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P. Basler,a M. Krause,a M. Mühlleitner,a J. Wittbrodta,b and A. Wlotzkaa

aInstitute for Theoretical Physics, Karlsruhe Institute of Technology,

Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
bDeutsches Elektronen-Synchrotron DESY,

Notkestraße 85, D-22607 Hamburg, Germany

E-mail: philipp.basler@kit.edu, marcel.krause@kit.edu,

milada.muehlleitner@kit.edu, jonas.wittbrodt@desy.de,

alexander.wlotzka@kit.edu

Abstract: The discovery of the Higgs boson by the LHC experiments ATLAS and CMS

has marked a milestone for particle physics. Yet, there are still many open questions that

cannot be answered within the Standard Model (SM). For example, the generation of

the observed matter-antimatter asymmetry in the universe through baryogenesis can only

be explained qualitatively in the SM. A simple extension of the SM compatible with the

current theoretical and experimental constraints is given by the 2-Higgs-Doublet Model

(2HDM) where a second Higgs doublet is added to the Higgs sector. We investigate the

possibility of a strong first order electroweak phase transition in the CP-conserving 2HDM

type I and type II where either of the CP-even Higgs bosons is identified with the SM-like

Higgs boson. The renormalisation that we apply on the loop-corrected Higgs potential al-

lows us to efficiently scan the 2HDM parameter space and simultaneously take into account

all relevant theoretical and up-to-date experimental constraints. The 2HDM parameter re-

gions found to be compatible with the applied constraints and a strong electroweak phase

transition are analysed systematically. Our results show that there is a strong interplay

between the requirement of a strong phase transition and collider phenomenology with

testable implications for searches at the LHC.
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1 Introduction

In 2012 the LHC experiments ATLAS and CMS announced the discovery of the long-sought

Higgs boson [1–4]. Although it looks very SM-like [5–8] it is quite possible that it is the

scalar particle of a Higgs sector beyond the SM (BSM). Despite the success of the SM,

which has been tested to highest precision at previous and current colliders, there are still

a lot of open questions that cannot be answered within the SM and call for new physics

(NP) extensions. One of the unanswered problems is the origin of the observed matter-

antimatter asymmetry of the universe [9]. Electroweak (EW) baryogenesis is an elegant

mechanism to explain this asymmetry [10–18], which is related to physics at the weak scale,

establishing a link between collider phenomenology and cosmology. The asymmetry can be

generated provided the EW phase transition (PT) taking place in the early universe is of

strong first order [16, 18] and that all three Sakharov conditions [19] are fulfilled, namely

baryon number violation, C and CP violation and departure from the thermal equilibrium.
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The strong first order PT, proceeding through bubble formation, suppresses the baryon

number violating sphaleron transitions in the false vacuum [20, 21]. CP-violating reflections

of top quarks from the bubble wall produce a hypercharge asymmetry which is converted

into a baryon asymmetry in the false vacuum. This asymmetry is transferred to the true

vacuum when it passes the bubble wall [22], provided there is departure from the thermal

equilibrium. Although in the SM all three Sakharov conditions are fulfilled, the electroweak

PT is not of first order [23–26]. Not only the Higgs boson mass is too large [27, 28], but

in addition the CP violation of the SM from the Cabibbo-Kobayashi-Maskawa matrix is

too small [18, 22, 29]. This calls for physics BSM. Among the plethora of NP extensions

the 2HDM [30, 31] belongs to the simplest models that are in accordance with present

experimental constraints. Its Higgs sector features five physical Higgs bosons, three neutral

and two charged ones. Their contributions to the effective Higgs potential can strengthen

the PT and in addition introduce new sources of CP violation. Previous studies have shown

that 2HDMs provide a good framework for successful baryogenesis [32–47] (see [48–52] for

studies in the CP-violating 2HDM).

In this work we will investigate the implications of a strong first order PT required

by baryogenesis on the LHC Higgs phenomenology in the framework of the CP-conserving

2HDM. For this purpose we compute the one-loop corrected effective potential at finite

temperature [53–55] including daisy resummations for the bosonic masses [56] in two differ-

ent approximations for the treatment of the thermal masses [57, 58]. The renormalisation

of the loop-corrected potential is chosen such that not only the vacuum expectation value

(VEV) and all physical Higgs boson masses, but, for the first time, also all mixing matrix

elements remain at their tree-level values. This allows to efficiently scan the whole 2HDM

parameter space with the tree-level masses and mixing angles as input and at the same

time test the compatibility of the model with the theoretical and experimental constraints.

The points passing these tests will be investigated with respect to a first order PT. The

loop-corrected Higgs potential will be minimised at increasing non-zero temperature to find

the vacuum expectation value vc at the critical temperature Tc, defined as the temperature

where two degenerate global minima exist. A value of vc/Tc,
1 larger than one is indicative

for a strong first order PT [13, 62]. In our analysis we will discard points leading to a 2-stage

PT [63, 64]. We will perform a systematic and comprehensive investigation of the 2HDM

in four configurations, given by the 2HDM type I and type II where either the lighter or the

heavier of the two CP-even Higgs bosons is identified with the SM-like Higgs boson. We

will test the compatibility of the model with both the experimental constraints and a strong

EW phase transition. The thus delineated regions in the parameter space will be further

investigated with respect to their implications for collider phenomenology. We find that the

link between cosmology and high-energy collider constraints provides a powerful tool to fur-

ther constrain the allowed parameter regions of the 2HDM. At the same time, the demand

for a strong first order PT leads to testable consequences at the collider experiments.

The outline of the paper is as follows: in section 2 we introduce our notation and pro-

vide the loop-corrected effective potential at non-vanishing temperature. In the subsequent

1For discussions on the gauge dependence of vc/Tc, see [54, 59–61].
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section 3 we describe in detail the renormalisation procedure, which is chosen such that

at zero temperature the tree-level position of the minimum and the masses and mixing

matrix elements of the scalar particles are preserved by the one-loop potential. Using the

Higgs boson masses and mixing angles as input parameters, this simplifies the verification

of the compatibility of the model with the Higgs data. In section 4 the basic elements of

our numerical analysis are described, namely the minimisation procedure of the effective

potential in 4.1 and, in 4.2, the details of the scan in the 2HDM parameter space together

with the applied theoretical and experimental constraints. Section 5 is devoted to our

results. We present the parameter regions compatible with the applied constraints and a

strong first order PT, and we then analyse the implications for collider phenomenology.

We end in section 6 with our conclusions. The paper is accompanied by an appendix con-

taining the formulae for the masses of the relevant particles and, where appropriate, for

the daisy resummed mass corrections.

2 The effective potential

In this section we provide the loop-corrected effective potential of the CP-conserving 2HDM

for non-vanishing temperature. First, we set our notation by introducing the model under

investigation.

2.1 The CP-conserving 2-Higgs-Doublet Model

In terms of the two SU(2)L Higgs doublets Φ1 and Φ2,

Φ1 =

(
φ+

1

φ0
1

)
and Φ1 =

(
φ+

2

φ0
2

)
, (2.1)

the tree-level potential of the 2HDM with a softly broken Z2 symmetry, under which the

doublets transform as Φ1 → Φ1, Φ2 → −Φ2, reads

Vtree = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +

[
1

2
λ5(Φ†1Φ2)2 + h.c.

]
.

(2.2)

The mass parameters m2
11 and m2

22 and the couplings λ1...4 are real parameters of the

model. The mass and coupling parameters m2
12 and λ5 can in general be complex, thereby

offering new sources of explicit CP violation in the Higgs sector. We take them to be real

as we work in the CP-conserving 2HDM. After EW symmetry breaking the two Higgs

doublets acquire VEVs ω̄i ∈ R (i = 1, 2, 3), about which the Higgs fields can be expanded

in terms of the charged CP-even and CP-odd fields ρi and ηi, and the neutral CP-even and

CP-odd fields ζi and ψi, i = 1, 2,

Φ1 =
1√
2

(
ρ1 + iη1

ω̄1 + ζ1 + iψ1

)
(2.3)

Φ2 =
1√
2

(
ρ2 + iη2

ω̄2 + iω̄3 + ζ2 + iψ2

)
, (2.4)
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where, without loss of generality, the complex part of the VEVs has been rotated to the sec-

ond doublet exclusively. Denoting the VEVs of our present vacuum at zero temperature by2

vi ≡ ω̄i|T=0 , (2.5)

we set

v3 = 0 , (2.6)

whereas the remaining two VEVs are related to the SM VEV by

v2
1 + v2

2 ≡ v2 . (2.7)

Introducing the angle β through

tanβ =
v2

v1
, (2.8)

we have

v1 = v cosβ and v2 = v sinβ . (2.9)

Through the complex part of the VEV, ω̄3, we include the possibility of generating at

one-loop and/or non-zero temperature a global minimum that is CP-violating.3 The angle

