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1 Introduction

Ultra-planckian string-string collisions represent a perfect gedanken experiment where one

can address fundamental issues on the merging of gravitational and quantum physics within

a consistent framework. One of the main aims of such a program is to understand whether

and how quantum information is recovered in a process which, classically, would lead

to black-hole formation [1–4] and, semi classically, to its Hawking evaporation [5]. This

program has been carried out since about thirty years along two different lines: Gross and

Mende (later joined by Ooguri) [6, 7] computed the high-energy, fixed angle behavior of

string scattering amplitudes at arbitrary genus. Since higher and higher genus contributions

were found to be more and more important in that kinematic regime, they concluded

that the string loop expansion diverges. The physical reason for such a result is clear:

order by order the fixed-angle string scattering amplitude is exponentially suppressed,

while physically it should be sizeable owing to Einstein’s gravitational deflection formula.

Unfortunately, a Borel resummation of the divergent series [8] can only be justified in a
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region of parameters where the process is classically forbidden and, consequently, the cross

section is still exponentially small.

A very different approach was taken by Amati, Ciafaloni and one of us [9–13] (hereafter

referred to as ACV). One starts by working in energy or equivalently gravitational radius

RS = 2G
√
s

and impact parameter b space attempting an all-loop resummation. This is possible at

arbitrarily high energy provided the impact parameter is also correspondingly high. In this

region classical gravitational deflection as well as tidal effects [10, 14] due to the string’s

finite size, are effectively recovered within a unitary S-matrix framework provided one

is far away from the expected gravitational-collapse region b ∼ RS and as long as the

tide-excited states are included in the Hilbert space (see [15] for a detailed study of that

unitary S-matrix). The regime of classical gravitational collapse can be approached — but

unfortunately not (yet) entered — from two different directions in parameter space (see

figure 1):

• By letting b/RS approach a critical value of O(1) while keeping both b and RS much

larger than the string length `s. This turns out to be quite difficult, although some

interesting progress has been made over the past ten years [16–23]. We note, in

particular, a recent result [24–26] on the form of gravitational brems-strahlung in the

regime of small deflection angles, suggesting the emergence of a typical energy scale

for the emitted gravitons of order the Hawking temperature

T ∼ TH = ~/RS .

• By approaching the limit RS → `s from below. In this case life is easier since one

can justify the validity of a (string corrected) leading eikonal approximation not

suffering from the nasty classical corrections that make things complicated in the

previous case. Here one can make contact with the GMO regime (finding perfect

agreement with their Borel resummation) but can also try to go further [10, 27, 28]

towards the expected black-hole formation regime b < `s, RS → `s [29–35] while

keeping some control over unitarity. It was found, in particular, that, by taking into

account the opening of new channels corresponding to the imaginary part of graviton

exchange in string theory, it was possible to obtain a unitary S-matrix within a

Hilbert space containing, besides the tide-excited states, also those responsible for

the above mentioned imaginary part (see section 2.2 for details).

In an independent study Dvali, Gomez, Isermann, Lüst, and Stieberger (DGILS hence-

forth) [36] succeeded in carrying out a calculation of tree-level high-energy large multiplicity

scattering amplitudes both in quantum field and in quantum string theory. The claim is

that their results support the validity of the idea, proposed by Dvali and Gomez [37, 38],

according to which BH’s can be portrayed as Bose-Einstein condensates at criticality.

One can find some tension between the results in [10] and those in [36] since in the

former (ACV) approach loop corrections are crucial in restoring unitarity through an in-
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Figure 1. Rough phase diagram for transplanckian string-string collisions. In Region I and III

calculations are essentially under control. They both border with region II where BH formation is

expected on the ground of classical collapse criteria [1–4].

terplay of real production and virtual corrections controlled by the AGK cutting rules [39],

while in the latter (DGILS) virtual corrections are largely ignored.

The main purpose of this paper is to try and understand the origin of this tension and

to offer a solution of it through a reinterpretation of the result of [36].

The plan of the paper is as follows.

In section 2 we will briefly review the results of ACV for ultra-Planckian scattering

in String Theory, first in the weak-gravity regime and then in the so-called string-gravity

regime where a string-corrected eikonal approximation can be justified all the way up

into the expected threshold for classical black-hole formation. In section 3, we review

the results obtained in [36] for the 2 → N scattering in string and field theory at very

high energy and multiplicity. In section 4, after pointing out a tension between the two

approaches, we discuss the effect of adding to the calculation in [36] both real and virtual

soft gravitons, following Weinberg’s classic treatment. In section 5, we reinterpret the

results of [36] claiming that one can eventually reconcile the two methods. In section 6,

we conclude and draw directions for further investigation. In appendix A we review the

AGK formalism [39, 40], and in appendix B we discuss more details about Weinberg’s soft

B-factor [41] in the case of massless external particles.

2 The ACV approach: a reminder

For completeness we briefly review, in this section, some material that can be found

in [10, 27, 28].

2.1 Different regimes in b,RS, `s parameter space

The main physical idea of the ACV approach is that, as long as ultra-planckian gravitational

scattering is considered at sufficiently large impact parameter (in particular b� RS), it is

dominated by soft processes in which a very large number of nearly on-shell gravitons are
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exchanged between the two energetic particles. Such huge number of soft processes can

build up a collision that we would otherwise call hard (at least in the language of QCD)

because it corresponds to fixed angle high energy scattering.

At very small (but finite) deflection angle the leading diagrams are simply s-channel

ladder diagrams whose elementary rung is nothing but the tree-level graviton-graviton

scattering amplitude given by1

M0(12→ 34) = Tr(h1h4)Tr(h2h3)A0(s, t) , (2.1)

where hi denote graviton polarisation tensors. In the following we will set α′ = `2s =

1/M2
s = 2 (unless explicitly shown for clarity). For generic s and t (s+t+u = 0) the

amplitude in D = 4 reads

M0(12→ 34) =
2g2
sR4

stu

Γ(1− s/2)Γ(1− t/2)Γ(1− u/2)

Γ(1 + s/2)Γ(1 + t/2)Γ(1 + u/2)
,

where R4 denotes the contraction of 4 linearised Riemann tensors Rµνρσ = k[µhν][ρkσ].

Taking the large s limit and relying on Stirling formula the amplitude Reggeizes2

A0(s, t) ' 4g2
s

Γ(−t/2)

Γ(1 + t/2)

(s
2

)α(t)
e−i

π
2
t , (2.2)

i.e. the scattering process proceeds through the exchange of the gravi-Reggeon trajectory

with α(t) = 2+α′t/2 = 2+t. Notice that while the real part of A0(s, t) exposes the massless

t-channel Coulomb pole, the imaginary part has no singularity for forward scattering.

Moreover ImAFS0 (s) = limt→0 ImA(s, t) is related to the cross-section for production of

(massive) string states at tree-level.

