),

(γ̄p,j,j λ̄)
m3m4 = (4.86)

(∆p +∆34 − 1)
m3 +m4√
j(j + 1)

λ̄m3m4

+
∑

u=±1

u

√
(j3 − um3)(j3 + um3 + 1)(j − um3 − um3)(j + um3 + um4 + 1)

4j(j + 1)
λ̄(m3+u)m4

−
∑

u=±1

u

√
(j4 − um4)(j4 + um4 + 1)(j − um3 − um4)(j + um3 + um4 + 1)

4j(j + 1)
λ̄m3(m4+u).

4.3.1 Scalar-fermion block in 3 dimensions

As a concrete example, consider the scalar-fermion blocks in 3d [73, 80]. In this case we

have j1 = j4 =
1
2 and j2 = j3 = 0. Matrices Λ then have the indices

Λm4,m1

p,j , m1,m4 = ±1

2
. (4.87)

In terms of these coefficients the conformal block takes the form, according to (3.41),

〈0|ψm4

4 φ3|O|sDeθM12φ2ψ
m1

1 |0〉 =
∑

m̃1,m̃4

∞∑

p=0

∞∑

j=0

Λm̃4,m̃1

p,j dj−m̃4,m̃1
(−θ)δm4,m̃4

δm1,m̃1
. (4.88)

The intermediate representations are m3 = (j) with half-integral j ≥ 1
2 . The Casimir

eigenvalue is given by

Cp,j = ∆p(∆p − 3) + j(j + 1). (4.89)
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Using equations (4.83)–(4.86) we find

(λγp,j,j+1)
± 1

2 = −(∆p −∆12 + j)

√
j + 3

2

2(j + 1)
λ± 1

2 +
1

2

√
j + 3

2

2(j + 1)
λ∓ 1

2 , (4.90)

(λγp,j,j−1)
± 1

2 = −(∆p −∆12 − j − 1)

√
j − 1

2

2j
λ± 1

2 − 1

2

√
j − 1

2

2j
λ∓ 1

2 , (4.91)

(λγp,j,j)
± 1

2 = ∓(∆p −∆12 − 1)
1

2

1√
j(j + 1)

λ± 1

2 ∓ 1

2

(j + 1
2)√

j(j + 1)
λ∓ 1

2 , (4.92)

(γ̄p,j,j+1λ̄)
± 1

2 = −(∆p +∆34 + j)

√
j + 3

2

2(j + 1)
λ̄± 1

2 +
1

2

√
j + 3

2

2(j + 1)
λ̄∓ 1

2 , (4.93)

(γ̄p,j,j−1λ̄)
± 1

2 = −(∆p +∆34 − j − 1)

√
j − 1

2

2j
λ± 1

2 − 1

2

√
j − 1

2

2j
λ̄∓ 1

2 , (4.94)

(γ̄p,j,j λ̄)
± 1

2 = ±(∆p +∆34 − 1)
1

2

1√
j(j + 1)

λ± 1

2 ± 1

2

(j + 1
2)√

j(j + 1)
λ̄∓ 1

2 . (4.95)

Using this in (4.74) we immediately obtain the recursion relation for coefficients (4.87).

For example, we have

(Cp,j − C0,jO)Λ
+ 1

2
,+ 1

2

p,j = (∆p−1 −∆12 + j − 1)(∆p−1 +∆34 + j − 1)
j + 1

2

2j
Λ
+ 1

2
,+ 1

2

p−1,j−1

− (∆p−1 −∆12 + j − 1)
1

2

j + 1
2

2j
Λ
− 1

2
,+ 1

2

p−1,j−1

− 1

2
(∆p−1 +∆34 + j − 1)

j + 1
2

2j
Λ
+ 1

2
,− 1

2

p−1,j−1

+
1

4

j + 1
2

2j
Λ
− 1

2
,− 1

2

p−1,j−1 + . . . , (4.96)

where . . . represent contributions from Λp−1,j and Λp−1,j+1. We compare the conformal

block generated by this recursion relation with the known results [73, 80] in appendix C,

finding a perfect agreement.

4.4 Example: seed conformal blocks in general dimensions

We have already considered the seed blocks in section 3.5. Here, as in previous subsections,

we start by computing the 6j symbols (4.69)–(4.72). Since in the seed block case the

operators O1 and O3 are scalars, we do not need the 6j symbols for them.

For O2 the equation for the 6j symbol specializes to

∑

M′2
d−1

,U′
d−1

,M′
d−1

〈M′
d−1|M′2

d−1〉〈M′2
d−1U

′
d−1|M2

d−1〉〈M̃′
d−1|M′

d−1U
′
d−1〉 =

=

{
m2

d−1 m2
d−1 •

m′2
d−1 m′2

d−1

}(2)

〈M̃′
d−1|M2

d−1〉, (4.97)
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and we can simplify the left-hand side to

〈M̃′
d−1|M2

d−1〉 (4.98)

which implies that simply
{
m2

d−1 m2
d−1 •

m′2
d−1 m′2

d−1

}(2)

= 1, (4.99)

whenever the selection rules are satisfied. Similarly, equation (4.72) specializes to

∑

M′4
d−1

,Ud−1,Md−1

〈0|M′4
d−1Md−1〉〈M′4

d−1|M4
d−1Ud−1〉〈Md−1Ud−1|M̃d−1〉 =

=

{
m4

d−1 • m4
d−1

m′4
d−1 m′4

d−1

}(4)

〈0|M4
d−1M̃d−1〉, (4.100)

and the left hand side can be reduced to

± 〈0|M4
d−1M̃d−1〉, (4.101)

where the sign is equal to40 (−1)m
4
d−1

−m′4
d−1 unless m4

d−1 = m′4
d−1 and d = 4k in which case

it is equal to −1. To see this, one can use the identity

∑

M′4
d−1

〈0|M′4
d−1Md−1〉〈M′4

d−1|M4
d−1Ud−1〉 = ±

∑

M′
d−1

〈0|M4
d−1M

′
d−1〉〈M′

d−1|Md−1Ud−1〉,

(4.102)

where the sign is as above. Up to normalization, it has to be true because both sides

have the same Spin(d− 1) invariance properties. Up to a phase, the normalization can be

determined by fully contracting each side with its Hermitian conjugate. The sign can then

be found by setting Ud−1 = ( , •, . . .) and examining the phase on both sides using (2.46)

and the formulas in section B.2.

This implies that

{
m4

d−1 • m4
d−1

m′4
d−1 m′4

d−1

}(4)

=

{
−1 m4

d−1 = m′4
d−1 and d = 4k

(−1)m
4
d−1

−m′4
d−1 otherwise

. (4.103)

It is now straightforward to substitute these 6j symbols into the expressions (4.67)

and (4.68) for the matrices γ and γ̄ to obtain closed-form analytic expressions for them.

The final general expression is not particularly illuminating, so we do not write it out ex-

plicitly. Instead, let us again consider a specific example, the scalar-fermion seed blocks in

d = 2n dimensions.

