
J
H
E
P
0
2
(
2
0
1
8
)
0
0
9

Published for SISSA by Springer

Received: September 27, 2017

Revised: December 20, 2017

Accepted: January 12, 2018

Published: February 1, 2018

Entanglement entropy of singular surfaces under

relevant deformations in holography

Mostafa Ghasemi and Shahrokh Parvizi

Department of Physics, School of Sciences, Tarbiat Modares University,

P.O.Box 14155-4838, Tehran, Iran

E-mail: m.ghasemi.g@modares.ac.ir, parvizi@modares.ac.ir

Abstract: In the vacuum state of a CFT, the entanglement entropy of singular surfaces

contains a logarithmic universal term which is only due to the singularity of the entangling

surface. We consider the relevant perturbation of a three dimensional CFT for singular

entangling surface. We observe that in addition to the universal term due to the entangling

surface, there is a new logarithmic term which corresponds to a relevant perturbation of

the conformal field theory with a coefficient depending on the scaling dimension of the

relevant operator. We also find a new power law divergence in the holographic entanglement

entropy. In addition, we study the effect of a relevant perturbation in the Gauss-Bonnet

gravity for a singular entangling surface. Again a logarithmic term shows up. This new

term is proportional to both the dimension of the relevant operator and the Gauss-Bonnet

coupling. We also introduce the renormalized entanglement entropy for a kink region which

in the UV limit reduces to a universal positive finite term.

Keywords: AdS-CFT Correspondence, Conformal Field Theory

ArXiv ePrint: 1709.08169

1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2018)009

mailto:m.ghasemi.g@modares.ac.ir
mailto:parvizi@modares.ac.ir
https://arxiv.org/abs/1709.08169
https://doi.org/10.1007/JHEP02(2018)009


J
H
E
P
0
2
(
2
0
1
8
)
0
0
9

Contents

1 Introduction 1

2 Relevant perturbations in holographic framework 3

3 Holographic entanglement entropy of kink 4

3.1 The entanglement in pure AdS 4

3.2 Minimal surface in the asymptotic AdS 6

4 Gauss-Bonnet gravity 10

4.1 Pure AdS 10

4.2 Asymptotic AdS 11

5 The renormalized entanglement entropy 18

6 Discussion 22

A Evaluation of the boundary term 24

B Calculation of EE for special values of ∆ 25

1 Introduction

Entanglement entropy is one of the important measures of entanglement feature in quantum

systems which emerges in diverse research area [1–13]. In the context of quantum field

theory, the entanglement entropy of a sub region A is defined as Von Neumann entropy

of reduced density matrix ρA, i.e., S = −Tr(ρAlogρA). The reduced density matrix is

in turn defined by tracing over the degrees of freedom of complementary region Ā of A,

ρA = TrĀ(ρ). In general, the entanglement entropy suffers from the UV divergence due

to the short range correlation across the so-called entangling surface, the boundary of two

regions. So in order to have a well-defined quantity it must be regularized.

In the vacuum of a (2 + 1)- dimensional CFT, the entanglement entropy for a smooth

entangling surface takes the following form

SEE = a
lΣ
δ
− F, (1.1)

where lΣ is the length of the entangling surface, δ is a UV cut-off, and a is a constant

depending on the details of the underlying theory. The leading term exhibits the “area

law” [14, 15] and the second term F is a universal term independent of the regularization

scheme. In the special case, when entangling surface is a circle of radius R, F is related to
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the renormalized Euclidean partition function Z of the CFT on the three dimensional sphere

S3, F = −log|Z| [16]. The F term actually appears in a constraint by an F -theorem [17, 18],

which states that in a unitary quantum field theory, F is positive, stationary at fixed points,

and monotonically decreases along an RG flow between UV and IR fixed points, FUV >

FIR. In the holography context it was addressed in [19]. The proof of its positivity and

monotonicity relies on the renormalized entanglement entropy [20, 21], that is defined as

F(R) = R∂RS(R)− S(R), (1.2)

where R is the length scale of the entangling surface. We will come back to this point in

section 5.

In 3 dimensional CFT, when there is a singularity in the entangling surface, the en-

tanglement entropy contains an additional singular term which is universal

SEE = β
H

δ
− a(Ω) log

(
H

δ

)
+O(1), (1.3)

where Ω is the opening angle, β is a non-universal constant, and H denotes the size of the

entangling surface. a(Ω) is a coefficient of the new logarithmic term that appears due to

the corner shape of the entangling surface and gives the universal part of the EE. It is a

positive convex function that satisfies some properties (for details see [22–28]).

We note that similar universal logarithmic terms appear in conformal field theories in

other dimensions, logarithmic terms in even dimensions [11, 29–31], and double logarithmic

terms in singular entangling surfaces in higher dimensions [32, 33].

On the other hand, there are several studies on the relevant perturbation of conformal

field theories [20, 34–40]. It is known that a universal logarithmic term shows up in the en-

tanglement entropy when a CFT is perturbed by a relevant operator. From the holographic

point of view, the relevant perturbation corresponds to including a massive scalar field in

the bulk which can deform the background from a pure AdS space to an asymptotically

AdS. The deviation depends on the scaling dimension of the relevant operator. It has

been shown in [35] that in the first order of perturbation only for dimension ∆ = (d+ 2)/2

the SEE receives a universal logarithmic term proportional to the scaling parameter. The

same result can be found by the field theoretic calculations in [34, 36–38]. In this work, we

raise the question that how the effects of corner singularity and the relevant perturbation

may get mixed up. In the frame work of holography, we consider a 3 dimensional CFT

on the boundary of an asymptotically AdS space which is perturbed by a massive scalar

field. We take a singular entangling surface and derive the entanglement entropy by the

Ryu-Takayanagi prescription [10, 11]. The results show that we recover two independent

universal logarithmic terms: one for the corner contribution to SEE and the other due to

the relevant perturbation exactly for dimension ∆ = (d+ 2)/2.

In the holographic frame work, it is important to study the higher curvature gravities

where, in contrast to the Einstein gravity, usually new features appear. A minimal higher

curvature modification would include addition of the Gauss-Bonnet (GB) term. In 4 di-

mensions, this term is topological and does not contribute to the equation of motion. We

therefore expect to have the same background. However, we know that the Ryu-Takayanagi
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prescription is modified in the presence of the GB term. In the presence of a singular en-

tangling surface, it has been shown in [27] that there is no contribution of GB modification

to the universal term in SEE . We investigate this case in the presence of the relevant

perturbation of the CFT and show that indeed there is a universal term proportional to

the GB coupling and the scaling parameter exactly at ∆ = (d+ 2)/2.

This paper is organized as follows. In section 2, we review the holographic view to

the relevant perturbation of a CFT. In section 3, first we briefly review the holographic

entanglement entropy of a kink in an AdS background, then we derive the Ryu-Takayanagi

minimal surface in the perturbed asymptotic AdS background. In section 4, we add the

Gauss-Bonnet term and find out the entanglement entropy by plugging the minimal surface

into the modified Ryu-Takayanagi formula. In section 5, we introduce renormalized version

of the entanglement entropy. Results are discussed in section 6.

2 Relevant perturbations in holographic framework

In this section we review the relevant perturbation of a conformal field theory in three

dimensions in the AdS/CFT context [35, 41, 42]. We consider the CFT perturbed by a

relevant operator O(x) of scaling dimension ∆,

ICFT → I = ICFT + λ

∫
d3xO(x), (2.1)

where λ is the coupling constant of the relevant operator O(x) and ∆ < 3. By the holo-

graphic prescription, this relevant perturbation is described by turning on the scalar degrees

of freedom in the bulk in which we have Einstein gravity coupled to a massive scalar field,

I =
1

16πGN

∫
d4x
√
G

[
R− 6

L2

]
− 1

2

∫
d4x
√
G
[
(∂Φ)2 +M2Φ2

]
. (2.2)

The relevant operator has a weak effect on the UV regime while it strongly affects

the IR regime. In the holographic context, then the bulk geometry is asymptotically AdS

in the presence of the relevant operator. The metric of an asymptotically AdS4 can be

taken as

ds2 =
L2

z2

(
−dt2 + dρ2 + ρ2dθ2 +

dz2

f(z)

)
, (2.3)

where f(z) → 1 as z → 0 and thus encodes the deviation from AdS spacetime. By the

AdS/CFT prescription, the mass M of the scalar field and the scaling dimension ∆ of the

relevant operator are related by

∆± =
3

2
±
√

9

4
+ML2. (2.4)

Near the boundary, the asymptotic expansion of the scalar field takes the form

Φ(z, x)→ z∆−
[
Φ(0) + · · ·

]
+ z∆+

[
Φ(∆− 3

2) + · · ·
]

(2.5)

The interpretation of ∆± depends on the range of the scalar field mass or equivalently the

conformal dimensions of the relevant operator. In the standard quantization, the range of
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scaling dimension of relevant operator is 3/2 < ∆ < 3, and we choose ∆ to be ∆+. In this

range, we regard Φ0 and Φ(∆−3/2), respectively, as the source of the coupling λ and vacuum

expectation value of the operator 〈O〉. On the other hand, for the alternative quantization

of 1/2 < ∆ < 3/2 we have ∆ = ∆−, and in this range Φ(∆−3/2) is identified with λ while

Φ0 with 〈O〉. When ∆ = 3/2, we should replace z∆− with z∆− log z in (2.5).