Clearly this amplitude is unfit to describe gravitational scattering. On one hand it is

exponentially small at fixed (even small) angle while we expect a large cross section in that

region from Einstein’s gravitational deflection formula θ ∼ RS/b. On the other hand, its

Fourier transform (dominated by the fixed t Regge region) gives a partial-wave amplitude

A(J = b
√
s, s) that grows with energy thus violating unitarity bounds.3

It proves convenient to resort to the eikonal approximation, whereby the dominant

contribution to the L-loop amplitude reads

ML(s, t) ≈ (2π)D−2 Tr(h1h4)Tr(h2h3)

(L+1)!

iL

(2s)L

×
∫ [L+1∏

i=1

dD−2qi
(2π)D−2

A0(s,−q2
i )

]
V2
L+1(qi) δ

D−2(q −
∑
i

qi) , (2.3)

1Similar calculations of string scattering from a stack of D-branes in the Regge regime were used [42] to

show how Regge behavior saves string theory from possible causality violations of the kind firstly noticed

in ref. [43].
2The choice of the phase (−)t/2 = e−i

π
2
t is dictated by physical considerations. Since ImM must be

positive at t = −q2 = 0−, this is the correct choice.
3N.B. Given the presence of massless particles one cannot use Froissart’s bound. However, partial-wave

unitarity still puts the constraint |A(J, s)| ≤ 1.
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where VN (qi) denotes the N gravi-reggeon vertex, which in the limit α′qiqj → 0 reduces to

VN (qi) = 1 +O
(∑

i<j(α
′qiqj)

2
)

.

The amplitude ML is a convolution in the q-space, so that it can be factorized in the

dual space of impact parameter b:

1

s
ML(s, t) = 4Tr(h1h4)Tr(h2h3)

∫
dD−2b eiqbÃL(s, b) , (2.4)

where

ÃL(s, b) =
(2i)L+1

(L+ 1)!
〈0|
[
δ̂
(
s, b, X̂u, X̂d

)]L+1
|0〉 , (2.5)

with δ̂ the ‘eikonal’ operator, related to the S-matrix by

Ŝ = 1 + iT̂ = exp 2iδ̂ .

As indicated, δ̂ is a functional of the closed string coordinates at equal time, and was found

in [9] to take the highly suggestive form

δ̂
(
s, b; X̂u, X̂d

)
=

∫
dD−2q

(2π)D−2

A0 (s, t)

s

∫
dσudσd

(2π)2 : eiq(b+X̂
u(σu)−X̂d(σd)) : (2.6)

=

∫
dσudσd

(2π)2 : Ã0

(
s, b+ X̂u(σu)− X̂d(σd)

)
: ,

corresponding to exchanging a gravi-reggeon between one point on one string and one on

the other.

When stringy effects are negligible, one can set X̂ to zero and (2.6) becomes an ordinary

function, the eikonal phase, whose real part encodes elastic scattering (with a physically

irrelevant IR divergence in d = D − 4 = 0), while the extra term associated with inelastic

channels is finite. Setting

Y = logα′s ,

and following [9] (briefly reviewed in appendix A), one can perform the integral by a saddle

point method for b2 � `2sY and obtain

δ(b, s) = δ̂(b, s)
∣∣∣
X̂=0

≈
(
bE
b

)d
+ i

GDs

`dsY
d/2+1

e−b
2/Y `2s , (2.7)

where GD is the D-dimensional Newton’s constant and

bdE(s) =
s

8πΩdM
d+2
D

=
g2
ss

8πΩdM
d+2
s

,

with ΩN = 2πN/2/Γ(N/2).

ACV distinguished several regimes in the b, RS plane (see figure 1):

• The very large b regime, b > bE , Here the massless graviton pole dominates, though

distorted by a Coulomb phase in D = 4. One recovers here, in a saddle-point ap-

proximation, the appropriate generalization of Einstein’s deflection formula.
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• An intermediate regime bE > b > bB, bI , where

bI = `s
√
Y = `s

√
logα′s

is the threshold for the opening of inelastic channels and bB = (bdER
2
S)

1
d+2 is the

threshold for gravitational radiation i.e. the onset of RS/b corrections.4 Here the

eikonal approximation applies. In the subregion bE > bt > b > bI , where

bd+2
t (s) =

s

8πΩd+2g2
sM

d+4
D

=
g2
ss

8πΩd+2M
d+4
s

determines the opening of inelastic channels, ‘tidal excitations’ dominate which are

represented by excited string states. The diffractive b-parameter emerges by consid-

ering second-order correction to the elastic channel part of the expression (2.7) by

string finite size effects that modify the S-matrix.

• The classical corrections regime bB > b > bI where classical corrections and gravita-

tional brems-strahlung kick in.

• Inelastic regime bI > b > `s > `P , where inelastic channels of both classical and string

absorption are opened. The relative importance of the two depends on whether RS
is larger or smaller than `s. For RS < `s the situation is under control and string

‘softening’ effects modify General Relativity in particular the deflection angle reaches

a maximum around b = bI and then decreases again towards b ≈ `s and then b ≈ RS .

Since this is the regime of interest here it will be discussed separately and in greater

detail in the next subsection.

2.2 The string-gravity regime via the AGK cutting rules

The “string-gravity” regime of ACV is defined (up to possible logs) by the inequality

`s > b,RS . It is believed that in this regime the so-called classical corrections (that scale

as R2
S/b

2 in D = 4) are tamed since they become, effectively, of order R2
S/`

2
s � 1. For

this reason the string-gravity regime can be described in terms of the string-size-corrected

leading eikonal approximation and, consequently, we do not expect to find here signatures

of actual BH formation. The string-corrected leading eikonal was already discussed in the

previous subsection and leads to a unitary S-matrix which becomes highly inelastic at

b < bt i.e. when tidal excitations of the incoming strings dominates. This phenomenon will

persist in the string-gravity regime; however, a new source of inelasticity takes place on

top of the one due to tidal excitation.

The origin of this new source of inelasticity can be easily ascribed to the fact that in

string theory the gravitons Reggeize, i.e. full Regge trajectories (starting from the gravi-

ton) are exchanged between the high-energy colliding particles (that we have taken to be

4Let us remark that O(RS/b) corrections kick in much before one reaches the b ∼ RS regime. The

reason for this is twofold: i) the leading eikonal phase is δ � 1, therefore corrections to the phase can be

large even if RS/b is small; ii) the leading eikonal is just a real phase while corrections contain imaginary

parts. As soon as the imaginary parts become O(1) they drastically change the physics.
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massless gravitons) [9, 10]. We will be referring to the exchanged objects, therefore, as

“gravi-reggeons” (GR). That implies that the amplitude due a single GR exchange ex-

hibits both a real and an imaginary part. The former has the Coulomb pole (as in the

QFT limit of ordinary graviton exchange) and, correspondingly, has a large-b tail, while

the latter is negligible at b� `s
√
Y but becomes relevant in the opposite regime b� `s

√
Y

that includes the just defined string-gravity one. This imaginary part simply corresponds

to the on-shell s-channel closed strings which are dual (in the old sense of DHS duality,

after Dolen, Horn and Schmid) to the GR’s. As in [27, 28] we will refer to such objects

as “cut gravi-reggeons” (CGR). Mathematically, this implies that the eikonal operator δ̂

of eq. (2.6) ceases to be hermitian. In order to restore formally unitarity one needs to

introduce [27, 28] new creation and destruction operators C and C† for the on-shell states

corresponding, in a broad sense, to a single CGR exchange.5

In [27, 28] it was pointed out that a formal way to recover a unitary S matrix when δ̂

is not hermitian consists of the replacement:

exp
(

2iδ̂
)
→ exp

(
i
(
δ̂ + δ̂†

))
exp

(
i

√
2i
(
δ̂† − δ̂

)(
C + C†

))
, (2.8)

where the operators δ̂, δ̂†, C and C† satisfy the commutation relations[
C,C†

]
= 1 ,

[
δ̂, δ̂†

]
=
[
C, δ̂

]
=
[
C, δ̂†

]
= 0 . (2.9)

Use of well-known harmonic-oscillator formulae leads to the more convenient form:

S = e2iδ̂e
i
√
−2i(δ̂−δ̂†) C†

e
i
√
−2i(δ̂−δ̂†) C

, (2.10)

showing that one recovers the correct elastic amplitude by taking (2.10) in the vacuum of

the C,C† oscillators.

