
J
H
E
P
0
2
(
2
0
1
7
)
1
1
6

Published for SISSA by Springer

Received: December 28, 2016
Revised: February 8, 2017

Accepted: February 8, 2017
Published: February 23, 2017

Holography, brane intersections and
six-dimensional SCFTs

Nikolay Bobev,a Giuseppe Dibitetto,b Friðrik Freyr Gautasona,c and Brecht Truijena

aInstituut voor Theoretische Fysica, K.U. Leuven,
Celestijnenlaan 200D, BE-3001 Leuven, Belgium

bDepartment of Physics and Astronomy, Uppsala University,
Box 516, SE-75120 Uppsala, Sweden

cInstitut de Physique Théorique, Université Paris Saclay, CEA, CNRS,
Orme des Merisiers, F-91191 Gif-sur-Yvette, France

E-mail: nikolay.bobev@kuleuven.be, giuseppe.dibitetto@physics.uu.se,
ffg@kuleuven.be, brecht.truijen@kuleuven.be

Abstract: We study supersymmetric intersections of NS5-, D6- and D8-branes in type IIA
string theory. We focus on the supergravity description of this system and identify a “near
horizon” limit in which we recover the recently classified supersymmetric seven-dimensional
AdS solutions of massive type IIA supergravity. Using a consistent truncation to seven-
dimensional gauged supergravity we construct a universal supersymmetric deformation of
these AdS vacua. In the holographic dual six-dimensional (1,0) superconformal field the-
ory this deformation describes a universal RG flow on the tensor branch of the vacuum
moduli space triggered by a vacuum expectation value for a protected scalar operator of
dimension four.

Keywords: AdS-CFT Correspondence, D-branes, Gauge-gravity correspondence, Super-
symmetric gauge theory

ArXiv ePrint: 1612.06324

Open Access, c© The Authors.
Article funded by SCOAP3. doi:10.1007/JHEP02(2017)116

mailto:nikolay.bobev@kuleuven.be
mailto:giuseppe.dibitetto@physics.uu.se
mailto:ffg@kuleuven.be
mailto:brecht.truijen@kuleuven.be
https://arxiv.org/abs/1612.06324
http://dx.doi.org/10.1007/JHEP02(2017)116


J
H
E
P
0
2
(
2
0
1
7
)
1
1
6

Contents

1 Introduction 1

2 Brane intersections and six-dimensional SCFTs 4

3 Supergravity description 6
3.1 AdS7 solutions 8

4 Holographic RG flows 12
4.1 Uplift to eleven dimensions 17
4.2 Uplift to type IIA supergravity 18

5 Asymptotically flat brane intersections for M = 0 19

6 Conclusions 23

A Conventions and notation 25

B General AdS7 solutions of type IIA supergravity 25

C Comparison to the results in [8] 28

1 Introduction

Six-dimensional interacting SCFTs provide an interesting and exotic corner of the landscape
of consistent QFTs. Early hints for their existence came from studying the low-energy dy-
namics of brane intersections in string and M-theory [1–3]. It is believed that the list
of six-dimensional N = (2, 0) SCFTs is exhausted by the theories labeled by the ADE
algebras. The kaleidoscope of N = (1, 0) SCFTs appears to be much richer and a full
classification of such theories is still lacking. Recently there has been a revival in this
area sparked by advances in F-theory [4–6] and holographic constructions [7–11], as well as
our better understanding of the anomaly polynomials of six-dimensional supersymmetric
theories [12].1 This renewed interest is well justified, since understanding the structure of
six-dimensional interacting CFTs is bound to teach us important lessons about the mys-
terious theory living on the world-volume of M5-branes. In addition, compactifications of
six-dimensional theories lead to new insights into the physics of lower-dimensional QFTs
and the dualities that they enjoy.

1See [13] for a review on these recent developments with a more exhaustive list of references, and [14]
for a Lagrangian-based approach to classifying anomaly-free six-dimensional supersymmetric QFTs.

– 1 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
6

Our interest here is in the class of linear quiver six-dimensional SCFTs introduced
in [2, 3] and explored recently with new tools by Gaiotto and Tomasiello [7]. In field theory
language this setup is the six-dimensional analog of the usual Hanany-Witten type linear
quivers which are well-studied in the context of three-dimensional N = 4 [15] and four-
dimensional N = 2 [16] theories. One starts with a particular brane intersection of NS5-,
D6-, and D8-branes in type IIA string theory in which the branes share five flat spatial
and one temporal direction.2 When the NS5-branes are separated along the worldvolume
of the D6-branes one has a description of the low-energy theory as a six-dimensional quiver
gauge theory. Each segment of n D6-branes leads to an SU(n) gauge group. The D8-
branes transverse to each segment add “flavor” hyper multiplets in the fundamental of the
gauge group, while the NS5-branes cary bi-fundamental hyper multiplets. The relative
separation between the NS5-branes is controlled by the real scalar in a six-dimensional
tensor multiplet. When the vacuum expectation value for this scalar vanishes the NS5-
branes coincide and one finds an interacting N = (1, 0) SCFT. It was argued in [7] that
when the number of NS5-branes is large these SCFTs admit a dual holographic description
in terms of type IIA supergravity on the AdS7 backgrounds classified and studied in [8].
These AdS7 solutions are constructed directly in type IIA supergravity without any direct
reference to the underlying brane construction [8]. While there is substantial evidence for
the validity of the holographic duality proposed in [7] (see for example [17]) we believe that
there is room for improvement.

The “gold standard” of the AdS/CFT correspondence is the duality between type IIB
string theory on the AdS5 × S5 background and the N = 4 SYM theory [18]. The key
to understanding this duality is provided by the underlying D3-branes. To obtain the
AdS5 × S5 solution of type IIB string theory in the supergravity limit one starts from the
asymptotically flat space solution describing N coincident D3-branes, which in turn can
be thought of as an extremal black brane. Then one takes an appropriate near-horizon
limit to isolate the AdS5 × S5 region. The same procedure can be applied to D3-branes
at singular CY three-folds and it leads to a plethora of AdS5/CFT4 holographically dual
pairs. The AdS7/CFT6 duality studied in [7] is on a different footing. The reason is that
the AdS7 solutions of [8] have not been shown to arise from some type of near-horizon limit
of intersecting brane solutions in massive type IIA supergravity. The goal of our work is to
fill in this gap.

Our starting point is a careful analysis of the system of BPS equations derived by
Imamura in [19]. These equations control supersymmetric solutions of massive type IIA
supergravity which should describe the backreaction of a system of intersecting NS5-, D6-,
and D8-branes. Finding solutions to these non-linear partial differential equations in gen-
eral is a non-trivial problem. We make progress using several different approaches. First,
we impose an Ansatz for all background fields of type IIA supergravity which is invariant
under the isometries of AdS7. Upon a judicious choice of coordinates this leads to a drastic
simplification and the BPS equations reduce to a simple system of coupled ordinary dif-
ferential equations which we solve explicitly. In this way we recover the supersymmetric

2This is summarized in table 1 below.
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AdS7 solutions classified in [8]. Equipped with these explicit solutions we then proceed to
study deformations which break the isometries of AdS7 and are holographically dual to su-
persymmetric RG flows in the N = (1, 0) SCFTs of [7]. An important technical ingredient
in our analysis is the existence of a consistent truncation of massive type IIA supergravity
to minimal seven-dimensional gauged-supergravity established in [20]. The holographic RG
flows of interest are particularly simple analytic solutions of this seven-dimensional super-
gravity which can be readily uplifted to ten or eleven dimensions. The uplifted backgrounds
in turn provide nontrivial examples of explicit analytic solutions to the non-linear PDEs
of [19]. These backgrounds can be interpreted as sourced by smeared NS5-branes in type
IIA supergravity with a particular charge density controlled by the conformal symmetry
breaking parameter in the dual RG flow. Equipped with some intuition from these ex-
plicit solutions we are able also to construct more general supersymmetric backgrounds in
type IIA supergravity with vanishing Romans mass. They correspond to a general charge
distribution of NS5-branes along a stack of D6-branes.

In addition to understanding how the AdS7 solutions of [8] arise as the particular
brane intersections suggested by the field theory construction of [7] a further motivation for
our work is to study supersymmetric deformations of these six-dimensional SCFTs using
holography. The deformations of AdS7 mentioned above, correspond to supersymmetric
RG flows in the dual SCFT triggered by a dimension four scalar operator. This operator
is the lowest component in the energy-momentum tensor multiplet and is thus present
in every N = (1, 0) SCFT. In harmony with the results in [21] we find that the only
possible supersymmetric and Lorentz-invariant deformation of the N = (1, 0) SCFT at
hand is realized by turning on a vacuum expectation value (vev) for this operator. This
vev parametrizes a particular direction in the tensor branch of the N = (1, 0) SCFT. Our
holographic construction suggests that such RG flows on the tensor branch, at least in some
appropriate large N limit, have a universal nature which is independent of the details of
the six-dimensional theory.