40Here, as before, (−1)md is defined as 1 unless d = 4k + 2 in which case it is equal to (−1)m4k+2,2k+1 .
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4.4.1 Scalar-fermion blocks in d = 2n dimensions

We have considered the structure of these blocks in section 3.5. The OPE matrices Λ are

1 × 1 and there are two types of exchanged representations, j± ≡ (j, 12 , . . . ,
1
2 ,±1

2). Thus,

we can label the OPE matrices as

Λp,j,±. (4.104)

We can arrange them into a vector as in section 3.7.4,

Λp,j =

(
Λp,j,+

Λp,j,−

)
. (4.105)

We furthermore have

⊗ j± = (j+ 1)± ⊕ (j− 1)± ⊕ j∓. (4.106)

Equation (4.67) reduces to

λγp,j±,(j+1)± = (∆p −∆12 + j)

√
1

2

j + 2n− 3
2

j + n− 1
2

λ

−
(
i

2

√
2n− 1

)(
±i√
2n− 1

√
1

2

j + 2n− 3
2

j + n− 1
2

)
λ

=

(
∆p −∆12 + j ± 1

2

)√
1

2

j + 2n− 3
2

j + n− 1
2

λ, (4.107)

λγp,j±,(j−1)± = (∆p −∆12 − j − d+ 2)

√
1

2

j − 1
2

j + n− 3
2

λ

−
(
i

2

√
2n− 1

)(
∓i√
2n− 1

√
1

2

j − 1
2

j + n− 3
2

)
λ

=

(
∆p −∆12 − j − d+ 2∓ 1

2

)√
1

2

j − 1
2

j + n− 3
2

λ, (4.108)

λγp,j±,j∓ =

(
∆p −∆12 − n+

1

2

)√
2n− 2

(2j + 2n− 3)(2j + 2n− 1)
λ

−
(
i

2

√
2n− 1

)(
∓2i(j + n− 1)√

2n− 1

√
2n− 2

(2j + 2n− 3)(2j + 2n− 1)

)
λ

=

(
∆p −∆12 − n+

1

2
∓ (j + n− 1)

)√
1

2

n− 1

(j + n− 3
2)(j + n− 1

2)
λ. (4.109)
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Similarly, we find from (4.68)

γ̄p,j±,(j+1)±λ=

(
∆p+∆34+j±(−1)n−1 1

2

)√
1

2

j+2n− 3
2

j+n− 1
2

λ, (4.110)

γ̄p,j±,(j−1)±λ=

(
∆p+∆34−j−d+2∓(−1)n−1 1

2

)√
1

2

j− 1
2

j+n− 3
2

λ, (4.111)

γ̄p,j±,j∓λ=

(
∆p+∆34−n+

1

2
∓(−1)n−1(j+n−1)

)√
1

2

n−1

(j+n− 3
2)(j+n− 1

2)
λ. (4.112)

Finally, the Casimir eigenvalue is given, according to (4.14) and (4.15),

Cp,j = ∆p(∆p − 2n) + j(j + 2n− 2) +
(2n− 2)(2n− 3)

8
. (4.113)

The recursion relation (4.74) can then be put into the form

(Cp,j − C0,jO)Λp,j = Γ+
p−1,j−1Λp−1,j−1 + Γ−

p−1,j−1Λp−1,j+1 + Γ0
p−1,j−1Λp−1,j , (4.114)

where

Γ+
p,j=

(
∆p−∆12+j+

1

2

)(
∆p+∆34+j+(−1)n−1 1

2

)
j+2n− 3

2

2j+2n−1

(
1 0

0 0

)
+

+

(
∆p−∆12+j− 1

2

)(
∆p+∆34+j−(−1)n−1 1

2

)
j+2n− 3

2

2j+2n−1

(
0 0

0 1

)
, (4.115)

Γ−
p,j=

(
∆p+∆12−j−2n+2− 1

2

)(
∆p+∆34−j−2n+2−(−1)n−1 1

2

)
j− 1

2

2j+2n−3

(
1 0

0 0

)
+

+

(
∆p+∆12−j−2n+2+

1

2

)(
∆p+∆34−j−2n+2+(−1)n−1 1

2

)

× j− 1
2

2j+2n−3

(
0 0

0 1

)
, (4.116)

Γ0
p,j=

(
∆p−∆12−j−2n+

3

2

)(
∆p+∆34−n+

1

2
−(−1)n−1(j+n−1)

)
×

× 2n−2

(2j+2n−3)(2j+2n−1)

(
0 0

1 0

)
+

+

(
∆p−∆12+j− 1

2

)(
∆p+∆34−n+

1

2
+(−1)n−1(j+n−1)

)
×

× 2n−2

(2j+2n−3)(2j+2n−1)

(
0 1

0 0

)
. (4.117)

The full conformal block can then be expanded by using a generalization of (3.98),

〈0|ψ4ψ3|O|s∆eθM12ψ2φ1|0〉 =
∞∑

p=0

∞∑

j=0

s∆+pΛp,j ·Pj(θ) ·T, (4.118)
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where T = (t+, t−) and the matrom Pj is given by (3.93). In appendix C we compare the

conformal blocks obtained from this recursion relation with the known expressions in 2d

(n = 1) and 4d (n = 2), finding a perfect agreement.

4.5 An efficient implementation?

We have derived the Casimir recursion relation for general conformal blocks. Our derivation

relies on the knowledge of a number of 6j-symbols of Spin(d − 1). As we have discussed,

there are important cases, such as general blocks in 3d and 4d or seed blocks in general

dimensions, where these symbols are readily available. In other cases, they can be computed

as soon as the relevant Clebsch-Gordan coefficients are known. These Clebsch-Gordan

coefficients are needed anyway for the three-point functions (and can be derived from them),

so it is reasonable to assume that the 6j symbols are computable in all cases of interest.

If the relevant 6j symbols are known, then our results provide a closed-form expression

for the recursion relation (4.74). This is a quite general result, so it is interesting to discuss

the possibility of employing it for an efficient computation of spinning conformal blocks.

Assume that we have fixed numerical values for scaling dimensions and spins of the external

operators and the spin of the intermediate primary and would like to compute the conformal

block and its derivatives as a function of the intermediate dimension ∆O. The simplest

approach is to naively iterate the recursion relation and find the coefficients of the power

series expansion in z-coordinates.

This approach has several obvious disadvantages. Firstly, the z-coordinate expansion

converges much slower than the ρ-coordinate expansion [71]. Secondly, the coefficients of

the expansion are going to be some complicated rational functions of ∆O, manipulations

with which are costly. Moreover, the difference of Casimir eigenvalues in (4.74),

C(∆O + n, m̃d)− C(O) = 2n∆O + n2 − nd+ C(m̃d)− C(mO
d ), (4.119)

produces a lot of apparent poles at various rational values of ∆O. We however know that

the conformal blocks can only have poles at (half-)integral values of ∆O [72]. This implies

that there must be a lot of cancellations, which make the direct analytic even less optimal.

Let us discuss some possible solutions to these problems.

The first problem can be in principle avoided by converting the z-coordinate expansion

into a ρ-coordinate expansion. It is possible because we have the relation z = 4ρ+O(ρ2), so

if we know the expansion of f(z) to order zN , we can compute expansion of f(z(ρ)) to the

same order ρN . If the coefficients in expansion of f(z) are numbers, and we aim to evaluate

f(12), then this conversion can be done efficiently by defining zkN to be equal to the ρ-series

of zk, truncated at order ρN and with ρ set to ρ = 3 − 2
√
2 (the value corresponding to

z = 1
2). Then the number f(1/2) can be computed by simply replacing zk in its z-expansion

by the numbers zkN . These numbers can be precomputed once for any given N .

However, as we noted above, in our case the coefficients of z-expansion are complicated

rational functions and thus this conversion would have to be performed using symbolic

algebra. To solve this problem, it is convenient to recall that for any conformal block

G(∆O) (for simplicity of notation we keep the dependence only on ∆O explicit) the function
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H(∆O) = |ρ|−∆OG(∆O) is a meromorphic function of ∆O with either single or double41

poles and a finite limit at infinity42 [6, 72, 99]. In odd dimensions this function only has

single poles, so let us consider this case for simplicity.43 We then can write

H(∆O) = H(∞) +
∑

i

Ri

∆O −∆i
, (4.120)

where ∆i are the locations of the poles and Ri are some coefficients.44 The function

H(∞) can be computed in closed form for a general conformal block by a suitable choice

of the basis of four-point structures. Expansion (4.120) is often used to derive rational

approximations to conformal blocks, required for numerical analysis using SDPB [6, 8]. For

this, note that different terms in this expansion are suppressed by powers ρni for some

positive ni. Thus, one can keep only the finite number of terms with ni ≤ M for some

sufficiently large M . Since the derivatives of G are determined by derivatives of H, it is

sufficient to compute the derivatives of Ri and H(∞) numerically in order to obtain the

rational approximations required for numerical bootstrap applications.

Our recursion relation can be used to determine Ri and their derivatives numerically.