β coincides with the angle of the rotation matrix

R(β) =

(
cosβ sinβ

− sinβ cosβ

)
(2.10)

from the gauge to the mass eigenstates of the charged Higgs sector, and also of the neutral

CP-odd sector. The physical states of the charged sector are given by the charged Higgs

bosons H± with mass mH± and the charged Goldstone bosons G± which are massless at

zero temperature, (
G±

H±

)
= R(β)

(
φ±1
φ±2

)
. (2.11)

For the neutral CP-odd fields ψ1 and ψ2 the same rotation yields the physical states A

with mass mA and the neutral Goldstone boson G0, massless at zero temperature,(
G0

A

)
= R(β)

(
ψ1

ψ2

)
. (2.12)

Finally, in the neutral CP-even sector the rotation with the angle α transforms the fields

ζ1 and ζ2 into the two physical CP-even Higgs bosons H and h with masses mH and mh,

respectively, (
H

h

)
= R(α)

(
ζ1

ζ2

)
. (2.13)

2Strictly speaking, T = 2.7 K. Setting T = 0 does not make a difference numerically.
3In the 2HDM we can have three different types of minima: the normal EW breaking one, a CP-breaking

minimum, and a charge-breaking (CB) vacuum. It has been shown that, at tree level, minima which break

different symmetries cannot coexist [65–67]. This means that, if a normal minimum exists, all CP or CB sta-

tionary points are proven to be saddle points. Recent studies of the Inert 2HDM at one-loop level [68], which

apply the effective potential approach, indicate that these statements may not be true any more once higher

order corrections are included. We therefore allow for the possibility of a CP-breaking vacuum. Including

the possibility of a charge breaking Higgs VEV makes the present analysis considerably more complex.
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Type I Type II Lepton-Specific Flipped

Up-type quarks Φ2 Φ2 Φ2 Φ2

Down-type quarks Φ2 Φ1 Φ2 Φ1

Leptons Φ2 Φ1 Φ1 Φ2

Table 1. Classification of the Yukawa sector in the 2HDM according to the couplings of the

fermions to the Higgs doublets.

In the minimum of the potential eq. (2.2) the following minimum conditions have to be

fulfilled,

∂Vtree

∂Φ†a

∣∣∣∣
Φi=〈Φi〉

!
= 0 a, i ∈ {1, 2} , (2.14)

with the brackets denoting the Higgs field values in the minimum, i.e. 〈Φi〉 = (0, vi/
√

2) at

T = 0. This results in two equations

m2
11 = m2

12

v2

v1
− v2

1

2
λ1 −

v2
2

2
(λ3 + λ4 + λ5) (2.15a)

m2
22 = m2

12

v1

v2
− v2

2

2
λ2 −

v2
1

2
(λ3 + λ4 + λ5) . (2.15b)

Exploiting the minimum conditions of the potential at zero temperature, we use the fol-

lowing set of independent parameters of the model,

mh, mH , mA, mH± , m2
12, α, tanβ, v . (2.16)

Due to the imposed Z2 symmetry each of the up-type quarks, down-type quarks and

charged leptons can only couple to one of the Higgs doublets so that flavour-changing neu-

tral currents at tree level are avoided. The possible combinations of Yukawa couplings of

the Higgs bosons to up-type quarks, down-type quarks or charged leptons are classified

as type I, type II, lepton-specific and flipped and are defined in table 1. The resulting

couplings of the fermions normalised to the SM couplings can be found in [69]. In this

work we focus on real 2HDMs of type I and type II.

2.2 One-loop effective potential at finite temperature

The one-loop contributions V1 to the effective potential consist of two parts: the Coleman-

Weinberg (CW) contribution VCW [53] which is already present at zero temperature, and

the contribution VT accounting for the thermal corrections at finite temperature T . The

one-loop corrected effective potential then reads

V = Vtree + V1 ≡ Vtree + VCW + VT . (2.17)

The tree-level potential is given in eq. (2.2) with the doublet Φ1 replaced by the classical

constant field configuration Φc
1 = (0, ω1/

√
2) and Φ2 by Φc

2 = (0, (ω2 + iω3)/
√

2). The

Coleman-Weinberg potential in the MS scheme is given by [55]

VCW({ω}) =
∑
i

ni
64π2

(−1)2sim4
i ({ω})

[
log

(
m2
i ({ω})
µ2

)
− ci

]
, (2.18)
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where the sum extends over the Higgs and Goldstone bosons, the massive gauge

bosons, the longitudinal photon and the fermions, i = h,H,A,H±, G0, G±,W±, Z, γL, f

(f = e, µ, τ, u, c, t, d, s, b).4 The m2
i is the respective eigenvalue for the particle i of the

mass matrix squared expressed through the tree-level relations in terms of ωi (i = 1, 2, 3).

The explicit formulae can be found in appendix A. The sum also includes the Goldstone

bosons. Although we work in the Landau gauge, where they are massless at T = 0, they

can acquire a mass if the mass eigenvalues are determined at field configurations other than

the tree-level VEVs at T = 0, which is required in the minimisation procedure. Moreover,

due to temperature corrections specified below, the masses of the Goldstones and the lon-

gitudinal photon can be non-zero, which enforces also the inclusion of γL in the sum. Note,

that due to the choice of the Landau gauge there are no ghost contributions. The variable

si denotes the spin of the particle, ni represents the number of degrees of freedom. Also

for later use, we define the degrees of freedom of all particles involved in the model. These

are the neutral scalars Φ0 ≡ h,H,A,G0, the charged scalars Φ± ≡ H±, G±, the leptons

l, the quarks q and the longitudinal and transversal gauge bosons, VL ≡ ZL,WL, γL and

VT ≡ ZT ,WT , γT , with the respective ni,

nΦ0 = 1 , nΦ± = 2 , nl = 4 , nq = 12 ,

nWT
= 4 , nWL

= 2 , nZT = 2 , nZL = 1 ,

nγT = 2 , nγL = 1 .

(2.19)

In the MS scheme employed here, the constants ci read

ci =

{
5
6 , i = W±, Z, γ
3
2 , otherwise .

(2.20)

We fix the renormalisation scale µ by µ = v = 246.22 GeV.

In the thermal corrections VT we include the daisy resummation [56] of the n = 0

Matsubara modes of the longitudinal components of the gauge bosons WL, ZL, γL and the

bosons Φ0,Φ±, which adds to their masses at non-zero temperature the Debye correc-

tions given in appendix A. The thermal contributions VT to the potential can be written

as [54, 55]

V T =
∑
k

nk
T 4

2π2
J

(k)
± . (2.21)

The sum extends over k = WL, ZL, γL,WT , ZT ,Φ
0,Φ±, f . Note, that the Goldstone bosons

and the longitudinal part of the photon, which are massless at T = 0, acquire a mass at

finite temperature and are included in the sum. Denoting the mass eigenvalue including

the thermal corrections for the particle k by mk, J
(k)
± is given by (see e.g. [70])

J
(k)
± =


J−

(
m2
k

T 2

)
− π

6

(
m3
k

T 3 − m3
k

T 3

)
k = WL, ZL, γL,Φ

0,Φ±

J−

(
m2
k

T 2

)
k = WT , ZT

J+

(
m2
k

T 2

)
k = f

(2.22)

4Note, that we assume the neutrinos to be massless.
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with the thermal integrals

J±

(
m2
k

T 2

)
= ∓

∫ ∞
0

dxx2 log
[
1± e−

√
x2+m2

k/T
2
]
, (2.23)

where J+ (J−) applies for k being a fermion (boson). For each temperature T we de-

termine the VEVs ω̄i, i.e. the field configurations {ω̄} ≡ {ω̄1, ω̄2, ω̄3}, that minimise the

loop-corrected potential V , eq. (2.17). These enter the tree-level mass matrices such that

the masses mi depend implicitly on the temperature T through ω̄i = ω̄i(T ). The mk fur-

thermore depend explicitly on T through the thermal corrections. The definition of J
(k)
±

eq. (2.22) is the approach chosen in [57]. A different prescription for implementing the

thermal corrections is proposed by [58] where the Debye corrections are included for all the

bosonic thermal loop contributions,5 so that we have

J
(k)
± =


J−

(
m2
k

T 2

)
k = WL, ZL, γL,Φ

0,Φ±

J−

(
m2
k

T 2

)
k = WT , ZT

J+

(
m2
k

T 2

)
k = f .

(2.24)

In this case, the Debye corrected masses are also used in the CW potential eq. (2.18) [50].

We refer to the first approach, eq. (2.22), as ‘Arnold-Espinosa’ and to the second one,

i.e. eq. (2.24) together with VCW including the thermal corrections in the bosonic masses,

as ‘Parwani’ method. The two approaches differ in the organisation of the perturbative

series and hence by higher order terms. The ‘Arnold-Espinosa’ method consistently imple-

ments the thermal masses at one-loop level in the high-temperature expansion, leading to

eq. (2.22). The ‘Parwani’ method admixes higher-order contributions, which at one-loop

level could lead to dangerous artefacts. Therefore, in the discussion of our results we will

apply the ‘Arnold-Espinosa’ method. The ‘Parwani’ method will be used only to make

contact to previous results in the literature.

