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1 Introduction

The final stage of the gravitational collapse is associated with the long-lasting problem of

the singularity formation. Although the resolution of singularity is the task relegated to

quantum gravity theories, we show that quantum vacuum effects in a semi-classical con-

text, in certain conditions, are capable of accomplishing this task before quantum gravity

effects become dominant. To this end, we consider a collapsing ball of homogeneous dust

with spherical symmetry and introduce the quantum-originated stress-energy tensor in the

interior and exterior geometries of this collapsing ball. Then, we will be able to predict the

final fate of the collapse.

Classical models for the collapse of different configurations of matter [1–4] usually af-

firm the formation of singularity and, in addition, they can investigate its structure and

visibility. However, to obtain a comprehensive model for the final fate of the collapse and

the formation of singularity, one needs to use theories that include quantum effects. These

theories can be based on quantum gravity or semi-classical models. One of the pivotal

predictions of these models is the resolution of singularity problem. For instance, some ar-

ticles have been devoted to the resolution of the singularity by arguments based on quantum

gravity models [5–11]. In these models the quantum gravity effects will be important and

dominant when the collapsing object approaches the limit that singularity — associated

with strong gravitational fields — appears. These effects cause negative quantum-induced

pressures that by producing repulsive forces can stop the collapsing object from continuing
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contraction. This process makes the final fate of the collapse devoid of singularity by pre-

venting the collapsing object from crushing into zero physical volume. In other words, this

prevents the density of matter and relevant scalars of general relativity from blowing up.

The existence of negative pressures in the quantum gravity realm also would have some

secondary outcomes for some realistic matter configurations. An example of such outcomes

is the radiation of the collapsing matter due to the presence of negative pressures [12]. This

causes the shrinkage of the collapsing object due to the radiation of high energy matter

fluxes. Such effects are claimed to result from the formation of naked singularities [13].

These secondary effects and similar ones are considered to provide probable empirical evi-

dences for the indirect proof of some quantum gravity theories [1]. Quantum gravitational

effects can also affect the formation of black hole horizons and Hawking radiation. In [14]

and [15], interesting calculations of quantum gravity effects on the singularity resolution

and the formation of horizon(s) can be found.

Another way of investigating the final fate of the gravitational collapse is using a model

based on semi-classical approaches [16, 17]. One example of such approaches is quantum

field theory in curved space-time. The reason for importance of such models is that the re-

gions in the vicinity of the singularity are associated with strong gravitational fields within

a very restricted volume. These conditions make the (geometry-dependant) quantum field

theory effects an influential factor on the dynamics of the space-time. Therefore these

regions are among the best places for the realization of the predictions of semi-classical

theories. In this paper we use a semi-classical approach to the final fate of a collaps-

ing homogeneous ball of dust by taking into account the vacuum expectation value of

the stress-energy tensor of quantum scalar fields that are arbitrarily coupled to the back-

ground geometry of the collapsing object. In [18], it was shown that for the special case of

conformally invariant fields of arbitrary spin, the quantum vacuum effects are capable of

preventing a collapsing thin shell of matter from reaching the singularity. A bounce radius

at which the collapse of the shell stops and the direction of the movement reverses was pre-

dicted. In this regard, the singularity never forms. Here, we will consider arbitrarily (not

necessarily conformally) coupled scalar fields in the collapse of a homogeneous ball of dust.

Our aim is to show that semi-classical approaches like considering quantum vacuum

effects of the background geometry, are capable of addressing the singularity problem and

even the information loss paradox before the quantum gravity becomes completely domi-

nant. In sections 2, we introduce the basic requirements for calculating quantum-originated

stress-energy tensor and by calculating it in section 3, we will be able to calculate the

quantum corrections of arbitrarily coupled fields on the exterior geometry of the collapsing

object. This is done by solving Einstein’s equations (Gµν = 8πG
c4
〈Tµν〉) for a spherically

symmetric space-time. Next, we calculate the effects of the quantum energy density and

pressure, together with the dust density(matter density) on the dynamics of the interior

geometry of the collapsing ball. Then, we will be equipped with enough tools to smoothly

match the interior and exterior geometries at the boundary to make predictions about the

final fate of the collapse. Section 4 is devoted to this aim. We show that the existence of

the quantum effects in both interior and exterior space-times can create repulsive Casimir

forces which are able to prevent the collapsing object from continuing contraction and
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force it to be trapped inside the quantum corrected black hole — that is formed during the

collapse process — in a stable static situation. We show that the largest possible radius of

the ultimate stable static ball of dust is given by
(

1
90π

M
mp

) 1
3
`p. It is also shown that for a

typical initial condition at the onset of the collapse, the density of the matter at the final

stable static situation is close to the Planck density and its physical radius will be some

orders of magnitude larger than the Planck length. In addition, we show that the curvature

of the interior geometry will be proportional to 1
`p

2 where `p is the Planck length. It is also

demonstrated that the stability of the ball of dust, at the ultimate phase, is attained for a

definite range of couplings.

The final outcome of this model will be a black hole within which the homogeneous

ball of dust stays static with a finite, rather than zero, physical radius, which precludes

the formation of singularity. Thus in this simple model which we have passed over many

intricacies of natural gravitational collapses, we show that quantum field theory effects in

a semi-classical level, have the ability to solve the singularity problem. In section 4 we

also argue that the inclusion of Hawking radiation will have no effect on the prevention of

singularity formation. We will argue that Hawking radiation shrinks the black hole until

it reaches an extremal phase with zero temperature which results in the stopping of the

radiation. In this limit, ultimately, a finite remnant of matter remains balanced inside the

extremal black hole and therefore makes it singularity-free. In addition, as is discussed in

the last section, the existence of non-zero amount of matter within the black hole after

the radiation allows the preservation of a finite amount of information. Potentially it can

alleviate the information loss paradox.

2 Stress-energy tensor of arbitrarily coupled quantum scalar fields

Since our aim is to study the quantum vacuum effects of scalar fields on curved background

geometries, we start with the Lagrangian of the scalar fields which are non-minimally

coupled to the background by coupling to Ricci scalar(R(x)) [19, 20],

L =
1

2
[−g(x)]

1
2

{
gµν(x)Φ(x),µΦ(x),ν +

[
m2 + ξR(x)

]
Φ2(x)

}
(2.1)

where gµν is the metric of the background geometry and xµ signifies the coordinates of

space-time. The equation of motion is,[
�−m2 − ξR(x)

]
Φ(x) = 0 . (2.2)

here we have �Φ = gµν∇µ∇νΦ with sign convention: (−+ ++).