Indeed, on each step of the recursion relation we explicitly divide by a linear function of

∆O (4.119). Thus, we know exactly when we produce poles and we can compute their

residues and how they change on each step of the recursion. If we select a subset of ∆i,

we only need to track the derivatives of the residues at these poles, which are simply

numbers. We can avoid dealing with the apparent poles at rational ∆O by tracking only

the ∆i allowed by representation theory [72]. This is similar in spirit to multiplication of

polynomials in Fourier space (as in FFT polynomial multiplication), except we are working

with rational functions. This approach should allow us to efficiently compute the numerical

z-series of derivatives of Ri. We can then use the aforementioned procedure to resum it

into ρ-series at z = 1
2 .

Note that in this scheme it is most convenient to take the derivatives in z-coordinate.

These derivatives do not necessarily have the fastest rate of convergence among other simple

choices.45 A related problem is that it is not obvious what is the best basis of four-point

tensor structures in terms of convergence.46 The approach based on (4.120) somewhat

solves this ambiguity — it is a well-defined procedure to keep a finite number of poles

in (4.120), and we can then compute Ri to an order N higher than M , eliminating the

41We are not aware of a direct proof that at most second-order poles appear in even d (see e.g. [72, 98]

for a discussion). However, since the scalar blocks have at most second-order poles, the results of [80]

imply that there are at most finitely many higher-order poles in any given conformal block. Also, standard

arguments from complex analysis show that at most double poles can appear from collision of two single

poles, which can possibly be used to show that at least the blocks which can be analytically continued in

dimension d have at most second-order poles.
42At least for ∆O-independent choice of three-point functions.
43The same approach should work in even dimensions, with minor modifications.
44Ri are known to be proportional to other conformal blocks. We do not use this fact here.
45Choice of the coordinate matters: the derivative df(z)/df(z) converges much faster than the derivative

of df(z)/dz.
46The choice of basis matters as well, because the bases can differ by z-dependent factors: even if f(z)

converges quickly, f(z)/(1− z)100 may converge much slower.
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possible discrepancies between various choices. Indeed, if we keep the number of poles that

we track fixed, then the complexity of computing each new order grows only because the

range of allowed values for md,1 expands.

In order for the above program to succeed, we need to be able to efficiently compute

derivatives of these P -functions. It appears that this problem is largely solved by the

recursion relation (3.88) which can be easily implemented numerically for any choice of

representations given the availability of closed-form formulas for vector isoscalar factors.

We still need an initial condition for the recursion relation. As we discussed previously, it

can be obtained by direct exponentiation of M12. However, in numerical applications we

do not even need this. We only need a first few derivatives of P -functions at θ = 0, which

are given by matrix elements of powers of M12, making the computation even easier.

5 Conclusions

The two major results of this paper are

1. The general form (3.27) of a R×Spin(d)-multiplet contribution to a general four-point

function of operators with spins.

2. The Casimir recursion relation (4.74) (and the formulas (4.67) and (4.68) for the

relevant coefficients) for the amplitudes Λp,md
of these contributions to a general

spinning conformal block.

The first result is expressed in terms of certain special functions P (3.25), which we have

studied in detail in section 3.7. We have described the basic properties of these functions

(including orthogonality relations) as well as a practical approach to their calculation.

In appendix D we have furthermore related these functions to the irreducible projectors

of [76].47 We have studied how (3.27) simplifies in some special cases, namely for d = 3, 4

and for seed blocks in general d. We have also proven the folklore theorem which states

that the number of four-point tensor structures is the same as the number of classes of

conformal blocks.

Our second result paves a way to an algorithmic computation of general conformal

blocks. The expressions (4.74), (4.67) and (4.68) give a closed-form recursion relation for

the coefficients of the z-coordinate expansion of a general conformal block, if the relevant

6j symbols of Spin(d− 1) are known. There is a finite number of such 6j symbols for any

given conformal block, and they can be straightforwardly computed if the corresponding

Clebsch-Gordan coefficients are known. The required CG coefficients are indeed known in

many important cases. In particular, we have explicitly worked out the case of general

conformal blocks in 3 dimensions and the seed blocks in general dimensions. To illustrate

the recursion relation in explicit examples, we have studied the scalar-fermion seed blocks in

d = 3 and d = 2n, comparing to the known results when possible. Finally, in section 4.5 we

47We believe that this is not the most optimal way for computation of explicit examples of functions P ,

and one instead should use the methods described in 3.7. Nevertheless, this relation does provide expressions

which may be useful in analytical applications.
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have briefly discussed a strategy for an efficient numerical implementation of the recursion

relation (4.74).

Many extensions of these results are possible. For example, the scalar-fermion seed

blocks can also be straightforwardly obtained for d = 2n+1, we have omitted this case only

to keep the size of the paper reasonable. For the same reason we have not written down the

explicit formulas for the case of general blocks in d = 4, even though these can be obtained

(in terms of SU(2) 6j-symbols) mechanically from the general expressions. Extension to

d = 5 is also possible, due to Spin(5 − 1) ≃ SU(2) × SU(2). An interesting problem is

to develop a numerical algorithm for computation of general Spin(d − 1) CG coefficients

and 6j symbols. Combined with the recursion relation (4.74) this would constitute the first

completely general algorithm for computation of conformal blocks.48 It is also interesting to

implement this recursion relation efficiently, perhaps along the lines of section 4.5. Finally,

there is always the question whether these results can be extended to superconformal case.

We hope to address some of these questions in future work.
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A Conformal algebra and its representation on local operators

Here we describe our conventions for the conformal algebra. The commutation relations

are as follows,

[D,Pµ]=Pµ, [D,Kµ]=−Kµ, (A.1)

[Kµ,Pν ]=2δµνD+2Mµν , (A.2)

[Mµν ,Pρ]=δµρPν−δνρPµ, [Mµν ,Kρ]=δµρKν−δνρKµ, (A.3)

[Mµν ,Mρσ]=δµρMνσ−δνρMµσ+δµσMρν−δνσMρµ. (A.4)

The generators obey the following conjugation properties,

D† = D, P † = K, M †
µν = −Mµν . (A.5)

48Here by an “algorithm” we mean an actual complete algorithm which can be straightforwardly trans-

lated into a computer program. Techniques (not algorithms) for computing completely general spinning

conformal blocks are already known [72, 75, 77, 80].
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The generators act on primary operators as follows,

[D,O(x)] = x · ∂O(x) + ∆O(x), (A.6)

[Pµ,O(x)] = ∂µO(x), (A.7)

[Mµν ,O(x)] = (xµ∂ν − xν∂µ)O(x) + SµνO(x), (A.8)

[Kµ,O(x)] = (2xµx
σ − x2δσµ)∂σO(x) + 2xσ(∆δµσ + Sµσ)O(x). (A.9)

Here Sµν are the generators which act on the spin indices of O(x) and satisfy the com-

mutation relations opposite to Mµν . Our convention for Mµν differs by a minus sign from

that of [92]. Mµν in our case has the interpretation of rotating eµ towards eν .

B Reduced matrix elements and vector isoscalar factors

In order to write down the formulas for isoscalar factors and reduced matrix elements, we

need to take some preliminary steps. First, let us consider the decomposition of the tensor

product md ⊗ . Generically, we have in even dimensions, according to Brauer’s formula,

md ⊗ ≃
n⊕

i=1

md(+i)⊕md(−i), d = 2n, (B.1)

where md(±i) is the same as md but with the component md,i shifted by ±1. Similarly, in

odd dimensions we have, generically,

md ⊗ ≃ md ⊕
n⊕

i=1

md(+i)⊕md(−i), d = 2n+ 1. (B.2)

These formulas are valid for generic md, i.e. those with all components non-zero and suf-

ficiently large. For concrete representations, some of the direct summands may disappear

if there are non-dominant weights in the right hand side. By applying Brauer’s formula,

we see that to find the final tensor product rule we just need to remove all non-dominant

weights and, if d = 2n+ 1 and md,n = 0, also remove md.
49

We now define the following new parameters,

x2n+1,j = m2n+1,j + n− j, (B.3)

x2n,j = m2n,j + n− j. (B.4)

Note that regardless of the dimension, md,j is a non-increasing function of j. Since we add

to it a strictly decreasing function of j, we find that xd,j is a strictly decreasing function

of j. In particular xd,j 6= xd,i for i 6= j. Furthermore, xd,j > 0 except possibly for j = n

when it can be zero (for d = 2n + 1) or negative (for d = 2n). We can also easily check

that |xd,j | is strictly decreasing and thus in fact xd,j 6= ±xd,i for i 6= j.