We start our exploration in the next section by reviewing the salient features of the
6d N = (1, 0) SCFTs arising from intersecting D6-, NS5-, and D8-branes in type IIA
string theory. In section 3 we switch gears to supergravity to discuss the intersecting brane
Ansatz and BPS equations of [19] and show how the AdS7 solutions of [8, 10] arise as solu-
tions of these equations. Section 4 is devoted to a construction of an explicit supergravity
solution which is holographically dual to a particular tensor branch deformation in the six-
dimensional SCFTs. In section 5 we discuss a new type IIA supergravity solution which
describes an intersection of NS5- and D6-branes and relate it to the discussion in section 4.
We conclude with a brief summary of our results and possible directions for future study in
section 6. The three appendices contain our conventions, some details on the derivation of
the AdS7 solutions of interest, and an explicit relation between the BPS equations derived
in [19] and those of [8, 10].

Note added. After the submission of this manuscript to the arXiv we became aware of
the work in [22] which has partial overlap with our results in section 3.
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2 Brane intersections and six-dimensional SCFTs

We are interested in six-dimensional N = (1, 0) supersymmetric QFTs. These theories
preserve eight real chiral supercharges and the R-symmetry group is SU(2). The super-
symmetric multiplets are the usual vector and hyper multiplets familiar from theories with
eight supercharges in three and four dimensions, as well as the more exotic tensor multi-
plet. The only bosonic field in the vector multiplet is the gauge field Aµ with field strength
Fµν . Therefore, in contrast to three and four-dimensional supersymmetric theories, there
is no Coulomb branch of the vacuum moduli space since there are no scalars in the vector
multiplet. In the hyper multiplet we have four real scalars. These parametrize the Higgs
branch which has a structure similar to the one of four-dimensional N = 2 theories. The
tensor multiplet contains one real scalar field, φ, and a two-form tensor potential, bµν , with
a self-dual field strength, hµνρ. The vacuum expectation value of the scalar, φ, in the ten-
sor multiplet parametrizes a branch of the vacuum moduli space called the tensor branch.
This will play an important role in our story. To illustrate how this works schematically
we present the relevant terms of the bosonic Lagrangian for an Abelian tensor multiplet
coupled to a gauge field

L ⊃ φTr (FµνF
µν) + ∂µφ∂

µφ+ hµνρh
µνρ + ? (b ∧ Tr (F ∧ F )) . (2.1)

The operator φ is gauge invariant and its classical scaling dimension is 2. Its vacuum
expectation value, 〈φ〉 parametrizes the tensor branch of the moduli space. Here we have
restricted ourselves to one tensor multiplet for simplicity. The vev 〈φ〉 can be thought of
as the effective gauge coupling 〈φ〉 ∼ 1/g2YM and the singular point 〈φ〉 = 0 should be
analyzed with care. Crucial insight from string theory suggests that the limit 〈φ〉 → 0 often
corresponds to a critical point of the renormalization group flow and thus an interacting
SCFT [1]. In fact to the best of our knowledge all known examples of interacting six-
dimensional CFTs are supersymmetric and arise from suitable constructions in string, M-,
or F-theory.

The six-dimensional supersymmetric theories of interest to us are the linear quivers
introduced in [2, 3] and further studied in [7]. These are six-dimensional cousins of the three-
and four-dimensional linear quiver gauge theories with eight supercharges [15, 16]. The six-
dimensional gauge theories describe the low-energy dynamics of a system of NS5-, D6-, and
D8-branes in flat space arranged according to the diagram in table 1.3 The six-dimensional
vector multiplets of the gauge theory arise from the worldvolume dynamics of the D6-branes.
The gauge group is SU(n) for a segment of n D6-branes in the z direction. The D8-branes
intersect the D6-branes at isolated points on the z line and lead to hypermultiplets in the
fundamental representation of the gauge group. The NS5-branes are point-like on the line
parametrized by z. Each NS5-brane leads to a bi-fundamental hypermultiplet associated
with the two stacks of D6-branes that end on the given NS5-brane. In addition each pair
of NS5-branes contains a tensor multiplet. The vev for the real scalar field in this multiplet
corresponds to the distance between the NS5-branes in the z direction. In general there are

3One could also introduce appropriate orientifold planes in this construction while still preserving N =

(1, 0) supersymmetry. See [7] for more details.
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t x1 x2 x3 x4 x5 z r θ φ

NS5 ◦ ◦ ◦ ◦ ◦ ◦
D6 ◦ ◦ ◦ ◦ ◦ ◦ ◦
D8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 1. The brane intersection in type IIA string theory that leads to the SCFTs and supergravity
solutions of interest in this work.

NS5NS5 NS5 NS5 NS5 NS5

D8 D8 D8D8s

D6s

Figure 1. An illustrative example of the system of intersecting branes discussed in the main text
and in table 1.

NS5

D6s

D8D8D8

Figure 2. A brane configuration that should be described by the conformal limit of a linear quiver
gauge theory.

many such NS5-branes with generic values of these real vevs. This situation corresponds to
a general point on the tensor branch of the six-dimensional theory and is illustrated by the
diagram in figure 1. When the NS5-branes coincide all the tensor multiplet scalars have a
vanishing vev and one is at the origin of the tensor branch where it is expect that a strongly
interacting SCFT resides.4 This is illustrated by the diagram in figure 2. These SCFTs are
strongly coupled and evade a Lagrangian description. In a suitable limit when the number
of coinciding NS5-branes is large it was argued in [7] that these SCFTs are dual to the
supersymmetric AdS7 solutions of massive type IIA supergravity found in [8].

In the absence of a Lagrangian it is often instructive to adopt an algebraic approach to
study SCFTs. Every six-dimensionalN = (1, 0) SCFT should contain an energy-momentum
tensor which belongs to a particular short multiplet of the OSp(8|2) superconformal alge-
bra. The bosonic content of the energy-momentum tensor multiplet is:5 a scalar operator,

4In the absence of D8-branes these six-dimensional theories are the same as the N = (1, 0) theories of
type (AN , Ak) obtained by placing N M5-branes on a Zk singularity in M-theory. Here N and k are the
numbers of NS5- and D6- branes, respectively.

5See for example table 31 in [21].

– 5 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
6

O, of conformal dimensions 4 which is neutral under the R-symmetry; the SU(2) R-current,
Jµ, which has conformal dimension 5 and is in the spin-1 representation of SU(2); an-
other operator of dimension 5, S+µνρ, which transforms as a self-dual 3-form under the
six-dimensional Lorentz group and is neutral under the R-symmetry; and the energy mo-
mentum tensor, Tµν , which is a symmetric rank two tensor of conformal dimension 6 and is
neutral under the R-symmetry. It was shown in [21] using superconformal algebraic meth-
ods that there are no supersymmetric, Lorentz-invariant, relevant or marginal deformations
of N = (1, 0) superconformal theories (see also [23, 24]). Thus the only possible Lorentz
invariant supersymmetric RG flows in such SCFTs are obtained by vevs, i.e. by moving on
the vacuum moduli space. This moduli space consists of two branches - the tensor branch
where the SU(2)R symmetry is unbroken and the Higgs branch where it is broken. For a
recent review and references to the original literature see [25]. All known six-dimensional
interacting SCFTs have a tensor branch. This state of affairs is similar to the situation in
four-dimensional interacting N = 2 SCFTs which all appear to have a Coulomb branch.
In general the tensor branch is multi-dimensional. For example in the linear quiver gauge
theories discussed above each pair of NS5-branes carries a tensor multiplet and thus adds
one real dimension to the tensor branch. In anticipation of the supergravity results in sec-
tion 4 we should point out that the holographic RG flows discussed there describe some
particular direction in this multi-dimensional tensor branch. This direction is singled out
since it is parametrized by the vev for the dimension 4 scalar operator O discussed above.

After this short foray into the world of six-dimensional theories with N = (1, 0) su-
persymmetry it is time to move to a more detailed discussion of their dual supergravity
description.