Consider now the total cross section at some fixed impact parameter b < ls
√
Y . By

the optical theorem σtot(s) = κImAFS(s)/s, this will consist of a sum over all possible

ways of “cutting” the ladder diagrams that build up the leading eikonal approximation.

Because of the above-mentioned nature of GRs, a ladder with n GRs, being non-planar,

can be cut along any number nc of GR with 0 ≤ nc ≤ n. The problem of determining

the relative weights for cutting a different number nc of GR is very similar to the one

encountered in the sixties for an n-Pomerons exchange in hadronic physics and was nicely

settled by the remarkably simple Abramovski-Gribov-Kancheli (AGK) cutting rules [39]

(See ref. [40] for a useful review on these aspects in pQCD; a short reminder of which is

given in appendix A). These rules also follow directly from (2.8) if one identifies nc with

the number operator C†C. We will not attempt to describe the operators C and C† in

details here but they may be related to the operators for higher spins originally defined by

Weinberg [44–46].

5Obviously, in order to have full control of unitarity one should introduce separate, mutually commuting

creation and destruction operators for each closed string contained, with a specific amplitude, in a single

CGR. This remains, for the moment, an unfinished task.
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The AGK rules state that the nc-CGR contribution to the full imaginary part of the

elastic (fixed b) n gravi-Reggeon exchange amplitude6 by is given by:

σ̃nnc = (−1)n−nc
(4Imδ(s, b))n

nc!(n− nc)!
for 1 ≤ nc ≤ n , (2.11)

and

σ̃n0 = (−1)n
(4Imδ(s, b))n

n!
+ 2ImÃn for nc = 0 , (2.12)

where Ãn is the contribution to Ã from the exchange of n GR. Accordingly, the sum over all

contributions correctly reproduces the total imaginary part of the amplitude in agreement

with the optical theorem. For partial-wave unitarity it is however more transparent to

work with the full S matrix without extracting the no-transition term. In that case one

should directly check that S(s, b)S†(s, b) = 1.

Let us check this constraint by considering the following more detailed formulation

of the AGK rules: the n-GR-exchange contributions to SS† can be split according to the

number nc of CGR, the number n+ of GR in S and the number n− of GR in S† according to:

(
SS†

)
(n)

=
∑

n++n−+nc=n

(2iδ)n+
(
−2iδ†

)n− (4Imδ)nc

nc!n+!n−!
; n ≥ 1 , (2.13)

where (SS†)(n) corresponds to the SS† element at fixed number of GR. If we now keep

nc = N fixed and sum over n+, n− at fixed n we reproduce (2.11). Furthermore, if, for

fixed N , we sum over all values of n+, n− we get:

σ̃N = e−4Imδ (4Imδ)N

N !
⇒
∑
N

σ̃N = 1 ; i.e. SS† = 1 , (2.14)

even for small N .

A simple way to understand (2.13) is as follows: the exchange of n identical bosons

carries a 1/n! weight. Multiplying this by the number of ways we can choose, out of them,

the three subsets n+, n−, nc gives the combinatorial factor (nc!n+!n−!)−1. Finally, each set

gives the appropriate S-matrix element or its imaginary part.7

It proves convenient to construct a generating function for the cross sections

Σ(z) =
∞∑
n

[
σ̃n0 +

n∑
m=1

zmσ̃nm

]
= e4(z−1)Imδ , (2.15)

which is related to the S-matrix introduced in (2.8) through

Σ(z) = 〈in|S†zN̂S|in〉 = 〈in|S†:e(z−1)N̂ :S|in〉 ; N̂ = C†C . (2.16)

6Following [28], we denote σ̃ = dσ/d2b henceforth. The corresponding amplitude is denoted by Ã.
7One may be worried about energy conservation in the AGK rule, since the total CM energy

√
s

should be shared among the nc CGR, while [Im]δ(s) is computed for the total s. A related issue is the

(in)distinguishability of the n exchanged particles out of which only nc are cut. Quite remarkably these two

issues compensate in such a way that the AGK rules turn out to have such a simple form as in eq. (2.13).
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Therefore:

〈N〉 = 4Imδ = 4
GDs

`dsY
d/2+1

e−b
2/Y `2s . (2.17)

This result may be interpreted as the formation of a coherent state of gravi-reggeons with

Poisson, rather than thermal black-body, distribution

dσ(2→ N)

d2b
=
〈N〉N

N !
e−〈N〉 ; b < `s

√
Y . (2.18)

An alternative proof of (2.17) is given in appendix A. One can also evaluate the average

energy per cut gravi-reggeon and find

〈E〉 =

√
s

〈N〉
=

M2
s

g2
s

√
s
Y ∼ ~

RS
Y . (2.19)

Note that for d = 0, D = 4 the energy has an average value that coincides (modulo a

logα′s factor) with the Hawking temperature TH = ~/RS of a would-be black hole whose

temperature exceeds the Hagedorn temperature of string theory. Of course this is not the

correct interpretation of the result.8

Rather, we can say that, as the expected threshold of BH production RS = `s is

approached from below, the individual CGR have still an invariant mass2 parametrically

larger (albeit just by a log α′s) than the string scale, justifying the use of Regge behavior.

On the other hand, as one crosses into the strong-gravity (RS > `s, b) region, the

expected energy of the individual CGR falls below the string scale. That means, physically,

that each one of them should give rise to a bunch of massless strings. Taking seriously the

logarithms, one might imagine that each CGR gives rise to O(Y ) quanta of energy ~/RS
for a total multiplicity of order Gs/~ i.e. of the entropy of a “String-Hole”, a BH lying just

at the corresponding curve between strings and black holes [31–35].

On the other hand, this is precisely the point at which a description of the final state

in terms of massless particles alone should become reliable. And this is also the lower end

of the regime discussed by [36]. For consistency we would like the calculation described

in this subsection and the one of [36], described in the next section, to smoothly join one

another along the correspondence line.

3 The classicalization approach to high-energy, high-multiplicity gravi-

tational scattering

Recently Dvali, Gomez and collaborators [37, 38, 47–50] proposed a quantum mechanical

description of black holes as Bose-Einstein condensates of a large number of gravitons

(N ≈M2
BH/M

2
Pl) that, at a critical value αcrit

G /N ≈ 1 of the effective gravitational coupling

αG ≈ Gs, behave as Bogoliubov modes and form a BH bound state. The mechanism termed

‘classicalization’ provides a quantum N -picture of BH’s9 that has been tested in connection

8Eqs. (2.18), (2.19) may also be derived in the framework of coherent state formalism.
9More generically, ‘classicalization’ represents a mechanism that provides the unitarization of a UV

incomplete theory by means of the resonant production of a non-perturbative classical solution. An example

in the context of non-local quantum field theory was studied in ref. [51].
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with ultra-planckian scattering and formation of black holes as self-critical Bose-Einstein

condensate of soft gravitons in [36, 52].