Lagrangian (2.1) is invariant under conformal transformations gµν → ḡµν = Ω2(x)gµν

if we have: ξ = 1
4

[
n−2
n−1

]
with n the dimension of space-time. Solutions of (2.2) construct an

orthonormal set and can be canonically quantized with the generalization of the familiar

method in the Minkowskian quantum field theory. The stress-energy tensor reads

Tµν = ∂µΦ∂νΦ− 1

2
gµν∂ρΦ∂ρΦ−

1

2
gµνm2Φ2 + ξ

(
Rµν − 1

2
gµνR

)
Φ2

+ ξ
[
gµν�(Φ2)− ∂µ∂ν(Φ2)

]
(2.3)
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which with the help of (2.2), satisfies: ∇µTµν = 0. A useful quantity is the trace of stress-

energy tensor. This trace is already calculated for the special case of conformally coupled

fields (ξ = 1
6) as trace anomaly [19, 20]. Here we aim to calculate this for arbitrarily

coupled massless scalar fields. Since we are interested in quantized scalar fields, by Taking

the expectation value of the trace of (2.3) and using (2.2), we obtain

〈
Tµµ
〉

=

(
3ξ − 1

2

)
�
〈
Φ2
〉
−m2

〈
Φ2
〉
. (2.4)

To calculate the quadratic terms in (2.4), one can use Green’s functions like Feynman

propagator,

GF = −i 〈0|T (Φ(x)Φ(x′)) |0〉 , (2.5)

satisfying the equation, (
�−m2 − ξR

)
GF (x, x′) = −δ(x, x′) . (2.6)

To find a solution for this equation, we can expand both sides in terms of Riemann normal

coordinates yµ for the point xµ with the origin at x′µ (see for example [21]). Then by

working in the momentum space, we can obtain an expansion that enables us to attain a

relation for the Green’s function in momentum space by equating the same orders of the

powers of Riemann normal coordinates in the both sides of the equation. Finally we can

find the Green’s function in the coordinate space by integrating over all momenta. The

final relation is [22, 23]

GF (x, x′) = ∆
1
2 (x, x′)(4π)−

n
2

∞∫
0

du(u)−
n
2 exp

[
−m2u+

( σ
2u

)]
F (x, x′;u) (2.7)

where σ = σ(x, x′) = 1
2yαy

α is the one-half of the square of the proper distance between x

and x′ and ∆(x, x′) is the Van Vleck determinant which is defined as [24]

∆(x, x′) = − det
[
−∂µ∂ν′σ(x, x′)

] [
g(x)g(x′)

]− 1
2 (2.8)

The Green’s function contains an expansion through function F (x, x′;u) which has the

form

F (x, x′;u) =

∞∑
j=0

aj(x, x
′)(u)j (2.9)

where u has its origin in,

1

k2 −m2 + iε
=

∞∫
0

due−u(k2−m2+iε) (2.10)

and (ε → 0). In fact The equation (2.7) is the generalization of the effective action

method [25] in Minkowski quantum field theory to it’s curved space-time counterpart.

In this method −iu is usually referred to as DeWitt-Schwinger proper time. In the flat
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limit where all geometric quantities are zero, a0(x, x′) = 1 and all higher order terms

in (2.9) vanish. Therefore, in this limit, the corresponding term for Green’s function in flat

space-time is reproduced. With the use of Fynmann propagator in (2.5), one can obtain

the quadratic terms in (2.4) as〈
Φ2
〉

= 〈0|Φ(x)Φ(x) |0〉 = lim
x→x′

(iGF (x, x′)) . (2.11)

According to the definition, the limit (x→ x′) is identical to yµ → 0 and therefore σ → 0.

Furthermore in this limit ∆(x, x) = 1. Using these facts, (2.7) and (2.11), the quadratic

term takes the form

〈
Φ2
〉

= lim
σ→0

−(4π)−
n
2

∞∫
0

du(u)−
n
2 exp

[
−m2u+

( σ
2u

)]
F (x, x;u)

 . (2.12)

In this limit the first three coefficients in (2.9) are derived as [19, 20]

a0 = 1 , (2.13a)

a1 =

(
1

6
− ξ
)
R , (2.13b)

a2 =
1

180
RαβγδR

αβγδ − 1

180
RαβRαβ −

1

6

(
1

5
− ξ
)
�R+

1

2

(
1

6
− ξ
)2

R2 . (2.13c)

The vacuum expectation value for the trace of the stress-energy tensor of arbitrarily

coupled quantum scalar fields is obtained by inserting (2.13) into (2.12), and using the

result in (2.4). In the next section we use this trace to calculate the stress-energy tensor

for the exterior geometry of a collapsing homogeneous ball of dust.

3 Quantum corrections on the geometry of a collapsing homogeneous

dust

The classical model of the homogeneous dust collapse was first proposed by Oppenheimer

and Snyder and independently by Datt in the late 1930s [26, 27]. Here we consider a

similar model and modify it by quantum vacuum effects. In this model the interior ge-

ometry of a spherically symmetric collapsing homogeneous dust is described by a closed

contracting FRW metric. FRW metrics are prevalently used in describing homogeneous

and isotropic universes in cosmology. Since the internal geometry of a spherically sym-

metric collapsing homogeneous object has the similar properties, it can be described by

the same metric. In fact, this point was proved in the early models of spherically sym-

metric homogeneous dust collapse and we can also use it in our model. What we will do

is involving the quantum-induced energy density and pressure in the FRW background

of the inside of collapsing object and investigating their effects on the dynamics of col-

lapse. The exterior geometry which is spherically symmetric will be quantum corrected

Schwarzschild space-time. It is derived by adding the stress-energy tensor of the quantum

fields in the ordinary Schwarzschild background, then solving Einstein’s equations again
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with this quantum stress-energy tensor. This helps us to obtain quantum corrections to

the Schwarzschild geometry. This procedure is similar to an iteration method since the

quantum corrections are of order ~ with higher order terms neglected.

3.1 Quantum corrected exterior geometry

First we derive the quantum corrected exterior metric and after that we will investigate

the quantum effects in the interior geometry. Using (2.4), (2.12) and (2.13), one obtains a

relation for the trace of the quantum stress-energy tensor, namely

〈
Tµµ
〉

=

(
3ξ − 1

2

)(
− 1

16π2

)
�

( ∞∫
0

du

u2
e−m

2u +

∞∫
0

du

u
e−m

2u

(
ξ − 1

6

)
R+

+

∞∫
0

due−m
2u

(
1

180
RαβγδR

αβγδ− 1

180
RαβRαβ−

1

6

(
1

5
−ξ
)
�R+

1

2

(
1

6
−ξ
)2

R2

)

+ . . .

)
+

1

16π2
m2

( ∞∫
0

du

u2
e−m

2u +

∞∫
0

du

u
e−m

2u

(
ξ − 1

6

)
R+

∞∫
0

due−m
2u

×

(
1

180
RαβγδR

αβγδ− 1

180
RαβRαβ−

1

6

(
1

5
−ξ
)
�R+

1

2

(
1

6
−ξ
)2

R2

)
+ . . .

)
(3.1)

where the terms that are shown by (. . .) are related to the higher order terms in the

expansion of (2.9) at the limit (x→ x′). These terms are finite in u = 0 which means they

are UV-finite since according to the previous definitions −iu acts like a scale parameter

(DeWitt-Schwinger proper time). In this work we are solely interested in massless scalar

fields. Performing the change of variables m2u = λ in the integrals of (3.1) and taking

m→ 0, all UV-finite higher order terms will have powers of m2 in their denominators and

thus are IR-divergent. Such divergencies do not concern our present considerations and we

omit them. Since in the Schwarzschild space-time we have: R = Rµν = 0, (3.1) simplifies to

〈
Tµµ
〉

=
1

2880π2
RµνγδR

µνγδ . (3.2)

It is clear that the final result is independent of the coupling constant ξ. Therefore, there is

no difference between conformal and non-conformal field contributions to the renormalized

trace of the quantum stress-energy tensor in the special case of Schwarzschild space-time.