3 Supergravity description

Our goal is to construct supersymmetric solutions of massive type IIA supergravity [26]
which describe the backreaction of the system of intersecting NS5-, D6- and D8-branes
presented in table 1. This problem was addressed by Imamura in [19] and below we will
heavily exploit his results. Starting from the brane intersection in table 1, we impose
Poincaré invariance along the shared worldvolume of the branes spanned by t, x1, . . . , x5

and unbroken SO(3) isometry along a two-sphere parametrized by the angles θ and φ.
All background fields in the supergravity theory are in general non-trivial functions of the
coordinates r and z. Type IIA supergravity has a number of form fields which are also
assumed to respect the Poincaré symmetry and SO(3) isometry of the metric. These are
the RR 2-form F2 which has legs along θ and φ and the NSNS 3-form H which has both
rθφ and zθφ components. It was argued in [19] that both the rz component of F2 and the
entire RR 4-form F4 vanish. Finally in order to preserve 1/4 of the maximal supersymmetry
one has to impose that the supersymmetry variations of the type IIA gravitino and dilatino
vanish subject to the following projection conditions

ε2 = Γrθφε
1 , ε2 = Γzε

1 . (3.1)
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Here ε1,2 are 16-component Majorana-Weyl spinors. The first relation in (3.1) is the familiar
spinor projection satisfied by the supersymmetry parameter of D6-branes in flat space,
whereas combining the two equations in (3.1) gives the analogous spinor projector for NS5-
branes. The resulting BPS equations can be solved and lead to the field configuration6

ds2 = S−1/2ds26 +K
[
S−1/2dz2 + S1/2(dr2 + r2dΩ2

2)
]
, (3.2)

e2φ = g2sKS
−3/2 , (3.3)

F2 = −r2g−1s ∂rS vol2 , (3.4)

H = −r2 [∂rKdz − ∂z(KS)dr] ∧ vol2 , (3.5)

where ds26 is the flat metric on six-dimensional Minkowski space, dΩ2
2 and vol2 are the

Einstein metric and the volume form on the round two-sphere S2.7 The functions S and
K depend on r and z and can be thought of as the “harmonic functions” associated with
D6- and NS5-branes respectively. The Bianchi identities for F2 and H,

dF2 −MH = 0 , dH = 0 , (3.6)

imply three partial differential equations for S and K:

∂zS −MgsK = 0 ,

43S +Mgs∂z(KS) = 0 , (3.7)

43K + ∂2z (KS) = 0 ,

where 43 = r−2∂rr
2∂r. For non-vanishing Romans mass, M 6= 0, this system can be

rewritten as a single non-linear equation for the function S

43S +
1

2
∂2zS

2 = 0 . (3.8)

Given a solution to this equation the function K is then determined through the first
equation in (3.7). For M = 0 one finds that ∂zS = 0 and the last two equations in (3.7)
have to be solved as a coupled system.

The system of equations in (3.7) is in general non-linear which is a well-known feature
of the BPS equations controlling brane solutions of massive type IIA supergravity (see for
example [27]). In the limit of vanishing Romans mass, M = 0, the system in (3.7) becomes
linear and should describe backreacted NS5-D6-brane solutions. At this point it is worth
presenting some simple well-known solutions of IIA supergravity in the massless limit that
fit into this general discussion:

• The solution corresponding to a stack of N6 D6 branes localized at r = 0 is given by

M = 0 , K = 1 , S = 1 +
N6gs
4πr

. (3.9)
6We work in string frame. Our supergravity conventions can be found in appendix A.
7It is compatible with supersymmetry to replace S2 with RP2. We thus have this freedom for all

supergravity solutions discussed below.
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• The solution corresponding to a stack of N5 NS5-branes localized at z = r = 0 is
given by

M = 0 , K = 1 +
N5gs

4π2(r2 + z2)
, S = 1 . (3.10)

• The solution corresponding to a stack of N6 branes localized at r = 0 and NS5 branes
smeared along z with density ρ5 is

M = 0 , K = 1 +
ρ5

4πr
, S = 1 +

N6gs
4πr

. (3.11)

Thus in the massless limit of type IIA supergravity the function K can be thought
of as the harmonic function associated with the NS5-branes and the function S the one
associated with the D6-branes.

3.1 AdS7 solutions

As reviewed in section 2 one can obtain interacting six-dimensional (1, 0) SCFTs from the
intersection of NS5-, D6- and D8-branes in type IIA string theory summarized in table 1.
It is thus natural to expect that the system of BPS equations (3.7) admits AdS7 solutions
which provide a dual holographic description of these interacting SCFTs. In this section
we determine the conditions on the functions K(r, z) and S(r, z) under which the system
of equations (3.7) leads to AdS7 solutions.

The strategy is to combine the coordinates z and r to form the radial coordinate of
AdS7 which we call ρ. We use the following parametrization of the metric on AdS7:

ds27 =
1

(gρ)2
dρ2 + (gρ)ds26 , (3.12)

where ds26 is the flat Minkowski metric as in (3.2), and g is related to the AdS radius L
through L = 2/g. The other independent combination of r and z will form a coordinate
which we call α. This coordinate, combined with the coordinates on the two-sphere dΩ2

2

in (3.2), forms a three-dimensional space M3. Upon finding an explicit solution for the
metric one then has to properly analyze the global properties ofM3 in order to understand
the physics of the AdS7 solution.

In appendix B we summarize the analysis of equations (3.7) which ensures that the
background fields of type IIA supergravity in (3.2)–(3.5) obey the isometries of AdS7. The
upshot is that one finds the following relation between the radial variable of AdS ρ and the
coordinates (r, z):

ρ−1 = g3(z2 + 4r2S)K . (3.13)

In addition one finds that the functions S and K must satisfy the following differential
constraints:

2S + 2r∂rS + z∂zS = 0 ,

3K + 2r∂rK + z∂zK = 0 ,

−z∂rK + 2r∂z(KS) = 0 .

(3.14)
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The first two equations in (3.14) can be integrated to give

K =
2

z3
G(r/z2) , S =

1

2g2r
y(r/z2) , (3.15)

where y and G are so far undetermined functions of the variable r/z2. One can then show
that the internal coordinate α is also a function of r/z2. It proves convenient to use the
following parametrization of α:

α ≡ 4g2
(
g2 + 2

r

z2
y(r/z2)

)
G(r/z2) =

2gz

ρ
. (3.16)

In addition it is beneficial to define the following function of r/z2

β(α) ≡ r

2g2z2
α(r/z2)2 . (3.17)

It is important to emphasize that since α depends only on r/z2 from now on we will consider
β and y to be a function solely of α. After all of these coordinate changes and redefinitions
one can show that the system of BPS equations in (3.7) together with the constraints
in (3.14) reduce to the following pair of simple ODEs:

2y(α)y′(α)−Mgs =0 ,

2y(α)β′(α) + α =0 ,
(3.18)

where the prime denotes a derivative with respect to α. Our analysis so far has shown
that a solution to the equations in (3.18) together with the definitions in (3.15), (3.16),
and (3.17) leads to an AdS7 solution to the system of BPS equations in (3.7). In fact,
the metric and background fields of type IIA supergravity can now be written explicitly in
terms of α, y, and β:

ds2 =

√
β

y

(
ds27 +

1

g2βy

(
dα2

4
+

(βy)2

α2 + 4yβ
dΩ2

2

))
,

e4φ =
16g4g4sβ

3

y3(α2 + 4yβ)2
,

F2 =
1

2g2gs

(
y +

Mgsβα

α2 + 4yβ

)
vol2 ,

H =
β

2g2y(α2 + 4yβ)

(
3y − 2Mgsβα

α2 + 4yβ

)
dα ∧ vol2 .

(3.19)

It is worth pointing out that the general conditions for the existence of supersymmetric
AdS7 solutions of type II supergravity were first derived in [8].8 In appendix C we show
that the background in (3.19) together with the differential equations in (3.18) provide a
solution to the system of differential equations derived in [8].

8Similar solutions were studied also in earlier work [28] where the authors write down a general AdS7

Ansatz in massive type IIA supergravity and find non-supersymmetric solutions of this type.
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We end this section with a discussion on the solutions of the differential equations
in (3.18) and their interpretation in terms of branes.9 In the absence of D8-brane charge
we have M = 0 and the solution to (3.18) is

β =
1

4y
(c22 − α2) , y =

g2N6gs
2π

≡
√
c1 , (3.20)

where c1 and c2 are integration constants. One can show that this is the dimensional reduc-
tion of the well-known AdS7 × S4/ZN6 supersymmetric background of eleven-dimensional
supergravity to type IIA supergravity.10 The coordinate range for α is determined by posi-
tivity of yβ which shows that −c2 ≤ α ≤ c2. The solution possesses a D6-brane singularity
at α = ±c2 and the D6 charge at these points is determined by the value of y there as
shown in (3.20). The NS5 brane charge is controlled by the parameters c2 and g which is
related to the AdS7 scale via g = 2/L.