In order to take into account the back-reaction of the scalar field into the background

geometry and finding the f(x), we must solve the Einstein equation and the scalar wave

equation. At all, for a source deformation and near the boundary, f(z) can be expanded as

f(z) = 1 + µ2αz2α + · · · , z → 0 (2.6)

where µ is some mass scale,1 and α is a positive constant where for a source deformation,

we have α = 3 − ∆+ in the standard quantization 3/2 < ∆ < 3, and α = ∆+ in the

alternative quantization 1/2 < ∆ < 3/2. In the case for which ∆ = 3/2, we should replace

µ2αz2α in (2.6) by (µz)3(log(µz))2. We will consider the effect of these terms in EE of a

kink region.

3 Holographic entanglement entropy of kink

In this section, we study the entanglement entropy of a relevant perturbed conformal field

theory in three dimensions where the entangling surface has a kink singularity. First we

review the entanglement entropy of the kink for holographic CFTs dual to Einstein gravity

which was derived in [25]. Then, we focus on the relevant perturbation of those CFTs.

3.1 The entanglement in pure AdS

The kink region in the time slice tE = 0, is parameterized by V = {0 ≤ ρ ≤ H,−Ω/2 ≤
θ ≤ Ω/2}, where H is an IR cut-off.

According to Ryu-Takayanagi (RT) prescription, the holographic entanglement entropy

of a sub-region V on the boundary theory is given by

SEE =
Area(m)

4GN
, (3.1)

where m is the bulk minimal surface which is homologous to V and ∂m matches the en-

tangling surface ∂V on the boundary. The above formula holds in the case that the bulk

physics is described by the Einstein gravity.

We parametrize the bulk minimal surface as ρ = ρ(z, θ). Hence the induced metric on

the bulk minimal surface becomes

ds2 =
L2

z2

((
1 + ρ

′2
)
dz2 + 2ρ′ρ̇dzdθ +

(
ρ̇2 + ρ2

)
dθ2
)
, (3.2)

where L is the AdS curvature scale, ρ̇ = ∂θρ, and ρ′ = ∂zρ. The holographic entanglement

entropy is given by

SEE =
1

4GN

∫
dzdθ

√
γ =

L2

4GN

∫ zm

δ
dz

∫ Ω
2
−ε

−Ω
2

+ε
dθ

1

z2

√
(ρ̇2 + 1)ρ2 + ρ̇2, (3.3)

in which δ is a UV cut-off, ε is an angular cut-off, and zm is defined such that ρ(zm, 0) = H.

1Since the only dimensionful parameter is the coupling λ of the relevant operator, the dimensional

analysis yields µ ∼ λ1/(d−∆) [35, 39].
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Due to the scaling symmetry of the AdS space in the absence of other scale in the

problem, we can choose the following ansatz to parametrize the bulk minimal surface,

ρ =
z

h(θ)
, (3.4)

where h(θ) is defined such that h(θ)→ 0 as θ → ±Ω/2. With this ansatz, the holographic

entanglement entropy becomes

SEE =
L2

2GN

∫ zm

δ

dz

z

∫ Ω
2
−ε

0
dθ

√
1 + h2 + ḣ2

h2
, (3.5)

in which ḣ = ∂θh. By extremizing the above action we can derive the equation of motion

for h(θ) which reads

h
(
1 + h2

)
ḧ+ 2ḣ2 +

(
1 + h2

) (
2 + h2

)
= 0. (3.6)

Since there is no explicit θ dependence in the entropy functional (3.5), there is a conserved

quantity K as

K =
1 + h2

h2

√(
1 + h2 + ḣ2

) =

√
1 + h2

0

h2
0

. (3.7)

where h0 = h(0) and we used ḣ0 ≡ ḣ(0) = 0. In the following we trade the integral over θ

for one over h

SEE =
L2

2GN

∫ zm

δ

dz

z

∫ hc

h0

dh

ḣ

√
1 + h2 + ḣ2

h2
. (3.8)

Now we analyze the divergence of the above entropy functional. Near the boundary,

the integrand in the asymptotic limit behaves as√
1 + h2 + ḣ2

ḣh2
∼ − 1

h2
− 1

2
K2h2 + · · · . (3.9)

Hence we can isolate the divergent part of the integrals in the following way

I =

∫ zm

δ

dz

z

∫ hc

h0

dh

ḣ

√
1 + h2 + ḣ2

h2

=

∫ zm

δ

dz

z

∫ hc

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
+

∫ zm

δ

dz

z

(
1

hc
− 1

h0

)
= I(1) + I(2), (3.10)

in which I(1) and I(2) represent the first and second integrals, respectively. Firstly we

consider I(1). We differentiate it with respect to the UV cut-off δ and look for various
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divergent terms. We find

dI(1)

dδ
=
−1

δ

∫ hc(δ)

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]

=
−1

δ

∫ 0

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
− dhc(δ)

dδ

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
hc=hc(δ)

+ · · ·

=
−1

δ

∫ 0

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
+ · · · . (3.11)

Similarly for I(2),
dI(2)

dδ
= − 1

δhc(δ)
+

1

δh0
= −H

δ2
+

1

δh0
+ · · · , (3.12)

where in the last line we used hc(δ) = δ/H. So we reach to [24]

SEE =
L2

2GN

{
H

δ
+

(
−
∫ 0

h0

dh

(√
1 + h2 + ḣ2

ḣh2
+

1

h2

)
+

1

h0

)
log(δ) + · · ·

}
. (3.13)

We see that there is a logarithmic divergence due to the singularity of the entangling

surface.

3.2 Minimal surface in the asymptotic AdS

In this subsection, we study the holographic entanglement entropy for a kink region in the

asymptotic anti-de Sitter space time background which corresponds to a perturbed CFT.

Recall the metric in (2.3),

ds2 =
L2

z2

(
−dt2 + dρ2 + ρ2dθ2 +

dz2

f(z)

)
. (3.14)

Similar to pure AdS background, we parameterize the bulk minimal surface as ρ = ρ(z, θ).

So the induced metric on the entangling surface in the time slice t = 0 becomes

ds2 =
L2

z2

((
ρ
′2 +

1

f(z)

)
dz2 + 2ρ′ρ̇dzdθ +

(
ρ̇2 + ρ2

)
dθ2

)
, (3.15)

then

γij =

(
L2

z2

(
ρ
′2 + 1

f(z)

)
L2

z2 ρ
′ρ̇

L2

z2 ρ
′ρ̇ L2

z2

(
ρ̇2 + ρ2

) ) , (3.16)

√
γ =

L2

z2

√(
ρ′2 +

1

f(z)

)
ρ2 +

1

f(z)
ρ̇2 . (3.17)

By the RT prescription, the entanglement entropy is derived as

SEE =
1

4GN

∫
dzdθ

√
γ =

L2

4GN

∫
dzdθ

1

z2
√
f

√
(fρ′2 + 1) ρ2 + ρ̇2 . (3.18)
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By extremizing the above action we derive the equation of motion for ρ(z, θ) to be

2fzρ
(
ρ2 + ρ̇2

)
ρ′′ + 2zρ

(
1 + fρ

′2
)
ρ̈− 4fzρρ′ρ̇ρ̇′ + zρρ′

(
ρ2 + ρ̇2

)
f ′

−2z
((

1 + fρ
′2
)
ρ2 + 2ρ̇2

)
− 4fρρ′

((
1 + fρ

′2
)
ρ2 + ρ̇2

)
= 0 (3.19)

where ρ̈ = ∂2
θρ, ρ′′ = ∂2

zρ, and ρ̇′ = ∂θ∂zρ. Now consider the following first order

perturbation

ρ(z, θ) = ρ0 + δρ =
z

h(θ)
+ δfg(θ)z, f = 1 + δf . (3.20)