Since in the minimisation procedure the numerical evaluation of the integral eq. (2.23)

at each configuration in {ω} and T is very time consuming, the integrals J± are approxi-

mated by a series in x2 ≡ m2/T 2. For small x2 we use [48]

J+,s(x
2, n) = −7π4

360
+
π2

24
x2 +

1

32
x4
(
log x2 − c+

)
− π2x2

n∑
l=2

(
− 1

4π2
x2

)l (2l − 3)!!ζ(2l − 1)

(2l)!!(l + 1)

(
22l−1 − 1

) (2.25)

J−,s(x
2, n) = −π

4

45
+
π2

12
x2 − π

6

(
x2
)3/2 − 1

32
x4
(
log x2 − c−

)
+ π2x2

n∑
l=2

(
− 1

4π2
x2

)l (2l − 3)!!ζ(2l − 1)

(2l)!!(l + 1)
,

(2.26)

with

c+ = 3/2 + 2 log π − 2γE and c− = c+ + 2 log 4 , (2.27)

5For a discussion and comparison, see also [48, 50].
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where γE denotes the Euler-Mascheroni constant, ζ(x) the Riemann ζ-function and (x)!!

the double factorial. For large x2 the expansion for both fermions and bosons reads [48]

J±,l(x
2, n) = − exp

(
−
(
x2
)1/2)(π

2

(
x2
)3/2)1/2

n∑
l=0

1

2ll!

Γ(5/2 + l)

Γ(5/2− l)
(
x2
)−l/2

, (2.28)

with Γ(x) denoting the Euler Gamma function. In order to interpolate between the two

approximations, first the point is determined where the derivatives of the low- and high-

temperature expansions can be connected continuously. We then add a small finite shift

to the small x2 expansion such that also the two expansions themselves are connected

continuously. We denote the values of x2 where the connection is performed by x2
+ and x2

−
and the corresponding shifts by δ± for the fermionic and bosonic contributions, respectively.

They are given by
x2

+ = 2.2161 , δ+ = −0.015603 ,

x2
− = 9.4692 , δ− = 0.0063109 .

(2.29)

We find that for small x2 the expansion J+,s for fermions approximates the exact result well

by including terms of up to order n = 4, while for bosons this is the case for n = 3 in J−,s.

For large x2, the integral is well approximated by n = 3 in both the fermion and the boson

case, J±,l. This way, the deviation of the approximate results from the numerical evaluation

of the integrals is less than two percent. The above approximations eqs. (2.25)–(2.28) are

only valid for m2 ≥ 0. For bosons this is not necessarily the case as the eigenvalues

of the mass matrix of the neutral Higgs bosons can become negative depending on the

configuration {ω} and the temperature in the minimisation procedure. If this happens,

the value of the integral J−, given by eq. (2.23), is set to the real part of its numerical

evaluation which is the relevant contribution when extracting the global minimum [71].6 In

practice, we evaluated the integral numerically at several equidistant points in m2/T 2 < 0,

and in the minimisation procedure we use the result obtained from the linear interpolation

between these points, which leads to a significant speed-up. We explicitly verified that the

difference between the exact and the interpolated result is negligible for a sufficiently large

range of m2/T 2.

3 Renormalisation

The Coleman-Weinberg potential, eq. (2.18), in the one-loop effective potential eq. (2.17)

contributes already at T = 0, so that the masses and mixing angles obtained from the one-

loop effective potential differ from those extracted from the tree-level potential eq. (2.2).

The loop-corrected masses obtained in this way correspond to the full one-loop corrected

masses in the approximation of vanishing external momenta. When we test for compat-

ibility of the model with the experimental constraints the loop-corrected masses and the

loop-corrected mixing angles, which enter the couplings, have to be taken into account. For

an efficient scan over the parameter space of the model in terms of the input parameters

6Note, that negative masses squared correspond to a negative curvature of the potential, implying a

local maximum and not a minimum.
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eq. (2.16), however, it is more convenient to have the one-loop masses and angles directly

as inputs, i.e. they should be the same as the tree-level ones. This can be achieved by an

appropriate renormalisation prescription, which will be described in the following.

The Coleman-Weinberg potential given in eq. (2.18) has already been renormalised

in the MS scheme. We modify this scheme by including finite terms in the counterterm

potential that ensure the one-loop corrected masses and, for the first time, also the mixing

matrix elements to be equal to the tree-level ones.7 Introducing counterterms for each of

the parameters of the tree-level potential eq. (2.2), the counterterm potential VCT added

to the one-loop effective potential eq. (2.17),

Ṽ = V + VCT = Vtree + VCW + VT + VCT , (3.1)

reads

VCT = δm2
11

ω2
1

2
+ δm2

22

ω2
2 + ω2

3

2
− δm2

12 ω1ω2 +
δλ1

8
ω4

1 +
δλ2

8

(
ω2

2 + ω2
3

)2
+ (δλ3 + δλ4)

ω2
1

(
ω2

2 + ω2
3

)
4

+ δλ5
ω2

1

(
ω2

2 − ω2
3

)
4

.

(3.2)

The complete potential of eq. (3.1) will be minimised to find the global minimum at a

given temperature T . As stated above, the counterterms δp for the parameters p of the

tree-level potential contain only the finite pieces, as the divergent ones have already been

absorbed by the MS renormalised VCW. We renormalise the effective potential such that at

T = 0 the tree-level position of the minimum yields a local minimum, which is checked to

be the global one numerically. Furthermore, through our renormalisation the masses and

mixing angles of the scalar particles are preserved at their tree-level values by the one-loop

potential. The corresponding renormalisation conditions are imposed at T = 0, which is

where we test for the compatibility with the experimental constraints. The position of

the minimum is determined by the first derivative of the potential, whereas the masses

and angles result from the second derivative, namely the mass matrix. Formulae for both

the first and the second derivatives of the CW potential in the Landau gauge have been

derived in [72]. We employ these formulae in the gauge basis to calculate the required

derivatives. Consequently, for the renormalisation we also express the counterterm poten-

tial and the tree-level potential in the gauge basis. The renormalisation conditions for the

first derivatives are then given by (i = 1, . . . , 8)

∂φi VCT(φ)|φ=〈φc〉T=0
= −∂φi VCW(φ)|φ=〈φc〉T=0

(3.3)

with

φi ≡ {ρ1, η1, ρ2, η2, ζ1, ψ1, ζ2, ψ2} , (3.4)

7Previous works included only the VEVs and (subsets of) the masses in the renormalisation conditions

and required them to be equal to their tree-level values [46–50]. In models with extended Higgs sectors, the

mixing angles, which enter all Higgs boson observables through the Higgs couplings, are crucial for the in-

terpretation of the results. They are determined from the diagonalisation of the loop-corrected mass matrix.

The renormalisation of the mixing matrix elements to their tree-level values guarantees that the relevant

quantities and observables constraining the model can be tested with the tree-level input parameters.
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and 〈φc〉T=0 denoting the field configuration in the minimum at T = 0,

〈φc〉T=0 = (0, 0, 0, 0, v1, 0, v2, 0) . (3.5)

This results in two non-trivial conditions for the tree-level minimum at T = 0 to be a CP-

conserving extremum also at the one-loop level. In order to ensure that both the masses

and the mixing angles remain at their tree-level values the complete 8 × 8 mass matrix of

the scalar sector should be preserved at its tree-level value by the renormalised one-loop

potential. This is achieved by demanding (i, j = 1, . . . , 8)

∂φi∂φj VCT(φ)|φ=〈φc〉T=0
= −∂φi∂φj VCW(φ)|φ=〈φc〉T=0

. (3.6)

However, since we have only eight counterterms and after imposing eq. (3.3) we are left

with six to be set, the resulting system of equations is overconstrained and cannot in

general be solved. This means that we cannot renormalise all masses and mixing angles to

exactly match their tree-level values. We therefore pursue the following approach: both the

tree-level and the one-loop mass matrix are rotated to the mass basis with the tree-level

rotation matrix. From the resulting 8× 8 matrix we extract only the 2× 2 submatrix, that

corresponds to the physical charged Higgs bosons, and the 3× 3 submatrix for the neutral

Higgs bosons. In the CP-conserving case treated here, the latter decomposes into a 2 × 2

matrix for the CP-even Higgs bosons h and H, and the entry for the pseudoscalar A. On

these submatrices the renormalisation conditions are imposed, so that we have

∂φi∂φj VCT(φ)|φ=〈φc〉T=0

∣∣H±

mass
= −∂φi∂φj VCW(φ)|φ=〈φc〉T=0

∣∣H±

mass
(3.7)

and

∂φi∂φj VCT(φ)|φ=〈φc〉T=0

∣∣h,H,A
mass

= −∂φi∂φj VCW(φ)|φ=〈φc〉T=0

∣∣h,H,A
mass

. (3.8)

The subscript ‘mass’ indicates that the mass matrix in the gauge basis is rotated into the

mass eigenbasis by means of the rotation matrix that diagonalises the tree-level mass ma-

trix. The superscripts H± and h,H,A indicate that from the resulting matrix only the

2 × 2 block for the physical charged Higgs bosons and the 3 × 3 block for the physical

neutral Higgs bosons is considered, respectively. Equations (3.7) and (3.8) provide five in-

dependent non-trivial renormalisation conditions.8 Together with the two renormalisation

conditions from eq. (3.3) we have altogether seven renormalisation conditions to fix eight

renormalisation constants, cf. eq. (3.2), so that one renormalisation constant is left for

determination. Inspecting the counterterm potential eq. (3.2), we observe that the coun-

terterms δλ3 and δλ4 only appear as sum. Hence, we choose to use only one of them and

set δλ4 = 0. The remaining seven renormalisation constants are fixed by the conditions

eqs. (3.3), (3.7) and (3.8).