In general, for non-vanishing Romans mass, M 6= 0, y2 is a linear function of α,

y2 = Mgsα+ c1 , (3.21)

where c1 is an integration constant. One can then solve the second equation in (3.18) in
terms of a cubic polynomial in y:

β =
P (y)

3(Mgs)2
, where P (y) = −y3 + 3c1y + c2 , (3.22)

where c2 is another integration constant. The same principles hold here as for the massless
solution. The coordinate range of α is determined by the positivity of the function y(α)β(α),
i.e. the positivity of the polynomial yP (y). When P (y) has positive discriminant, ∆ ≡
27(4c31 − c22), it has two non-negative roots, and y takes values between these roots. This
solution also possesses D6-brane singularities at the ends of the coordinate range and the
D6 charge is determined by the value of y at the singularity (see figure 3 for an example).
In the special case when c2 = 0, one of the roots of P (y) is at y = 0. In this case the
D6 charge there vanishes and the metric is regular (see figure 4). If the discriminant ∆ is
negative the polynomial P (y) has only one real root and the coordinate range is between
y = 0 and the root of P (y), where one again finds a localized D6-brane singularity. This
guarantees that the metric has the correct signature and the dilaton is real. This solution
is once again singular at y = 0, however in this case the singularity is an O6-plane. Finally,
if one has ∆ = 0, then one finds c22 = 4c31 and c1 > 0.11 In this case P (y) has a double
root at y = −√c1 and a single root at y = 2

√
c1. Imposing that the dilaton is real and

the correct signature of the metric leads to the range y ∈ [0, 2
√
c1]. At y = 0 one has an

O6-plane singularity and the singularity at y = 2
√
c1 corresponds to a localized D6-brane.

Finally, local solutions with different mass parameters M can be patched together after
imposing continuity of α, β and y. The patching surfaces where the value of M changes

9Analytic AdS7 solutions were constructed also in [9, 10] and further analyzed in [17]. Further numerical
analysis of such solutions can be found in [8].

10The ZN6 orbifold acts on S4 in a way that preserves 16 of the 32 supercharges of AdS7 × S4.
11The case c1 = c2 = 0 leads to an unphysical solution.
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y2

70β

-0.4 -0.2 0.0 0.2 0.4

0

1

2

3

4

α

Figure 3. The solution (3.21)–(3.22) with Mgs = −3, c1 = 7/3 and c2 = −6. The coordinate
range for α is [−5/9, 4/9]. Notice that y2 is a decreasing function of α because of the negative mass
and that it takes non-zero values at both poles indicating the presence of D6-branes at both poles.

y2

8 β

-1 0 1 2 3

0

2

4

6

8

α

Figure 4. An example of the solution of (3.21)–(3.22) with Mgs = 2, c1 = 3 and c2 = 0. The
geometry has a stack of D6 branes at one pole, α = 3, but is regular at the other pole, α = −3/2.
The function y(α) has a non-zero value at α = 3 but vanishes at α = −3/2 indicating that only one
of the poles has D6 branes.

discontinuously are D8-brane singularities [8, 19]. In fact these D8-branes are dielectric,
they carry D6 charge and can be understood through the Myers effect [29] as polarized
D6-branes as a result of the H-flux in the background [30]. The supergravity solution is
built by specifying the values of the mass parameter M , the integration constants c1, c2
and the coordinate endpoints α− and α+ for each region of constant mass parameter. We
label these constants in each region by the superscript (i) where i runs over the number of
regions n. An overall shift in the coordinate α together with the constants c(i)1 enables us
to shift the coordinate range and hence α(1)

− can be chosen to take any convenient value.
The other parameters α(i)

± are related by the continuity constraint α(i)
+ = α

(i−1)
− . The total

number of constants to be specified a priori is 4n. Imposing continuity of y and β leads
to 2n− 2 constraint equations which in turn reduces the number of free parameters in the
solution to 2n + 2. The physical quantities determined by these constants are the n mass
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y2

10β

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

6

α

Figure 5. A solution of (3.18) with two D8 brane singularities. The mass parameters are M (1)gs =

3, M (2)gs = 1 and M (3)gs = 0 and determine the slope of the linear function y2. The other
integration constants are c(1)1 = c

(2)
1 = c

(3)
1 − 1 = 5, c(1)2 = −10 and α

(1)
+ = α

(2)
+ − 1 = 0. The

remaining constants can be obtained by the continuity of α, β and y. The coordinate α ranges
from α

(1)
− ≈ −1.51 to α(3)

+ ≈ 2.11. The reason, only approximate values are given is that these
are obtained by setting β(α) = 0 and are therefore solutions to cubic and quadratic equations
respectively.

parameters M (i), the n dielectric D6 charges embedded in the D8-branes and the two D6
charges at end points, α(1)

− and α(n)
+ , of the α interval. An example of a solution with two

D8-branes in shown in figure 5.

4 Holographic RG flows

After having shown how to construct the supergravity AdS7 solutions dual to the six-
dimensional SCFTs discussed in section 2 we are now ready to study a class of deforma-
tions of these theories which have a universal supergravity description. These deforma-
tions are described by a particular vacuum expectation value (vev) in the field theory that
parametrizes a direction in the tensor branch of the vacuum moduli space. Constructing
the gravitational dual description of this deformation directly in type IIA supergravity is
in general a hard task. Here we sidestep this difficulty by exploiting a seven-dimensional
effective supergravity description. It was shown in [20] (see also [31]) that supersymmet-
ric vacua of type IIA supergravity of the kind discussed in section 3.1 admit a consistent
truncation to a simple seven-dimensional theory known as minimal seven-dimensional su-
pergravity. It is important to emphasize that the details of the particular AdS7 vacuum
of IIA supergravity are not visible in the seven-dimensional theory and are encoded in the
way one uplifts seven-dimensional solutions to ten dimensions.

As we show below the universal tensor branch deformation of the SCFT is described
by a simple supersymmetric domain wall solution of the seven-dimensional supergravity.
Similar domain wall “Coulomb branch” flow solutions and their holographic interpretation
were studied in [32–34]. In particular in [34] (see also [35]) the authors focused on domain
wall solutions of the maximal seven-dimensional SO(5) gauged supergravity. Thus the
solutions they studied are holographically dual to deformations of the interacting (2, 0)
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SCFT living on the worldvolume of coincident M5-branes. The solution we describe below
can be obtained as a limit of the solutions of [34] since the seven-dimensional minimal
gauged supergravity is a consistent truncation of the maximal theory studied in [34].

The bosonic sector of minimal supergravity in seven dimensions consists of the metric,
a real scalar λ, a 3-form A3 with field strength F4 and three gauge fields AI1, with field
strengths FI2 , transforming in the adjoint of SU(2) . The bosonic action was originally
derived in [36]. Here we use the conventions12 of [20]

S =

∫
d7x
√
−g7

{
R7 −

1

2
|dλ|2 − V (λ)− 1

2
X4|F4|2 −

1

2
X−2Tr

(
|F2|2

)}
+

1

2

∫
[Tr(F2 ∧ F2)− gF4] ∧ A3 ,

(4.1)

where
V (λ) ≡ −1

2
g2
(
8X2 + 8X−3 −X−8

)
and X ≡ e

λ√
10 . (4.2)

The potential can be written in terms of a superpotential as

V =
1

2
(∂λW )2 − 3

10
W 2 , (4.3)

where we have defined the superpotential

W ≡ g
(

4 e
λ√
10 + e

− 4λ√
10

)
. (4.4)

There are two AdS7 vacua of this theory which can be found by solving the equation
∂λV = 0. If an AdS7 vacuum in addition obeys the relation ∂λW = 0 it preserves some
supersymmetry. The vacuum at

λ = 0 , V (0) = −15

2
g2 , (4.5)

is supersymmetric and thus perturbatively stable. The dimensionless mass of the scalar λ
around this vacuum is m2L2 = −8 where L = 2/g is the AdS7 scale. This mass is above
the BF bound m2

BFL
2 = −9 as required for perturbative stability. Using the standard

holographic relation
∆(∆− 6) = m2L2 , (4.6)

we can conclude that the operator Oλ dual to the scalar λ in the supersymmetric 6d SCFT
has dimension ∆ = 4. In fact Oλ is the same as the scalar operator, called O in section 2,
in the energy-momentum tensor multiplet and it exists in every (1, 0) SCFT. The SU(2)

gauge symmetry is preserved in this vacuum and it is mapped, via the standard holographic
dictionary, to the SU(2) R-symmetry in the dual SCFT.

The other AdS7 vacuum of the minimal gauged supergravity is at

λ = λ∗ = − 2√
10

log(2) , V (λ∗) = −5× 23/5g2 . (4.7)

12We have fixed h = g

2
√
2
in the notation of [20].
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The AdS7 scale is L∗ = 21/5 × 31/2/g and one finds that the mass of λ is m2
∗L

2
∗ = 12. This

means the the scalar operator in the dual CFT is irrelevant with conformal dimension ∆∗ =

3 +
√

21 ≈ 7.58. This vacuum does not preserve any supersymmetry and is perturbatively
stable within the minimal seven-dimensional supergravity as well as in the supergravity
theory discussed in [31]. It is however a perturbatively unstable vacuum of the maximal
seven-dimensional SO(5) gauged supergravity as shown in [37]. This vacuum will not play
any further role in our discussion.