In particular, in [36], relying on KLT relations (after Kawai, Lewellen, and Tye [53])

and the ‘scattering equations’ [54] in the Regge limit, DGILS tried to demonstrate that the

perturbative exponential suppression factor e−N with the number N of produced particles

(gravitons)10 is exactly compensated by the BH entropy in a self-critical phase. Let us

summarise their derivation and later on comment on the issues raised by their analysis.

The starting point for computing tree-level graviton amplitudes with large multiplicity

of the final states are the ‘scattering equations’ [54] and the KLT relations [53, 55–57], that

relate closed string amplitudes on the sphere to ‘squares’ of open string amplitudes on the

disk. In the ‘field-theory’ limit KLT can be used to relate non-planar graviton amplitudes

to color-ordered gluon amplitudes. The relevant formula reads [56, 57]

Mgrav(1, . . . , N) = (−1)N−3κN−2

×
∑

γ,σ∈SN−3

ALYM (1, σ,N − 1, N)SKLT [γ|σ]ARYM (1, γ,N − 1, N) , (3.1)

where κ2 = 8πG = `2P , SN−3 is the group of permutations of N−3 objects, and the KLT

kernel is given by

SKLT [i1, . . . , ik|j1, . . . , jk] =

k∏
t=1

(
sit,P +

k∑
q>t

θ(it, iq)sit,iq

)
, (3.2)

with sij = 2kikj , P an arbitrary reference light-like momentum, while θ(ia, ib) = 0 for

(ia, ib) in the same order in {i1, . . . , ik} as in {j1, . . . , jk} and θ(ia, ib) = 1 otherwise.

In D = 4 it is convenient to switch to the helicity spinor formalism, whereby light-

like momenta are expressed as kµ=ū(k)σµu(k) in terms of commuting Weyl spinors of

opposite chirality uα(k) and ūα̇(k). The latter are often denoted by |k〉 and |k], and

satisfy uα(k)uα(k′) = εαβu
α(k)uβ(k′) = 〈k, k′〉 = −〈k′, k〉 as well as ūα̇(k)ūα̇(k′) =

εα̇β̇uα̇(k)uβ̇(k′) = [k, k′] = −[k′, k]. As a result Mandelstam invariants can be written

as sij = 〈i, j〉[j, i], with 〈i, j〉 =
√

2|kikj | exp(iφij) and [j, i] =
√

2|kikj | exp(−iφij), for real

momenta.

For a Maximally Helicity Violating (MHV) configuration of the graviton polarizations

h±2
i = a±1

i,L ⊗ a
±1
i,R, the relevant color-ordered YM tree-level amplitudes, coded in Parke-

Taylor formula [58], read

AYM
(
1+, . . . , i−, . . . , j−, . . . , N+

)
=

〈i, j〉4

〈1, 2〉〈2, 3〉 . . . 〈N−1, N〉〈N, 1〉
, (3.3)

where ± denote the helicity of the gluons, all considered as incoming. Furthermore, as-

suming a very peculiar kinematical regime for the scattering process 1, 2 → 3, . . . , N , viz.

s12 = s, ti = si(1,2) = −s/N , sij = s/N2 with i, j = 3, . . . , N , and relying on the ‘scattering

10To be precise, in [36] the number of produced gravitons is N−2. In order to adhere to the original

DGILS paper, in this section, we will follow this convention. Clearly N−2 ≈ N for N � 1.
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equations’ [54] DGILS obtain SKLT ∼
(
s/N2

)N−1
and

AYM ∼ s(2−N)/2f(φ)NN , for i−, j− = 1, 2 (3.4)

AYM ∼ s(2−N)/2f(φ)NN−2, for i− = 3, . . . , N, j− = 1, 2

AYM ∼ s(2−N)/2f(φ)NN−4, for i−, j− = 3, . . . , N ,

where f(φ) is a (complicated) function of the phases φ = {φij} of the spinor bilinears.

Substituting (3.4) into the KLT formula (3.1), for MHV amplitudes DGILS get

Mgrav

(
1+2, . . . , i−2, . . . , j−2, . . . , N+2

)
∼ κNCNs , (3.5)

where ±2 denote the helicity of the gravitons, all considered as incoming. Depending on

whether the two negative helicity gravitons be in the initial (1,2) or final (3,. . . ,N) state

one has CN = (N + 1)!N2 for i−2, j−2 = 1, 2, CN = (N + 1)!N−2 for i−2 = 1, 2 and

j−2 = 3, . . . , N or vice versa and CN = (N + 1)!N−6 for i−2, j−2 = 3, . . . , N . Similar

results are found by DGILS for non-MHV configurations in the chosen kinematical regime,

that in a sense should dominate the integral over the final phase-space. Assuming that

the sum over polarisations produce a factor cNH with cH ∼ O(1), DGILS estimate the cross

section for a fixed but large number N of gravitons to be of the form

σ(2→ N−2) ∼ N !

(
`2P s

N2

)N
. (3.6)

Eventually, assuming self-criticality i.e. αG = `2P s = N = αcrit
G � 1,

σ(2→ N−2) ∼ N !

NN
∼ e−N . (3.7)

This result is quite surprising for various reasons that we would like to analyze in some

detail in the following. Later on we will compare the classicalization approach with the

eikonal approach and propose a way to reconcile the two.

• In [36] only tree level amplitudes in a specific kinematical regime of the final gravitons

(suggested by classicalization) is considered. Neither explicit integration over the final

phase space nor explicit sum over all possible helicity configurations are performed

for obvious technical difficulties.

• In [36] higher orders in perturbation theory, corresponding to virtual graviton ex-

change or ‘soft’ graviton radiation, are not considered and stability of the results

with respect to quantum corrections is tacitly assumed. In particular, it is not clear

whether an exclusive cross-section is computed, that would be infinite due to IR

divergences, or some sort of inclusive cross-section.

• In [36], the criticality condition αG = Gs = cN with a precise, fine-tuned proportion-

ality constant c is assumed and eventually used in the cross section. The exponential

factor e−N results from such a precise fine tuning. This factor is crucial for their

classicalization argument: indeed, they argue, if a resonant production of (micro)
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Black Holes mediates this channel, the e−N factor can be compensated by the BH

entropy factor e+SBH ∼ eN . Note that, by a different choice of c, one can turn the

exponential suppression into an exponential growth, reproducing the behavior of the

(convergent) sum over N . In that case adding an entropy factor would overshoot

unitarity.

4 A tension between the two approaches

Clearly, there appears to be some tension between the results summarized in sections 2

and 3, while one would like the two to join smoothly at the expected threshold for BH

formation.

The most obvious difference is that in the ACV/AGK approach virtual corrections

(corresponding to uncut GR) are essential to restore unitarity at fixed b, while no extra

phase space or number of states factor is needed. By contrast, in the DGILS approach

no virtual corrections are included and the S-matrix (integrated over impact parameter)

satisfies unitarity bounds thanks to an extra exponential entropy factor. In the following we

shall investigate the nature of soft radiative corrections to the process discussed in DGILS,

while in section 5 we will offer a new interpretation of the DGILS result that appears to

resolve the above mentioned tension.

To this end, we will recall Weinberg’s theorem for soft gravitons [41], apply it to the

tree-level amplitude computed by DGILS in the classicalization regime, and see how gravi-

strahlung and virtual gravitons may affect the behavior of the cross-section in different

kinematical regions.