This means that our trace for arbitrarily coupled fields will be the same as the trace

anomaly in this special case. Using RµνγδR
µνγδ = 48M

2

r6
for the Schwarzschild metric and

plugging it into (3.2), results in

〈
Tµµ
〉

=
1

60π2

M2

r6
. (3.3)

Having the trace of the stress-energy tensor, we need extra conditions to derive the com-

plete form of this tensor. Spherical symmetry imposes two conditions. One is
〈
T θθ
〉

= 〈Tϕϕ 〉

– 6 –
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and the other is [28]:
〈
T 0

0

〉
= 〈T rr 〉. A third condition comes from the conservation of

stress-energy tensor (∇ν 〈Tµν〉 = 0) which leads to

4f(〈T rr 〉 −
〈
T θθ

〉
) + (〈T rr 〉 −

〈
T 0

0

〉
)rf ′ + 2rf

d

dr
〈T rr 〉 = 0 (3.4)

where a prime denotes the derivative with respect to r and f = 1 − 2M
r . Using above

constraints together with (3.3), one can calculate all elements of the stress-energy tensor.

The result is

〈
T νµ
〉

= − 1

120π2


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 −2

M2

r6
. (3.5)

We assume the general form of the metric to be

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2(dθ2 + r2sin2θdϕ2) . (3.6)

As we showed before, our result for the quantum stress-energy tensor of the exterior geom-

etry is independent of the coupling constant, and therefore, by putting the stress-energy

tensor (3.5) into Einstein’s equations (Rνµ − 1
2g
ν
µR = 8π

〈
T νµ
〉
), the results will be similar

to the results in [18] for conformally coupled fields. The solutions of Einstein’s equations

are easily obtained as

eν = e−λ =

(
1− `p

mp

2M

r
+

`p
4

45πmp
2

M2

r4

)
(3.7)

where we have worked in standard units for the final solutions by plugging the Planck mass

mp and the Planck length `p into relations. Using (3.7), the quantum corrected metric for

the exterior geometry reads

ds2 = −
(

1− `p
mp

2M

r
+

`p
4

45πmp
2

M2

r4

)
c2dt2 +

(
1− `p

mp

2M

r
+

`p
4

45πmp
2

M2

r4

)−1

dr2+

+ r2dΩ2 , (3.8)

in which: dΩ2 = dθ2 + sin2θdϕ2. It is significant that g00 in (3.8) has two roots, show-

ing the existence of two horizons. One is the outer horizon which is quantum corrected

Schwarzschild horizon

r+ '
2M

mp
`p −

1

360π

mp

M
`p. (3.9)

Note that we have kept only the linear terms in ~. The other horizon which is an inner

one, arises due to the quantum corrections and takes the form

r− '

(
1

90π
M
mp

) 1
3

1−
(

1
90π

M
mp

) 1
3 mp

6M

`p . (3.10)

Since a
(mp

M

) 2
3 appears in the denominator and

mp

M � 1 for ordinary black holes, one can

expand the fraction. In this expansion, the first three terms are of order lower than or

equal to ~ and higher order terms can be neglected. We will return to these results for the

quantum corrected exterior geometry of a collapsing object in the next section.
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3.2 Quantum vacuum energy in the interior geometry

In this part we concentrate on the interior geometry of the collapsing homogeneous dust

described by a contracting FRW metric. Our procedure begins with finding the quan-

tum energy density and pressure of the massless scalar fields in this background. To find

the quantum-induced energy density, we should sum over energies of the modes that are

solutions of the equation of motion (2.2) in a closed FRW background.

A closed FRW background is described by the line element

ds2 = −c2dτ2 +
R′(r, τ)

1− kr2
dr2 +R2(r, τ)dΩ2. (3.11)

The physical radius of a shell with the proper time τ and the proper radius r is defined by

R(r, τ) = a(τ)r (3.12)

where a(τ) is the scale factor. k is a positive parameter for a closed geometry which is

defined by k = 1
<2 . < is the radius of the curvature of the spatial metric which is a 3-sphere

in this case. The physical radius (3.12), can define a proper area for the shells with different

labels of r and τ as:

C =

∫
gθθgϕϕdθdϕ =

∫
R2(r, τ) sin θdθdϕ =4πR2(r, τ) . (3.13)

In this model, if any shell of the homogeneous ball of dust is crushed into the singularity,

its physical radius and proper area will be zero. According to (3.12), this is equivalent to

saying that singularity for different shells is reached when the scale factor becomes zero. In

our model, the scale factor a(τ) is independent of the proper radius of different shells. This

means that, if there is a singularity formation at the final fate of the collapse, all shells will

become singular simultaneously. We discuss this later where we show that the singularity

would never form due to the quantum vacuum effects.

Now for a reason that will be clear later, we pay our attention to a static closed FRW

background where the scale factor is constant. In this background the Ricci scalar is R =
6k
a2

. By performing the change of variables
√
kr = sinχ and using (3.12), (3.11) becomes

ds2 = −c2dτ2 +
a2(τ)

k
(dχ2 + (sinχ)2dΩ2) . (3.14)

Using (2.2), the equation of motion will be

(�− ξ 6k

a2
)Φ = 0 . (3.15)

This equation should be solved in the background described by (3.14). The general solution

can be written as

Φ =
∑
n,l,m

an,l,mUn,l,m + a†n,l,mU
∗
n,l,m (3.16)

where an,l,m and a†n,l,m are annihilation and creation operators respectively after quantiza-

tion. Therefore, the vacuum state can be defined as: an,l,m |0〉 = 0, for any set of quantum

numbers (n, l,m). The modes Un,l,m are eigenstates of (3.15), which are calculated as [29]

Unlm = Anlmx
lC l+1
n−1(

√
1− x2)Ylm(θ, ϕ)e−iωnt, (3.17)

– 8 –
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which x =
(

sinχ√
k

)l
, C l+1

n−l are Gegenbauer functions and Ylm(θ, ϕ) are spherical harmonics.

The quantum number n takes the values n = 0, 1, 2, . . . and the quantum number l has the

values l = 0, 1, . . . , n for fixed n. The eigenfrequencies are found to be

ωn =
c

a

√
k
[
(n+ 1)2 + 6ξ − 1

]
. (3.18)

The coefficients in (3.17) are calculated by requiring the othonormality relation

(Uα, Uβ) = −i
∫
Uα

↔

∂0U∗β
√
hd3x = δαβ (3.19)

where α and β are sets of quantum numbers (n, l,m). After determining these coefficients,

one can use (2.3) to find the quantum energy density ρ = −
〈
T 0

0

〉
by using (3.16) for Φ.

The final relation for the quantum-induced energy density is

ρ =
~k3/2

2π2a3

∞∑
n=1

(n+ 1)2ωn
2
. (3.20)

We can also calculate the pressure which is defined as p =
〈
T 1

1

〉
. The final result is p = 1

3ρ.

This is reminiscent of the equation of state for radiation and implies that massless scalar

fields act like radiation in the static closed FRW background.

Considering (3.20) and (3.18), the final relation for the quantum energy density reads

ρ =
~k2c

4π2a4

∞∑
n=0

(n+ 1)2
√

(n+ 1)2 + 6ξ − 1 . (3.21)

This expression for quantum-induced energy density is clearly divergent and one needs to

apply renormalization techniques. For example one of the familiar methods is multiplying

the terms of expansion in (3.21) by a damping factor to get

ρ = lim
α→0

~k2c

4π2a4

∞∑
n=0

e−αn(n+ 1)2
√

(n+ 1)2 + 6ξ − 1 . (3.22)

In this and other regularization techniques, the divergent part which can be regarded as

the flat space contribution is subtracted. The remaining finite term is the result of the

renormalization which in our case takes the form

ρq =
k2~c
a4

f(ξ) . (3.23)

Hence for quantum pressure we have

pq =
1

3
ρq =

k2~c
3a4

f(ξ) . (3.24)

Here f(ξ) is a finite function of coupling constant which is derived after the renormalization.