Plugging it in (3.19), we derive the equations of motion for h(θ) and g(θ)

h
(
1 + h2

)
ḧ+ 2ḣ2 +

(
1 + h2

) (
2 + h2

)
= 0, (3.21)

2h3
(
1 + h2

)
δf g̈ + 4h2ḣ

(
zδf ′ + 2(2 + h2)δf

)
ġ

+2h
[ (
δf ′′z2 + 2zδf ′

) (
h2 + ḣ2

)
+
(
2zδf ′ +

(
3 + h2

)
δf
) (
−ḧh+ 2ḣ2

)
−2
(
zδf ′ + 2δf

) (
2ḣ2 + 2h2 + 3

)
− 2h2

(
2 + h2

)
δf
]
g

+
[(
h2 + ḣ2

)
zδf ′ − 2

(
4 + 3h2 + ḧh+ 2ḣ2

)
δf
]

= 0 (3.22)

Inserting δf(z) = µ2αz2α in (3.22), the equation of motion for g(θ) appears as,

h3
(
1 + h2

)
g̈ + 4h2ḣ

(
α+ 2 + h2

)
ġ + h

[
α(2α+ 1)

(
h2 + ḣ2

)
+
(
4α+ 3 + h2

)(
2ḣ2 − ḧh

)
−4(α+ 1)

(
2ḣ2 + 2h2 + 3

)
− 2h2

(
2 + h2

)]
g +
[
α
(
h2 + ḣ2

)
−
(

4 + 3h2 + ḧh+ 2ḣ2
)]

= 0.

(3.23)

Using the equation of motion for h we can write

h3
(
1 + h2

)
g̈ + 4h2ḣ

(
1 + h2

) (
α+ 2 + h2

)
ġ

+h
[
2α(2α+ 1)

(
1 + h2

)(
h2 + ḣ2

)
+
(
4α+ 3 + h2

)(
2 + h2

)(
2ḣ2 + h2 + 1

)
−4(α+ 1)

(
1 + h2

)(
2ḣ2 + 2h2 + 3

)
− 2h2

(
1 + h2

)(
2 + h2

) ]
g

+
[
α
(
1 + h2

)(
h2 + ḣ2

)
− 2

(
2
(
1 + h2

)2
+ ḣ2h2

)]
= 0 . (3.24)

In order to find the universal term, we must extract the possible logarithmic or power-

ing law divergences from the entanglement entropy. Suppose the deformation is small. By

keeping the first order in the expansion of f(z), and by substituting (3.20) in the entropy

functional (3.18) we get, up to first order, the following perturbed entropy functional,

SEE =
L2

4GN

∫ zm

δ
dz

∫ Ω
2
−ε

−Ω
2

+ε
dθ


√
ρ2

0(1 + ρ
′2
0 ) + ρ̇0

2

z2
−

(
ρ2

0 + ρ̇2
)
δf

2z2
√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2

+
ρ2

0ρ
′
0δρ
′ + ρ0δρ+ ρ

′2
0 ρ0δρ+ ρ̇0δ̇ρ

z2
√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2

 . (3.25)
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Using integration by parts and the equation of motion for ρ0, we find

SEE =
L2

4GN

∫ zm

δ
dz

∫ Ω
2
−ε

−Ω
2

+ε
dθ


√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2

z2
−

(
ρ2

0 + ρ̇2
)
δf

2z2
√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2

+∂θ

 ρ̇0δρ

z2
√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2

+ ∂z

 ρ2
0ρ
′
0δρ

z2
√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2

 . (3.26)

Now by substituting the ansatz ρ(z, θ) = ρ0 + δρ = z/h(θ) + zδfg(θ) in (3.26) we reach to

the following entropy functional,

SEE =
L2

2GN

(
I1 + I2 + I3 + I4

)
, (3.27)

where I1, I2, I3, and I4 are defined as:

I1 =

∫ zm

δ

dz

z

∫ Ω
2
−ε

0
dθ

√
1 + h2 + ḣ2

h2

=

∫ zm

δ

dz

z

∫ hc

h0

dh

√
1 + h2 + ḣ2

ḣh2
, (3.28)

I2 =

∫ zm

δ
dz
δf

2z

∫ Ω
2
−ε

0
dθ
−
(
h2 + ḣ2

)
h2
√

1 + h2 + ḣ2

=

∫ zm

δ
dz
δf

2z

∫ hc

h0

dh
−
(
h2 + ḣ2

)
ḣh2

√
1 + h2 + ḣ2

, (3.29)

I3 =

∫ zm

δ
dz

∫ Ω
2
−ε

0
dθ∂θ

 ρ̇0δρ

z2
√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2


=

∫ zm

δ
dz
δf

z

−ḣg(θ)√
1 + h2 + ḣ2

|θ= Ω
2
−ε , (3.30)

I4 =

∫ zm

δ
dz

∫ Ω
2
−ε

0
dθ∂z

 ρ2
0ρ
′
0δρ

z2
√
ρ2

0

(
1 + ρ

′2
0

)
+ ρ̇0

2


=

∫ zm

δ
dz
(
δf ′
) ∫ hc

h0

dh
g

ḣh
√

1 + h2 + ḣ2
, (3.31)

where we have changed the integration variable to h. We have also defined h0 = h(0),

hc = h(Ω/2− ε), and used ḣ0(0) = 0 in getting boundary terms.

Now in order to single out the logarithmic divergences, we consider each term sepa-

rately. By changing the derivative variable from θ to h and by expressing g̈(θ) = d2g/dθ2

and ġ(θ) = dg/dθ in terms of g′′(h) = d2g/dh2 and g′(h) = dg/dh, we can reach to the
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equation of motion for g(h)

h3
(
1 + h2

)2 (
1 + h2 −K2h4

)
g′′

+h2
(
1 + h2

) (
2
(
1 + h2

) (
2α+ 3 + 2h2

)
−K2h4

(
4α+ 8 + 5h2

))
g′

+h
(

2α(2α+ 1)
((

1 + h2
)2 −K2h4

)
+
(
4α+ 3 + h2

) (
2 + h2

) (
2 + 2h2 −K2h4

)
−4(α+ 1)

(
2
(
1 + h2

)2
+K2h4

)
− 2h2

(
2 + h2

)
K2h4

)
g

+
[(

1 + h2
) (
α+ (α− 2)h2

)
− (α+ 2)K2h4

]
= 0

(3.32)

To extract the logarithmic divergence, we must consider the asymptotic behavior of h and

g. Depending on α we can choose the solutions for this equation such that ρ becomes finite

in the limit h→ 0 and δ → 0. Hence the asymptotic solution turns out to be

g =
b

h2α+1
+

c1

h2α−1
+

c3

h2α−3
+
d1

h
+ d2h+ · · · (3.33)

where b, c’s and d’s are constants, and to avoid duplicated terms in (3.33) we take α 6=
1/2, 1,

c1 =
1

5
(2b+ 5bα− 2bα2)

d1 =
−1

2(3 + 2α)

d2 =
2

(3 + 2α)(5 + 7α+ 2α2)
(3.34)

and so on. Since hc = h(Ω/2− ε) and z = δ, then UV cut-off expansion of hc becomes

hc(δ) = a1δ + a3δ
3 + a5δ

5 + e1δ
2α+1 + e2δ

2α+3 · · · (3.35)

where ai’s and ej ’s are coefficients that depend on α,

a1 =
1

H
+ bµ2αH2α−1

a3 = c1µ
2αH2α−3

a5 = c3µ
2αH2α−5

e1 =
d1

H
µ2α

e2 =
d2

H3
µ2α (3.36)

and so on. In appendix B, we explicitly derive g and hc for two values of α = 1/2, 1.

Plugging this solution into the entropy functional is postponed to the next section

where we add the Gauss-Bonnet gravity. Then the results of the Einstein gravity are

included in the λGB → 0 limit.
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4 Gauss-Bonnet gravity

In the previous section, we studied the entanglement entropy for theories dual to the

Einstein gravity. In this section we consider those which are dual to the Gauss-Bonnet

gravity [43, 44]. We will consider the effect of the relevant perturbation on the entanglement

entropy of these theories. After reviewing the holographic entanglement entropy for CFTs

dual to Gauss-Bonnet gravity which was derived in [30, 45], we proceed to the relevant

perturbation of CFTs dual to the Gauss-Bonnet gravity in AAdS backgrounds.