49This can be seen by analyzing the situations in which md(±i) may fail to be dominant. It turns out

that in most cases there is an affine Weyl reflection which stabilizes the non-dominant md(±i) and thus

such weights simply have to be removed. The exception is the case m2n+1,n = 0: m2n+1(−n) can be turned

into m2n+1 with one affine Weyl reflection, and thus cancels it.
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In terms of these parameters the dimensions of the representations md have the fol-

lowing expressions

dimm2n =
∏

1≤i<j≤n

(x2n,i + x2n,j)(x2n,i − x2n,j)

(y2n,i + y2n,j)(y2n,i − y2n,j)
, (B.5)

dimm2n+1 =
n∏

i=1

x2n+1,i +
1
2

y2n+1,i +
1
2

∏

1≤i<j≤n

(x2n+1,i + x2n+1,j + 1)(x2n+1,i − x2n+1,j)

(y2n+1,i + y2n+1,j + 1)(y2n+1,i − y2n+1,j)
, (B.6)

where yd,k = n− k is xd,k for the trivial representation (so that dim • = 1).

B.1 Reduced matrix elements

We are now ready to write the formulas for the reduced matrix elements (2.97). We will

give formulas for

(
md

md−1

∣∣∣∣∣M12

∣∣∣∣∣
md

m′
d−1

)
≡ (−1)d−1

(
md

md−1

∣∣∣∣∣M
∣∣∣∣∣
md

m′
d−1

)
, (B.7)

which is more natural from the point of view of (2.98). We have in odd dimensions

(
m2n+1

m2n

∣∣∣∣∣M12

∣∣∣∣∣
m2n+1

m2n(±j)

)
= ±

√√√√
∏n

k=1(x2n+1,k ∓ x2n,j)(x2n+1,k ± x2n,j + 1)

2
∏n

k=1

k 6=j

(x2n,k − x2n,j)(x2n,k + x2n,j)
. (B.8)

According to (B.1) this gives all possible reduced matrix elements in even dimensions.

Note that according to the discussion above, the factors in the denominator are never zero

(assuming that all weights are dominant).

In even dimensions we have

(
m2n

m2n−1

∣∣∣∣∣M12

∣∣∣∣∣
m2n

m2n−1

)
=

−i
∏n

k=1 x2n,k√∏n−1
k=1 x2n−1,k(x2n−1,k + 1)

, (B.9)

(
m2n

m2n−1

∣∣∣∣∣M12

∣∣∣∣∣
m2n

m2n−1(±i)

)
= (B.10)

= ±
√√√√−

∏n
k=1(x2n,k − x2n−1,i − δ±,+)(x2n,k + x2n−1,i + δ±,+)

(x2n−1,i + δ±,+)(2x2n−1,i + 1)
∏n−1

k=1

k 6=i

(x2n−1,k − x2n−1,i)(x2n−1,k + x2n−1,i + 1)
,

where δ±,+ is equal to 1 for + sign and to 0 for − sign. According to (B.2), this account for

all reduced matrix elements in even dimensions. The only potential zero in the denominator

of (B.9) is from x2n−1,n−1. However, if x2n−1,n−1 = m2n−1,n−1 = 0, then m2n−1 does not

appear inm2n−1⊗ , and this reduced matrix element has to be set to 0. Similarly, the only

potential zero in the denominator of (B.10) appears for (−) sign and i = n−1, when we have

a factor of x2n−1,n−1. Again, it is only a problem if x2n−1,n−1 = m2n−1,n−1 = 0, in which

casem2n−1(−n+1) does not appear inm2n−1⊗ so we need to set this matrix element to 0.
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B.2 Isoscalar factors

The isoscalar factors are given by formulas of a very similar form. In odd dimensions we

have(
m2n+1

m2n •

∣∣∣∣∣
m2n+1

m2n

)
=

∏n
k=1 x2n,k√∏n

k=1 x2n+1,k(x2n+1,k + 1)
, (B.11)

(
m2n+1

m2n •

∣∣∣∣∣
m2n+1(±i)

m2n

)
= (B.12)

=

√√√√
∏n

k=1(x2n+1,i − x2n,k + δ±,+)(x2n+1,i + x2n,k + δ±,+)

(x2n+1,i + δ±,+)(2x2n+1,i + 1)
∏n

k=1

k 6=i

(x2n+1,i − x2n+1,k)(x2n+1,i + x2n+1,k + 1)
,

and the same comments as for the reduced matrix elements apply about the possible zeros

in denominators. In even dimensions the isoscalar factors are given by
(

m2n

m2n−1 •

∣∣∣∣∣
m2n(±i)

m2n−1

)
=

√√√√
∏n−1

k=1(x2n,i ∓ x2n−1,k)(x2n,i ± x2n−1,k ± 1)

2
∏n

k=1

k 6=i

(x2n,i − x2n,k)(x2n,i + x2n,k)
. (B.13)

To derive the isoscalar factor for ( , ) pattern in vector representation, we consider the

following expression,

〈Md; , •, . . . |M12|M′
d〉. (B.14)

Acting with M12 on the left, we find

〈Md; , ,•,...|M′
d〉+

∑

M̃d

〈Md|M12|M̃d〉〈M̃d; ,•,...|M′
d〉=

=

(
md

md−1

∣∣∣∣∣
m′

d

m′
d−1

)(
md−1

md−2 •

∣∣∣∣∣
m′

d−1

m′
d−2

)
δMd−2,M

′
d−2

−

−
∑

M̃d

(
md

m̃d−1

∣∣∣∣∣M12

∣∣∣∣∣
md

md−1

)∗(
md−1

md−2 •

∣∣∣∣∣
m̃d−1

m̃d−2

)(
md

m̃d−1 •

∣∣∣∣∣
m′

d

m′
d−1

)
δ
Md−2,M̃d−2

δ
M′

d−1
,M̃d−1

=

(
md

md−1

∣∣∣∣∣
m′

d

m′
d−1

)(
md−1

md−2 •

∣∣∣∣∣
m′

d−1

m′
d−2

)
δMd−2,M

′
d−2

−

−
(

md

m′
d−1

∣∣∣∣∣M12

∣∣∣∣∣
md

md−1

)∗(
md−1

md−2 •

∣∣∣∣∣
m′

d−1

m′
d−2

)(
md

m′
d−1 •

∣∣∣∣∣
m′

d

m′
d−1

)
δMd−2,M

′
d−2

. (B.15)

Action on the right gives, on the other hand,
∑

M̃d

〈Md; ,•,...|M̃d〉〈M̃d|M12|M′
d〉=

=−
∑

M̃d

(
md

md−1 •

∣∣∣∣∣
m̃d

m̃d−1

)(
m′

d

m′
d−1

∣∣∣∣∣M12

∣∣∣∣∣
m′

d

m̃d−1

)∗(
m̃d−1

m̃d−2 •

∣∣∣∣∣
m′

d−1

m′
d−2

)
δ
Md−1,M̃d−1

δ
M′

d−2
,M̃d−2

=−
(

md

md−1 •

∣∣∣∣∣
m′

d

md−1

)(
m′

d

m′
d−1

∣∣∣∣∣M12

∣∣∣∣∣
m′

d

md−1

)∗(
md−1

m′
d−2 •

∣∣∣∣∣
m′

d−1

m′
d−2

)
δMd−2,M

′
d−2

. (B.16)
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By comparing these expressions and choosing m′
d−2 such that

(
md−1

m′
d−2 •

∣∣∣∣∣
m′

d−1

m′
d−2

)
(B.17)

is non-vanishing, we conclude

(
md

md−1

∣∣∣∣∣
m′

d

m′
d−1

)
= −

(
md

md−1 •

∣∣∣∣∣
m′

d

md−1

)(
m′

d

m′
d−1

∣∣∣∣∣M12

∣∣∣∣∣
m′

d

md−1

)∗

+

(
md

m′
d−1 •

∣∣∣∣∣
m′

d

m′
d−1

)(
md

m′
d−1

∣∣∣∣∣M12

∣∣∣∣∣
md

md−1

)∗

. (B.18)

B.3 Comments on d = 3

A few modifications to the above formulas are required in the case d = 3. This is because

the d− 1 = 2 and vector representation in d = 2 is not irreducible.