As an example we use the results in [30] for the renormalization of (3.21) which determine

the values of f(ξ). The result is shown in figure 1. The important point is the existence

– 9 –
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Figure 1. A plot of f(ξ) (vertical axis) as a function of coupling constant ξ [30]. There are

negative values of f(ξ) for a range of coupling constants which make the quantum-induced energy

density (3.23) and pressure (3.24) negative.

of large negative values of f(ξ) which make the quantum-induced energy density (3.23)

and pressure (3.24) negative. For the special case of the conformally invariant scalar fields

with ξ = 1
6 , we have f(ξ) = 1

480π2 (see [31] for more detail) which implies a positive energy

density. However, according to figure 1, for smaller values of the coupling constant the

quantum energy density and pressure change sign. In the next section we will show that

this negative values for the quantum vacuum energy density and pressure, together with

the quantum corrections on the exterior geometry of the collapsing ball, cause important

effects on the final fate of the collapse. Here we draw the reader’s attention to the fact that

negative energy densities and pressures are not due to negative kinetic energies of ghost

fields but due to the quantum vacuum effects of massless scalar fields. In the next section we

also show that the presence of matter density (ρm) in the collapse process compensates for

the negative values of the quantum vacuum energy density and pressure and makes the sums

ρm+ρq+pq and ρm+ρq positive. This implies that the weak energy conditions are satisfied.

4 Quantum effects on the final fate of a homogeneous dust collapse

As we mentioned in the previous section, our scenario for the gravitational collapse of a

homogeneous ball of dust with quantum vacuum effects is taking into account the dynamical

effects of the quantum-induced energy density and pressure, in addition to the ordinary

matter density. To this end, we consider a contracting closed FRW geometry as the interior

space-time and a quantum corrected Schwarzschild geometry for the exterior space-time.

Then we match the interior and exterior geometries to find out the final fate of the collapse.

In this section, we follow this scenario and investigate the role of the quantum vacuum

effects on the resolution of the black hole singularity.

4.1 Quantum dynamical effects in the interior geometry

The interior metric of collapsing homogeneous dust is described by (3.11) with k > 0. The

singularity for a shell is reached when its physical radius (3.12) or basically the scale factor
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vanishes. Note that the central shell (r = 0) is not regarded as a singular one while the

scale factor is nonzero. In this background, the matter density of the collapsing dust is

given by ρm, which from homogeneity condition takes the form

ρm =
ρ0

a3
. (4.1)

In a closed FRW background the quantum energy density and the quantum pressure are

given by

ρq =
k2~c
a4

f(ξ) + Γ(ȧ4,
....
a , . . .) (4.2)

and

pq =
k2~c
3a4

f(ξ) + Π(ȧ4,
....
a , . . .) . (4.3)

The first terms in the right-hand side of both equations are the static space-time contribu-

tions (3.23) and (3.24). The second terms are contributions from the dynamical (contract-

ing) space-time to the vacuum energy density and pressure of massless scalar fields. These

terms can be derived from the calculation of
〈
T 0

0

〉
and

〈
T 1

1

〉
for a closed FRW space-time

with a time-dependent (diminishing) scale factor. A dot denotes the derivative with respect

to proper time τ . Γ and Π involve terms of order 1
τ4

.

The Einstein’s equations for a FRW metric leads to the familiar Friedmann equations.

Using (4.1) and (4.2), the first equation is

ȧ2 − γ ρ0

a
− γ

[
k2~
a2c

f(ξ) +
a2

c2
Γ(ȧ4,

....
a , . . .)

]
= −kc2 ≡ E (4.4)

where we have defined γ = 8πG
3 and E is a constant. Using (4.1), (4.2) and (4.3), the

second Fridmann equation takes the form

ä = −γ
2

ρ0

a2
− γ

2

[
2k2~
a3c

f(ξ) +
a

c2
Γ(ȧ4,

....
a , . . .) +

3a

c2
Π(ȧ4,

....
a , . . .)

]
. (4.5)

With the help of these two equations, one can find the equations for the static scale factor

a = a0 (the scale factor of a static background) where ȧ, ä and all other derivatives with

respect to proper time are zero. The result is

γ
ρ0

a0
+ γ

~k2

a0
2c
f(ξ) = kc2 , (4.6a)

γ
ρ0

a0
2

+ 2γ
~k2

a0
3c
f(ξ) = 0 . (4.6b)

Now before evaluating a0 we note that the equation (4.4) is like a classical relation for the

energy conservation in which the first term in the left-hand side acts like a kinetic term,

the next two terms resemble the scale-dependent and the last term acts like a complicated

velocity-dependent potential. The right-hand side is like the total amount of the conserved

energy. First we look at the scale-dependent potential which is described by

U(a) = −γ ρ0

a
− γ k

2~
a2c

f(ξ) (4.7)
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If we require the above potential to have a stationary point at a = a0, we should have:
δU(a)
δa = 0 at this point. Using (4.7), this condition implies

γ
ρ0

a0
2

+ 2γ
~k2

a0
3c
f(ξ) = 0 (4.8)

which is the same (4.6b). This means that the point a = a0, which is regarded as the scale

factor of a static background, will be the stationary point of the scale-dependent potential

regardless of its value. With the help of (4.6a) and (4.6b), two unknown parameters can be

determined. One more parameter should be chosen conventionally. We have two different

choices. One is to choose a convention for k and determine a0 and ρ0 and the other is

to choose an arbitrary value for a0 and determine k and ρ0. Both choices are physically

equivalent. We follow the latter choice and set a0 = 1 and determine k and ρ0 accordingly.

Note that according to (4.1), for a0 = 1 we have: ρm = ρ0, which means by determining ρ0

we can find the density of the ball of dust in the stationary point. With the help of (4.6a)

and (4.6b) we obtain,

k = γ
ρ0

2c2
, ρm = ρ0 =

2c5

(−f(ξ)) ~γ2
. (4.9)

In closed FRW metrics we have: k = 1
<2 with < the radius of curvature for the spherical

spatial topology. Therefore by determining k from (4.9), this radius can be calculated. It is

clear from (4.9) that to have a positive matter density in the static phase, there must be val-

ues of coupling constant for which f(ξ) < 0. In figure 1, as an example for the calculation of

f(ξ), we can find many of such couplings. In fact from (3.23) and (3.24), the negative value

of f(ξ) for a specific coupling constant implies negative quantum-induced vacuum energy

density and pressure. These negative quantities can produce repulsive vacuum effects that

can stop the collapsing matter and cause a static phase. This can be easily seen in (4.7)

where the first term (matter contribution) acts like an attractive term of the potential

and the next term (quantum vacuum contribution) acts like a repulsive one when f(ξ) is

negative. At the stationary point (a = a0 = 1), the collapsing dust enters a static phase

which stems from a balance between the attractive and repulsive forces of the potential.