4.1 Virtual soft gravitons

Let us start by considering the effect of adding a virtual soft graviton to graviton ampli-

tudes. Although the final state of DGILS consists of gravitons of typical energy
√
s/N ≈

MP
2/
√
s, we can always add a virtual graviton of even lower energy. In that case Weinberg

has shown [41] that the single soft virtual correction amounts to multiplying the original

amplitude by a factor:

A1−IR−grav =
1

2
BA0 ; B =

∫ Λ

λ
d4qB(q) ;

where for the sake of simplicity we have not showed the dependence of B and B(q) on the

external momenta pi. Weinberg’s result reads (see figure 2)

B(q) =
−8πiG

(2π)4[q2 − iε]
∑
i,j

ηiηj

{
(pi·pj)2 − 1

2m
2
im

2
j

}
[pi·q − iηiε][−pj ·q − iηjε]

; (4.1)

where λ represents an IR cutoff, Λ is an upper cutoff to be discussed later,11 while η = +1

for outgoing particles and η = −1 for incoming particles.

11Not to be confused with some UV cutoff of Quantum Gravity!
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Figure 2. 2→ N graviton amplitudes with virtual soft gravitons corrections and emission of real

soft gravitons from the external legs.

As shown in [41] this result can be generalized to the case of an arbitrary number of

soft gravitons and the sum of all such contributions exponentiates so that:

S2→M = C(λ,Λ)S0
2→M , (4.2)

where (suppressing the pi labels in B(pi, q))

C(λ,Λ) =
∑
L

1

L!

[
1

2

∫ Λ

λ
d4qB(q)

]L
→ exp

{
1

2

∫ Λ

λ
d4qB(q)

}
. (4.3)

The corresponding correction to the rate reads

|S2→N |2 = |S0
2→N |2exp

{
Re

∫ Λ

λ
d4qB(q)

}
, (4.4)

and depends only on the real part of the integral over the 4-momentum q of the virtual

graviton, which only receives contribution from the imaginary part of the graviton propa-

gator iπδ(q2). One finally obtains:12

Re

∫ Λ

λ
d4qB(q) = −B0 log(Λ/λ) with

B0 =

∫
Gd2Ω

2π2

∑
i,j

ηiηj

{
(pi·pj)2− 1

2m
2
im

2
j

}
[Ei − pi · n][Ej − pj · n]

=
G

2π

∑
i,j

ηiηjmimj(1 + β2
ij)

βij(1− β2
ij)

1/2
log

1 + βij
1− βij

(4.5)

where

βij ≡

(
1−

m2
im

2
j

(pi · pj)2

)1/2

.

It is straightforward to take the massless limit of (4.5) and to check that it is smooth

and harmless (this is the well-known absence of collinear graviton divergences implied by

the graviton’s helicity ±2). The result (that we have found nowhere in the literature) is

particularly simple:

B0 =
2G

π

s log
s

µ2
+

N∑
i=1

[
ti1log

−ti1
µ2

+ ti2log
−ti2
µ2

]
+

1,N∑
i<j

sij log
sij
µ2

 , (4.6)

12For completeness we give, in Appenxix B, a simple derivation of this result.
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where s = s12 = 2p1·p2, ti,1/2 = −2pi·p1/2, si,j = 2pi·pj and µ2 is an arbitrary mass scale

that drops out since

s12 = −
∑
i

ti1 = −
∑
j

t2j =
∑
i<j

sij

thanks to momentum conservation. In the case of the 4-point amplitude, choosing µ2 =

s = s12 for convenience, one simply finds

B0 =
4G

π

(
tlog
−t
s

+ ulog
−u
s

)
= −4Gs

π

(
sin2 θ

2
log sin2 θ

2
+ cos2 θ

2
log cos2 θ

2

)
≥ 0 , (4.7)

with a maximum B0 = +4Gs log 2/π for θ = π/2 and minima B0 = 0 for θ = 0, π.

The situation is less clear for arbitrary but fixed N . In the CM frame p1 = E(1,n),

p2 = E(1,−n) and pi = Ei(1,ni) with n and ni unit vectors. Momentum conservation

yields
∑

iEi = 2E and
∑

iEini = 0, setting wi = Ei/2E one has

0 ≤ wi ≤ 1/2 ,
∑
i

wi = 1 ,
∑
i

wini = 0 ,

and, after some algebra, one finds

B0 =
4Gs

π

{
−
∑
i

wi

[
sin2

(
θi
2

)
log sin2

(
θi
2

)
+ cos2

(
θi
2

)
log cos2

(
θi
2

)]

+
∑
i,j

wiwj sin2

(
θi,j
2

)
log sin2

(
θi,j
2

) = B+
0 +B−0 , (4.8)

where the single sum B+
0 is positive and smaller than 4Gs

π log 2 while the second term

(double sum) B−0 is negative and larger than −4Gs
π

1
e . So a priori one may expect log 2 ≥

πB0/4Gs ≥ −1/e. While the upper bound can be reached, the lower bound cannot, due to

kinematical constraints. Later on we will show that B0 is always non negative by relating

it to the integral of the square modulus of the leading soft factor.

We have systematically studied the value of B0 in (4.6) as a function of the kine-

matic configuration of the N -particle final state with the following conclusions (see also

appendix B):

• B0 is zero only in very special configurations. These correspond to the forward elastic

amplitude (as always) and to final states in which the above two final gravitons are

replaced by an arbitrary number of strictly collinear ones. As soon as one moves

away from this configuration B0 becomes positive.

• When one goes a large amount away from the above special kinematical regions B0

is typically of order Gs times a function of O(1) of the angles which does not grow

with the number of final particles.

• Some examples:
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Figure 3. 2→ N scattering in which all the final gravitons are collinear to the initial ones. These

are the only configurations with B0 = 0.

Figure 4. 2 → N scattering in which all the final gravitons are emitted in a plane orthogonal to

the initial momenta. Such configurations maximize B0.

Collinear [figure 3]. For ni = nσi = 0 with σi = ±1 such that
∑

iwiσi = 0,

one has

B0 =
2Gs

π

∑
i,j

wiwj
1−σiσj

2
log

1−σiσj
2

−
∑
i

wi

[
1−σi

2
log

1−σi
2

+
1+σi

2
log

1+σi
2

]}
, (4.9)

which vanishes since 1−σ
2 log 1−σ

2 = 0 for σ = ±1.

Orthogonal [figure 4]. For nin = 0 (ni ⊥ n), one has

B0 =
2Gs

π

log 2 +
∑
i,j

wiwj
1−ninj

2
log

1−ninj
2

 ≥ 2Gs

π

[
log 2− 1

e

]
, (4.10)

since x log x ≥ −1/e for 0 ≤ x ≤ 1, with x = (1− ninj)/2 = sin2(θij/2).

– 15 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
1

We thus conclude that, as a consequence of soft virtual graviton corrections, the 2 → N

cross section goes to zero (except in a zero-measure phase space region):

|Sλ|2 →
(
λ

Λ

)B0

|S0|2 ∼
(
λ
√
s

M2
P

)B0

|S0|2 . (4.11)

We are of course very familiar with such a phenomenon that is counterbalanced by emission

of soft radiation, i.e. brems-strahlung.