In d = 3 dimensions, the bulk action for the Gauss-Bonnet gravity is written as

I =
1

16πGN

∫
d4x
√
g

[
6

L2
+R+ λGBL

2χ4

]
, (4.1)

where

χ4 = RµνρσR
µνρσ − 4RµνR

µν +R2 (4.2)

is the Euler density for four-dimensional manifolds. Hence the interaction term does not

affect the gravitational equations of motion.

In this theory, by taking into account the effect of interaction term, the RT prescription

is improved as [30, 45]

SEE =
Area(m)

4GN
+
L2λGB
2GN

∫
m
d2x
√
γR (4.3)

where m is the bulk minimal surface which is homologous to V and ∂m matches the entan-

gling surface ∂V on the boundary. Also, γij and R are the induced metric and the intrinsic

Ricci scalar of the bulk minimal surface, respectively.

Adding the interaction term leads to a topological contribution to the entropy func-

tional with no effect on the universal term. Here m is a two-dimensional sub-manifold and

hence the second term in r.h.s. of (4.3) is proportional to the Euler characteristic which is a

topological invariant of m, up to boundary terms, so it does not contribute to the equations

of motion that determine the bulk minimal surface. We therefore use the solutions found

in the previous section and substitute them in (4.3).

4.1 Pure AdS

We parameterize the bulk minimal surface as ρ = ρ(z, θ). Since the correction term in

the (4.3) does not affect the profile of the bulk surface, we choose the bulk profile as before

ρ = z/h. With this choice, the contribution of the correction term
√
γR can be written as

a total derivative
√
γR =

d

dθ

[
2

z

hḣ√
1 + h2 + ḣ2

]
, (4.4)

then the holographic entanglement entropy becomes

SEE =
L2

2GN


∫ zm

δ

dz

z

∫ hc

h0

dh

ḣ

√
1 + h2 + ḣ2

h2
+ 2λGB

∫ zm

δ

dz

z

[
ḣ

h
√

1 + h2 + ḣ2

]Ω
2
−ε

θ=0


(4.5)
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in which h0 = h(0), hc = h(Ω/2− ε), and ḣ0(0) = 0. Now we analyze the divergence of the

above entropy functional. Near the boundary, the integrands in the asymptotic limit, i.e.

h→ 0, behave as

√
1 + h2 + ḣ2

ḣh2
∼ − 1

h2
− 1

2
K2h2 + · · · (4.6)

ḣ

h
√

1 + h2 + ḣ2
∼ −1

h
+

1

2
K2h3 + · · · . (4.7)

Now we can isolate the divergent part of the integrals in (4.5). The first integral is the

same as in (3.8), so we consider the second integral that is due to the effect of interaction

term. Similar to procedure of section 3.1, we have

I2 =

∫ zm

δ

dz

z

ḣ

h
√

1 + h2 + ḣ2
, (4.8)

so we find

dI2

dδ
=
−1

δ

ḣ

h
√

1 + h2 + ḣ2
=

1

δhc
+ · · · = H

δ2
+ · · · , (4.9)

where in the last equality, we used hc(δ) = δ/H. Hence, the final result for the holographic

entanglement entropy becomes [27]

SEE =
L2

2GN

{
H

δ
(1− 2λGB) +

(
−
∫ 0

h0

dh

(√
1 + h2 + ḣ2

ḣh2
+

1

h2

)
+

1

h0

)
log(δ) + · · ·

}
.

(4.10)

As we see, there is a logarithmic divergence only due to the singularity of the entangling

surface and the effect of the interaction term is topological and modifies only the coefficient

of the area law term.2

4.2 Asymptotic AdS

In this subsection, we study the holographic entanglement entropy for a kink region in the

asymptotic anti-de Sitter space time background in the Gauss-Bonnet gravity.

By equation (4.3), the entanglement entropy is derived as

SEE =
1

4GN

∫ zm

δ
dz

∫ Ω
2
−ε

−Ω
2

+ε
dθ
[√

γ + 2L2λGB
√
γR
]

=
L2

2GN

∫ zm

δ
dz

∫ Ω
2
−ε

0
dθL (4.11)

2As was pointed out in [27], see also appendix A, the λGB dependence disappears by adding the bound-

ary term.
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where Lagrangian L defined as

L =
1

z2
√
f

√
(1 + fρ′2)ρ2 + ρ̇2 +

2λGB
z2
√
f

1(
(1 + fρ′2) ρ2 + ρ̇2

) 3
2

×
{
zf ′
[(
ρ2 + ρ̇2

)2 − zρ (ρ2 + 2ρ̇2 − ρρ̈
)
ρ′
]
− 2z2fρ

(
ρ2 + 2ρ̇2 − ρρ̈

)
ρ′′

− 2f
[
ρ4 + ρ̇4 − zρ3ρ′ + z2ρ̇2ρ

′2 − 2zρρ′ρ̇
(
ρ̇+ zρ̇′

)
+ ρ2

(
2ρ̇2 + zρ̈ρ′ + z2ρ̇′2

)]
+ 2f2ρ2ρ′

[
−ρ′

(
ρ2 + ρ̇2 − zρρ′ + zρ′ρ̈− 2zρ̇ρ̇′

)
− z

(
ρ2 + ρ̇2

)
ρ′′
]}

(4.12)

with ρ̈ = ∂2
θρ, ρ′′ = ∂2

zρ, ρ̇′ = ∂θ∂zρ and f(z) encodes the deviation from pure AdS

background as in (2.3). As we see, the higher derivatives terms, like ρ̈, ρ′′, and ρ̇′ appear in

the entropy functional. But due to the topological nature of the Gauss-Bonnet term, the

equation of motion for ρ(z, θ) remains intact. As before, for small deformation we make

the following ansatz,

ρ(z, θ) = ρ0 + δρ =
z

h(θ)
+ δfg(θ)z, f = 1 + δf (4.13)

and by inserting it in the entropy functional (4.11) we get, up to the leading order, the

following perturbed entropy functional,

SEE =
L2

2GN

∫ zm

δ
dz

∫ Ω
2
−ε

0
dθ
(
L0(ρ0) + δL

)
, (4.14)

where L0(ρ0) comes from the unperturbed contribution of the original Lagrangian, and δL
is due to the effect of the relevant perturbation defined as,

δL = Lf + L1δρ+ L2δρ
′ + L3δρ̇+ L4δρ̈+ L5δρ

′′ + L6δρ̇
′ (4.15)

in which Lf is the contribution of δf , δf ′, and independent of g and its derivatives. The

other terms come from the δρ and its various derivatives. Now we rewrite the derivative

terms as

L2δρ
′ = ∂z(δρL2)− δρL′2,

L3δρ̇ = ∂θ(δρL3)− δρL̇3,

L4δρ̈ = ∂θ(δρ̇L4)− ∂θ
(
δρL̇4

)
+ δρL̈4,

L5δρ
′′ = ∂z(δρ

′L5)− ∂z
(
δρL′5

)
+ δρL′′5,

L6δρ̇
′ = ∂z(δρ̇L6)− ∂θ

(
δρL′6

)
+ δρL̇′6, (4.16)

where L̈i = ∂2
θLi, L′′i = ∂2

zLi, and L̇′i = ∂θ∂zLi. Using these terms, the entropy func-

tional (4.11) takes the form,

SEE =
L2

2GN

∫ zm

δ
dz

∫ Ω
2
−ε

0
dθ
[
L0 + Lf +

(
L1 − L′2 − L̇3 + L̈4 + L′′5 + L̇′6

)
δρ

+ ∂z
(
δρL2 + δρ′L5 − δρL′5 + δρ̇L6

)
+ ∂θ

(
δρL3 + δρ̇L4 − δρL̇4 − δρL′6

) ]
.