Now we investigate the condition for (4.7) to be stable at the extremum point a =

a0 = 1 i.e. δ2U(a)
δa2

> 0. From (4.7) and (4.6b) we get(
δ2U(a)

δa2

)
a=a0=1

= −2γρ0 − 6γ
k2~
c
f(ξ) = −2γ

k2~
c
f(ξ) > 0 . (4.10)

This inequality is satisfied if we have

f(ξ) < 0 . (4.11)

This condition implies that negative values of f(ξ) which result in negative quantum den-

sities and pressures, will also guarantee the stability of the stationary point a = a0 = 1.

Henceforth, we only consider the coupling constants for which f(ξ) is negative.
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Remembering the definition γ = 8πG
3 and plugging it into (4.9) for the matter density

in the stable static point we obtain

ρm = ρ0 =
18

(8π)2 (−f(ξ))
ρp (4.12)

where ρp =
mp

`p
3 is the Planck density. This enormous density is consistent with our expec-

tation, since at the stable static point the repulsive quantum contribution should be strong

enough to cancel out the attractive matter contribution. This happens in such densities

where strong quantum background effects are excited and cause an ultimate balanced phase.

Regarding (4.7) and using (4.6b) at a0 = 1, we derive a useful relation for the scale-

dependent potential that is

U(a) = γρ0

(
−1

a
+

1

2a2

)
, (4.13)

where ρ0 is given by (4.12). Figure 2 is a graph of normalized potential U(a)
γρ0

as a function

of the scale factor. As we anticipate, the static point a = a0 = 1 is an absolute minimum

of the potential. For smaller values of the scale factor, the potential becomes larger until

it reaches infinity at a = 0 which is the singularity point. This behavior implies that after

the collapsing matter has reached the stable static phase, it can not contract more towards

a zero scale factor or equivalently the singularity, since it is not preferable for the system

to increase its potential. Considering the equation (4.4), we argued that this equation is

like a classical energy conservation relation with a kinetic term and a scale-dependent plus

a complicated velocity-dependent potential. The latter potential is a complicated function

of the time derivatives of the scale factor which are of order 1
τ4

. Furthermore, this potential

is of order ~ because of the quantum nature of its origin, just like the quantum-originated

repulsive term in the scale-dependent potential. This velocity dependent potential is clearly

zero at the static point and is also very small at its proximity. therefore this term is

negligible in such regions. Thus the behavior of the collapsing object is dictated by the

scale-dependent potential near the static point.

Another important fact, which can be seen from (4.13), is the satisfaction of the weak

energy conditions in the stable static phase despite the existence of the negative quantum

densities and pressures. To see it, one should notice that in (4.13), the matter density

comes with a negative sign (− 1
a) and the quantum term comes with a positive sign (+ 1

2a2
).

In the stable static phase we put a = a0 = 1 which leads to U0 = γρ0(−1+ 1
2). This relation

is a testament to the domination of the sign of the matter(dust) density in the stable static

phase. Considering (4.12), we have ρm = ρ0 and therefore the relation for U0 implies that

the density of matter is twice as the quantum density (ρq = −1
2ρm) in the static situation.

Furthermore, according to (3.24) we have: pq = −1
6ρm. Consequently we obtain

ρm + ρq =
1

2
ρm (4.14)

and

ρm + ρq + pq =
1

3
ρm (4.15)
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Figure 2. A plot of normalized potential U(a)
γρ0

as a function of the scale factor. The point a = a0 = 1

is a stable stationary point for the potential. For smaller values of the scale factor the potential

grows until it approaches infinity near a = 0 which is the singularity point. The behavior of the

normalized potential, which is reminiscent of a position-dependent potential in classical mechanics,

implies that the collapse process should be stopped due to an increase in the potential of the system

when the ball of dust continues contraction. Therefore the collapse process will be hindered due to

the quantum-induced repulsive effects and the system will be settled at a stable static situation.

in the stable static phase. These two outcomes indicate that

ρtot ≥ 0 , ρtot + ptot ≥ 0 (4.16)

where ρtot and ptot denote the total amount of density and pressure, available in the

background, respectively. These relations stipulate that the energy conditions are satisfied.

Therefore one should not worry about the occurrence of inconsistent physical situations

in the stable static situation due to the existence of the negative quantum densities and

pressures. Note that from (3.5), considering ρ = −
〈
T 0

0

〉
, p =

〈
T 1

1

〉
, pθ =

〈
T 2

2

〉
and

pϕ =
〈
T 3

3

〉
, the same relations hold for the exterior geometry (for different components of

pressure) and similarly the energy conditions are satisfied there.

As a summary, we have shown that quantum massless scalar fields with a definite range

of couplings in the interior background, can create negative vacuum energy densities and

pressures that cause repulsive effects. These effects can offset the attractive gravitational

force of the collapsing matter and consequently hinder the collapse. This process can

ultimately steer the collapsing object to a stable static phase with a = a0 = 1. In addition,

we showed that the weak energy conditions are satisfied in this phase.
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4.2 Matching the geometries and final fate of the collapse

In this part, by considering quantum vacuum effects, we match the exterior and interior

geometries of a collapsing homogeneous ball of dust, using the results of previous parts.

Then we investigate the physical properties of the stable static phase and discuss the final

fate of the collapse.

The interior geometry which we label by (−), is described by (3.11). The exterior

geometry(+), is described by (3.8), which can be rewritten as:

ds+
2 = −f(rsc)c

2dt2 + f(rsc)
−1drsc

2 + rsc
2dΩ2 (4.17)

where we have:

f(rsc) = 1− 2M

rsc

`p
mp

+
1

45π

M2`p
4

rsc4mp
2
. (4.18)

Here rsc > Rc (Rc ≡ R(rc, τ)), which means the Schwarzschild radius is bigger than the

physical radius of the boundary shell or equivalently the radius of the ball of dust.

We label the boundary surface between the interior and exterior regions by Σ. To fol-

low the standard procedures of matching two geometries [32], we should derive a relation for

the metric of the boundary surface as seen from the either region. Firstly, we derive the line

element of the boundary as seen from the interior region. By performing the change of vari-

ables sinχ =
√
kr, we obtain the line element (3.14). Now by considering this line element,

the metric of the boundary surface as seen from the interior region can be obtained as

ds
Σ−

2 = −c2dτ2 +
a(τ)2

k
(sinχc)

2dΩ2 , (4.19)

where χc pertains to the boundary surface. To consider the boundary metric as seen from

the exterior region, the schwarzschild time in the boundary t should be related to the

proper time τ of the boundary observers. In addition, the Schwarzschild radius rsc of the

boundary should be related to the physical radius of the collapsing ball Rc(τ). These can

be done by using the equations

rsc|Σ = Rc(τ) , t = T (τ) . (4.20)

In fact, the equation rsc|Σ = Rc(τ) is the equation of motion for the boundary surface

and T (τ) is a function that should be determined by the matching conditions. Consider-

ing (4.17) and (4.20), the line element of the boundary as seen from the exterior region

takes the form

ds
Σ+

2 = −c2

(
FṪ 2 − F−1Ṙ2

c

c2

)
dτ2 +Rc

2dΩ2 (4.21)

where a dot denotes the derivative with respect to proper time τ . Considering (4.18)

and (4.20), F is defined as

F = f(Rc) = 1− 2M

Rc

`p
mp

+
1

45π

M2`p
4

Rc
4mp

2
. (4.22)
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The first matching condition is the equality of the boundary metric as seen from the

either region which implies ds2
Σ− = ds2

Σ+ . Using (4.19) and (4.21), this condition results

in two useful equations

Rc(τ)2 =
a(τ)2

k
(sinχc)