The formulas for the reduced matrix elements of remain valid if they are used together

with (B.13). Indeed, we can compute

〈j,m± 1|M12|j,m〉 =
(

j

m± 1

∣∣∣∣∣M12

∣∣∣∣∣
j

m

)(
m± 1

•

∣∣∣∣∣ •
m

•

)
= ∓1

2

√
(j ∓m)(j ±m+ 1),

(B.19)

which coincides with the standard expression for M12 which follows from

M12 = −iJ2̂ = −J+
2

+
J−
2
, (B.20)

as discussed in section 2.2.3. Alternatively, the formula for the reduced matrix can be

interpreted as

(
j

m± 1

∣∣∣∣∣M12

∣∣∣∣∣
j

m

)
=

(
j

m± 1

∣∣∣∣∣M
1,+1

∣∣∣∣∣
j

m

)
−
(

j

m± 1

∣∣∣∣∣M
1,−1

∣∣∣∣∣
j

m

)
, (B.21)

where M1,± = − J±√
2
are defined according to (2.57) and (2.58) (treating the second index

of M as a vector index). The matrix elements in the right hand side should be used with

the CG coefficients of Spin(2), 〈m± 1| ± 1,m〉 = 1.

The isoscalar factors can interpreted as

(
j

m

∣∣∣∣∣
j′

m′

)
=

(
j

m+1

∣∣∣∣∣
j′

m′

)
−
(

j

m−1

∣∣∣∣∣
j′

m′

)
. (B.22)

The isoscalar factors in the right hand side are to be combined with the CG coefficients of

Spin(2), 〈m± 1| ± 1,m〉 = 1. This can be checked against the known formulas for Spin(3)

CG coefficients.50

50Recall that the m-independent phase of CG coefficients is convention-dependent. The formulas given

here agree with the conventions of [86] (the conventions used in Mathematica as of version 11.0) for

j′ = j, j + 1 and differ by a sign for j′ = j − 1.

– 63 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
1

B.4 A sum rule for reduced matrix elements and isoscalar factors

As discussed in the main text, the following identity holds,

∑

md−1

(
md

m̃d−1

∣∣∣∣∣M
∣∣∣∣∣
md

md−1

)(
md

md−1

∣∣∣∣∣
m̃d

m̃d−1

)
= (−1)d−1(md |m̃d)

(
md

m̃d−1 •

∣∣∣∣∣
m̃d

m̃d−1

)
.

(B.23)

We are not aware of a simple derivation of this fact or of the coefficients (md |m̃d). We

note, however, that this identity is required for existence of certain weight-shifting operators

in vector representation. The coefficients (md |m̃d) are given by the following formulas

(m2n |m2n(±i)) = n∓ x2n,i − 1, (B.24)

(m2n+1 |m2n+1(±i)) = n∓ x2n,i − δ±+, (B.25)

(m2n+1 |m2n+1) = n. (B.26)

We found these formulas by considering a few low-dimensional cases and guessing the

general result, which was then verified on a large set of representations in various

dimensions. In terms of md,k these coefficients can be rewritten as

(md |md(+i)) = −md,i + i− 1, (B.27)

(md |md(−i)) = md,i + d− i− 1, (B.28)

(m2n+1 |m2n+1) = n. (B.29)

C Scalar-fermion blocks in various dimensions

C.1 Comparison in 2 dimensions

Interestingly, the formulas for scalar-fermion seed blocks in section 4.4 also work in the

case n = 1, i.e. d = 2. We have the following identity,

sDeθM12 = (seiθ)
D−iM12

2 (se−iθ)
D+iM12

2 , (C.1)

and so if we define

L0 =
D − iM12

2
, L−1 =

P1 − iP2

2
, L+1 =

K1 + iK2

2
, (C.2)

L̄0 =
D + iM12

2
, L̄−1 =

P1 + iP2

2
, L̄+1 =

K1 − iK2

2
, (C.3)

we find that the conformal block in the form (3.5) is given by

〈0|Om4

4 Om3

3 |O|zL0 z̄L̄0Om2

2 Om1

1 |0〉. (C.4)

The algebras (C.2) and (C.3) satisfy the usual commutation relations

[Lm, Ln] = (m− n)Lm+n, (C.5)

[L̄m, L̄n] = (m− n)L̄m+n. (C.6)
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The configuration considered in section 4.4 is m2 = −m4 =
1
2 and m1 = m3 = 0. This

corresponds to holomorphic and anti-holomorphic dimensions

h1 =
1

2
∆1, h2 =

1

2
∆2 −

1

4
, h3 =

1

2
∆3, h4 =

1

2
∆4 +

1

4
, (C.7)

h̄1 =
1

2
∆1, h̄2 =

1

2
∆2 +

1

4
, h̄3 =

1

2
∆3, h̄4 =

1

2
∆4 −

1

4
, (C.8)

while the intermediate representation j± corresponds to hO = 1
2∆O ∓ 1

2j and h̄O = 1
2∆O ±

1
2j. The conformal block for exchange of j± is equal to the usual expression

zhO
2F1(hO − h12, hO + h34; 2hO; z)× z̄h̄O

2F1(h̄O − h̄12, h̄O + h̄34; 2h̄O; z̄). (C.9)

It is straightforward to expand this expression in power series in s and check that it is

consistent with the recursion relation (4.114).

C.2 Comparison in 3 dimensions

To perform the comparison with the known 3d results, we first need to relate the GT basis

to the standard basis for 3d fermions. There is a unique fermionic representation in 3d,

m3 = (12), with the allowed GT patterns

M3,± =

(
1

2

)
,

(
±1

2

)
, (C.10)

consistently with the representation being two-dimensional. For 3d spinors we use the

conventions as in [73, 80, 81], and we will be comparing with the scalar-fermion blocks in

the form of [80]. These papers use Lorentz signature and thus we need to perform Wick

rotation by defining

Mµν = −iδµ,0+δν,0Mµν
L , (C.11)

where Mµν
L are the Lorentz generators from [80]. We also added a (−) due to the difference

in conventions for conformal algebra. Furthermore, we need to relabel the indices by

defining

1here = 2there, 2here = 0there, 3here = 1there. (C.12)

This is required because of the way the conformal frame is defined in [80]. Using the explicit

expression for the Lorentz generators and the correspondence above, we can identify

O1 = OM3,− , O2 = iOM3,+ . (C.13)

Contracting the structures (3.39) with polarization vectors sα as in [80], we find
[

0, 0
1
2 ,m4

∣∣∣ 0

+1
2

+1
2

0

∣∣∣
1
2 ,m1

0, 0

]
→ −ξ̄4ξ̄1 = −

[
−1

2
, 0, 0,−1

2

]
, (C.14)

[
0, 0
1
2 ,m4

∣∣∣ 0

+1
2

−1
2

0

∣∣∣
1
2 ,m1

0, 0

]
→ iξ̄4ξ1 = i

[
1

2
, 0, 0,−1

2

]
, (C.15)

[
0, 0
1
2 ,m4

∣∣∣ 0

−1
2

+1
2

0

∣∣∣
1
2 ,m1

0, 0

]
→ iξ̄1ξ4 = i

[
−1

2
, 0, 0,

1

2

]
, (C.16)