The domain wall solution we are interested in can be derived by setting the gauge fields
and the 3-form in (4.1) to zero and using a standard domain wall Ansatz for the metric and
scalar field

ds27 = dη2 + e2A(η)ds26 , λ(η) . (4.8)

We would like to emphasize an important point for our further analysis. Any solution of
the minimal seven-dimensional supergravity of the form (4.8) can be uplifted to a solution
of massive type IIA supergravity using the results in [20, 31]. There is some freedom in the
way this uplift is performed which is encoded in the cubic polynomial P (y) introduced in
eq. (3.22). As explained there, P (y) is only piecewise cubic and the singularities of P (y)

determine the location of D8 branes where the mass parameter changes value. Here we will
stick to a fixed mass, M , and will choose P (y) to be a cubic polynomial. The extension to
include D8 branes is straight forward. Using the results in [20] adapted to our notation we
find that the full type IIA supergravity background corresponding to a seven-dimensional
solution of the type (4.8) is

ds2 =

√
β

Xy

{
ds27 +

X3

g2βy

(
dα2

4
+

(βy)2

α2 + 4X5yβ
dΩ2

2

) }
,

e4φ =
16g4g4sβ

3X4

y3(α2 + 4X5yβ)2
,

F2 =
1

2g2gs

(
y +

Mgsβα

α2 + 4X5yβ

)
vol2 ,

H =
β

2g2y(α2 + 4X5yβ)

[
(2X5 + 1)ydα

− 2α
(2−X5)Mgsβdα+ 2d

(
y2β(X5 − 1)

)
α2 + 4X5yβ

]
∧ vol2 ,

(4.9)

where ds27 is the metric in (4.8) and X is the scalar field as defined in (4.2). The functions
y and β satisfy the same equations (3.18) as for the undeformed AdS7 backgrounds. For a
fixed mass M they are given by (3.21) and (3.22).

To find supersymmetric domain wall solutions of the form (4.8) we plug this Ansatz in
the supersymmetry variations of the seven-dimensional theory and find that any background
of this type should obey the following differential equations:

dλ

dη
= −∂W

∂λ
,

dA
dη

=
1

10
W .

(4.10)
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To solve this system of equations we find it convenient to perform the following change of
variables:

dη =
ρdρ

g((ρ2 − `21)4(ρ2 − `25))1/5
. (4.11)

With this at hand one can then solve the system of equations in (4.10) analytically. We will
omit the derivation here and only quote the result using notation which fits in the general
framework studied in [34]. The non-trivial fields are

ds27 =
1

(gρ)2(H4
1H5)2/5

dρ2 + (gρ)(H4
1H5)

1/10ds26 ,

X(ρ)5 =
H5

H1
,

(4.12)

where

H1(ρ) = 1− `21
ρ2
, H5(ρ) = 1− `25

ρ2
. (4.13)

Note that we have used the notation of [34] which is adapted to treating similar domain
walls in the maximal seven-dimensional SO(5) gauged supergravity. In particular we have
set `1 = `2 = `3 = `4 in the notation of [34] thereby making four of the five scalars
considered there equal.13 We choose to present the seven-dimensional domain wall solution
in this language in order to make contact with the uplifted supergravity solution discussed
in section 4.1 below.

In the limit ρ → ∞ the metric reduces to AdS7 in the vacuum (4.5), it is convenient
to change coordinates in this limit

gρ = egη , (4.14)

such that the metric takes the form

ds27 = dη2 + e2η/Lds26 , where L =
2

g
. (4.15)

The canonically normalized scalar field in this limit has the expansion

λ = g2
2√
10

(`21 − `25)e−4η/L + g4
1√
10

(`41 − `45)e−8η/L + · · · . (4.16)

Since the operator dual to λ is of dimension 4, the coefficient of e−4η/L is proportional to
the vev, v, of the dual operator where

v ≡ g2 2√
10

(`21 − `25) . (4.17)

The source is given by the coefficient of e−2η/L in the UV expansion of the scalar (4.16),
and hence vanishes. The fact that the source term in (4.16) vanishes is in harmony with
the results of [21] where it was shown that the only supersymmetric relevant deformations
of six-dimensional SCFT are given by vevs.

13We have taken the integration constants in (4.13) to be negative to make the singularity at the end of
the flow apparent.
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It is clear that at values of ρ where either H1 or H5 vanishes, the metric is singular.
The range of the coordinate ρ is therefore set by the larger of the two integration constants
`21 and `25. Without loss of generality we can choose `1 and `5 to be positive and thus we
find the coordinate range

max{`1, `5} ≤ ρ ≤ ∞ . (4.18)

The nature of the curvature singularity encountered at the minimum value of ρ depends on
which of the two integration constants, `1 or `5, is greater. We explore both possibilities
below. When `1 < `5 the metric locally takes the form as ρ→ `5

ds27 ≈ dζ2 +
√
−v (10 gζ)1/8 ds26 , (4.19)

where we changed coordinates as follows

ρ− `5 = − v
`5

(
8

5g

)3/4

ζ5/4 . (4.20)

When `1 > `5 the metric locally takes the form

ds27 ≈ dζ2 +
√
v

(
2

5

)7/4

g2ζ2ds26 , (4.21)

where we have defined

ρ− `1 =

√
10 v

`1
(2g)3

(
ζ

5

)5

. (4.22)

Finally when `1 = `5 the solution trivializes. The scalar is constant, X = 1, and the metric
is that of the supersymmetric AdS7 vacuum in (4.5).

The metrics in (4.19) and (4.21) have a curvature singularity and are therefore hard to
interpret in the realm of classical supergravity. Fortunately holography and string theory
have offered insights into this type of singularities. In particular there are two well-known
criteria for deciding which curvature singularities arising in similar holographic domain walls
are acceptable [38, 39]. The criterion in [38] states that a singularity is acceptable only if
the scalar potential in (4.3) is bounded from above. It is easy to verify that this the case
only when `1 ≥ `5. The Maldacena-Nuñez criterion states that for acceptable singularities
in string theory the gtt component of the ten-dimensional Einstein frame metric should be
bounded above as the singularity is approached. The results in section 4.1 and section 4.2
show that applying this criterion again leads to the condition `1 ≥ `5 for a physically
acceptable singularity. From now on we will therefore take `1 ≥ `5 which, using (4.17), is
equivalent to

v ≥ 0 . (4.23)

This result is in harmony with the field theory discussion below (2.1). The parameter v is
dual to the vev of a scalar operator that parametrizes a particular direction on the tensor
branch. When v 6= 0 one may think of this vev as the effective gauge coupling on some
locus of the tensor branch, v ∼ 1/g2YM . The constraint v ≥ 0 therefore agrees with this
intuition since it implies that the effective couplig g2YM is positive.
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We would like to end this section with a technical comment that will play a role in the
subsequent discussion. As explained in [34], the smaller of the integration constants `1,5
can be shifted to zero by a redefinition of the coordinate ρ. This amounts to shifting all
the integration constants by the smallest one. We will make use of this result to eliminate
the constant `5. The result of this choice is that the seven-dimensional metric and scalar
take the same form as before (4.12), but the functions H1 and H5 are now

H1(ρ) = 1− `21 − `25
ρ2

= 1−
√

10 v

2(gρ)2
, H5(ρ) = 1 , (4.24)

where we have also made use of (4.17).

4.1 Uplift to eleven dimensions

Before interpreting the domain wall in terms of intersecting NS5- and D6-branes in massive
type IIA, we first review how the solution can be uplifted to eleven dimensions and inter-
preted as a distribution of M5-branes. The eleven dimensional metric takes the standard
M5 brane form [34] (see also [35])

ds211 = h−1/3ds26 + h2/3ds25 , (4.25)

where

h−1 = (gρ)3(H1H2H3H4H5)
1/2

5∑
i=1

H−1i µ2i , (4.26)

ds25 =
5∑
i=1

(
H−1i µ2i dρ

2 + ρ2Hidµ
2
i

)
. (4.27)

For the domain wall (4.12) the harmonic functions are H5 = 1 and H1 = H2 = H3 = H4

is given in (4.24). The coordinates µi parametrize a four-sphere and satisfy
∑5

i=1 µiµi = 1.
By a change of coordinates yi ≡ ρ

√
Hiµi the five dimensional metric ds25 can be made

manifestly flat, ds25 = dyidyi. It is simple to verify that the function

h =
4gρ

(
√

10 v − 2g2ρ2)(
√

10 vµ25 − 2g2ρ2)
, (4.28)

is harmonic, up to isolated singularities, in the five-dimensional space spanned by (y1, y2, y3,

y4, y5). These singularities determine a distribution of M5-branes

−45h = σM5 , (4.29)

where σM5 is the charge density of this distribution. The charge density was determined
in [34] (using the techniques of [32]) to be

σM5 =

(
2π

g

)2( 4

10v2

)1/4

Θ
(√

10 v − 2g2y25

)
δ(4)(y1, y2, y3, y4) . (4.30)
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Given this charge density the harmonic function h can be written as

h =

∫
EM5(~y − ~y′)σM5(~y′)d~y′ , (4.31)

where EM5 ≡ (8π2(yiyi)
3/2)−1 is the fundamental solution to the Laplace equation in the

flat five-dimensional space spanned by yi.
The eleven-dimensional domain wall solution presented above should be the gravi-

tational dual to a particular direction in the tensor branch of the six-dimensional (2, 0)

superconformal theory of type AN5 that lives on the worldvolume of N5 M5 branes. It
should also capture an analogous locus on the tensor branch of the (1, 0) cousins of this
(2, 0) SCFTs which are obtained by placing coincident M5 branes at ADE singularities.
See [5] for a recent discussion of the tensor branch of these (1, 0) SCFTs. It will be very
interesting to make the correspondence between holography and field theory on this branch
of the moduli space more precise.