We find that these renormalisation conditions allow us to preserve the minimum, the

masses and the mixing angles of the Higgs sector at their tree-level values up to a very

8After application of eq. (3.3) some matrix elements of the extracted submatrices are linear combinations

of other matrix elements so that we do not have further conditions.
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good approximation. Taking into account numerical uncertainties, the minimum at one-

loop remains at v ± 2 GeV, and all masses and mixing angles are preserved up to tiny

numerical fluctuations.

Equations (3.7) and (3.8) require the second derivative of the CW potential. It is a

well-known problem that this derivative leads to infrared divergences for the Goldstone

bosons in the Landau gauge [46, 48, 50, 72–74]. In order to circumvent this problem,

in [48] the logarithm is redefined to capture on-shell effects regularising the divergence

while in [46, 47, 50] a non-vanishing infrared mass for the Goldstones is employed to reg-

ulate the divergence. In the effective potential approach itself, which is the approximation

of the full theory at vanishing external momenta, it is not possible to cancel these di-

vergences. Building up the complete self-energy of the Higgs bosons from the effective

potential and the momentum-dependent parts obtained by a diagrammatic calculation,

however, it becomes apparent that the infrared divergences from the Goldstone contribu-

tions cancel between the CW part and the momentum-dependent part [72, 74, 75]. Taking

the limit of vanishing external momenta afterwards we arrive at a finite expression for the

second derivative of the CW potential. This cancellation was checked explicitly using the

results from the diagrammatic calculation performed in [76, 77]. In practice, this result

can be obtained directly from the effective potential approach by regularising the logarith-

mic divergence with a regulator mass and then discarding the terms proportional to this

logarithm [72]. The obtained results are independent of the regulator mass and reflect the

correct contributions present in the effective potential approach.9

4 Numerical analysis

4.1 Minimisation of the effective potential

The electroweak PT is considered to be strong if the ratio between the VEV vc at the

critical temperature Tc and the critical temperature Tc is larger than one [13, 62],

ξc ≡
vc
Tc
≥ 1 . (4.1)

The value v at a given temperature T is obtained as

v(T ) =
√
ω̄2

1 + ω̄2
2 + ω̄2

3 . (4.2)

Remind that ω̄i are the field configurations that minimise the loop-corrected effective po-

tential at non-zero temperature. The critical temperature Tc is defined as the temperature

where the potential has two degenerate minima. For the determination of Tc the effective

potential together with the counterterm potential, eq. (3.1), is minimised numerically at

a given temperature T . In a first order electroweak PT the VEV jumps from v = vc at

the temperature Tc to v = 0 for T > Tc. In order to double-check the results of the min-

imisation procedure, we apply two different minimisation algorithms. One is the active

9Note, that this problem does not occur for the higher-order contributions to the Higgs masses resulting

from loops with a photon inside, as the only class of diagrams possibly leading to infrared divergences

(diagrams with a scalar and a vector boson in the loop) vanishes for zero external momenta.
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CMA-ES algorithm as implemented in libcmaes [78]. This algorithm finds the global mini-

mum of a given function. As termination criterion we choose the relative tolerance of the

value of the effective potential between two iterations to be smaller than 10−5. The other

algorithm that has been used is the local Nelder-Mead-Simplex algorithm from the GNU

Scientific Library [79] (gsl multimin fminimizer nmsimplex2), also with a tolerance

of 10−5. For a given temperature, we start with 500 randomly distributed points in the

interval ω1,2,3 ∈ [−500, 500] GeV for which we compute the minimum of the potential. Note

that we have included ω̄3 in eq. (2.4) for the sake of generality. The candidates for the

global minimum obtained with the two algorithms are compared to each other and the one

with the lower value of the effective potential is chosen as the global minimum. Although

there may be local minima that are CP-violating we find that in the global minimum ω̄3

always vanishes up to numerical fluctuations at both T = 0 and T = Tc. Hence we will not

comment on it any further. In order to determine the critical temperature Tc where the

phase transition takes place, we employ a bisection method in the temperature T , starting

with the determination of the minimum at the temperatures TS = 0 GeV and ending at

TE = 300 GeV. The minimisation procedure is terminated when the interval containing Tc
is smaller than 10−2 GeV. The temperature Tc is then set to the lower bound of the final

interval. We exclude parameter points that do not satisfy |v(T = 0)−246.22 GeV| ≤ 2 GeV,

and parameter points where no PT is found for T ≤ 300 GeV.10 Moreover, we only retain

parameter points with Tc > 10 GeV.

The complete calculation and implementation was checked against an independent

calculation in Mathematica. Profiting from significant speed-up, the implementation above

was used for the results presented in this work.

4.2 Constraints and parameter scan

We determine the value of ξc only for those points that are compatible with theoretical

and experimental constraints. In order to obtain viable data sets we use ScannerS [80, 81]

to perform extensive scans in the 2HDM parameter space and check for compatibility with

the constraints. The program verifies if the tree-level potential is bounded from below

by applying the conditions given in [82] and checks for tree-level perturbative unitarity as

described in [83]. In the CP-conserving 2HDM investigated here, the requirement that the

neutral CP-even tree-level minimum is the global one is tested through a simple condi-

tion [84]. The consistency with the EW precision constraints has been checked through

the oblique parameters S, T and U [85] by applying the general procedure for extended

Higgs sectors as described in [86, 87] and demanding for compatibility with the SM fit [88]

within 2σ, including correlations. Constraints applied to the charged sector of the 2HDM

are based on results from the measurement of Rb [89, 90] and B → Xsγ [90–92] including

the recent calculation [93] that enforces

mH± > 480 GeV (4.3)

10For temperatures Tc ≥ 246 GeV the VEV would have to be larger than 246 GeV in order to fulfill the

criterion of a strong first order PT. By choosing 300 GeV we apply an additional safety margin.
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in type II models. In type I models the bound is much weaker and more strongly dependent

on tanβ. Note, that the results from LEP [94] and the LHC [95, 96]11 require the charged

Higgs mass to be above O(100 GeV) depending on the model type. For the check of the

compatibility with the Higgs data we need the Higgs production cross sections normalised

to the corresponding SM values and the Higgs branching ratios. The latter have been

computed with HDECAY version 6.51 [98–100]. This program includes the state-of-the-art

higher order QCD corrections and off-shell decays. The Higgs production cross sections

through gluon fusion and b-quark fusion at the LHC have been obtained at NNLO QCD

from an interface with SusHi [100, 101] and normalised to the corresponding SM value at

NNLO QCD. The cross section ratio for associated production with a heavy quark pair

has been taken at LO. In the ratio involving CP-even Higgs bosons the QCD corrections

drop out. This is not the case for the pseudoscalar. For associated production with top

quarks the cross section is very small. The associated production with bottom quarks can

be important for large values of tan β. However, here the QCD corrections in the associated

production of the pseudoscalar with the bottom quark pair almost cancel against those of

the SM counterpart due to the nearly realised chiral limit for the small b-quark masses.

The remaining processes through gauge boson fusion and Higgs radiation off a W± or

Z boson only apply for a CP-even Higgs boson so that here the QCD corrections drop

out when normalised to the SM cross section. Since not all EW corrections have been

provided for the 2HDM so far they are consistently neglected in all production and decay

processes. Agreement with the exclusion bounds from LHC Higgs searches has been tested

with HiggsBounds [102–104]. Compatibility with the observed signal of the 125 GeV Higgs

boson has been verified by calculating the reduced signal strengths and checking against

the two times one sigma bounds in the six parameter fit of [105]. Further details on the

various checks can be found in [81].12

For the minimisation procedure we only use parameter points that are in agreement

with the described theoretical and experimental constraints. In order to find viable param-

eter points we perform a scan in the 2HDM parameter space given by the input parameters

eq. (2.16). The SM VEV given by the Fermi constant GF through v = 1/
√√

2GF , has

been fixed to

v = 246.22 GeV . (4.4)

The mixing angle α is varied in the theoretically allowed region, i.e.