2 , (4.23a)

FṪ 2 − F−1Ṙ2
c

c2
= 1. (4.23b)

The latter implies

FṪ =

√
Ṙ2
c

c2
+ F ≡ β . (4.24)

The second matching condition is the continuity of the extrinsic curvature which is

defined as Kab = nα;βe
α
ae
β
b where nµ is the unit normal vector to the boundary and eβα are

the tangent basis vectors on the boundary surface. This condition can be shown by

[Kab] = Kab
+ −Kab

− = 0 . (4.25)

The unit normal vector to the boundary can be written as n−µ = (0, a, 0, 0) for the interior

region and n+
µ = (−Ṙ, Ṫ , 0, 0) for the exterior region. Again, a dot denotes the derivative

with respect to proper time τ . Using these facts, the nonvanishing components of the

extrinsic curvature are [32],

Kτ+
τ =

β̇

Ṙc
, Kθ+

θ = Kϕ+
ϕ =

β

Rc
(4.26)

for the exterior region and

Kτ−
τ = 0 , Kθ−

θ = Kϕ−
ϕ =

cotχc
a(τ)

√
k . (4.27)

for the interior.

From [Kτ
τ ] = 0, we conclude that β is constant which, considering (4.24), implies that

Ṙ2
c
c2

+F = β2 is constant. This resembles an energy conservation relation for the collapsing

ball. From
[
Kθ
θ

]
= [Kϕ

ϕ ] = 0, by using (4.24) one obtains√
Ṙ2
c

c2
+ F = Rc

cotχc
a(τ)

√
k . (4.28)

Using this equation and (4.23a), one derives

Ṙ2
c

c2
+ F = (cosχc)

2 . (4.29)

Henceforth, we use the previous relations to obtain a remarkable equation which relates

the Schwarzschild mass of the homogeneous ball of dust to its radius in the stable static

phase. Starting from (4.23a), taking the time derivative of both sides yields

kṘ2
c = (sinχc)

2ȧ2. (4.30)
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By substituting from (4.4) for ȧ2 in (4.30) one obtains

Ṙ2
c =

(sinχc)
2

k

(
−kc2 + γ

ρ0

a
+ γ

[
k2~
a2c

f(ξ) +
a2

c2
Γ(ȧ4,

....
a , . . .)

])
. (4.31)

As we discussed before, we can neglect the function
[
a2

c2
Γ(ȧ4,

....
a , . . .)

]
since we are interested

in exploring (4.31) at (the proximity of) the static point. Using (4.29) for Ṙ2
c in (4.31) one

gets

c2(1− (sinχc)
2 − F ) =

(sinχc)
2

k
(−kc2 + γ

ρ0

a
+ γ

k2~
a2c

f(ξ)) , (4.32)

leading to

c2 (1− F ) =

(
γ
ρ0

a

(sinχc)
2

k
+ γ

k~
a2c

f(ξ)(sinχc)
2

)
. (4.33)

Using (4.23a), one can substitute for (sinχc)
2 in (4.33) to obtain

1− F = γ
ρ0

c2a3
Rc

2 + γ
~k2Rc

2

c3a4
f(ξ). (4.34)

Here we set a = a0 = 1 which is the scale factor at the stable static situation, as we

discussed before. Furthermore, by using (4.9) for k, (4.12) for ρ0, (4.22) for F and by

recalling the definition γ = 8πG
3 , the equation (4.34), after simplification, takes the form

M − 1

90π

M2

Rc
3

(
`p

3

mp

)
=

4π

3
Rc

3(
9

(8π)2(−f(ξ))
)ρp. (4.35)

This equation is a relation between Schwarzschild mass and the physical radius of the ho-

mogeneous ball of dust at the stable static phase. Note that in this equation Schwarzschild

mass includes two contributions. one is the ordinary matter (dust) contribution in the

right hand side. Clearly, this term is the physical volume ( 4π
3 Rc

3) times matter density

at the stable static point. The other contribution is the second term in left hand side

of (4.35) which is a purely quantum-originated term, emanated from the vacuum effects

of the interior and exterior geometries. Because of this new term, Schwarzschild mass is

different from the ordinary mass (Mm).

For simplicity we can write

Rc = γr`p , M = γmmp (4.36)

where we have introduced the parameters γm and γr to write the Schwarzschild mass and

the physical radius of the static ball in terms of the Planck mass and the Planck length

respectively. Using these new parameters, the equation (4.35) can be rewritten as

γm −
1

90π

γm
2

γr3
=

3

16π(−f(ξ))
γr

3 . (4.37)

This expression is a quadratic equation in terms of γm. The discriminant of the equation is

∆ = 1 + 4

(
1

90π

)(
3

16πf(ξ)

)
. (4.38)
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To have positive real roots we require ∆ ≥ 0, which leads to

− f(ξ) ≥ 1

120π2
. (4.39)

For values of f(ξ) satisfying this condition, we obtain real and positive solutions for γm,

γm =
−1±

√
1 + 1

120π2(−f(ξ))

− 2
90π

γr
3. (4.40)

With this equation, one can find a straightforward way to calculate the physical radius

of the ball of dust at the ultimate static point for a given initial mass. Before setting a

physical example for such calculation, we investigate the location of the stable static ball

of dust. This helps us to understand whether the collapsing ball ultimately ends up in

a black hole. To this end, we recall the quantum corrected horizons derived in previous

section. Using (3.9), (3.10) and (4.36), one finds the horizons as

r+ = 2γm`p −
1

(360π)γm
`p , (4.41a)

r− =

( γm
90π

) 1
3

1−
( γm

90π

) 1
3 1

6γm

`p . (4.41b)

Using (4.40) and requiring the condition (4.39), the maximum value of the γr is obtained

as (γr)max =
( γm

90π

) 1
3 in the limit (−f(ξ)) −→∞. Therefore, considering (4.36), the largest

possible value of the physical radius of the stable static ball is

(Rc)max =
( γm

90π

) 1
3
`p =

(
1

90π

M

mp

) 1
3

`p . (4.42)

Comparing this radius with the radii of the horizons in (4.41a) and (4.41b), it is easy to see

that the maximum possible value of the physical radius is always smaller than the radius

of the inner horizon. This interesting result implies that the final fate of the collapse will

always be a black hole inside which a stable static ball of dust is trapped with a radius

smaller than the inner horizon.

This final fate of the collapse is a result of the existence of repulsive quantum vacuum

forces which can be referred to as repulsive Casimir forces. These cause the matter to

be trapped in a stable balanced situation inside the black hole. The important thing

about this scenario is precluding the formation of the black hole singularity. To explain

the reason, we remember that the physical radius of an arbitrary shell in the ball of dust

with proper radius r and proper time τ is defined as: R(r, τ) = a(τ)r and therefore the

singularity for any arbitrary shell of matter is reached when the scale factor goes to zero.

Furthermore, the scale factor a(τ) is only a function of proper time and does not depend

on the proper radius of the different shells of matter. Therefore in this scenario where

the stable static ball of dust has the nonzero scale factor a = a0 = 1, the singularity does

not form for the ball of dust and consequently for the corresponding black hole. In other
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𝔦+ 

Figure 3. A simplified Penrose diagram for the homogeneous dust collapse with quantum vacuum

effects. The red line represents the boundary of the collapsing object and the blue line shows the

boundary surface of the ultimate stable static ball of dust inside the black hole. The areas with

dashed lines represent the dust. The center of the black hole (r = 0) is nonsingular.

words, a homogeneous ball of dust with a finite physical radius obviously does not admit

a singularity. Thus the final fate of the homogeneous dust collapse with quantum vacuum

effects, in certain conditions when f(ξ) satisfies (4.39), will be a black hole wherein the

trapped matter stays in a stable balanced situation inside the inner horizon, without any

singularities. This outcome is an example of the resolution of singularity by employing

quantum vacuum effects. Figure 3 shows the simplified Penrose diagram of the collapse.