Combining the contributions from virtual soft gravitons and real ones, to be discussed

momentarily, one eventually gets

|Sλ|2 →
(

∆

Λ

)B0

|S0|2 , (4.12)

where ∆ is the maximal energy allowed in the soft radiation (see section 5 for further

details). Eq. (4.12) is nothing but the well-known cancellation between real and virtual IR

divergences to the (inclusive) cross section.

4.2 Real soft gravitons

Let us now turn our attention on IR divergences arising from emission of real soft gravitons.

The real soft emission (gravi-strahlung) typically contributes a factor (∆E/λ)B0 , with the

same B0 that governs virtual IR divergences. Once more, in order to trust our treatment

of soft graviton emission we have to take E ≤M2
P /
√
s ∼ Λ.

The emission of soft gravitons at tree level is governed by the universal behaviour [59–61]

MN+1(pi; q) ≈
N∑
i=1

[
pihpi
ηiqpi

+
pihJiq

ηiqpi
+
qJihJiq

ηiqpi

]
MN (pi) , (4.13)

where qµ and hµν denote the momentum and the polarisation of the soft graviton, while

Jµνi = pµi ∂/∂p
i
ν − pνi ∂/∂piµ + Sµνi denote the angular momentum operator acting on the

momentum and polarisation of the ‘hard’ particles. Compared to YM and QED not only

the dominant and sub-dominant terms but also the sub-sub-dominant term is universal [59–

61]. This holds true whenever gravitons couple as minimally as possible i.e. in the absence

of φR2 interactions involving ‘dilatons’, while R3 or R4 would not spoil universality [60–67].

In this paper we limit our attention (both for real and for virtual soft gravitons) to

the the dominant term in (4.13) which is universal even beyond tree-level, i.e. at any order

in perturbation theory in any consistent quantum theory of gravity such as String Theory,

and compute the effect of adding a soft graviton to a process

|MN+1(pi; q)|2 =

∫
d3q

2|q|(2π)3

∑
s=±2

∣∣∣∣∣
N∑
i=1

pihspi
ηiqpi

∣∣∣∣∣
2

|MN (pi)|2 . (4.14)

The sum over polarisations/helicities s = ±2, with h−sµν = (hsµν)∗, produces a transverse

traceless bi-symmetric tensor∑
s=±2

hsµνh
−s
ρσ = Πµν,ρσ =

1

2
(ΠµρΠνσ + ΠµσΠνρ −ΠµνΠρσ) , (4.15)
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where Πµν = ηµν − qµq̄ν − qν q̄µ with q̄2 = 0 and q̄q = 1. Luckily most of the terms are

irrelevant thanks to momentum conservation
∑

i ηipi = 0 and to the mass-shell condition

p2
i = 0. In fact lo and behold∑

i,j

pµi p
ν
i

ηiqpi
Πµν,ρσ

pρjp
σ
j

ηjqpj
=
∑
i,j

ηiηj(pipj)
2

qpiqpj
. (4.16)

Integration over the soft light-like momentum q = (|q|,q) = |q|(1,n) produces

B0 log
Λ

λ
= 8πG

∫
d3q

2|q|(2π)3

∑
i,j

ηiηj(pipj)
2

qpiqpj
=

2G

π
log

Λ

λ

∑
i,j

ηiηj(pipj) log
pipj
µ2
≥ 0 ,

(4.17)

where the log µ, which is harmless thanks to momentum conservation, arises from a loga-

rithmic divergence over the Feynman parameter α that can be regulated by giving a small

(common) mass to the ‘hard’ particles as shown in previous sections.

It would be very interesting to study the sub- and sub-sub-leading corrections in the soft

limit to the above result that are expected to be universal in gravity, at least at tree level.

5 A reinterpretation of the DGILS result and resolution of its tension

with ACV/AGK

The tree-level exclusive cross section σtree(2→ N) is, strictly speaking, infrared divergent

(by taking, for instance, two of the final particles to be hard and the remaining N − 2

to be arbitrarily soft, see section 4). It is thus clear that the result of DGILS has to be

reinterpreted.

We shall follow, mutatis mutandis, a line suggested by the classic treatment [68] of jet

cross sections in QCD. In that case one has to define observables which are insensitive

to both infrared and collinear singularities. In the case of gravity the latter divergences

are absent (that’s why we could safely take the massless limit in section 4) and therefore

we shall pay attention to energies rather that to angular distributions. In the following

integration over the angles has to be understood. An IR-safe quantity (carrying some

analogy with the N -jet cross section in e+e− → hadrons) is

σ
(
2→ N(Ei ≥ Ē) + soft(Esoft ≤ ∆)

)
; ĒN <

√
s , (5.1)

in which the final state contains N gravitons of c.m. energy greater than Ē and any number

of soft gravitons of individual energy less than Ē and total energy less than ∆ (called ∆E

in section 4), see figure 5. It is convenient, as in section 2, to introduce a generating

function(al) for such cross sections:

Σ
(
z(ω), Ē,∆

)
= (5.2)∑

N,M

∫
Ē
dω1 . . . dωNz(ω1) . . . z(ωN )

∫ Ē

λ
dε1 . . . dεMθ(∆−

∑
j

εj)
dN+Mσ

dω1 . . . dωNdε1 . . . dεM
,

where we have denoted by ωi, i = 1, . . . N , the hard gravitons’ energies and by εj , j =

1, . . .M , those of the soft ones. The differential cross section carries a δ-function for energy
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Figure 5. Representation of the 2 → N−jet process. The N hard (E ≥ Ē) gravitons are rep-

resented by solid outgoing lines, the IR gravitons (E < Ē) by red dotted lines and the virtual

gravitons by wiggly lines.

conservation δ(
√
s −

∑
i ωi −

∑
j εj). Another δ-function comes out if we consider the

derivative of Σ w.r.t. ∆.

We shall be interested in studying Σ together with some (functional) derivatives of it

near z(ω) = 1. This will provide information on the “total” cross-section as a function of

Ē and ∆ and on inclusive (one, two or more) hard graviton spectra. We shall carry out

the first steps of this analysis below after introducing a simple ansatz for the differential

cross section in (5.2). It will consist of three factors: the tree-level exclusive 2 → N cross-

section considered in [36], an additional factor accounting for the soft-graviton emission

and, finally, a factor incorporating the effect of virtual gravitons.

Concerning the tree-level differential cross section we shall reinterpret the result of [36]

as giving the pre-factor that multiplies d logω1 . . . d logωN , i.e. we shall write:

dσtree

dω1 . . . dωN
∼ N !

(
c e2 Gs

N2

)N 1

ω1 . . . ωN
∼ 1

N !
(cGs)N

1

ω1 . . . ωN
, (5.3)

where c is some O(1) constant.