− π

2
≤ α < π

2
. (4.5)

In all scans, one of the masses of the CP-even Higgs bosons has been fixed to [106]

mh125 = 125.09 GeV . (4.6)

This is the Higgs boson we identify with the SM-like Higgs boson discovered at the LHC,

and we denote it by h125. We performed two separate scans for the cases where the

11The recent ATLAS results [97] have not been translated into bounds so far.
12The respective experimental values cited there have been replaced by the latest experimental results.
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# points mh mH mA mH± m2
12 tan(β)

in GeV in GeV2

1 000 000 mh125 130–1000 30–1000 65–1000 0–5× 105 1–35

100 000 30–120 mh125 30–1000 65–1000 0–5× 105 1–35

Table 2. Parameter ranges for the scan performed in the 2HDM type I. The first column specifies

the number of points generated.

# points mh mH mA mH± m2
12 tan(β)

in GeV in GeV2

1 000 000 mh125 130–1000 30–1000 480–1000 0–5× 105 0.1–35

100 000 30–120 mh125 450–1000 480–1000 0–5× 105 0.1–35

Table 3. Parameter ranges for the scan in the 2HDM type II. The first column specifies the number

of points generated.

lighter or the heavier of the two CP-even Higgs bosons is identified with the SM-like

Higgs, i.e. mh = mh125 and mH = mh125 , respectively. The scan ranges for the remaining

parameters are given in table 2 in case of type I and in table 3 for type II. In our scans

we required the neighboring non-SM-like Higgs masses to deviate by at least 5 GeV from

125.09 GeV, in order to avoid degenerate Higgs signals. The input masses for the non-SM-

like neutral Higgs bosons were chosen within 30 GeV and 1000 GeV and the input mass

for the charged Higgs boson within 65 GeV and 1000 GeV to cover most of the parameter

space which is potentially interesting for phenomenology and accessible by experiments.

The parameter m2
12 is constrained by the tree-level global minimum condition to be positive.

The upper limits on tan β and m2
12 have been set by choice, but as we observe later, most of

the points compatible with the constraints and a strong PT are found for rather small tan β

so that the chosen upper limit does not pose a strong constraint. Type-specific choices for

the ranges are the lower bound on tan β in type I and the lower bound on mH± in type

II. They have been chosen such that they already leave out part of the parameter space

that is excluded by the constraints from B → Xsγ measurements. Moreover, in type II

the lower bound on mA in the second set, where H ≡ h125, is motivated by the fact that

fulfilling constraints on the oblique parameters requires one Higgs to be in vicinity of the

charged Higgs boson. In the second set this can only be the pseudoscalar Higgs A.

For the SM parameters we have chosen the following values: apart from the computa-

tion of the oblique parameters, where we use the fine structure constant at zero momentum

transfer,

α−1
EM(0) = 137.0359997 , (4.7)

the fine structure constant is taken at the Z boson mass scale [107],

α−1
EM(M2

Z) = 128.962 . (4.8)
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The massive gauge boson masses are chosen as [107, 108]

MW = 80.385 GeV and MZ = 91.1876 GeV , (4.9)

the lepton masses as [107, 108]

me = 0.510998928 MeV , mµ = 105.6583715 MeV , mτ = 1.77682 GeV , (4.10)

and the light quark masses are set following [109] to

mu = 100 MeV , md = 100 MeV , ms = 100 MeV . (4.11)

For consistency with the ATLAS and CMS analyses the on-shell top quark mass

mt = 172.5 GeV (4.12)

has been taken as recommended by the LHC Higgs Cross section Working Group

(HXSWG) [108, 110]. The charm and bottom quark on-shell masses are [108]

mc = 1.51 GeV and mb = 4.92 GeV . (4.13)

We take the CKM matrix to be real, with the CKM matrix elements given by [107]13

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 0.97427 0.22536 0.00355

−0.22522 0.97343 0.0414

0.00886 −0.0405 0.99914

 . (4.14)

5 Results

We now turn to the presentation of our results. We will discuss the specific features

of the 2HDM parameter space that is compatible with the theoretical and experimental

constraints and at the same time provides a strong first order PT. We will show results

both for the type I and the type II 2HDM. For comparison with results in the literature,

we show one plot where we have applied the ‘Parwani’ method in the treatment of the

thermal masses, cf. subsection 2.2. In the remaining discussion, however, we apply the

‘Arnold-Esinosa’ method for reasons discussed in [57] and alluded to in section 2.2. We

will discuss scenarios where the lighter of the CP-even Higgs bosons is identified with the

discovered Higgs boson, i.e. h ≡ h125, and where H ≡ h125.

For the interpretation of our results some general considerations on first order PTs are

in order. The value of ξc is proportional to the couplings of the light bosonic particles to

the SM-like Higgs boson, and it decreases with the Higgs boson mass [70]. The additional

Higgs bosons in the 2HDM spectrum allow for large trilinear bosonic couplings, in contrast

to the SM, where bosonic couplings are only due to the weak gauge couplings between

the Higgs boson and the EW gauge bosons. In the 2HDM, the second CP-even Higgs

13In the computation of the counterterms we choose VCKM = 1 for simplicity. The impact of this choice

on the counterterms and thereby on the potential and its minimisation is negligible.
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Figure 1. Type I, h ≡ h125: results in the mA versus mH -plane, showing in grey the parameter

points passing all applied constraints. Points highlighted in color have a PT of strong first order,

where the value of ξc is indicated by the color code. Left: ‘Parwani’ method, right: ‘Arnold-

Espinosa’ method.

boson with a non-vanishing VEV contributes to the PT and can reduce its strength if H

is not light enough. A strong electroweak PT therefore requires H either to be light or to

have a vanishing VEV. The latter corresponds to the alignment limit where only one of

the physical Higgs bosons has a VEV [111]. Previous investigations suggest that a first-

order PT prefers a scalar spectrum, which is not too heavy [46, 47, 50], or else a large mass

splitting between the heavy scalars [47, 51]. In the type II 2HDM the requirement of a light

Higgs spectrum puts some tension on the model, as compatibility with the EW precision

tests requires one of the non-SM-like neutral Higgs bosons to be close to mH± . Charged

Higgs masses below 480 GeV on the other hand are already excluded by B → Xsγ.

5.1 Type I: parameter sets with h ≡ h125

We start with the analysis of the results in the 2HDM type I. Figure 1 shows in the

mA versus mH plane all parameter points that pass the applied constraints, for scenarios

where h ≡ h125. The coloured points are those for which we obtain a strong first order PT,

i.e. where ξc ≥ 1. In the treatment of the thermal masses we have applied the ’Parwani’

method (left plot) in order to compare to the results of [47], where the ‘Parwani’ method

was applied. In the right plot we show the results for the ’Arnold-Espinosa’ method, which

we will use in the remainder of the discussion. As can be inferred from the plots, in the

2HDM type I first order PTs are still possible taking into account the up-to-date LHC Higgs

data and all theoretical constraints on the 2HDM Higgs potential. The comparison of the

left and right plot, however, also shows that the results obtained for ξc are significantly

different when the two different approximations in the treatment of the thermal masses are

applied. Overall, the regions in the parameter space compatible with ξc ≥ 1 are smaller

when the ‘Arnold-Espinosa’ method is applied. Furthermore, the maximum values of ξc
that can be obtained with the ‘Parwani’ method are by a factor five larger than those

obtained with the ‘Arnold-Espinosa’ method. Working with a one-loop effective potential
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Figure 2. Type I, h ≡ h125: the mass difference mA − mH± versus mH − mH± . The colour

code shows the relative frequency of left: all points passing the constraints; right: all points with

additionally ξc ≥ 1 (’Arnold-Espinosa’ method).

only, the ‘Parwani’ method cannot be applied consistently, which is reflected in the very

different results for both methods. Note also that the unrealistically large values for ξc
obtained in the ‘Parwani’ method imply very low critical temperatures Tc where the phase

transition takes place. This again questions the way the thermal masses are implemented

so that the results of the ‘Parwani’ method have to be taken with care. In the following,

we will only show plots for the ‘Arnold-Espinosa’ method.