4.3 A physical example for the final fate of a dust star by considering quantum

effects

We Consider a spherically symmetric homogeneous dust star that has five times the mass

of sun (Mm = 5M�), with M� = 1.989×1030kg. Considering previous arguments, this ob-

ject starts collapsing from an initial physical radius and continues it until passes the outer

horizon and leads to the formation of a black hole. During this process, quantum vacuum

energy density and pressure affect the interior and exterior geometries of the collapsing star.

Ultimately, it will be stopped in a stable static phase inside the inner horizon of the black

hole due to the repulsive quantum vacuum forces. In this example we investigate the phys-

ical features of the ultimate stable static point. As we argued before, we deal with negative

values of f(ξ) in (4.2) and (4.3) which correspond to the negative quantum vacuum energy
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densities and pressures which have repulsive effects. Furthermore, we obtained a condition

for f(ξ) in (4.39) to attain real and positive values of γm or equivalently Schwarzschild

mass. To start calculation, we should choose a value for f(ξ) that satisfies this condition.

Here we assume that all couplings are equally possible. Considering figure 1, we can choose

f(ξ) = −0.002 as typical value. Inserting this value into (4.40), for the static phase we get

γm ' 310γr
3. (4.43)

Using (4.12) we obtain

ρ0 =
18

(8π)2 × 0.002
ρp = ρm =

Mm
4π
3 Rc

3 (4.44)

where we have used the definition of the matter density for a homogeneous ball of dust.

Using Mm = 5M� and plugging the values of the Planck density and solar mass into (4.44),

Rc is calculated as

Rc = 1.97× 1012`p . (4.45)

Now with the help of (4.36), γr is calculated. Inserting this parameter into (4.43), one can

calculate γm which, from (4.36), results in

M = 23.56× 1038mp . (4.46)

Note that as we discussed before, Schwarzschild mass M is different from ordinary mass

Mm = 0.914× 1038mp and the relative change is δM
M = 0.961. Using γr = 1.97× 1012 and

γm = 23.56× 1038 from above equations, the radii of the inner and outer horizons can be

calculated by plugging these parameters into (4.41a) and (4.41b). The result is

r+ = 47.12× 1038`p , r− = 2.03× 1012`p . (4.47)

Comparing the physical radius of the ball of dust from (4.45) with the results in (4.47)

confirms our conclusion in the previous part that the physical radius in the stable static

phase is always smaller than the inner horizon. In addition, the interior geometry of this

static ball of dust which is a static closed FRW metric, according to (4.9) and (4.12), has

the curvature constant k = 59.68 1
`p

2 . These calculations can be repeated for any other

masses of homogeneous balls of dust.

4.4 A discussion on Hawking radiation

In the previous parts, we discussed that the ultimate fate of a collapsing homogeneous

ball of dust with quantum vacuum effects of massless scalar fields with a specific range of

couplings in the background. The final fate of the collapse was a black hole with an outer

horizon which was the quantum corrected Schwarzschild horizon and a quantum originated

inner horizon wherein the ball of dust stayed in a stable balanced situation. We argued

that the existence of matter with a finite radius inside the inner horizon ensures that the

black hole is devoid of the singularity. This means that the quantum vacuum effects are

capable of resolving the singularity problem and one should not necessarily use quantum

gravity for this purpose.

– 20 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
4

The natural question that arises is that whether Hawking radiation can change the

previous predictions about the final fate of the collapse. The answer to this question is not

straightforward since Hawking radiation itself is a first order quantum effect on a curved

background. In fact, Hawking radiation results from the off-diagonal terms (traceless part)

of the stress-energy tensor [19, 33]. Therefore, in principle, this phenomenon should be

considered alongside the quantum vacuum effects that we applied in our model. However,

simultaneous investigation of both effects makes the calculations formidable. Usually, in the

case of Hawking radiation the background under consideration is regarded to be determined

and one ignores any corrections due to the existence of Hawking flux on the background

geometry itself. This is why we neglected the effects of Hawking flux on the background

corrections in this work. In this regard, To consider the effects of Hawking radiation, we

assume that the background geometry, which is corrected by quantum vacuum effects other

than Hawking radiation, is determined and we study Hawking radiation in that.

After the onset of collapse, two different scenarios can be envisaged by taking Hawking

radiation into account. Depending on the time scales of the collapse and evaporation, if

the evaporation is faster, the collapsing ball of dust disappears before reaching the stable

static phase. Then the black hole singularity will never form and one would not be worried

about the singularity problem. The other scenario, in which the collapse is faster than the

evaporation, allows the ball of dust to reach the stable static phase before the complete

evaporation. In this case, after the ball of dust reaches the stable static point, with a radius

that we calculated to be always smaller than the radius of the inner horizon, Hawking

radiation continues shrinking the black hole and thus depleting the matter inside. The

spherical symmetry of the background and distribution of Hawking flux points to the fact

that the ball of dust will be diminished in an isotropic way so that its homogeneity and

spherical symmetry will be preserved. Therefore Hawking radiation will shrink the radii

of the horizons together with the physical radius of the ball of dust. Now we are ready to

discuss the final steps of Hawking radiation in this simplified model.

The Hawking temperature of a black hole is defined by [34, 35]

TH =
κ

2π
(4.48)

where κ is the surface gravity at the horizon. For a spherically symmetric black hole with

the line element ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, the temperature becomes

TH =
1

4π

(
df(r)

dr

)
r=r+

(4.49)

where r+ is the outer horizon. In the case of our quantum corrected black hole, f(r) is

given by (4.18). Hawking radiation shrinks the radii of the inner and outer horizons (4.41b)

and (4.41a) by decreasing γm until they coincide (r+ = r−) . In this situation the Hawking

temperature (4.49) vanishes and therefore the radiation stops. Note that this situation

can be called “extremal” in analogy to Reissner-Nordström black holes. The time scales of

reaching this extremal phase would be much larger than the time needed for evaporation

of classical Schwarzschild black holes. To see this we can compare the Hawking tempera-

tures of quantum-corrected and classical black holes, with the same initial mass. Using the
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Figure 4. A plot of normalized Hawking temperatures of classical (blue line) and quantum-

corrected (red line) black holes as functions of γm. As the radiation continues, γm reduces and

the temperatures of both black holes increase in a similar way until γm ≈ 0.15 which means

M ≈ 0.15mp. From this point, quantum effects become extremely important and the temperatures

start differing in behavior.

definition of γm in (4.36) and defining: r+ = α`p, from (4.49), after working in ordinary

units, we obtain

TH =
mpc

2

2πkB

(
γm
α2
− 2

45π

γm
2

α5

)
(4.50)

where kB is the Boltzmann constant and we have used (4.18) for f(r). For classical

Schwarzschild black holes the temperature is given by

TH =
mpc

2

2πkB

(γm
α2

)
. (4.51)

From (3.9), we get

α = 2γm −
1

360π

1

γm
, (4.52)

which by inserting it into (4.50) and (4.51), we can find the Hawking temperatures of

quantum-corrected and classical black holes as functions of γm.