4.2 Uplift to type IIA supergravity

The seven-dimensional domain wall flow solution in (4.12) can also be uplifted to massive
type IIA supergravity via the uplift formulas presented in (4.9) which were derived in [20]
(see also [31]). The uplifted solutions can be cast into the “intersecting brane” form (3.2)–
(3.5) for which the metric takes the form

ds2 = S−1/2ds26 +K
[
S−1/2dz2 + S1/2

(
dr2 + r2dΩ2

2

)]
. (4.32)

The only technical task is to determine how the coordinates r and z which are natural
in (3.2)–(3.5) get mapped to the coordinates ρ and α in the uplift formulas (4.9).

We start by analyzing this ten-dimensional uplifted solution for vanishing Romans
mass, M = 0. Then we have

S(r) =
N6gs
4πr

, (4.33)

where the parameter N6 appears as a free constant compatible with the uplift formulas, i.e.
it is not determined in terms of any quantity in the seven-dimensional flow solution. The
function K is

K =
16g3ρ(√

10 v − 2g2ρ2
) (√

10 vα2 − 2c22g
2ρ2
) , (4.34)

where α ∈ [−c2, c2] was defined in (3.16) and ρ is the seven-dimensional radial coordinate
as in (4.12). With this at hand we find the following relation between the coordinates (r, z)

and (ρ, α)

r =
(√

10 v − 2g2ρ2
) π(α2 − c22)

8g4N6gs
, z =

ρα

2g
. (4.35)

As in the case of M5 branes (4.31) we can express the harmonic function K in terms of a
convolution with the fundamental solution of the last equation in (3.7)

K =

(
N6gs
4π

)∫
1

4π((z − z′)2 + 4S(r)r2)3/2
σNS5(z′)dz′ , (4.36)
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where the charge density is defined as

σNS5(z) ≡
(

2π

g

)3( 4

10v2

)1/4 1

(c2N6gs)2
Θ
(√

10 v − 32g3z2
)
. (4.37)

This in turn implies that equation (4.34) provides a solution to the following equation

−43K − S(r)∂2zK = σNS5(z) . (4.38)

This equation is simply the last equation in (3.7) with a non-trivial source provided by
the NS5 charge density σNS5(z). It should be noted that this solution is not asymptoti-
cally flat in ten dimension. Having found the charge density σNS5, a full ten-dimensional
asymptotically flat solution will be determined in section 5.

We now move to the case in which M 6= 0. For the domain wall (4.12) we can express
the uplift in terms of the harmonic functions S and K as for the massless case. Once again
the D6 “harmonic function” takes a simple form

S =
y

2g2r
. (4.39)

However, the function K takes a substantially more complicated form

K =
g3(12Mgs)

2ρ(√
10 v − 2g2ρ2

) (√
10 vP ′(y)2 − 2g2ρ2(P ′(y)2 + 12yP (y))

) . (4.40)

Here y and ρ are related to the coordinates r and z through

r = −
(√

10 v − 2g2ρ2
) P (y)

12(Mgsg)2
, z = − ρP

′(y)

6Mgsg
. (4.41)

We should emphasize that the notation we are using here is similar to the one used for the
ten-dimensional AdS7 solutions in section 3.1 since the domain wall solutions at hand are
deformations of these AdS7 vacua controlled by the parameter v. In particular from the
three equations in (3.14) only the first one is obeyed by the domain wall with v 6= 0 and
the other two are broken. This also implies that the function S still has the same form as
in equation (3.15) as is evident from (4.33) and (4.39) above.

5 Asymptotically flat brane intersections for M = 0

In this section we focus on massless type IIA supergravity and find explicitly a supergravity
solution that completes the intersecting brane solution found in the previous section to
a ten-dimensional asymptotically flat background. For the M5 brane solution in eleven-
dimensional supergravity, this task is easily accomplished simply by adding a constant to
the harmonic function in (4.31)

h = 1 +

∫
EM5(~y − ~y′)σM5(~y′)d~y′ . (5.1)

In type IIA supergravity in the presence of both NS5- and D6-branes the situation is more
complicated. Naively one is inclined to “add 1” to both functions S andK in order to recover
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NS5 NS5NS5 NS5

z

rD6

Figure 6. The explicit realisation of intersecting branes in type IIA with M = 0. A single stack
of N6 D6-branes fills the z-direction while NS5-branes are scattered over the same direction.

the elementary D6- and NS5-brane solutions in (3.9) and (3.10). However this procedure
does not lead to a solution since the system of BPS equations in (3.7) are coupled and
nonlinear. In the massless limit, M = 0, of type IIA supergravity the problem however
reduces to a linear one which we solve below.

Inspired by the solution obtained by uplift in (4.33)–(4.37) we study the intersection
of D6 and NS5 branes for which the NS5 are localized at r = 0 but spread along the z-
direction. The stack of D6-branes is kept localized at r = 0 (see figure 6). A solution of this
type but with a single stack of NS5-branes was constructed previously in [40]. We will start
by reviewing that solution and then extend it to a distribution of NS5-branes. Remember
that the PDEs in (3.7) are obtained as a result of the Bianchi identities. Let us set M = 0

and write these Bianchi identities with explicit brane sources

dF2 = −N6δ(r) r
2dr ∧ vol2 ,

dH = −N5δ(r)δ(z) r2dz ∧ dr ∧ vol2 .
(5.2)

The effect of adding explicit brane sources on the right hand side of the Bianchi identities
is the following modification of the PDEs in (3.7)

∂zS = 0 ,

−43S = gsN6δ(r) , (5.3)

−43K − ∂2z (KS) = N5δ(r)δ(z) .

The delta functions serve to fix boundary values of S and K when an explicit solution is
written down. The function S is independent of z and is found to be

S = a21 +
N6gs
4πr

, (5.4)

where a1 controls part of the asymptotic behavior of the solution. Notice that the uplift of
the seven-dimensional domain wall solution lead to the function S in (4.33), i.e. to a1 = 0.
Here we will explore the more general situation with a1 6= 0.

The general system of equations in (3.7) possesses two scaling symmetries. These
symmetries act on the fields and coordinates as follows

r → r′ = s2r , z → z′ = t2z ,

xµ → x′µ = s−1txµ , gs → g′s = s−2t4gs

S → S′ = s−4t4S(r, z) , K → K ′ = s−2t−2K(r, z) ,

(5.5)
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where t, s are arbitrary real numbers. One of these scaling symmetries can be used to set
a1 = 1 (as long as a1 6= 0) which we will do from now on. Later on we will be interested in
exploring the limit a1 → 0 which can be achieved by taking the limit r → 0 while keeping
gs finite. With S at hand the function K then satisfies a linear PDE

−43K − S(r)∂2zK = N5δ(r)δ(z) . (5.6)

To solve this equation we proceed by a Fourier transform along the z-coordinate:

−43K̂ + S(r)λ2K̂ =
N5√
2π
δ(r) , (5.7)

where we have set
K(r, z) = a22 +

1√
2π

∫ ∞
−∞

K̂(r, λ)eiλzdλ , (5.8)

where a2 is a constant that will ultimately also control the asymptotic behavior of the
solutions. We will use the second scaling symmetry of the system to set a2 = 1 (again
assuming that a2 6= 0). The homogeneous solution to (5.7) is

K̂ = b1(λ)e−|λ|rU

(
1 +

N6|λ|gs
8π

, 2, 2|λ|r
)

+ b2(λ)e−|λ|r1F1

(
1 +

N6|λ|gs
8π

, 2, 2|λ|r
)
, (5.9)

where U and 1F1 are hypergeometric function. The second term diverges for large r and so
we must set b2(λ) = 0. Once b1(λ) has been determined the full solution is written entirely
in terms of U which is defined by

U(a, b, z) ≡ 1

Γ(a)

∫ ∞
0

e−zττa−1(1 + τ)b−a−1dτ , a > 0 . (5.10)

We can determine b1(λ) by integrating (5.7) in a ball of radius ε and taking ε→ 0:

− 4π lim
ε→0

∫ ε

0
r2(43K̂ − S(r)λ2K̂)dr =

N5√
2π

. (5.11)

Only the first term on the left hand side gives a finite contribution as ε→ 0 which results
in the following equation for b1(λ),

b1(λ) = λ2
N5N6gs√
2π 16π2

Γ

(
N6gs|λ|

8π

)
, (5.12)

where Γ(x) is the Euler gamma function. It is easy to see that the limit for which N5

vanishes gives the solution for N6 D6-branes given in (3.9). A slightly more involved limit
is N6 → 0 for which S → 1 and

K → 1 +
N5

4π2(r2 + z2)
, (5.13)

which is the harmonic function for a collection of NS5 branes in (3.10).
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We now explore the “near horizon” limit r → 0 while keeping gs finite.14 The scaling
symmetries (5.5) show that in order to keep gs finite, r/z2 must also remain finite in
this limit. This is in good agreement with the analysis in appendix B which shows that
for supersymmetric AdS7 solutions the background fields depend nontrivially only on the
combination r/z2. In this limit S(r) reduces to

S(r)→ N6gs
4πr

. (5.14)

We should expect that K also reduces to its AdS7 form (3.15). To evaluate K in the r → 0

limit we use a convenient expansion of the U -function in terms of the Bessel functions Kn
for large a [41]. The first term in this expansion is

U(a, b, z) ≈ 2
ez/2

Γ(a)

(z
a

)(1−b)/2
K1−b(2

√
az) . (5.15)

Using this in (5.9) we obtain

K̂(r, λ)→ |λ| N5N6gs√
2π 16π2

√
N6gs
4πr
K1

(√
N6gsr

π
|λ|

)
, (5.16)

which has the Fourier transform

K(r, z)→
(
N6gs
4π

)2 N5

4π(z2 + 4S(r)r2)3/2
. (5.17)

This solution can now be compared to the pure massless AdS7 solution in (3.20) and indeed
we find that (5.17) can be written as

4yβ =

(
N5y

2

8π

)2

− α2 , (5.18)

where y = N6gsg
2/2π. This then shows that the full solution

K = 1 +
N5N6gs

32π3

∫ ∞
−∞

λ2Γ
(
N6gs|λ|

8π

)
e−|λ|r+iλzU

(
1 + N6|λ|gs

8π , 2, 2|λ|r
)

dλ , (5.19)

which describes an intersection of NS5 and D6 branes has an AdS7 space as its “near-horizon”
geometry.

We can construct even more general solutions with continuous NS5 charge distribution
σNS5 on the z-axis. To do this we have to modify the right hand side of equation (5.6) to:

−43K − S(r)∂2zK = σNS5(z) . (5.20)

Since we have already given the solution for which σNS5(z) is a delta function in (5.19), we
already know the fundamental solution, or Green’s function, for the operator −43−S(r)∂2z .
The homogeneous problem at hand is linear and thus we can use the standard theory of

14What we refer to as a “near horizon” limit can be thought of as a limit in which one zooms in on the
NS5 branes in a controlled manner.
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Green’s functions to write the solution to the inhomogeneous equation (5.20). The solution
is given by convolution of the Green’s function with σNS5(z). Fourier transform maps
convolution to simple multiplication and so the solution is

K(r, z) = 1 + N6gs
32π3

∫ ∞
−∞

λ2Γ
(
N6gs|λ|

8π

)
U
(

1 + N6|λ|gs
8π , 2, 2r|λ|

)
σ̂NS5(λ)e−|λ|r+iλzdλ , (5.21)

where σ̂NS5 is the Fourier transform of σNS5

σNS5(z) =
1√
2π

∫ ∞
−∞

σ̂NS5(λ)eiλzdλ . (5.22)

In the “near-horizon” limit r → 0 we recover the solution (4.36) obtained in previous section.
We have thus illustrated how one can construct explicit solutions of type IIA super-

gravity (withM = 0) which are asymptotically flat, describe the NS5-D6 brane intersection
of interest and have a “near-horizon” AdS7 limit. Ideally we would like to be able to do the
same for the more general NS5-D6-D8 brane intersection system. However this problem is
much more difficult. The cause of trouble are as usual the D8-branes. Due to their presence
we have M 6= 0 and thus we cannot hope for an asymptotically flat region of space-time.
In addition for M 6= 0 the BPS equations in (3.7) can be combined into a single non-linear
equation for the function S

43S +
1

2
∂2z (S2) = 0 . (5.23)

This is a non-linear PDE for which we were not able to find the general solution. We found
a particular solution of this equation in (4.39)–(4.41) by uplifting the seven-dimensional
domain-wall background. However due to the non-linear nature of the problem we cannot
use this solution as a seed to construct more general solutions by superposition.

6 Conclusions

The three main results of our work can be summarized as follows. First, after carefully
studying the BPS equations of massive type IIA supergravity which describe NS5-D6-D8-
brane intersections we were able to recover the plethora of AdS7 vacua classified in [8].
This is a satisfying result and provides additional strong evidence that the supergravity
AdS7 solutions of [8] are indeed dual to the six-dimensional N = (1, 0) SCFT studied
in [7]. Furthermore we utilized a consistent truncation of massive type IIA supergravity
to the minimal seven-dimensional gauged supergravity to construct an explicit analytic
supersymmetric domain wall solution. This supergravity background can be interpreted
holographically as describing a supersymmetric RG flow on the tensor branch of the six-
dimensional theory. The flow is triggered by the scalar operator of dimension four which
resides in energy-momentum tensor multiplet. Finally, we employed the linear structure
of the BPS equations of type IIA supergravity with vanishing Romans mass to construct
an explicit supergravity solution which describes the configuration of NS5- and D6-branes
schematically presented in figure 6. Our results lead to many open questions both in
supergravity and in field theory and we summarize some of the more pressing ones below.
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An important open problem in supergravity is how to find an explicit solution similar
to the one in section 5 which describes the brane intersection of NS5- and D6-branes in
the presence of non-vanishing D8-brane charge, M 6= 0 (and with the possible addition of
O6-planes). This solution should admit a “near-horizon” limit in which one recovers the
analytic AdS7 solutions presented in section 3.1. This problem is challenging for at least
two reasons. The BPS equations in (3.7) with M 6= 0 are non-linear and one cannot readily
find explicit solutions. In addition, due to the presence of D8-branes, one should not expect
the background of interest to be asymptotic to flat space and it is a priori not clear what
is the correct asymptotic behavior far away from the AdS7 region.

The domain wall supergravity solutions discussed in section 4 are certainly interesting
holographically, however they present a challenge for supergravity. While we have argued
that the solutions with v > 0 are physical and should be dual to a locus on the tensor
branch of the six-dimensional SCFT, they are singular in both seven- and ten-dimensional
supergravity. It is crucial to understand how to resolve this singularity since this has the
potential to teach us interesting lessons about holography as well as about the mechanisms
of singularity resolution in string theory. One possible resolution is that the smeared brane
densities found in section 4 localize to branes distributed on a line segment. Such dynam-
ics was observed in the case of smeared NS5-branes where world-sheet instantons lead to
clumping of the branes [42]. An alternative possibility is suggested by the fact that the
holographic RG flow at hand preserve eight real supercharges and look similar in spirit to
the one of the four-dimensional N = 2∗ gauge theory which can be thought of as a mass
deformation of N = 4 SYM and has been studied extensively in holography and string
theory in [43–47]. It will certainly be very interesting to settle this question.

The vev deformation described holographically by the supergravity domain wall so-
lutions in section 4 is clearly universal and calls for a better field theory understanding.
The scalar operator which drives the flow belongs to the energy-momentum multiplet in
the six-dimensional (1, 0) SCFT. The supergravity solution suggests that all such SCFTs
with holographic duals exhibit this supersymmetric RG flow on their tensor branch. It is
certainly desirable to have a field theory understanding of this universal behavior. It will
also be interesting to establish a connection between this RG flow on the tensor branch and
the field theory and geometric results for similar RG flows in [48] and [49].

Finally it should be noted that the six-dimensional SCFTs dual to the AdS7 vacua dis-
cussed in section 3.1 admit twisted compactifications to two-, three-, and four-dimensional
interacting CFTs with various amounts of supersymmetry [9–11]. It is natural to expect that
these lower-dimensional supersymmetric CFTs will in turn have non-trivial vacuum moduli
spaces. It will be very interesting to understand whether the “universal” tensor branch flow
of the 6d theory “descends” to some interesting RG flow in the lower-dimensional theory.