(4.17)
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In the above form of the entropy functional, the coefficient of δρ vanishes due to the

equation of motion of ρ0(z, θ). Then we have

SEE =
L2

2GN

{∫ zm

δ
dz

∫ Ω
2
−ε

0
dθ
[
L0 + Lf + ∂z

(
δρL2 + δρ′L5 − δρL′5 + δρ̇L6

) ]
+

∫ zm

δ
dz
(
δρL3 + δρ̇L4 − δρL̇4 − δρL′6

)
θ= Ω

2
−ε

}
(4.18)

Now by substituting the ansatz ρ(z, θ) = ρ0 + δρ = z/h(θ) + zδfg(θ) in (4.18), the entropy

functional reduces to

SEE =
L2

2GN

[∫ zm

δ
dz

∫ hc

h0

dh

ḣ

(
L0 + Lf + L(z)

B

)
+

∫ zm

δ
dz
(
L(θ)
B

)
θ= Ω

2
−ε

]
. (4.19)

where we have changed the integration variable to h. The various Li’s are defined as

L0 =
1

z

√1 + h2 + ḣ2

h2
+ 2λGB

h
(
1 + h2

)
ḧ−

(
1 + 2h2 + ḣ2

)
ḣ2

h2(1 + h2 + ḣ2)
3
2


=

1

z

(√
1 + h2 + ḣ2

h2
+ 2λGB

d

dθ

[
ḣ

h
√

1 + h2 + ḣ2

])
≡ 1

z

(
L̂(E)

0 (h) + L̂GB0 (h)
)
,

Lf = −δf
2z

[
h2 + ḣ2

h2
√

1 + h2 + ḣ2
+

4λGB

h2
(

1 + h2 + ḣ2
) 5

2

(
(2h4 + ḣ2 + ḣ4 + h2

(
−1 + 3ḣ2

))
ḣ2

−
(
h2 + h4 +

(
3 + h2

)
ḣ2
)
hḧ
)]
− δf ′ 2λGB

h2
(

1 + h2 + ḣ2
) 3

2

(
h3ḧ−

(
ḣ2 + 2h2

)
ḣ2
)

≡ δf

2z
L̂(1)
f (h) + δf ′L̂(2)

f (h),

L(z)
B = δf ′

[
g

h
√

1 + h2 + ḣ2
− 4λGB

h
(

1 + h2 + ḣ2
) 5

2

(
2hḣġ

(
1 + h2 + ḣ2

)

+ g
(
h2 + 2h4 + h6 + 3ḣ2 + h2ḣ2 + h4ḣ2 + 3ḣ4 +

(
h2 + h4 +

(
−3 + h2

)
ḣ2
)
hḧ
))]

− zδf ′′ 4λGB

h
(

1 + h2 + ḣ2
) 3

2

(
h2 + h4 + ḣ2 + h3ḧ

)
g

≡ δf ′L̂(z)
1B(h) + zδf ′′L̂(z)

2B(h),

L(θ)
B =

δf

z

− ḣg(θ)√
1 + h2 + ḣ2

− 4λGB
h
(
1 + h2

)
ġ + ḣ

(
1− ḣ2

)
g(

1 + h2 + ḣ2
) 3

2

 ≡ δf

z
L̂(θ)
B (h), (4.20)

– 13 –



J
H
E
P
0
2
(
2
0
1
8
)
0
0
9

in which ḣ = ∂θh, ḧ = ∂2
θh, and ġ = ∂θg. In the above expressions we used the equation of

motion of h (3.21). Finally, the entropy functional reduces to

SEE =
L2

2GN

{∫ zm

δ

dz

z

∫ hc

h0

dh

ḣ
L̂0(h) +

∫ zm

δ
dz

∫ hc

h0

dh

ḣ

(
δf

2z
L̂(1)
f (h) + δf ′L̂(2)

f (h)

)
+

∫ zm

δ
dz

∫ hc

h0

dh

ḣ

(
δf ′L̂(z)

1B(h) + zδf ′′L̂(z)
2B(h)

)
+

∫ zm

δ
dz
δf

z

(
L̂(θ)
B (h)

)
θ= Ω

2
−ε

}
,

(4.21)

where h0 = h(0) and hc = h(Ω/2− ε). So we have

SEE =
L2

2GN

(
I0 + If + I

(θ)
B + I

(z)
B

)
, (4.22)

in which I0, If , I
(θ)
B , and I

(z)
B are defined as:

I0 =

∫ zm

δ

dz

z

∫ hc

h0

dh

ḣ
L̂0(h)

=

∫ zm

δ

dz

z

∫ hc

h0

dh

ḣ
L̂(E)

0 (h) +

∫ zm

δ

dz

z
L̂(GB)

0 (h)

= I
(E)
0 + I

(GB)
0 , (4.23)

If =

∫ zm

δ
dz

∫ hc

h0

dh

ḣ

(
δf

2z
L̂(1)
f (h) + δf ′L̂(2)

f (h)

)

=

∫ zm

δ
dz
δf

2z

∫ hc

h0

dh

ḣ
L̂(1)
f (h) +

∫ zm

δ
dzδf ′

∫ hc

h0

dh

ḣ
L̂(2)
f (h)

= I
(1)
f + I

(2)
f , (4.24)

I
(θ)
B =

∫ zm

δ
dz
δf

z

(
L̂(θ)
B (h)

)
θ= Ω

2
−ε

(4.25)

I
(z)
B =

∫ zm

δ
dzδf ′

∫ hc

h0

dh

ḣ
L̂(z)

1B(h) +

∫ zm

δ
dzzδf ′′

∫ hc

h0

dh

ḣ
L̂(z)

2B(h),

= I
(z)
1 + I

(z)
2 . (4.26)

Regarding the topological nature of
√
γR, the equations of motion of h and g remain

intact. So their asymptotic behaviour is unchanged, then the behavior of the integrands
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in (4.21) near the asymptotic boundary, h→ 0, is

L̂(E)
0 (h)

ḣ
∼ − 1

h2
− 1

2
K2h2 + · · ·

L̂(GB)
0 (h) ∼ 2λGB

(
−1

h
+

1

2
K2h3 + · · ·

)
, (4.27)

L̂(1)
f (h)

ḣ
∼ 1 + 4λGB

h2
+

1

2
(−1 + 36λGB)K2h2 + · · ·

L̂(2)
f (h))

ḣ
∼ −2λGB

h2
+ 3λGBK

2h2 + · · · , (4.28)

L̂(θ)
B (h) ∼ (1− 4λGB)g +

1

2
(−1 + 20λGB)K2h4g + · · · , (4.29)

L̂(z)
1B(h)

ḣ
∼ (−1 + 36λGB)K2h3g + · · ·

L̂(z)
2B(h)

ḣ
∼ 4λGBK

2h3g + · · · . (4.30)

Using these expressions, we isolate the divergent parts of integrands and make them finite.

Hence, we reach to the following terms

I
(E)
0 =

∫ zm

δ

dz

z

∫ hc

h0

dh

ḣ
L̂(E)

0 (h)

=

∫ zm

δ

dz

z

∫ hc

h0

dh

(
L̂(E)

0 (h)

ḣ
+

1

h2

)
+

∫ zm

δ

dz

z

(
1

hc
− 1

h0

)
, (4.31)

I
(GB)
0 =

∫ zm

δ

dz

z
L̂(GB)

0 (h), (4.32)

I
(1)
f =

∫ zm

δ
dz
δf

2z

∫ hc

h0

dh

 L̂(1)
f (h)

ḣ
− 1 + 4λGB

h2

− (1 + 4λGB)

∫ zm

δ
dz
δf

2z

(
1

hc
− 1

h0

)
,

(4.33)

I
(2)
f =

∫ zm

δ
dzδf ′

∫ hc

h0

dh

 L̂(2)
f (h)

ḣ
+

2λGB
h2

+ 2λGB

∫ zm

δ
dzδf ′

(
1

hc
− 1

h0

)
, (4.34)

I
(θ)
B =

∫ zm

δ
dz
δf

z

(
L̂(θ)
B (h)

)
θ= Ω

2
−ε
, (4.35)

I
(z)
B =

∫ zm

δ
dzδf ′

∫ hc

h0

dh

ḣ
L̂(z)

1B(h) +

∫ zm

δ
dzzδf ′′

∫ hc

h0

dh

ḣ
L̂(z)

2B(h). (4.36)
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Then we take a derivative with respect to δ and find the following expressions

dI
(E)
0

dδ
=

1

δ

[
−
∫ 0

h0

dh

(
L̂(E)

0

ḣ
+

1

h2

)
+

1

h0

]
+
e1

a2
1

δ2α−2 − 1

a1δ2
+ · · · , (4.37)

dI
(GB)
0

dδ
=

2λGB
a1δ2

− 2λGB
e1

a2
1

δ2α−2 + · · · , (4.38)

dI
(1)
f

dδ
=

(1 + 4λGB)

2a1

δf

δ2
− δf(δ)

2δ

∫ 0

h0

dh

 L̂(1)
f

ḣ
− (1 + 4λGB)

h2

+
(1 + 4λGB)

h0


− (1 + 4λGB)

e1

2a2
1

δfδ2α−2 − δf(−1 + 36λGB)