In order to examine how the requirement of a strong first order phase transition trans-

lates into LHC Higgs phenomenology we show in figure 2 the mass differences between

the non-SM-like Higgs bosons. The left plot shows the frequency of the points that pass

the constraints. The right plot displays the frequency of the points when additionally a

strong EW phase transition is required. As can be inferred from the left plot, the EW

precision tests, namely the measurement of the ρ parameter, force the mass differences

between the charged Higgs boson and at least one of the non-SM-like Higgs bosons to be

small and strongly favour mass spectra where all of the non-h125 masses are close to each

other. The requirement of a strong EW phase transition, however, favours scenarios where

the pseudoscalar mass is close to mH± with a larger mass gap relative to a lighter H. In

figure 3 we display the relative frequencies in the mA versus mH plane for all point passing

the constraints (left) and for those points which additionally fulfill ξc ≥ 1 (right). The

comparison of the two plots shows that the requirement of a strong PT favours a mass

spectrum where the heaviest Higgs bosons A and H± have masses around 400–500 GeV

and mH ≈ 200 GeV. H, which acquires a VEV, should be light, so that the strength of
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Figure 3. Type I, h ≡ h125: the masses mA versus mH . The colour code shows the relative

frequency of left: all points passing the constraints; right: all points with additionally ξc ≥ 1

(’Arnold-Espinosa’ method).

the PT is not reduced by a heavy H. Consequently m2
12 is small,14 which means that the

strength of the phase transition is governed by the quartic couplings λ4 and λ5, cf. also [46].

The next important mass configuration is given by scenarios where again the mass gap be-

tween A and H is large, but now overall pushed to higher mass values, i.e. mH ≈ mH±

and mA −mH ≈ 350 GeV, cf. figure 2 (right). Since h ≡ h125 and hence sin(β − α) ≈ 1,

the coupling gZAH ∼ sin(β − α) between A, Z and H is significant. The requirement of a

strong PT prefers scenarios where the decay A→ ZH is kinematically allowed so that this

decay can become important. These scenarios can be searched for at the LHC, as has been

found earlier in [47] and proposed by the authors as possible benchmark scenarios. Still,

figure 2 demonstrates that also scenarios are compatible with ξc ≥ 1 where all three non-

SM-like Higgs bosons are close in mass or where the decay H → AZ is possible, i.e. where

mH > mA and either mH −mH± ≈ 0 or mA−mH± ≈ 0. While our results confirm earlier

results in the literature [47, 51], our results also show that a decay A→ ZH is not unique

for a 2HDM type I featuring a strong first order PT.

The majority of the scenarios we find is very close to the alignment limit, i.e.

sin(β − α) ≈ 1 with tan β close to its smallest possible value of about 2.5. While this

is a feature resulting already from the constraints applied, the requirement of a strong PT

overall pushes the Higgs rates towards SM values, as can be inferred from figure 4. It

shows in grey the distribution of the Higgs signal strengths for the scenarios passing the

14The masses of the heavy Higgs bosons Φ = H,A,H± are given by m2
φ = m2

12/(sinβ cosβ) c2φ + f(λi)v
2,

where f(λi) is a linear combination of λ1-λ5 and cφ = 1 for φ = A,H± and sin(β − α) for φ = H [77].
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Figure 4. Type I, h ≡ h125: µV /µF versus µγγ (left) and µττ versus µV V (right); grey: all points

passing the applied constraints, colour: all points with additionally ξc ≥ 1 (’Arnold-Espinosa’

method). The colour code indicates the value of ξc.

constraints and in colour the scenarios that are additionally compatible with a strong PT.

The colour code indicates the strength of the PT. The left plot shows µV /µF versus µγγ
and the right one µττ versus µV V . Here µF denotes the fermion initiated cross section

(gluon fusion and associated production with a heavy quark pair) of the SM-like Higgs bo-

son (h125) normalised to the SM, and µV the normalised production cross section through

massive gauge bosons (gauge boson fusion and associated production with a vector boson).

The value µxx is defined as

µxx = µF
BR2HDM(h125 → xx)

BRSM(HSM → xx)
, (5.1)

where HSM is the SM Higgs boson with mass 125 GeV. The left plot shows that for µV /µF
close to 1, enhanced signal rates in the photonic final states with µγγ of up to about 1.5 are

still allowed. However, including the requirement for a strong first order PT the possible

range of an enhanced µγγ is strongly restricted down to µγγ ≈ 1.1. On the other hand,

the limits on the τ or gauge boson final states are not as significantly changed, as can be

inferred from figure 4 (right).

5.2 Type II: parameter sets with h ≡ h125

We now turn to the discussion of the compatibility of the 2HDM type II with the require-

ment of ξc ≥ 1 for scenarios with h = h125. Figure 5, which displays the values of ξc for

all parameter points compatible with our constraints, shows that also in the 2HDM type

II there are scenarios allowing for a strong first order PT. The constraints from B-physics
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Figure 5. Type II, h ≡ h125: results in the mA versus mH -plane, showing in grey the parameter

points passing all applied constraints. Points highlighted in color have a PT of strong first order,

where the value of ξc is indicated by the color code (’Arnold-Espinosa’ method).

observables and the EW precision tests raise the mass scale for mH± and at least one of the

non-SM-like Higgs bosons to higher values. For mA<∼ 350 GeV we only find few scenarios

compatible with the experimental constraints. The pseudoscalar with mA<∼ 350 GeV has

a significant branching ratio into Zh (up to 10%). This final state has been searched for

by the LHC experiments. The resulting exclusion limits severely constrain this parameter

region so that there the amount of points compatible with the experimental constraints

is substantially smaller than above the top quark pair threshold where A dominantly de-

cays into tt̄.15 When additionally a strong first order PT is required, the mass region

130 GeV<∼mA<∼ 340 GeV is completely excluded. As can be inferred from the plot, for

these values of mA the heavy Higgs mass ranges between ∼ 450 and 700 GeV. In this

range the occurrence of a strong first order PT is strongly limited by deviations from the

exact alignment limit at the per mille level. The small portions of the VEV assigned to

H by these tiny deviations already suppress the strength of the PT strongly due to the

large mH . Once mH > 650 GeV, even for the parameter points extremely close to the

alignment limit, the H mass is finally too heavy to allow for a strong PT. The restrictions

for mA<∼ 120 GeV on the other hand are less severe, as there are less experimental studies

in this mass region so that we have more points allowed by the experimental constraints.

This increases the chances of finding a strong first order PT and explains why we have

some coloured points for mA<∼ 120 GeV.

The implications of the requirement of a strong first order phase transition in the type

II 2HDM for LHC phenomenology can be read off figure 6. Scenarios with all non-SM-

like Higgs masses being close to each other are favoured by the experimental constraints,

15In type I, where also H or H± can be light and hence A → ZH or A → W±H∓ decays are possible,

the LHC searches, which focus on the A→ Zh125 decays, are less restrictive.
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Figure 6. Type II, h ≡ h125: the mass difference mA − mH± versus mH − mH± . The colour

code shows the relative frequency of left: all points passing the constraints; right: all points with

additionally ξc ≥ 1 (’Arnold-Espinosa’ method).

cf. figure 6 (left).16 A strong first order PT, however, prefers scenarios with mA ≈ mH± and

with a large positive mass gap between mH± and mH and hence also mA−mH >∼ 180 GeV,

cf. figure 6 (right). Scenarios where mH ≈ mH± and |mA −mH±(≈ mH)| > 0 and also

those where mA ≈ mH± and mH − mH± > 0 are rarer, as they would require a much

heavier H, given that mH± ≥ 480 GeV in type II models. A heavy H with non-vanishing

VEV tends to reduce the strength of the phase transition. For the same reason scenarios

where all non-SM-like Higgs bosons have similar masses are not very probable either. While

again A → ZH is a typical decay that is possibly realised for strong first order PTs, the

non-discovery of such a decay does not exclude ξc ≥ 1 as other scenarios can be realised as

well. We find that scenarios with mA>∼ 460 GeV are preferred and namely those scenarios

that are located in the alignment limit with tan β ≈ 1. This is, however, not due to the first

order PT but already found by only imposing the theoretical and experimental constraints.

In the type II 2HDM there are parameter regions compatible with the experimental

constraints where the coupling of the h125 to the massive gauge bosons is of opposite

sign with respect to the coupling to down-type fermions. This wrong-sign regime [81,

112, 113] has interesting phenomenological implications like the non-decoupling of heavy

particles [77, 112]. Future precision measurements of the signal rates will allow to constrain

or exclude this parameter region [81, 112, 114]. The question arises to which extent the

16The dark blue points with non-zero mass gaps are points in the wrong-sign regime (see below). Due

to the different coupling structure in the wrong-sign regime the constraints from the ρ parameter have a

different shape when projected into the plane of the plot.
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Figure 7. Type II, h ≡ h125: µV /µF versus µγγ (left) and µττ versus µV V (right); grey: all points

passing the applied constraints, colour: all points with additionally ξc ≥ 1 (’Arnold-Espinosa’

method). The colour code indicates the value of ξc.

requirement of a strong PT is able to restrict the wrong-sign regime. Figure 7 (left)

displays µV /µF versus µγγ . Among the grey points, which show the scenarios passing all

constraints, the outliers in the left bottom corner of the plot correspond to the wrong-sign

regime. The coloured points fulfill ξc ≥ 1 and show that a strong PT strongly disfavours

the wrong-sign regime. This can also be observed in figure 7 (right) where the distribution

of µττ versus µV V is displayed. The wrong-sign regime scenarios are given by the outliers

in the upper left corner of the plot. This behaviour can be understood by the fact that the

VEV 〈H〉 of the heavy CP-even Higgs normalised to the SM VEV for h ≡ h125 is given by

〈H〉2
v2

= cos2(β − α) . (5.2)

In the wrong-sign regime non-zero values of cos(β − α) are still compatible with the data.