[
0, 0
1
2 ,m4

∣∣∣ 0

−1
2

−1
2

0

∣∣∣
1
2 ,m1

0, 0

]
→ ξ4ξ1 =

[
1

2
, 0, 0,

1

2

]
, (C.17)
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where the right hand side is in the notation of [80]. The results (for parity-even components)

of [80] are given in the form

〈0|ψ4(∞,s4)φ3(1)|O|φ2(z,z̄)ψ1(0,s1)|0〉=
1

2
g1(z,z̄)

[
−1

2
,0,0,−1

2

]
+
1

2
g2(z,z̄)

[
1

2
,0,0,−1

2

]
+

+
1

2
g2(z,z̄)

[
−1

2
,0,0,

1

2

]
+
1

2
g1(z,z̄)

[
1

2
,0,0,

1

2

]
. (C.18)

This implies that

s−∆1−∆2〈0|ψ4φ3|O|sDeθM12φ2ψ1|0〉=
1

2

(
cos

θ

2
g1(z,z̄)+isin

θ

2
g2(z,z̄)

)[
−1

2
,0,0,−1

2

]
+

+
1

2

(
cos

θ

2
g2(z,z̄)+isin

θ

2
g1(z,z̄)

)[
1

2
,0,0,−1

2

]
+

+
1

2

(
cos

θ

2
g2(z,z̄)+isin

θ

2
g1(z,z̄)

)[
−1

2
,0,0,

1

2

]
+

+
1

2

(
cos

θ

2
g1(z,z̄)+isin

θ

2
g2(z,z̄)

)[
1

2
,0,0,

1

2

]
. (C.19)

Using this result, we can compute the expansion (4.88) in terms of functions g1 and

g2. These functions are conveniently computed by acting with the differential operators

of [80] on the scalar conformal block obtained from the recursion relation (4.7).51 We have

checked that the resulting expansion is consistent with the recursion relation which follows

from (4.90)–(4.95) at the first few levels for various choices of jO.

C.3 Comparison in 4 dimensions

To perform the comparison with the known 4d results, we first need to relate the GT basis to

the standard basis for Weyl fermions. We are considering the two fermionic representations

m±
4 = (12 ,±1

2). The allowed GT patterns are

M
±
4,+ =

(
1

2
,±1

2

)
,

(
1

2

)
,

(
+
1

2

)
, (C.20)

M
±
4,− =

(
1

2
,±1

2

)
,

(
1

2

)
,

(
−1

2

)
, (C.21)

consistently with the representations being two-dimensional. For 4d Weyl spinors, we will

use the conventions of [94]. We need to make a few adaptations from conventions there to

the present conventions. First, we need to perform Wick rotation by defining

Mµν = −iδµ,0+δν,0Mµν
L , (C.22)

where ML are the Lorentz generators of [94]. We also added a (−) due to the difference in

conventions for conformal algebra. Furthermore, we need to relabel the indices by defining

1here = 3there, 2here = 0there, 3here = 1there, 4here = 2there. (C.23)

This is required because of the way the conformal frame is defined in [94].

51Alternatively, one can use Zamolodchikov-type recursion relations of [73].
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Comparing the transformation properties of |M±
4,±〉 and the operators Oα̇ and Oα, we

find that we can set

O1 = OM
+
4,− , O2 = −iOM

+
4,+ , (C.24)

O1̇ = OM
−
4,− , O2̇ = +iOM

−
4,+ . (C.25)

According to (3.50) we find the following non-zero components of tensor structures (3.58)

[
•

M
−
4,−

∣∣∣ •
(12)

(
1

2

) ∣∣∣
(
+
1

2

) ∣∣∣
(
1

2

) •
(12)

∣∣∣ •
M

+
4,+

]
=

−i√
2
, (C.26)

[
•

M
−
4,+

∣∣∣ •
(12)

(
1

2

) ∣∣∣
(
−1

2

) ∣∣∣
(
1

2

) •
(12)

∣∣∣ •
M

+
4,−

]
=

i√
2
. (C.27)

Contracting with polarization vectors as in [94], we find

t+ = +
ξ2ξ̄4√

2
= +

1√
2

[
0 −1

2 0 0

0 0 0 −1
2

]
, t− = −η2η̄2√

2
= − 1√

2

[
0 +1

2 0 0

0 0 0 +1
2

]
. (C.28)

Using this correspondence, we can find that the primal conformal block has the form

〈0|ψ4φ3|O|sDeθM12ψ2φ1|0〉 = −
√
2

(
2
√
zH0

1 (z, z̄) +
1√
z̄
H1

1 (z, z̄)

)
t+

−
√
2

(
2
√
z̄H0

1 (z, z̄) +
1√
z
H1

1 (z, z̄)

)
t−. (C.29)

In our terminology it corresponds to exchange of a primary in representation (ℓ + 1
2 ,

1
2)

with ℓ as in [94]. Using explicit expressions for functions H [74] in normalization of [94],

we can check that the leading term in s = |z| coincides with (4.118) and (3.93) with

Λ0,jO =

(
−i (ℓ+2)(−1)ℓ√

2

0

)
. (C.30)

We can then use the recursion relation (4.114) to compute higher order coefficients and

plug them into the expansion (4.118). We can compute the same expansion by plugging

the explicit expressions for functions H into (C.29) using CFTs4D package from [94]. We

checked that both expansion coincide at the first few levels.

D Gelfand-Tsetlin bases for tensor representations

To gain some familiarity with GT bases in general dimensions, let us consider how it is

related to the usual Cartesian bases for tensor representations. For simplicity of discussion,

we avoid dealing with self-duality constraints. This restricts us to the representations md

with md,k = 0 for k ≥ d/2, i.e. to Young diagrams with less than d/2 rows. In particular,

we will only consider the GT patters in which all representations are of this kind.52

52The same general approach works even without these assumptions, and the details are not hard to

recover.
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e1 e1

e1

e1

Figure 2. The relationship between Young diagrams of md and md−1. The boxes which belong

to md−1 are shaded.

Our goal is for a given GT pattern Md to find the explicit tensor T
µ1...µ|md|

Md
which gives

the corresponding basis element |Md〉, up to a multiplicative factor. We do this recursively,

by explicitly constructing the dimensional induction map

Imd
md−1

: Vmd−1
→ Vmd

, md−1 ∈ md (D.1)

which is defined, up to normalization, by the requirement that it is Spin(d−1)-equivariant

and non-trivial. By irreducibility of md−1 it follows that I establishes an isomorphism

between Vmd−1
and the subspace in Vmd

which transforms according tomd−1 under Spin(d−
1). Since dimensional reduction is multiplicity-free, this subspace is uniquely determined.

It then immediately follows from the definition of GT basis that the following relation-

ship between GT basis vectors holds,

|md,md−1,md−2, . . .〉 ∝ Imd
md−1

|md−1,md−2, . . .〉. (D.2)

In particular, if md−k = • is the trivial representation, we find

|md,md−1,md−2, . . .〉 ∝ Imd
md−1

I
md−1
md−2

I
md−2
md−3

. . . I
md−k+1
md−k

1. (D.3)

To construct Imd
md−1

explicitly, start with a general U
µ1...µ|md−1| ∈ Vmd−1

. For conve-

nience we assume that the indices of U run from 2 to d.53 We first extend the definition of

U to allow its indices to assume the value 1 by setting U
µ1...µ|md−1| = 0 whenever at least

one of µi = 1. We then define

T ′µ1...µ|md| = U
µ1...µ|md−1|e

µ|md−1|+1

1 · · · eµ|md|

1 − traces. (D.4)

A generic relationship between the Young diagrams md and md−1 is shown in figure 2. We

can associate the indices of e1 in (D.4) to the unshaded boxes in figure 2 and apply to T ′

the Young symmetrizer Ymd
corresponding to md to define

Imd
md−1

U ≡ Ymd
T ′. (D.5)

Note that it is guaranteed by the dimensional reduction rules from section 2.1 that no two

indices of e1 land in the same column of md.