4
K2a3

1δ
2 + · · · , (4.39)

dI
(2)
f

dδ
=− 2λGB

a1

δf ′

δ
+ · · · . (4.40)

Using a similar procedure for the boundary terms we find that

dI
(θ)
B

dδ
= −δf

δ

(
1− 4λGB +

1

2
(−1 + 20λGB)K2h4

)
g(δ) + · · · (4.41)

dI
(z)
1B

dδ
= −δf ′

∫ 0

h0

dh
L̂(z)

1B(h)

ḣ
+ · · · (4.42)

dI
(z)
2B

dδ
= −(δ)δf ′′

∫ 0

h0

dh
L̂(z)

2B(h)

ḣ
+ · · · (4.43)

so we have

dI

dδ
=
∑
i

dIi
dδ

=

{
(1− 2λGB)

−H
δ2

+

(
−
∫ 0

h0

dh

[
L(E)

0

ḣ
+

1

h2

]
+

1

h0

)
1

δ
+ · · ·

}

+ µ2α

{
2λGB

bH2α+1

δ2
+

H

2δ2−2α
+ 2λGB (1 + d1 − 2α)

H

δ2−2α
− (1 + 4λGB(1− 2α))

2h0δ1−2α

−

1

2

∫ 0

h0

dh

 L̂(1)
f

ḣ
− (1 + 4λGB)

h2

+ 2α

∫ 0

h0

dh

ḣ

(
L̂z1B + (2α− 1)L̂z2B

) 1

δ1−2α
+ · · ·

}
.

(4.44)

Up to now, we have identified the various kinds of divergences for a general situation. The

integration of (4.44) can be written as

SEE = S
(0)
EE + ∆S

(1)
EE , (4.45)

where S
(0)
EE and ∆S

(1)
EE respectively represent the zeroth and leading order of the relevant

perturbation. The former can be found as

S
(0)
EE =

L2

2GN

[
(1− 2λGB)

H

δ
+

(
−
∫ 0

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
+

1

h0

)
log(δ) + · · ·

]
.

(4.46)
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It exactly matches with results of [27]. To find ∆S
(1)
EE , it is needed to split various ranges

of α as follows:

i) 0 < α < 1
2

∆S
(1)
EE =

L2µ2α

2GN

[
−2λGB

(
bH2α+1

δ
+

1 + d1 − 2α

(1− 2α)

H

δ1−2α

)
− 1

2(1− 2α)

H

δ1−2α
+ · · ·

]
,

(4.47)

this result shows that in the case of the Einstein gravity, λGB = 0, singular term in

the leading order is a power law singularity of order of 1/δ1−2α. In addition, there is

a 1/δ singularity in the Gauss-Bonnet gravity.

ii) α = 1
2

∆S
(1)
EE = µ

L2

2GN

[
−2λGB

bH2

δ
+
H

4
(2− λGB) log(δ) + · · ·

]
, (4.48)

in this case, there is a logarithmic term both in the Einstein and the Gauss-Bonnet

gravities. The 1/δ singularity emerges in the Gauss-Bonnet case.

iii) α > 1
2

∆S
(1)
EE =

L2µ2α

2GN

[
2λGB

−bH2α+1

δ
+ · · ·

]
. (4.49)

Here when λGB → 0, there is no contribution from the relevant perturbation to the

entanglement entropy. In the Gauss-Bonnet gravity, a power law 1/δ singularity

contributes to the leading order of mass deformation µ.

The summary of results are depicted in table 1 in which we introduce the angle de-

pendent coefficient as

A(Ω) =
1

h0
−
∫ 0

h0

dh

(
L(E)

0

ḣ
+

1

h2

)
=

1

h0
−
∫ 0

h0

dh

(√
1 + h2 + ḣ2

ḣh2
+

1

h2

)

=
1

h0
−
∫ 0

h0

dh

 h2
0

√
1 + h2

h2
√(

h2
0 − h2

) (
h2

0 +
(
1 + h2

0

)
h2
) +

1

h2


≡ 2GN

L2
a(Ω), (4.50)

where a(Ω) introduced in (1.3). Note that A(Ω) is the cut-off independent term that only

appears due to the singularity of the entangling surface [25]. The dependence of A(Ω) on

the opening angle is through the dependence of h0 on Ω, such that we can write [27]

Ω =

∫ Ω
2

−Ω
2

dθ =

∫ h0

0
dh

2h2
√

1 + h2
0√

1 + h2
√(

h2
0 − h2

) (
h2

0 +
(
1 + h2

0

)
h2
) . (4.51)
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Einstein Gravity Gauss-Bonnet contribution

µ = 0 H
δ −A(Ω) log H

δ −2λGB
H
δ

µ 6= 0 0 < α < 1
2

−1
2(1−2α)

µ2αH
δ1−2α 2λGBµ

2αH2α
(
−1+d1−2α

1−2α
H1−2α

δ1−2α − bH
δ

)
α = 1

2 −µH
2 log H

δ 2λGBµH
(−bH

δ + 1
8 log H

δ

)
α > 1

2 0 2λGBµ
2αH2α

(−bH
δ

)
Table 1. Summary of results for 2GN

L2 SEE . Note that contributions of the Gauss-Bonnet and the

relevant perturbation are additive to the Einstein gravity.

5 The renormalized entanglement entropy

As was mentioned in the introduction, the entanglement entropy is a UV divergent quantity,

such that the leading term scales with the area of the entangling surface and sub-leading

terms exhibit the power law divergences. The coefficients of those terms are scheme de-

pendent, but there is certain sub-leading term which is logarithmic or constant, depending

on dimension of space time, so that its coefficient is universal and describes the character

of the underlying quantum field theory.

In order to have a well-defined quantity we must somehow get rid of the UV divergences

and extract a finite and universal quantity, which is physically meaningful. In other words,

the entanglement entropy must be renormalized. One of the procedures to dealing with this

problem is the renormalized entanglement entropy (REE) which was introduced in [20] and

is based on the differentiation of the entanglement entropy with respect to the characteristic

length of the entangling region.3 In the spirit of [20], the renormalized entanglement

entropy is derived by applying the differential operator (d = 3), D(R) = R∂R − 1, on the

entanglement entropy S(R):

F(R) = R∂RS(R)− S(R), (5.1)

where R is the characteristic size of the entangling surface. The F(R) quantity is finite in

a renormalizable 3d quantum field theory which has a well-defined UV fixed point. This

procedure is defined for a scalable surface like a sphere that can be scaled without any shape

deformation. In this sense our singular surface is a scalable one. Let us firstly consider the

Einstein gravity and by analogy define the renormalized entanglement entropy as

F(H) = H∂H(H∂H − 1)S(H) (5.2)

where H is the characteristic scale of the entangling surface. In order to regularize di-

vergences as well as possible finite terms, we compute explicitly the entanglement entropy

from the relations (4.31)–(4.36). At the UV fixed point the entanglement entropy has

the form:

SEE =
L2

2GN

{
H

δ
−A(Ω) log

(
H

δ

)
+ · · ·

}
. (5.3)

3See also [46] which is based on the area renormalization of the entangling surfaces.
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So the renormalized entanglement entropy derived as

FUV =
L2

2GN
A(Ω) = a(Ω). (5.4)

As we see this term is finite, positive, independent of the UV divergence, and so has a

well-defined continuum limit. It is H-independent and specified by the universal part of

the entanglement entropy, so it is physically meaningful. Under the relevant deformation

the entanglement entropy takes the following form

SEE =
L2

2GN

{
H

δ
−A(Ω) log

(
H

δ

)
+ME(h0, α)µ2αH2α − 1

2(1− 2α)

µ2αH

δ1−2α

}
(5.5)

where h0 = h(0) which depends on the angle Ω through (4.51) and α = 3−∆ with ∆ the

scaling dimension of the relevant operator. ME(h0, α) is defined as the sum of finite terms

that come from the relations (4.31)–(4.36):

ME(h0, α) = ME
0 (h0, α) +Mf (h0, α) +M θ

B(h0, α) +M z
B(h0, α). (5.6)

These terms are finite and functions of h0 and α, which with some manipulations we can

derive

ME(h0, α) =− h2α
0

4α

∫ 0

h0

dh


(
h2 + ḣ2

)
ḣh2

√
1 + h2 + ḣ2

+
1

h2

+
h2α−1

0

4α(1− 2α)

+ h2α
0

∫ 0

h0

dh

[
g

ḣh
√

1 + h2 + ḣ2

]
. (5.7)

From (5.2) the renormalized entanglement entropy can be derived as

F(H) = FUV −ME(h0, α)µ2αH2α. (5.8)

where the second term denotes the leading correction due to the relevant perturbation and

ME(h0, α) =
L2

2GN
2α(1− 2α)ME(h0, α) . (5.9)

As we see F(H) reduces to that of the UV fixed point in the limit

F(H)→ FUV , H → 0. (5.10)

In the special case α = 1/2, or equivalently ∆ = 5/2, ME(h0, α) is divergent while

ME(h0, α) is finite and we have

F(H) = FUV −
µH

2
. (5.11)

In conclusion, we can interpret F(H) as the measure of the entanglement at the scale H.