Figure 4 represents the normalized Hawking temperatures of quantum corrected and

classical black holes versus γm. As the Hawking radiation goes on, decreasing γm, the

temperatures increase in an almost identical way. But as the Schwarzschild mass reaches

about 0.15mp (γm ≈ 0.15), differences start appearing. In this region the quantum effects

become extremely important and cause the temperature of the quantum-corrected black

hole to behave differently compared to the classical temperature. As we can see from
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figure 4, Hawking temperature of the quantum-corrected black hole starts decreasing from a

specific value as the radiation continues, until it vanishes at the extremal point γm ≈ 0.054.

At this point the radiation stops. Note that the descending values of the quantum-corrected

black hole temperature for values of γm less than a specific value (about 0.07) implies that

the time scales of reaching the extremal phase will be very large. In fact the decrease of

Hawking temperature from that point will decrease the mass loss rate, specially that of

massive fields, and will prolong the process of reaching the extremal phase. This will be

much more effective near the extremal point where the temperature is approaching zero,

causing the rate of radiation to drop fast. In contrast, the classical black hole becomes

hotter and hotter as its mass decreases, raising the mass loss rate due to the radiation,

until it evaporates completely. Therefore the time it takes for our quantum-corrected black

hole to reach the extremal phase will be longer than the evaporation time of the classical

Schwarzschild black hole with the same initial mass.

The remarkable fact is the existence of a remnant of matter at the final extremal

quantum-corrected black hole. This nonzero Schwarzschild mass implies a nonzero mass of

matter(dust) which can again settle in a stable static situation and preclude the existence

of singularity. The reason for this is that the right hand side of (4.35), which represents the

contribution of ordinary mass (mass of dust) at the stable static point, will be nonzero for

a nonzero Schwarzschild mass M . Therefore, even with Hawking radiation, the resolution

of singularity will not be disrupted since a regular remnant will exist inside the extremal

black hole.

To sum up, with all what was discussed in this section taken into account, regardless

of which scenario is better for Hawking radiation of our quantum-corrected black hole, the

resolution of singularity by quantum vacuum effects will not be negatively affected by the

radiation.

5 Final remarks

In this article we showed that the expectation value of the quantum stress-energy tensor of

massless scalar fields which are arbitrarily coupled to the background geometry, together

with the energy density of a ball of homogeneous dust, can have important effects on the

final fate of the collapse. We argued that for certain values of the coupling constants (that

satisfy (4.39)) the quantum background effects can be repulsive so that they can cancel out

the attractive force of the gravitation of the dust and steer the collapsing system to a stable

static phase after the formation of black hole. We showed that the static ball of dust always

lies inside an inner horizon (with a quantum origin) and makes the black hole singularity-

free. This happens since the interior geometry of the ball, described by a closed FRW met-

ric, has nonzero scale factor. We also discussed that if Hawking radiation is considered, ulti-

mately, the black hole becomes extremal with a remnant of matter (dust) inside. Again, this

ultimate remnant will settle in a stable static phase and will preclude the formation of the

singularity. Therefore Hawking radiation would not disrupt the resolution of the singularity.

As we calculated in section 4, at the moment the ball of dust enters the stable static re-

gion, the matter density is a factor of the Planck density. Furthermore, we showed that the
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maximum possible radius of the ball at the stable static phase will be
(

1
90π

M
mp

) 1
3
`p. For ordi-

nary black holes, this radius can be some orders of magnitude larger than the Planck length.

In subsection 4.3 where a numerical example was brought for clarity, we calculated the mat-

ter (dust) density at the static stable phase to be ρm ' 14.25ρp and the curvature constant

to be k = 59.68 1
`p

2 . In addition, we calculated the radius of the ball of dust to be twelve

orders of magnitude larger than the Planck length. Regarding the fact that the Planck den-

sities and curvatures are the gates of the quantum gravity realm [38, 39], These values of the

density and curvature in the stable static phase imply that on the cusp of quantum gravity

the pure semi-classical effects would become extremely important. As a matter of fact, in

this paper we have shown that the resolution of singularity, which is a task relegated to

appropriate quantum gravity theories [40–42], can also be attained by semi-classical meth-

ods like considering quantum vacuum effects on a curved background. In the following, we

put a few remarks concerning some aspects and extensions of our considerations in order.

First, our work merely based on considering massless scalar fields. Taking the massless

fields of arbitrary spin into account follows the same procedures that we implemented in

this article except the coefficients will be spin-dependent. for example f(ξ) in the quantum

energy density of the interior region in (3.23) will comprise other terms pertaining to

different spins. In addition, the trace of the quantum-induced stress-energy tensor in (3.2)

will include other coefficients related to different values of spin. Although the structure

of formulaes and calculations will be the same, these coefficients and their signs can be

important in determining the final fate of the collapse.

Second, considering the discussions about Hawking radiation in section 4.4, the finite

remnant of matter at the extremal situation implies that at least a finite amount of in-

formation can be preserved. This would alleviate the information loss paradox. Although

some of the matter is radiated when the black hole reaches the extremality, it is inter-

esting to investigate whether it is possible to store the information content in the final

remnant of matter which lies inside the black hole. In remnant models of the information

loss paradox [36, 37] a similar final fate for the black hole is predicted. However, in these

models the arguments about the final state of the remnant are usually based on quantum

gravity theories. Here we have merely considered the quantum vacuum effects as a purely

semi-classical method without regarding quantum gravity. This indicates that inclusion of

quantum vacuum effects in collapse processes can lead to results that would not allow the

information loss paradox to arise.

Finally, when we talk about the resolution of singularity or information loss paradox

by quantum vacuum effects, as semi-classical predictions, some important questions arise

about the genericity of such procedures. In fact one should investigate how much the final

fate of the collapse would change if the physical configuration (which was a homogeneous

dust in our example) changes by introducing inhomogeneities and/or ordinary (not quan-

tum) pressures. It is important to realize that whether these changes can mathematically

force the collapsing object to be crushed into zero volume, resulting in a singularity forma-

tion, or not. In this article we have assumed that the characteristic of dust as a pressureless

material and the homogeneity condition remain unchanged during the collapse. It is note-
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worthy that the quantum-induced pressure and density will not disturb the homogeneous

dust configuration since the existence and magnitude of these quantities are concomitants

of this configuration. In other words, for different space-time configurations the elements

of renormalized quantum vacuum stress-energy tensor will be different accordingly. That

is because they have a geometric origin. For examining the genericity of the singularity

resolution by quantum vacuum effects, one should calculate the quantum vacuum stress-

energy tensors originating from more realistic physical configurations. These can be the

interior and exterior geometries of a collapsing inhomogeneous dust, a collapsing perfect

fluid or other collapsing objects including pressures and inhomogeneities. Then one can

investigate whether the final outcome of the collapse would be devoid of the singularity

or not. Such investigations will help us to understand what happens for the singularity

resolution in our model if some ordinary pressures and/or inhomogeneities are involved

perturbatively during the collapse. In this way the reliability of our model can be checked

and we can understand whether our model can be generalized to more genuine collapse

formalisms or not. If the answer is positive, we can establish semi-classical generic models

for gravitational collapse that can resolve the singularity problem and even the information

loss paradox. The answer to this question and the exact investigation of the previous two

remarks can be interesting subjects to be studied elsewhere.
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