This means that H can take a significant fraction of the VEV and drive the PT. If H is

not light enough, the PT is reduced to values ξc < 1. We also observe that the maximum

value of µγγ is reduced from about 1.46 to about 1.38.

5.3 Type I: parameter sets with H ≡ h125

We now investigate scenarios where the heavier of the two CP-even Higgs bosons is the

SM-like Higgs boson, i.e. H ≡ h125. Figure 8 displays in the mA versus mh plane in grey

all points passing the constraints and in colour all parameter points also compatible with

ξc ≥ 1. First, we observe that independent of the strength of the PT, there are only few
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Figure 8. Type I, H ≡ h125: results in the mA versus mh-plane, showing in grey the parameter

points passing all applied constraints. Points highlighted in color have a PT of strong first order,

where the value of ξc is indicated by the color code (’Arnold-Espinosa’ method).

scenarios with mh<∼ 65 GeV. This is due to the fact that the decay H ≡ h125 → hh can

change the total width of h125 such that its branching ratios into SM final states lead to

signal rates not compatible with the LHC data any more. In this mass region there are

hardly any points with ξc ≥ 1. The requirement of ξc ≥ 1 also restricts the mass of the

pseudocscalar to the region 280 GeV<∼mA<∼ 480 GeV, with the exception of a few outliers.

The strongest PTs are reached for larger mA, close to 480 GeV. Figure 9 displays the

distribution of the masses for A and H± after applying all constraints (left) and when in

addition ξc ≥ 1 is demanded (right). With the exception of a few outliers, the strong PT

restricts the mass region of the charged Higgs boson to 300 GeV<∼mH± <∼ 480 GeV. As

we demand the heavier of the two CP-even Higgs bosons to be light, the mass scale m2
12,

which determines its mass, cannot be too large. For the PT to be strong we need large

quartic couplings. Since λ2, which enters mH , must not be large, we are left with λ4 and

λ5 driving the PT, as can be inferred from the rather large mass values for A and H±,

namely the mass gap between mH and mA,H± . When, on the other hand, the masses

of the heavy Higgs bosons A and H± become larger by increasing the involved quartic

couplings the interplay of Higgs self-couplings and masses reduces ξc again. We conclude

that a strong PT in the 2HDM type I with two light CP-even Higgs boson excludes heavy

Higgs bosons above about 500 GeV and enforces a mass gap between mA ≈ mH± and mH .

The decay A→ HZ, however, is suppressed because of sin(β − α) ∼ 0 for H ≡ h125. The

decay A→ hZ on the other hand, is allowed. For pseudoscalar masses above the top pair

threshold, it competes, however, with the decay A→ tt̄.
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Figure 9. Type I, H ≡ h125: the masses mA versus mH± . The colour code shows the relative

frequency of left: all points passing the constraints; right: all points with additionally ξc ≥ 1

(’Arnold-Espinosa’ method).

The implications of a strong PT for the Higgs data are shown in figure 10. There are

practically no points any more with values beyond 0.9 for the photonic rate, although rates

of up to about 1.46 are still compatible with the Higgs data. Also the decays into τ final

states cannot exceed 1.11 in case of ξc ≥ 1.

5.4 Type II: parameter sets with H ≡ h125

In the 2HDM type II with H ≡ h125 the implications of a strong PT on the mass pattern are

very pronounced, as can be inferred from figure 11. The requirement of ξc ≥ 1 excludes a

large portion of the parameter space, which is still compatible with the applied constraints.

Scenarios with mA ≈ mH± >∼ 480 GeV are forbidden if ξc ≥ 1. Furthermore, very light

scalars with mh<∼ 110 GeV are not compatible with a strong PT. The tension between the

requirement of light scalar masses and the wish to have a strong PT makes a strong link

between baryogenesis and collider phenomenology.

Further implications for LHC phenomenology are shown in figure 12 where the signal

rates are displayed before (grey) and after (coloured) imposing a strong PT. All scenarios

with ξc ≥ 1 are located in the correct-sign regime (given by the triangle areas in the

plots), whereas the wrong-sign regime (given by the outliers) is completely excluded by a

strong PT. For the Higgs measurements, this means that the observation of µV /µF < 1

together with µγγ <∼ 0.9 is excluded, as well as the observation of µττ >∼ 1.04. Furthermore,

the region where µττ <∼ 0.9 because of possible decays H → hh, is excluded by the demand

of a strong PT.
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Figure 10. Type I, H ≡ h125: µV /µF versus µγγ (left) and µττ versus µV V (right); grey: all

points passing the applied constraints, colour: all points with additionally ξc ≥ 1 (’Arnold-Espinosa’

method). The colour code indicates the value of ξc.
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Figure 11. Type II, H ≡ h125: results in the mA versus mH -plane, showing in grey the parameter

points passing all applied constraints. Points highlighted in color have a PT of strong first order,

where the value of ξc is indicated by the color code (’Arnold-Espinosa’ method).
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Figure 12. Type II, H ≡ h125: µV /µF versus µγγ (left) and µττ versus µV V (right); grey: all

points passing the applied constraints, colour: all points with additionally ξc ≥ 1 (’Arnold-Espinosa’

method). The colour code indicates the value of ξc.

6 Conclusions

In this paper we investigated the strength of the EW phase transition in the framework

of the CP-conserving 2HDM. For this purpose we computed the loop-corrected effective

potential at non-zero temperature including the resummation of the daisy graphs for the

bosonic masses following the ‘Arnold-Espinosa’ method. We applied a renormalisation

scheme that preserves the position of the minimum and where both the loop-corrected

masses of the Higgs bosons and the mixing angles are renormalised to their tree-level

values. This is in contrast to earlier works which focus solely on the Higgs boson masses.

Our renormalisation allows us to efficiently scan the whole 2HDM parameter space and

test the compatibility of the model with the theoretical and experimental constraints. This

is possible since our renormalisation fixes not only the Higgs mass values but, through the

mixing angles, also the Higgs couplings to their tree-level values.

We performed an extensive scan in the parameter space of the 2HDM and retained

only those points that are compatible with the state-of-art theoretical and experimental

constraints. For these parameter points we determined the value of ξc. Subsequently,

we performed a comprehensive and systematic analysis in four 2HDM configurations: for

the 2HDM type I and II, with either h or H identified with the SM-like Higgs boson,

we investigated the implications of the requirement of a strong PT, i.e. ξc ≥ 1, for LHC

phenomenology. Our results can be summarised as follows: both the 2HDM type I and

type II, with either of the CP-even Higgs bosons being the SM-like Higgs boson, are found
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to be compatible with the theoretical and experimental constraints on the model and a

strong first order PT. The strong PT, however, strongly constrains the enhanced rates into

photonic final states for the 2HDM type I, and to some extent also for type II. Furthermore,

in the 2HDM type II with h = h125 the wrong-sign regime is strongly restricted by the

requirement of ξc ≥ 1. In case H = h125 the wrong-sign regime is even excluded for a

strong PT. In more detail, our results for the four different realisations of the 2HDM are:

• For the 2HDM type I with h ≡ h125, we confirm earlier results which find that a large

mass splitting between the heavy scalars is favourable for a strong PT. The preferred

scenarios are the ones with mA ≈ mH± ≈ 400–500 GeV and mA − mH >∼ 200 GeV.

However, we also find that scenarios with different hierarchies among the heavy Higgs

bosons (but at least one of H and A nearly mass degenerate with H±) or with

degenerate heavy Higgs bosons H, A and H± are allowed, though much less frequent.

The maximally allowed photonic rate is reduced from 1.5 to 1.1 in case of ξc ≥ 1.

• We find in the 2HDM type II with h = h125 that scenarios with

130 GeV<∼mA<∼ 340 GeV, which are already strongly constrained by LHC searches

in A → Zh125, are completely excluded by the requirement of a strong PT. This

requirement also restricts the wrong-sign regime considerably. The maximum value

of µγγ is reduced from about 1.46 to about 1.38.

• In the 2HDM type I with two light CP-even Higgs bosons, namely H ≡ h125, the

heavy Higgs masses cannot exceed 480 GeV, although experimentally still allowed, if

ξc ≥ 1. Furthermore, this enforces a mass gap of about 155 GeV between the heavier

and the lighter Higgs bosons. A strong PT is found to exclude almost completely

scenarios with mh<∼ 65 GeV. It strongly reduces µγγ from 1.46 down to 0.9 (with

very few exceptions) and limits the τ final state rates to values below 1.11.