Note, in the above renormalization approach/scheme we have used the minimal prescrip-

tion. Indeed, one can show that there are several renormalization operators with the same
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renormalized entanglement entropy at the UV fixed point but different RG flows. For

example consider the following operators

(−1)n−1

(n− 1)!
Hn∂nH(H∂H − 1), (5.12)

where there are infinitely many linear combinations of these operators with different n that

reproduce the same FUV while they give different flows away the CFT fixed point. This

ambiguity in introducing the renormalization operator was reported earlier in [47, 48]. To

choose the correct operator, one needs to apply some extra physical conditions. Besides,

let us first consider the most general operator by changing the variable to u = log(H/δ)

then H∂H = ∂u. The renormalization operator in (5.2) is a second order one made of ∂u.

So in general we can write it as a polynomial,4

D(∂u) = α0 + α1∂u + α2∂
2
u + · · · , (5.13)

with αi’s constant. Now look at the bare entropy in table 1. The singularities appear as

eu and u where the last one is the universal log term and to regularize them one need to

consider, respectively, 1 and zero roots for the polynomial operator (5.13). Thus we have

D(∂u) = P(∂u)(∂u − 1)∂u, (5.14)

where P(∂u) is any polynomial in the following form,

P(∂u) =
(
1 + β1∂u + β2∂

2
u + · · ·

)
. (5.15)

Now, the ambiguity in introducing the renormalization operator is the freedom in choosing

the coefficients of P(∂u). To fix it we need to consider the renormalization flow. Let us

take the criteria that F satisfies the F -theorem in the fashion of [17, 18]. Then it should be

decreasing away from the UV fixed point. It implies thatM(h0, α) in either (5.8) or (5.22)

should be positive. It follows that

M(h0, α) =
L2

2GN
(2α)(1− 2α)P(2α)M(h0, α) > 0 (5.16)

then P(2α) should be chosen such that M(h0, α) to be positive and finite term.

Based on the above results, we have a family of operators and it seems there is no more

physical constraint to choose the proper renormalization operator. We see, in the vicinity

of a UV fixed point, these are the most restrictive criteria which can be imposed on D(∂u).

To achieve a unique renormalization operator, we propose that the extra condition may be

to consider the renormalization flow downward to an IR fixed point. In this way it seems

one can determine which polynomial P̃(∂u) correctly flows between the UV and the IR

fixed points.5 This needs the IR calculations which we postpone to future works.

4In this and the following equations by dots we mean an arbitrary finite number of terms.
5We assume there is an IR fixed point.
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The above computations are related to the Einstein gravity. Similarly, for the Gauss-

Bonnet gravity we can write

SEE =
L2

2GN

{
(1− 2λGB)

H

δ
−A(Ω) log

(
H

δ

)
+ · · ·

}
. (5.17)

So using (5.2), the renormalized entanglement entropy becomes

FUV =
L2

2GN
A(Ω) = a(Ω). (5.18)

As we see this term is the same as (5.4) with a well-defined continuum limit. Under the

relevant deformation the entanglement entropy takes the following form

∆SEE =
L2

2GN
MGB(h0, α)µ2αH2α

+
L2µ2α

2GN

[
−2λGB

(
bH2α+1

δ
+

1 + d1 − 2α

(1− 2α)

H

δ1−2α

)
− 1

2(1− 2α)

H

δ1−2α
+ · · ·

]
,

(5.19)

similar to the previous discussion, ME(h0, α) is defined as the sum of finite terms coming

from the relations (4.31)–(4.36).

MGB(h0, α) = ME
0 (h0, α) +MGB

0 (h0, α) +Mf (h0, α) +M θ
B(h0, α) +M z

B(h0, α). (5.20)

But, in this case we must refine the differential operator of renormalization in order to

remove the effect of bH2α+1/δ term. So, we define

F(H) =
−1

(2α+ 1)
H∂H(H∂H − 1)(H∂H − (2α+ 1))S(H), (5.21)

as a renormalized entanglement entropy and find

F(H) = FUV −MGB(h0, α)µ2αH2α. (5.22)

where the second term denotes the leading correction due to the relevant perturbation where

MGB(h0, α) =
L2

2GN

2α(1− 2α)

(2α+ 1)
MGB(h0, α) . (5.23)

Again in the small H limit, the F(H) reduces to that of the UV fixed point

F(H)→ FUV , H → 0. (5.24)

In the special case α = 1/2 we find that

F(H) = FUV −
µH

8
(2− λGB). (5.25)

Notice that both operators in (5.2) and (5.21) give the same FUV . Again similar to the

Einstein gravity, there is a family of renormalization operators that doing the same thing

which similar to the previous discussion we can write

D(∂u) =
−1

(2α+ 1)
P(∂u)(∂u − 1)(∂u − (2α+ 1))∂u, (5.26)
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where the numerical factor is written such that to produce the correct renormalized entropy

at the UV fixed point and P(∂u) is any polynomial in the following form,

P(∂u) =
(
1 + β1∂u + β2∂

2
u + · · ·

)
. (5.27)

Again decreasing F away from the UV fixed point implies that

M(h0, α) =
L2

2GN

(2α)(2α− 1)

(2α+ 1)
P(2α)M(h0, α) > 0 (5.28)

In this case, more investigations are needed in dual higher derivatives theories to better

understand their flow.

6 Discussion

In this paper we studied a CFT which is perturbed by a relevant operator and identified

various divergence structures that may appear in the holographic entanglement entropy of

a kink region.

There are two kinds of data contributions in the calculation of EE, the geometric data

and field theoretic data, and each contribution may be separately specified. As we have seen

in the previous sections, in three dimensions, in the absence of relevant perturbation there

are two kinds of divergences; the power law of order 1/δ and the logarithmic divergences.

The later is due to the singularity of the entangling surface and reflects the geometric

contribution to the entanglement entropy, and the angle dependent coefficient a(Ω) of this

term, which satisfies some properties [23–25], encodes some features of the underlying

CFT [26–28].

In the relevant perturbation case, there are also two kinds of divergences due to the

effect of relevant perturbation which are of field theoretic type. These divergences appeared

for some special values of the scaling dimension of the relevant operator ∆. At the first order

of perturbation, only for the special value of ∆ = 5/2(= (d + 2)/2) we had a logarithmic

divergence, whereas for other values of ∆ we had power law divergence of the order 1/δ1−2α.

The appearance of the logarithmic divergence at ∆ = (d + 2)/2 is independent of the

singularity of the entangling surface and was firstly reported in [35]. This indicates that the

relevant perturbation and the surface singularity have two distinguished log contribution

to the entanglement entropy.

In order to consider the effect of the relevant perturbation in higher derivative gravities,

we chose the Gauss-Bonnet gravity which is topological in four-dimensional space time.

As expected there is no effect on the logarithmic term and only the coefficient of the

area law term is modified. But, after adding boundary term, all effects of the Gauss-

Bonnet term disappear and the entanglement entropy remains unaffected. However, in the

relevant perturbation, even though the Gauss-Bonnet term is topological, two kinds of λGB
dependent terms appear. As shown in the appendix A, these terms are unaffected by the

surface term.

In summary, in the Einstein gravity, there are two separate contributions due to the

singularity and the relevant perturbation. The corner contribution appears only in the

Einstein gravity and the pure CFT, i.e. it is independent of µ and λGB. Contributions of
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the Gauss-Bonnet and relevant perturbation are additive to the Einstein gravity. On the

other hand, there is a log contribution due to the combination of the Gauss-Bonnet gravity

and the relevant perturbation. This effect is absent in the pure CFT and happens again

at ∆ = 5/2.

The contribution of the logarithmic term is universal in the sense that its value is

independent of the precise details of the UV regulator, so the appearance of that kind of

terms helps us to probe the characteristics of the underlying theory.