For the remaining two factors we simply use the results of section 4 in order to write

them in terms of B0, the quantity introduced in (4.6). In the previous section we have seen

that B0 is of order Gs unless the final particles are almost collinear with the initial ones

in which case B0 can be much smaller. In the following we will approximate B0 with some

kind of average value c̃ Gs where c̃ is another O(1) constant. This physically means that

we are effectively excluding the large-b (small deflection angle) regime concentrating on the

interesting one of small-b.13 Using this approximation and the standard representation of

13Ideally one should instead project the results of [36] and of section 4 on partial waves (or fixed b)

amplitudes, something non trivial and that we are deferring to further work.
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the δ-functions we arrive at the following compact expression for ∂Σ/∂∆:

∂Σ

∂∆

(
z(ω), Ē,∆

)
=

1

4π2

∫ +∞

−∞
dσ

∫ +∞

−∞
dτ exp

(
−iσ
√
s− iτ ∆

)
× exp

(
cGs

∫ √s
Ē

dω

ω
z(ω)eiωσ + c̃ Gs

∫ Ē

λ

dε

ε
eiε(σ+τ) − c̃ Gs

∫ Λ

λ

dε

ε

)
, (5.4)

where the first term in the second exponent is from the differential cross section (5.3),

the second and the third from real (contributing to energy conservation) and virtual soft

gravitons, both exposing the ‘averaged’ Weinberg factor B0 = c̃ Gs. Here we have also used

some large-N approximations that should not matter as far as we look at the neighborhood

of z(ω) = 1. Finally, we have (re)introduced the cutoff parameter Λ as an upper limit on

the virtual gravitons’ energy. We shall discuss its possible values below.

We will estimate (5.4) around z = 1 through a saddle point approximation (in σ and

τ) which should be reliable in our regime Gs� 1. However, before doing that, let us note

that the single (hard) graviton distribution can be formally obtained from (5.4) through

an appropriate functional derivative:

1

σ

dσ

dω
=
δ log(Σ)

δz(ω)

∣∣∣∣
z=1

=

〈
cGs

eiσω

ω

〉
, (5.5)

where the angled brackets mean the expectation value w.r.t. the integrals over σ and

τ appearing in (5.4). In the saddle point approximation this amounts to inserting the

saddle-point value of σ in (5.5).

We now look for complex saddle points for the σ and τ integrals of the form:

σs = ix/
√
s , τs = iy/∆ . (5.6)

Imposing stationarity of the (large) phase w.r.t. σ and τ we find:

x = c Gs(e
− Ē√

s
x − e−x) + c̃ Gs

x

(x+ y
√
s/∆)

(
1− e−

Ē√
s(x+y

√
s/∆)

)
1 = c̃ Gs

√
s/∆

(x+ y
√
s/∆ )

(
1− e−

Ē√
s(x+y

√
s/∆)

)
, (5.7)

implying a condition involving just x

x = c Gs

(
e
− Ē√

s
x − e−x

)
+

∆√
s
x ⇒ xe

Ē√
s
x

= c Gs , (5.8)

where in the last equation we have used Ē√
s
, ∆√

s
� 1. Eq. (5.8) is solved by:

x =

√
s

Ē
W0(Ē/TH) , (5.9)

where TH = ~/RS is Hawking temperature and W0(z) =
∑∞

n=1(−n)n−1zn/n! is the (first

branch of the) Lambert (or product-log) function. Inserting this result in the second
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of (5.7) we find that, quite generically, y ∼ Gs. More precisely, under the assumption that

y � ∆√
s
x, (5.7) reduces to:

ŷ ≡ y

Gs
= 1− e−γŷ ; γ ≡ Ē

TH

√
s

∆
, (5.10)

whose solution is again given in terms of the Lambert function:

ŷ = 1 +
W0(−γe−γ)

γ
, (5.11)

showing that ŷ = O(1) provided (γ − 1) = O(1). Under this condition, y ∼ Gs and the

inequality y � ∆√
s
x can be easily checked for any value of Ē/TH . The above assumption

on γ looks very reasonable: actually, if γ < 1, eq. (5.10) has no positive-y solution.

We also need to set a bound on Λ, the upper cutoff on virtual-graviton momenta. It

seems obvious that such an upper bound should not be lower than the cutoff ω̄ on real

(hard) gravitons. This can be easily estimated through eq. (5.5):

ω̄ =
Ē

W0(Ē/TH)
. (5.12)

Finally, let us write the result for Σ(z = 1) in a convenient form applicable to any value

of Ē/TH):

Φ ≡ log Σ(z = 1)

Gs
= − log

(
Λ
√
s

TH∆

)
+ E1(W0(Ē/TH)) , (5.13)

where E1 is the standard exponential integral function E1(x) =
∫∞
x dyy−1 exp (−y).

It is amusing to see that Hawking temperature TH emerges as a characteristic scale

distinguishing two cases:

1. Ē� TH

In this case, using W0(a) ∼ a for a� 1 and taking Λ ∼ ω̄, we get:

Φ < − log

(√
s

∆

)
− log

(
Ē

TH

)
= − log γ ≤ 0 , (5.14)

while, applying finally (5.5), we obtain the suggestive result:

1

σ

dσ

dω
=
Gs

ω
e
− ω
TH , (5.15)

exhibiting both a brems-strahlung behavior at small ω and a Boltzmann suppression at

large ω.

2. Ē� TH

In this case, using the large-argument limit of W0: W0(a) ∼ log(a) − log(log(a)) and

again Λ ∼ ω̄, we get

Φ < − log

[
Ē

TH log( Ē
TH

)

√
s

∆

]
− TH/Ē

log(Ē/TH)
< − log

[
Ē

TH log( Ē
TH

)

]
< 0 , (5.16)

while the analog of (5.15) for the present case becomes:
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1

σ

dσ

dω
=
Gs

ω
e−

ω
Ē
W0(Ē/TH) , (5.17)

joining smoothly with (5.15) at Ē ∼ TH .

To summarize, under our mild assumption γ − 1 ≥ O(1), we have found two regimes

as a function of Ē/TH :

for Ē
TH
� 1 we see from (5.16) that the multi jet cross section is exponentially

suppressed as exp(−Gs
~ log Ē

TH
) and that the hard-graviton spectrum is cut off at ω̄ ∼

Ē
log(Ē/TH)

> TH .

For Ē
TH
� 1 equation (5.14) shows that the multi jet cross section can be O(1) and

the hard-graviton cutoff is TH independently of Ē. To avoid an exponential suppression

we need to take Λ ∼ TH and γ − 1 = O(1) which looks physically possible. In particular,

at Ē = TH the fraction of energy in quanta below TH should be of O(1) which is also the

case for black-hole evaporation. Finally, the cutoff energy for the soft gravitons is ∆
Gs .

A final remark concerns our choice for Λ and the virtual corrections attached to the

incoming gravitons. For these corrections our estimate Λ ∼ ω̄ should be revised since the

soft graviton approximation can be now justified up to a scale smaller than but of order√
s. These extra virtual contributions should have their own counterpart in real emis-

sion/absorption from the energetic legs. This is again what one should expect in the process

of black-hole formation. In fact even before the critical impact parameter for BH formation

is reached gravitational brems-strahlung takes place. While in the regime of small deflec-

tion angles this results in a small loss of energy (see [24–26] for recent classical and quantum

approaches to this problem) when the gravitational collapse regime is approached only a

finite fraction of the incoming energy goes (at least classically) into forming a black hole.

6 Summary and outlook

A high-energy two-body collision usually results in the production of many lower-energy

quanta. This is a common phenomenon shared by essentially any realistic 4−D interacting

theory. A well known and much studied case is the one of strong interactions in which jets of

hadrons are produced when the underlying parton shower (consisting of many final partons)

hadronizes. For low momentum transfer processes the hadronic multiplicity typically grows

logarithmically with energy (with the final particles filling up uniformly a rapidity plateau),

while harder processes (such as e+e− → hadrons) lead to multiplicities that typically grow

faster than a power of log s (but slower than an exponential) of log s (e.g. like exp(
√

log s)).