• In the 2HDM type II with H ≡ h125 the tension between a light CP-even Higgs mass

spectrum and a strong PT excludes large portions of the parameter space. The ob-

servation of heavy Higgs bosons with masses above 480 GeV or of a light Higgs boson

with a mass below 110 GeV is excluded by the requirement of a strong PT. Further-

more, simultaneously reduced values of µV /µF < 1 and µγγ <∼ 0.9 are not compatible

with ξc ≥ 1, nor values of µττ >∼ 1.04. The reason is that the wrong-sign regime is

excluded by a strong PT. The requirement of a strong PT also excludes parameter

regions with reduced µττ <∼ 0.9, resulting from Higgs-to-Higgs decays H → hh, which

contribute to the total width of the SM-like Higgs boson.

Our results show that there is a strong interplay between the requirement of successful

baryogenesis and LHC phenomenology. The realisation of a strong EW phase transition

leads to testable consequences for collider phenomenology. The systematic investigations

performed in this work serve as basis for further analyses of the LHC phenomenology of

2HDM models featuring a strong EW phase transition.
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A Masses with thermal corrections

In the following we give the mass formulae for the SM particles in terms of the field

configurations ωk (k = 1, 2, 3). The masses of the physical particles are obtained from

these formulae when the ωk take the values that minimise the loop-corrected effective

potential Ṽ , eq. (3.1). At non-zero temperature these are the ω̄k, which we obtain from the

numerical determination of the global minimum of Ṽ at fixed T . For T = 0 they are given

by the VEVs v1 and v2. We only need the tree-level relations for the masses. At non-zero

temperature we furthermore include the Debye corrections to the masses of the scalars and

the longitudinal gauge bosons stemming from the resummation of the daisy graphs. The

mass formulae will be specified in the following.

A.1 Fermion masses

The fermion masses do not get a Debye correction, and therefore the mass squared of a

fermion f at temperature T is given by

m2
f (T ) =

1

2
y2
f |φc,0k |2 = m2

f (T = 0)
|φc,0k |2
v2
k

, (A.1)

where yf is the tree-level Yukawa coupling and k = 1, 2 denotes the classical constant field

configuration doublet Φc
k to which the fermion couples. This depends on the type of the

2HDM, cf. table 1. For the neutral components of the doublets we have

|φc,01 |2 = ω2
1 (A.2)

|φc,02 |2 = ω2
2 + ω2

3 . (A.3)

The fermion mass at T = 0 is given by the tree-level VEV vk of the doublet Φc
k as

mf (T = 0) =
yf√

2
vk . (A.4)
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A.2 Gauge boson masses

The longitudinal gauge bosons get a Debye correction to their mass matrix. The masses

including the thermal corrections, denoted in section 2.2 by m, in terms of the field con-

figurations ωk are given by

m2
W =

g2

4
ω2 + 2g2T 2 (A.5)

m2
γ =

(
g2+g′2

)(
T 2+

ω2

8

)
− 1

8

√
(g2 − g′2)2 (64T 4+16T 2ω2)+(g2+g′2)2 ω4 (A.6)

m2
Z =

(
g2+g′2

)(
T 2+

ω2

8

)
+

1

8

√
(g2 − g′2)2 (64T 4+16T 2ω2)+(g2+g′2)2 ω4 , (A.7)

where g and g′ denote the SU(2)L and U(1)Y gauge couplings, respectively, and

ω2 =
∑

i=1,2,3

ω2
i . (A.8)

Again, the physical masses are obtained for ωi ≡ ω̄i, and at T = 0 we recover the well-

known relations for the physical gauge boson masses (v2 = v2
1 + v2

2 =
∑

i=1,2,3 ω̄
2
i

∣∣
T=0

)

m2
W =

g2

4
v2 , m2

Z =
g2 + g′2

4
v2 and m2

γ = 0 . (A.9)

A.3 Masses of the Higgs bosons

The tree-level relations for the mass matrices of the Higgs bosons in the interaction basis in

terms of the ωk are obtained by differentiating the tree-level Higgs potential Vtree eq. (2.2)

twice with respect to the real interaction fields

φi ≡ {ρ1, η1, ρ2, η2, ζ1, ψ1, ζ2, ψ2} (A.10)

and replacing the fields with their classical constant field configurations

φci ≡ {0, 0, 0, 0, ω1, 0, ω2, ω3} , (A.11)

leading to the mass matrix

(M)ij =
1

2

∂2Vtree

∂φi∂φj

∣∣∣∣
φ=φc

. (A.12)

The physical masses are given by the field values in the global minimum of the potential

where ωk ≡ ω̄k, which at T = 0 reduces to ω̄1,2|T=0 = v1,2 and ω̄3|T=0 = 0. Because of

charge conservation the mass matrix of eq. (A.12) decomposes into a 4× 4 matrixMC for

the charged fields ρ1, η1, ρ2, η2 and a 4× 4 matrix MN for the neutral states ζ1, ψ1, ζ2, ψ2.

In the CP-conserving 2HDM the neutral CP-even and CP-odd fields do not mix so that

the latter matrix further decomposes into two 2 × 2 matrices, one for the CP-even Higgs

states ζ1,2 and one for the pseudoscalar states ψ1,2.

– 29 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
1

We introduce the following definitions

y2
t =

2

v2
2

m2
t (T = 0) (A.13)

y2
b =


2
v22
m2
b(T = 0) Type I & Lepton Specific

2
v21
m2
b(T = 0) Type II & Flipped

(A.14)

d1 =
1

48

[
12λ1 + 8λ3 + 4λ4 + 3

(
3g2 + g′2

)]
(A.15)

d2 =
1

48

[
12λ2 + 8λ3 + 4λ4 + 3

(
3g2 + g′2

)
+ 12y2

t

]
(A.16)

c1 =

{
d1 Type I & Lepton Specific

d1 + 1
4y

2
b Type II & Flipped

(A.17)

c2 =

{
d2 + 1

4y
2
b Type I & Lepton Specific

d2 Type II & Flipped
, (A.18)

where we take for the top and bottom quark masses at zero temperature, mt,b(T = 0), the

input values given in eqs. (4.12) and (4.13). The masses of the charged Higgs boson and

the charged Goldstone boson including the thermal corrections are then given by

m2
H± =

1

2

(
MC

11 +MC
22 + (c1 + c2)T 2

)
+

1

2

√(
MC

11 −MC
22 + (c1 − c2)T 2

)2
+ 4

(
(MC

12)2 + (MC
13)2

)
(A.19)

m2
G± =

1

2

(
MC

11 +MC
22 + (c1 + c2)T 2

)
− 1

2

√(
MC

11 −MC
22 + (c1 − c2)T 2

)2
+ 4

(
(MC

12)2 + (MC
13)2

)
, (A.20)

with

MC
11 = m2

11 + λ1
ω2

1

2
+ λ3

ω2
2 + ω2

3

2
(A.21)

MC
22 = m2

22 + λ2
ω2

2 + ω2
3

2
+ λ3

ω2
1

2
(A.22)

MC
12 =

ω1ω2

2
(λ4 + λ5)−m2

12 (A.23)

MC
13 =

ω1ω3

2
(λ4 − λ5) . (A.24)

The thermal masses of the neutral Higgs bosons are given as the eigenvalues of

MN
= (MN )2 + T 2diag(c1, c1, c2, c2) (A.25)
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in the basis (ζ1, ψ1, ζ2, ψ2) with

MN
11 = m2

11 +
3

2
λ1ω

2
1 +

λ3 + λ4

2

(
ω2

2 + ω2
3

)
+

1

2
λ5

(
ω2

2 − ω2
3

)
(A.26)

MN
22 = m11 +

λ1

2
ω2

1 +
λ3 + λ4

2

(
ω2

2 + ω2
3

)
− 1

2
λ5

(
ω2

2 − ω2
3

)
(A.27)

MN
33 = m2

22 +
1

2
λ2

(
3ω2

2 + ω2
3

)
+

1

2
(λ3 + λ4 + λ5)ω2

1 (A.28)

MN
44 = m2

22 +
λ2

2

(
ω2

2 + 3ω2
3

)
+

1

2
(λ3 + λ4 − λ5)ω2

1 (A.29)

MN
12 = λ5ω2ω3 (A.30)

MN
13 = −m2

12 + (λ3 + λ4 + λ5)ω1ω2 (A.31)

MN
14 = (λ3 + λ4 − λ5)ω1ω3 (A.32)

MN
23 = λ5ω1ω3 (A.33)

MN
24 = −m2

12 + λ5ω1ω2 (A.34)

MN
34 = λ2ω2ω3 . (A.35)

The physical masses at T = 0 are recovered after replacing the ωk with the VEVs at

T = 0. In particular, the Goldstone masses become zero in the Landau gauge, in which we

are working.
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