We also introduced the renormalized entanglement entropy for the kink region in the

vacuum. It is positive, finite, universal, and well-defined in continuum limit. It is intrinsic

to the underlying conformal field theory at the UV fixed point and is an H independent

constant FUV . In the relevant perturbation, it is sensitive to the scale of the size H of

the entangled region and F(H) → FUV as H → 0. But, as we seen, we faced by a family

of the renormalization operators that all of them yield the same FUV at the CFT fixed

point. Unfortunately, based on our results it seems that there is not enough physical reason

to choose the unique differential operator and it needs to be more investigated in order

to define an appropriate and unique renormalized entanglement entropy away from fixed

points. We speculate that the renormalization flow downward to an IR fixed point, if any,

may distinguish a unique renormalization operator. In this way seems one can determine

which polynomial P̃(∂u) correctly flows between the UV and the IR fixed points.

At the end it is worth to mention few comments. Firstly, as was shown in [35], given

the form of the expansion of f(z) around z = 0 in the source deformation, f(z) = 1 +∑∞
m=2 cmz

mα, and noticing the form of the expansion of the minimal surface, in order to

have a logarithmic term we must have α = (d− 2)/m and it immediately follows that the

conformal dimension of the dual operator must be ∆ = d−(d−2)/m. So the appearance of

the logarithmic term depends on the order of perturbation expansion of the metric and the

bulk minimal surface, and it only arises for α ≤ d/2−1 or equivalently, the scaling dimension

of the relevant operator corresponds to ∆ ≥ d/2+1. So as we see we may have a set of ∆’s

that leads to a logarithmic term depending on the order of the perturbation. Hence in the

smooth case, there is a family of operators with the scaling dimension ∆ = d− (d− 2)/m

which produce the corresponding logarithmic term in the entanglement entropy. So when

one perturbs the CFT with any of the listed above operators, the logarithmic term shows

up itself in some order of perturbation. Therefore, it seems that in our case too, if we

perturb the CFT with any of single operators in the above family, then we will have the

logarithmic term in some order of expansion. But, note that it is natural to expect that in

a given conformal field theory, the perturbation is done by few operators not all of them

in the above family. So few logarithmic terms in some order of perturbation may appear.

Secondly, although the operators with scaling dimension ∆ = d−(d−2)/m with m ≥ 2

is special and does not arise in a free CFT or a scale invariant field theory, but in the inter-

acting theories, the existence of such operators are possible. Since the scaling dimension

receives quantum corrections through the anomalous dimension, it might be possible to

have scalar operators with scaling dimension ∆ = d−(d−2)/m in an interacting CFT [40].

Finally, it would be interesting to investigate these divergence structures in higher

dimensions, as smooth case, and for various kinds of singularities [49].
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A Evaluation of the boundary term

In this appendix, we will show that the logarithmic term due to the relevant perturbation

of HEE of Gauss-Bonnet is unaffected by the addition of a surface term. As was denoted

in [27], one can add the boundary term to the entropy functional (4.3),

SB =
L2λGB
GN

∫
∂m

dy
√
γ̃K, (A.1)

where ∂m denotes the boundary of Ryu-Takayanagi surface at the cut-off surface z = δ,

and γ̃ and K are the determinant of the induced metric and the trace of extrinsic curvature

on the boundary, respectively.

To consider this boundary, it is convenient to change the independent coordinate sys-

tem, and write the ρ as one of coordinates induced on the bulk minimal surface. So we have

z = z(ρ, θ). The induced metric on the boundary of the bulk minimal surface parametrized

as {ρ = ρ, θ = Ω/2, z = δ}, is written as

ds2 =
L2

z2
dρ2 , (A.2)

so we find that √
γ̃ ∼ L

δ
. (A.3)

Moreover, the associated normal vector and the trace of the extrinsic curvature can be

written as

n ∼
(

0,− z
L

√
f(z), 0, 0

)
, (A.4)

and

K =

√
f

L
∼ 1

L

(
1− 1

2
µ2αδ2α

)
. (A.5)

Finally, the contribution of the boundary term is written as∫ H

δ
h0

+···
dρK

√
γ̃ ∼ H

δ
− 1

2
Hµ2αδ2α−1 + · · · (A.6)

where dots in the lower limit in the integral denote the higher order terms of δ and in the

right hand side stand for the regular terms. Substituting the above relation in the surface

term, we reach to

SB =
L2

2GN
2λGB

H

δ
. (A.7)

As we see the effect of the boundary term is only on the area term, and does not affect the

universal term.
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B Calculation of EE for special values of ∆

In this appendix, we derive the explicit form of g, hc and the holographic entanglement

entropy for two values of α:

i) ∆ = 5
2 , (α = 1

2):

First we consider ∆ = 5/2, in this range α = 1/2. So we find

g =
b

h2
− 1

8h
+

4b

5
+

1

18
h+ · · · (B.1)

and

hc(δ) =
1

H
(1 + µbH)δ − µ

8H
δ2 +

4bµ

5H2
δ3 + · · · (B.2)

Note that we have kept only the leading order in µ at any order in δ. So the divergence

structures that appears are

dI
(1)
1

dδ
= −1

δ

∫ 0

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
+

1

2H3
K2(1 + 3µbH)δ2 + · · · , (B.3)

dI
(2)
1

dδ
= −H

δ2
+

1

h0

1

δ
+ µ

(
bH2

δ2
− H

8

1

δ

)
(B.4)

dI
(1)
2

dδ
=
µ

2

∫ 0

h0

dh


(
h2 + ḣ2

)
ḣh2

√
1 + h2 + ḣ2

+
1

h2

+
µ

4H3
K2δ3 + · · · , (B.5)

dI
(2)
2

dδ
=
Hµ

2

1

δ
− 1

h0

µ

2
+ · · · (B.6)

And for the boundary terms we have:

dI3

dδ
= −µ

(
bH2 1

δ2
− H

8

1

δ
+

4b

5

)
+ · · · (B.7)

dI4

dδ
= −µ

∫ 0

h0

dh
g

ḣh
√

1 + h2 + ḣ2
+ · · · (B.8)

Again we have kept only the leading order in µ. So we find HEE for AAdS geometry,

SEE =
L2

2GN

[
H

δ
+

(
−
∫ 0

h0

dh[

√
1 + h2 + ḣ2

ḣh2
+

1

h2
] +

1

h0

)
log(δ) + · · ·

]

+ µ
L2

2GN

[
H

2
log(δ) + · · ·

]
(B.9)

As we expect the first term denotes the unperturbed part of EE, but second term

is due to the relevant perturbation of the boundary theory in the geometry of bulk

minimal surface.
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ii) ∆ = 1, (α = 1):

Now we consider ∆ = 1, in this range α = 1. So we find

g =
b

h3
+

10b− 1

10h
+

1 + 5bK2

35
h+ · · · (B.10)

and

hc(δ) =
1

H

(
1 + µ2H2b

)
δ +

(10b− 1)µ2

10H
δ3 +

(1 + 5bk2)µ2

35H3
δ5 + · · · (B.11)

Note that here the leading correction is second order in µ at any order in δ. So the

divergence structures that appears are

dI
(1)
1

dδ
= −1

δ

∫ 0

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
+

1

2H3
K2
(
1 + 3bH2µ2

)
δ2 + · · · , (B.12)

dI
(2)
1

dδ
= −H

δ2
+

1

h0

1

δ
+ µ2 bH

3

δ2
(B.13)

dI
(1)
2

dδ
=
µ2

2

∫ 0

h0

dh


(
h2 + ḣ2

)
ḣh2

√
1 + h2 + ḣ2

+
1

h2

 δ +
µ2

4H3
K2δ4 + · · · , (B.14)

dI
(2)
2

dδ
=
Hµ2

2
− 1

h0

µ2

2
δ + · · · (B.15)

And for the boundary terms we have:

dI3

dδ
= −µ2

(
bH3 1

δ2
+

10b− 1

10
H +

1 + 5bK2

35H
δ

)
+ · · · (B.16)

dI4

dδ
= −2µ2

(∫ 0

h0

dh
g

ḣh
√

1 + h2 + ḣ2

)
δ + · · · (B.17)

Then we find

SEE =
L2

2GN

[
H

δ
+

(
−
∫ 0

h0

dh

[√
1 + h2 + ḣ2

ḣh2
+

1

h2

]
+

1

h0

)
log(δ) + · · ·

]
(B.18)

As we expect, in this case, only the unperturbed part of EE appears and the effect

of the relevant perturbation of the boundary theory disappears.
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