As explained above, this map allows us to reconstruct Gelfand-Tsetlin basis vectors

up to a phase. Let us look at some examples. First, consider the GT basis vector

| · · · , •, . . .〉. (D.6)

53Recall that by our choice of Spin(d− 1) ⊂ Spin(d), Spin(d− 1) stabilizes e1.
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From (D.3) we find

| · · · , •, . . .〉 ∝ I ···
• 1 = eµ1

1 · · · eµj

1 − traces. (D.7)

This reproduces the result of section 3.7.5.

As a more complicated example, consider

| · · · , , •, . . .〉. (D.8)

From (D.3) we find

| · · · , , •, . . .〉 ∝ I ··· | , •, . . .〉

∝ I ··· eµ1

2 = e
(µ1

2 eµ2

1 · · · eµj)
1 − traces. (D.9)

Similarly, we can find that

| · · · , , , •, . . .〉 ∝ e
(µ1

3 eµ2

1 · · · eµj)
1 − traces, (D.10)

and so on. In the case j = 1 this reproduces the results of section 2.2.2 for vector repre-

sentation.

Consider now the simplest non-STT example,

| · · · , , •, . . .〉. (D.11)

Note that is the simplest representation to which · · · can reduce. This differs

from (D.9) only in the Young symmetrizer,

| · · · , , •, . . .〉 ∝ Y · · · (eν2e
µ1

1 · · · eµj

1 − traces) =

=
1

2
eν2e

(µ1

1 eµ2

1 · · · eµj)
1 − 1

2
eν1e

(µ1

2 eµ2

1 · · · eµj)
1 − traces. (D.12)

Similarly,

| · · · , , , •, . . .〉 ∝ 1

2
eν3e

(µ1

1 eµ2

1 · · · eµj)
1 − 1

2
eν1e

(µ1

3 eµ2

1 · · · eµj)
1 − traces, (D.13)

and so on.

It is important that we perform trace subtraction and Young symmetrization in all

steps of dimensional induction. Consider for example the state

| , , •, . . .〉. (D.14)

We have first in d− 1 dimensions

| , •, . . .〉 ∝ eµ1

2 eµ2

2 − 1

d− 1
δµ1µ2 , (D.15)

and when we lift it to d dimensions, we have agreed to set the new entries of this tensor to

0, which in this case amounts to replacing

δµ1µ2 → δ̃µ1ν1 ≡ δµ1µ2 − eµ1

1 eµ2

1 , (D.16)
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so that indeed δ̃1µ2 = 0. We thus have54

| , , •, . . .〉 ∝ Y

(
eµ1

2 eµ2

2 − 1

d− 1
(δµ1µ2 − eµ1

1 eµ2

1 )

)
eµ3

1 . (D.17)

Clearly, if we didn’t take care with δ̃, or had postponed trace subtraction to d dimensions,

we would have never obtained a term eµ1

1 eµ2

1 eµ3

1 . These choices would be wrong since for

µ1 = µ2 = µ3 = 1 they would reduce to a non-zero constant and thus their dimensional

reduction has a component along the trivial representation of Spin(d − 1). On the other

hand, (D.17) is non-zero iff only one of µi is set to 1, in which case it reduces to , as

required.

Similarly, care should be taken with compositions of Young symmetrizers between

dimensions. Consider the state

| , , , •, . . .〉. (D.18)

We have successively

| , •, . . .〉 ∝ eµ1

3 , (D.19)

| , , •, . . .〉 ∝ e
(µ1

2 e
µ2)
3 , (D.20)

| , , , •, . . .〉 ∝ 1

2
eν1e

(µ1

2 e
µ2)
3 − 1

4

(
eµ1

1 e
(ν
2 e

µ2)
3 + eµ2

1 e
(ν
2 e

µ1)
3

)
. (D.21)

Here we have applied Young symmetrizer both in (D.20) and (D.21). Had we only applied

the d-dimensional symmetrizer, we would find

| , , , •, . . .〉 ∝ 1

2
eν1e

(µ1

2 e
µ2)
3 − 1

4
(eµ1

1 eν2e
µ2

3 + eµ2

1 eν2e
µ1

3 ) . (D.22)

It is easy to see that (D.22) is wrong: setting µ2 = 1 we obtain −1
2e

ν
2e

µ1

3 , which is a tensor

with no definite symmetry. On contrary, setting µ2 = 1 in (D.21), we find −1
2e

(ν
2 e

µ1)
3 which

belongs to as required. We thus see that the symmetrizers from different dimensions

interact non-trivially to ensure that the dimensional reductions are irreducible.

We have so far avoided the question of normalization of the tensors TMd
. Up to a

phase it is determined by the requirement that GT vectors have unit length. This is

straightforward to implement on the tensor side. Sometimes we would like to know the

normalization factor as a function of the length of the first row j — this is perhaps most

easily implemented using the irreducible projectors as we explain below. The phases can

be chosen based on convenience,55 unless one wants to make contact with the GT formulas

in appendix B. We have not attempted to find the general prescription which would match

the phase conventions of these formulas.

54This object is automatically traceless in d dimensions so we don’t have to subtract d-dimensional traces.
55Of course, for every GT pattern this choice should be made once and for all in order to have consistent

expressions.
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D.1 P -functions

In this section we relate P
md,md−2

md−1,m
′
d−1

(θ) in tensor representations to the irreducible projec-

tors studied in [76].

We start by utilizing the tensor representation of GT basis vectors in the definition of P ,

P
md,md−2

md−1,m
′
d−1

(θ) ≡ 〈md,md−1,md−2, . . . |eθM12 |md,m
′
d−1,md−2, . . .〉

= T
µ1...µ|md|

Md
(eθM12)µ1...µ|md|

,ν1...ν|md|
T
ν1...ν|md|

M′
d

= T
µ1...µ|md|

Md
T
µ1...µ|md|

M′
d

(θ), (D.23)

where TM′
d
(θ) is equal to TM′

d
in which all occurrences of e1 and e2 have been replaced with

e1(θ) = eθM12e1 = cos θe1 + sin θe2, (D.24)

e2(θ) = eθM12e2 = − sin θe1 + cos θe2. (D.25)

Note that in the first line of (D.23) . . . represent the same sequence in both vectors, which

can be chosen arbitrarily. For example, if md−2 is STT, we can choose all representations

in . . . to be trivial. We have also assumed that we had chosen the tensors TMd
to be real

for all relevant Md.
56

We can further trivially rewrite the last line of (D.23) as

T
µ1...µ|md|

Md
T
µ1...µ|md|

M′
d

(θ) = T
µ1...µ|md|

Md
µ1...µ|md|

πν1...ν|md|
T
ν1...ν|md|

M′
d

(θ) = TMd
· π · TM′

d
, (D.26)

where µ1...µ|md|
πν1...ν|md|

is the projector onto the irreducible representation md. From our

construction of tensors TMd
we know that we can write TMd

in terms of the basis vectors

ei and Kronecker deltas δµiµj
. We can thus write

TMd
= T

(e)
Md

+ terms containing δµiµj , (D.27)

TM′
d
= T

(e)
M′

d

+ terms containing δµiµj . (D.28)

We then conclude

P
md,md−2

md−1,m
′
d−1

(θ) = T
(e)
Md

· π · T (e)
M′

d

(θ). (D.29)

Note that it is easy to compute T
(e)
Md

for generic md,1, because we do not need to explicitly

remove traces in the last step of dimensional induction, while the number of indices in the

preceding steps is independent from md,1.

Furthermore, the right hand side of (D.29) contains the irreducible projector π con-

tracted with a bunch of vectors (basis vectors ei or e1(θ), e2(θ)) on both sides. These are

precisely the contractions studied recently in [76]. Given their results, we then obtain a

simple algorithm for computation of P -functions. It is best illustrated in examples.