We hope that further research will elucidate some of these interesting questions.
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A Conventions and notation

The action of massive type IIA supergravity in string frame is

S =
1

16πG10

∫
d10x
√
−g10

{
e−2φ

[
R10 + 4|dφ|2 − 1

2
|H|2

]
− 1

2
M2 − 1

2
|F2|2 −

1

2
|F4|2

}
+ CS-terms ,

(A.1)

where gµν is the ten-dimensional metric in string frame15 with Ricci tensor R10 in mostly
plus conventions and g10 is its determinant. The dilaton is denoted by φ, M is the Romans
mass [26], the three-form field strength is H = dB and the RR fields are F2 and F4. We
have suppressed the CS terms that ensure the correct equations of motion for F2 and F4.
The Bianchi identities are

dH = dF4 −H ∧ F2 = dF2 −MH = 0 . (A.2)

We work in string units with
2πls = 1 , (A.3)

which implies

16πG10 =
1

2π
, (A.4)

and the string coupling gs is absorbed in eφ. This gives particularly simple quantization
conditions for the fluxes [50], namely

M,

∫
H,

∫
(F2 −MB) ,

∫ (
F4 −B ∧ F2 +

1

2
MB ∧B

)
∈ Z . (A.5)

B General AdS7 solutions of type IIA supergravity

The general type IIA supergravity solution corresponding to the brane intersection of in-
terest is given in (3.5) and is obtained by solving the system of equations in (3.7). These

15To convert to Einstein frame one should use the relation gµν = eφ/2g
(E)
µν , where φ is the dilaton and

g
(E)
µν is the metric in Einstein frame.
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equations are also equivalent to

∂zLS = MgsLK ,

∂rLS +MgsT = 0 , (B.1)

∂rLK + ∂zT = 0 ,

where we have defined

LS ≡ (2 + 2r∂r + z∂z)S ,

LK ≡ (3 + 2r∂r + z∂z)K , (B.2)

T ≡ −z∂rK + 2r∂z(KS) .

We will now show that AdS7 solutions of the ten-dimensional theory necessarily obey the
equations

LS = LK = T = 0 . (B.3)

Furthermore, all AdS7 solutions of the original system can be found in this way.
To find AdS7 within our general Ansatz (3.2)–(3.5) we have to impose that the metric

and all background fields are invariant under the isometries of AdS7. To implement this
we change coordinates from (z, r) to (ρ, α) where ρ is the radial coordinate of AdS7 and
α is a coordinate on the internal space. The metric and three form field strength take the
following form

ds2 =S−
1
2 ds26 +K

[
S−

1
2 (∂ρz)2 + S

1
2 (∂ρr)

2
]

dρ2

+K
[
S−

1
2∂ρz∂αz + S

1
2∂ρr∂αr

]
dρdα

+K
[
S−

1
2 (∂αz)2 + S

1
2 (∂αr)

2
]

dα2 +KS
1
2 r(ρ, α)2dΩ2

2 ,

H =− r2 [∂rK∂ρz − ∂z(KS)∂ρr] dρ ∧ Ω2

− r2 [∂rK∂αz − ∂z(KS)∂αr] dα ∧ Ω2 .

(B.4)

Invariance under the isometries of AdS7 requires that the warp factor in front of the AdS7
part of the metric can only depend on the internal coordinate α. In addition the three
form field strength should only have legs in the internal space. We work with the following
metric on AdS7

ds27 =
1

(gρ)2
dρ2 + (gρ)ds26 . (B.5)

Imposing invariance under the SO(6, 2) isometry group of this space leads to the following
relations

S(ρ, α) = (gρ)−2e−4A(α) , (B.6)

(gρ)−2e2A(α) = K
[
S−

1
2 (∂ρz)2 + S

1
2 (∂ρr)

2
]
, (B.7)

0 = K
[
S−

1
2∂ρz∂αz + S

1
2∂ρr∂αr

]
, (B.8)

P (α) = K
[
S−

1
2 (∂αz)2 + S

1
2 (∂αr)

2
]
, (B.9)
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Q(α) = KS
1
2 r(ρ, α)2 , (B.10)

0 = ∂rK∂ρz − ∂z(KS)∂ρr . (B.11)

Here we have defined the warp factor in front of AdS7 metric in (B.5) to be e2A(α) and P (α),
Q(α) are so far undetermined functions that only depend on α. We furthermore have to
impose that the dilaton (3.3) depends only on α. This condition, combined with (B.6),
fixes the ρ dependence of the function K(ρ, α) to be

eφ = gsK
1
2S−

3
4 → K = g−2s (gρ)−3e−6A(α)+2φ(α) . (B.12)

From equation (B.10) we immediately see that

r(ρ, α) = (gρ)2f1(α) , (B.13)

where f1(α) = gSe
4A−φQ−

1
2 is a nonconstant function of α. Using this in turn allows one

to rewrite equation (B.7)

(∂ρz)2 = g2se
6A(α)−2φ(α) − 4g2e−4A(α)f1(α)2 ≡ g1(α)2 , (B.14)

where g1(α) is defined to notational brevity. With this at hand we can find the ρ dependence
of z(ρ, α) to be

z = ρg1(α) + g2(α) . (B.15)

In (B.15) we have allowed for an arbitrary function g2(α), however it is easy to show that
g2 has to be a constant. Indeed, from (B.8) and (B.15) one finds

0 = g1(α)
(
ρg1(α)′ + g2(α)′

)
+ e−4A(α)2g2ρf1(α)f1(α)′ , (B.16)

which is only consistent if g1(α)′ 6= 0 and g2(α)′ = 0. The shift symmetry in z allows us to
safely put g2 = 0. Combining (B.13) and (B.15) one then finds

r

z2
=
g2f1(α)

g1(α)2
, (B.17)

which in turn implies that α has to be a function of r
z2
. Furthermore, equation (B.7) can

be used to define ρ implicitly, this yields the following relations

α = α(r/z2) , ρ−1 = g3K(z2 + 4r2S) . (B.18)

Moreover, using S ∼ ρ−2 and K ∼ ρ−3 one can show that

LS ≡ 2S + 2r∂rS + z∂zS = 0 ,

LK ≡ 3K + 2r∂rK + z∂zK = 0 .
(B.19)

We still need to impose the condition that the three form field strength have legs only along
the internal space. This is is given by (B.11), which in turn leads to

T ≡ −z∂rK + 2r∂z(KS) = 0 , (B.20)
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The only thing left to show is that the conditions in (B.8) and (B.9) are satisfied. For this
we need to invert the following Jacobian

∂(ρ, α)

∂(z, r)
=

 ∂zρ ∂rρ

−2 r
z3
α′ 1

z2
α′

 , (B.21)

where α′ denotes the derivative of α with respect to r/z2 and one can use the relations

∂zρ =− ρ2
(
ρ−1

∂zK

K
+ g3K(2z + 4r2∂zS)

)
,

∂rρ =− ρ2
(
ρ−1

∂rK

K
+ g3K(8rS + 4r2∂rS)

)
.

(B.22)

Using (B.19) one finds that

∂(z, r)

∂(ρ, α)
=
z3ρ

α′

 1
z2
α′ −∂rρ

2 r
z3
α′ ∂zρ

 . (B.23)

This equation can then be used to show the validity of (B.8), (B.9). This concludes the prove
that all supersymmetric AdS7 solutions of type IIA supergravity should obey the constraints
in (B.19), (B.20). In section 3.1 we show how to explicitly solve these constraints and find
all of these AdS7 solutions analytically.

C Comparison to the results in [8]

In this appendix we show that the general system of equations for supersymmetric AdS7
backgrounds of massive type IIA supergravity derived in [8] is solved by the background
in (3.19) together with the equations in (3.18). In order to match the conventions used in
this paper we flip the signs of M and F2 appearing in the system of [8]. We must also take
g = 2 since in [8] the authors fix the radius of AdS7 to be L = 2/g = 1. The AdS7 solutions
of [8] (in string frame) are given by

ds2 = e2A
(
ds2AdS7

+ ds2M3

)
,

ds2M3
= (1− x2)

(
16

(4x+MeA+φ)2
dA2 +

1

16
dΩ2

2

)
,

F2 =

√
1− x2
16

eA−φ
(
xMeA+φ + 4

)
Ω2 ,

H = −1

4
e2A(1− x2)

3
2

6− xMeA+φ

4x+MeA+φ
dA ∧ Ω2 .

(C.1)

This constitutes a supersymmetric background of massive type IIA supergravity provided
that the dilaton φ(A) and the function x(A) satisfy the pair of coupled ordinary differential
equations

∂Aφ = 5− 2x2 +
8x(x2 − 1)

4x+MeA+φ
,

∂Ax = 2(x2 − 1)
4− xMeA+φ

4x+MeA+φ
.

(C.2)
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We find that the background above agrees with our expression in (3.19) if we set

e2A =

√
β

y
,

x2 =
α2

α2 + 4yβ
,

dA = − 1

8y

(
α

β
− Mgs

y

)
dα .

(C.3)

Furthermore, both differential equations are solved provided the equations in (3.18) are
obeyed.
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any medium, provided the original author(s) and source are credited.
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