56This might not be possible it the GT patterns do not satisfy the assumptions discussed in the beginning

of this appendix. In that case one needs to add some complex conjugations in the formulas.
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Matrix element P
md,•

•,•
(θ). We start with the simplest example,

Pmd,••,• (θ). (D.30)

Since in this case md−1 = •, we necessarily have md = j is a traceless-symmetric tensor

representation. Recall from (D.7) that

T
µ1...µj

j,•,... = Nj

(
eµ1

1 . . . e
µj

1 − traces
)
, (D.31)

where we also introduced the normalization factor Nj . We thus conclude

T
(e),µ1...µj

j,•,... = Nje
µ1

1 . . . e
µj

1 , (D.32)

T
(e),µ1...µj

j,•,... (θ) = Nje
µ1

1 (θ) . . . e
µj

1 (θ). (D.33)

The results of [76] are formulated in the following way. They define the function

πj(z1, z̄1) = zµ1

1 . . . z
µj

1 µ1...µj
πν1...νj z̄

µ1

1 . . . z̄
µj

1 , (D.34)

where π is the projector on traceless-symmetric spin-j representation. This function com-

pletely encodes the projector since the components can be recovered by taking repeated

derivatives in z1 and z̄1.
57 It is then can be shown that

πj(z1, z̄1) =
j!

2j(ν)j
|z1|j |z̄1|jC(ν)

j

(
z1 · z̄1
|z1||z̄1|

)
, (D.35)

where ν = d−2
2 . We then immediately find that

P j,•
•,•(θ) = T

(e)
j,•,... · π · T (e)

j,•,...(θ)

= N2
j π(z1, z̄1)

∣∣∣
z1=e1, z̄1=e1(θ)

= N2
j

j!

2j(ν)j
|e1|j |e1(θ)|jC(ν)

j

(
e1 · e1(θ)
|e1||e1(θ)|

)

=
N2

j j!

2j(ν)j
C

(ν)
j (cos θ). (D.36)

Note that the normalization condition for |j, •, . . .〉 is equivalent to P j,•
•,•(0) = 1, and thus

using

C
(ν)
j (1) =

(2ν)j
j!

. (D.37)

we find

1 =
N2

j j!

2j(ν)j
C

(ν)
j (1) = N2

j

(2ν)j
2j(ν)j

, (D.38)

from where we conclude that58

Nj =

√
2j(ν)j
(2ν)j

, (D.39)

while

P j,•
•,•(θ) =

j!

(2ν)j
C

(ν)
j (cos θ). (D.40)

57Note that we do not require z1 · z1 = 0.
58Here we essentially make a choice of phase for |j, •, . . .〉.

– 72 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
1

Matrix element P
j,•

,

(θ)

We now consider the matrix elements

Pmd,•
, (θ). (D.41)

Note that now both md−1 and m′
d−1 are equal to and thus md can be either a traceless-

symmetric tensor j or a hook diagram (j, ).

We start from the traceless-symmetric case and will return to the hook exchange later.

From (D.9) we find

T
(e),µ1,...,µj

j, ,•,... = Nj, e
(µ1

2 eµ2

1 · · · eµj)
1 , (D.42)

T
(e),µ1,...,µj

j, ,•,... (θ) = Nj, e
(µ1

2 (θ)eµ2

1 (θ) · · · eµj)
1 (θ). (D.43)

We then find

P j,•
, (θ) = T

(e)
j, ,•,... · π · T (e)

j, ,•,...(θ)

=
1

j2
N2

j, (e2 · ∂z1)(e2(θ) · ∂z̄1)π(z1, z̄1)
∣∣∣
z1=e1, z̄1=e1(θ)

=
N2

j, j!

j22j(ν)j

(
cos θ∂C

(ν)
j (cos θ)− sin2 θ∂2C

(ν)
j (cos θ)

)

= −
N2

j, j!

j22j(ν)j
∂2
θC

(ν)
j (cos θ). (D.44)

Again, we have the normalization condition P j,•
, (1) = 1. To solve for Nj, , we need to

know ∂C
(ν)
j (1), which can be computed using the identity

∂xC
(ν)
j (x) = 2ν C

(ν+1)
j−1 (x). (D.45)

We thus find
N2

j, j!

j22j(ν)j

2ν(2ν + 2)j−1

(j − 1)!
= 1, (D.46)

and therefore (adding a phase for future convenience)

Nj, = −
√

2jj(ν)j
2ν(2ν + 2)j−1

, (D.47)

P j,•
, (θ) = − (j − 1)!

2ν(2ν + 2)j−1
∂2
θC

(ν)
j (cos θ). (D.48)

Matrix elements P
md,•

,•
(θ) and P

md,•

•,
(θ)

Having determined the normalization factors Nj and Nj, , we can now address the matrix

elements

Pmd,•
,• (θ), Pmd,•

•, (θ), (D.49)
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which are not subject to a simple normalization condition at θ = 0. In particular, their

phases are convention-dependent. We have

Pmd,•
,• (θ) = T

(e)
j, ,•,... · π · T (e)

j,•,...(θ)

= NjNj, j−1(e2 · ∂z1)πj(z1, z̄1)
∣∣∣
z1=e1,z̄1=e1(θ)

= − 2νj!

(2ν)j

√
2ν + 1

j(2ν + j)
sin θ C

(ν+1)
j−1 (cos θ). (D.50)

An analogous calculation shows that

Pmd,•
•, (θ) =

2νj!

(2ν)j

√
2ν + 1

j(2ν + j)
sin θ C

(ν+1)
j−1 (cos θ) =

(
Pmd,•

,• (−θ)
)∗

, (D.51)

consistently with (3.70). One can check in explicit examples that these results coincide

with the direct exponentiation of M12, providing a non-trivial check of the formalism and

normalization factors.

Matrix element P
(j, ),•

,

(θ)

Consider now the case of the hook exchange md = (j, ) in (D.41). We are now dealing

with a new type of representations. Correspondingly, in [76] the following function is defined

π(j,1)(z1, z2, z̄1, z̄2) = zν2z
µ1

1 · · · zµj

1 ν,µ1...µj
πν̄,µ̄1...µ̄j

z̄ν̄2 z̄
µ̄1

1 · · · z̄µ̄j

1 . (D.52)

The expression for the full projector is somewhat complicated, so we do not reproduce

it here. In practice, we used the Mathematica code supplied with [76] to perform the

calculations with these projectors.

From equation (D.12) we find

T
(e),ν,µ1,...,µj

(j, ), ,•,... = N(j, ),

[
eν1e

(µ1

2 eµ2

1 · · · eµj)
1 − eν2e

(µ1

1 eµ2

1 · · · eµj)
1

]
, (D.53)

T
(e),ν,µ1,...,µj

(j, ), ,•,... (θ) = N(j, ),

[
eν1(θ)e

(µ1

2 (θ)eµ2

1 (θ) · · · eµj)
1 (θ)

− eν2(θ)e
(µ1

1 (θ)eµ2

1 (θ) · · · eµj)
1 (θ)

]
. (D.54)

This implies

N−2
(j, ), T

(e)
(j, ), ,•,... ·π ·T

(e)
(j, ), ,•,...(θ)=j−2(e2 ·∂z1)(e2(θ)·∂z̄1)π(j,1)(e1,e1,e1(θ),e1(θ))

−j−1(e2 ·∂z1)π(j,1)(e1,e1,e1(θ),e2(θ))
−j−1(e2(θ)·∂z̄1)π(j,1)(e1,e2,e1(θ),e1(θ))
+π(j,1)(e1,e2,e1(θ),e2(θ)), (D.55)

where the values of the arguments of π(j,1)(z1, z2, z̄1, z̄2) should be substituted after taking

the derivatives. Using the explicit form of the projector [76], and using the normalization
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condition P
(j, ),•

, (0) = 1, we find

N(j, ), =

√
2jj(d+ j − 3)(ν)j

2ν2(j + 1)2(2ν + 2)j−1
, (D.56)

P
(j, ),•

, (θ) =
(j − 1)!

(2ν + 2)j−1
C

(ν+1)
j−1 (cos θ). (D.57)
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