The fact that the gravitational coupling GN is dimensional and that the effective

high-energy coupling is αG ≡ GNs
~ suggests that multiplicities in the unltraplanckian grav-

itational collisions should grow like a power of the center-of-mass energy
√
s. In particular,

if 〈n〉 ∼ αG we are immediately led –by energy conservation– to the simple, yet startling

conclusion that a ultra-planckian energy collision produces sub-planckian final quanta of

average energy 〈E〉 ∼
√
s/αG ∼ ~/RS ∼ TH with TH the Hawking temperature of a black

hole of mass
√
s.
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The study of ultraplanckian-energy collisions has confirmed to a large extent the above

picture through what has been termed as “fractionation”. The first example [9, 10] is what

we may call t-channel fractionation, i.e. the phenomenon by which a large momentum

transfer is shared among n ∼ αG exchanged gravitons. This is the reason why a superficially

hard process (fixed angle gravitational scattering at arbitrarily high energy) is actually

controlled by large-distance physics with each exchanged graviton sitting very close to its

mass-shell.

Within string theory t-channel fractionation has an s-channel analog [10, 27, 28]. This

is because, in string theory, graviton exchange is actually “gravi-reggeon” exchange and

carries an imaginary part related to the possibility of “cutting” the graviton to expose the

s-channel intermediate states dual to it. As a result, in the so-called string-gravity regime,

t-channel fractionation becomes, almost trivially, s-channel fractionation: the number of

cut-gravi-reggeons grows with energy like αG implying a softer and softer final state as one

increases further and further
√
s. Unfortunately, this regime is under control only below

a certain threshold energy corresponding to a Schwarzschild radius RS of order the string

length `s, i.e. to a would be Hawking temperature exceeding the Hagedorn temperature of

string theory. And indeed we do not expect black-hole formation below such threshold.

In an independent development DGILS [36] have addressed the problem of s-channel

fractionation (called classicalization in their context) directly in quantum field theory i.e.

without the use of string theory’s duality. Evidence for fractionation would lend support

to a previous proposal [37, 38] of black holes as a multi graviton state near a quantum

phase transition. And, indeed, the claim in [36] is that the 2→ N cross section at αG � 1

is dominated by final states containing O(αG) quanta of energy O(TH).

Taken at face value this result looks perfectly in line with the one of [10, 27, 28],

actually as a smooth extension of the latter in the theoretically unaccessible region above

threshold. Although one result relies on string theory while the the other does not it is

conceivable that, above the above mentioned threshold energy, the final state will consist of

just massless strings for which a QFT approach is already sufficient. However, at a closer

scrutiny, some tension appears between the claims made within the two studies. While

in [10, 27, 28] loop corrections to the 2 → N process (corresponding to the possibility of

cutting only a subset of the exchanged gravi-reggeons following the AGK rules) are crucial

for restoring unitarity (or even just unitarity bounds), in [36] one is only considering the

2→ N process at tree level.

In this paper we have tried to resolve this tension by first considering soft real and

virtual corrections to the process considered in [36] and by then showing that such correc-

tions are in principle large in spite of the fact that true IR divergences cancel by the usual

Bloch-Nordsiek mechanism. We have then given a reinterpretation of the claim in [36]

through the introduction of some sort of “gravitational jet cross sections”, quantities that,

like QCD jets, should be perturbatively calculable. They are characterized by a lower

cutoff Ē on the energy of each jet-graviton and by an upper cutoff ∆ on the total energy

carried by all gravitons softer than Ē.

So far we have only been able to estimate these jet cross section qualitatively. i.e.

without control over O(1) parameters. This, however, is sufficient to support the conclu-

– 22 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
1

sion that, unlike QCD jets (that tend to be few and hard because of asymptotic freedom)

gravitational jets tend to be many and soft, where many here means indeed O(αG) and soft

means with energy of order TH . In other words we have found that, while the jet cross sec-

tion for Ē � TH is necessarily exponentially suppressed, the one with Ē ≤ TH can be large

enough to saturate unitarity. Furthermore, we have been able to study the one-jet inclusive

cross section as a function of its energy. We found that, in the relevant (latter) case such

a distribution is brems-strahlung-like dN/dω ∼ ω−1 up to TH and Boltzmann-like sup-

pressed (dN/dω ∼ exp(−ωT−1
H )) above. This falls short of agreeing with a Bose-Einstein

thermal spectrum, for which presumably further re-interactions of the final gravitons have

to be taken into account.

We should warn the reader that what was done here should only be considered as

a first heuristic step into the problem of constructing a unitary gravitational S-matrix

sharing some properties with those of the semiclassical original analysis by Hawking. One

problem that we left unanswered is that of projecting our results on individual s-channel

partial waves (equivalently on a given impact parameter for large angular momentum), as

done in [10, 27, 28] but not in [36]. Such an analysis should allow to see how the final

state changes progressively from one typical of a scattering process to one resembling the

evaporation of a black hole. Here, in section 5, we have considered directly the cross section

integrated over impact parameter and it is only at the step where we take the B0 factor to

be independent of the kinematics and of O(Gs) that we are implicitly excluding peripheral

processes (small deflection angles) concentrating our attention on the small-b region.

We hope that the positive indications reached in this paper will motivate further work

in this challenging –but hopefully highly rewarding– line of research.
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A A brief review of the AGK rules

In a classic paper [39], Abramovski, Gribov and Kancheli (AGK) derived a set of “cut-

ting rules” allowing to relate the relative contribution of the (t-channel) exchange of n

Reggeons to different s-channel intermediate states. As a result, one can compute how the
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total cross-section, related by the optical theorem to the discontinuity w.r.t. energy of the

forward elastic amplitude, is shared among different final states. The original derivation,

reviewed in [40], was in the context of hadron scattering and the Pomeron. Here, following

closely [40], we argue that it applies to ultra high energy gravitational scattering (within a

string-theory context where the graviton belongs to a Regge trajectory) mutatis mutandis.

Let us start by considering the Sommerfeld-Watson representation of the scattering

amplitude for a binary a+ b→ a+ b process (see figure 6)

Aab(s, t) =

∫
dω

2i
ζ(ω)s1+ωFab(ω, t) , (A.1)

where ω = J−1 is the conserved quantity in complex-angular-momentum theory and

the signature factor ζ(ω) reads

ζ(ω) =
τ − e−iπω

sinπω
= i+

τ − cosπω

sinπω
, (A.2)

with τ = ±1 representing the signature. The integration contour in (A.1) is to the

right of the singularities of Fab (but to the left of those at the non-negative integer in ζ).

Hereafter we shall only be interested in the case τ = +1 for which, more simply:

ζ(ω) = i+ tan
(π

2
ω
)
. (A.3)

The amplitude Fab(ω, t) has poles and cuts in the complex (t-channel angular mo-

mentum) ω-plane. In particular, a non-planar multiple gravi-Reggeon exchange produces

branch cuts, just like ordinary particles do on the complex-energy plane. In analogy with

the latter case, the discontinuity of Fab(ω, t) across an n-Reggeon cut can be expressed as

(see figure 5)

disc(n)
ω Fab(ω, t) = 2πi

∫
dΩn

n!
Γ{βj}A

a
n({kj , ω})Abn({kj , ω})δ

ω −∑
j

βj

 , (A.4)

where, setting q2 = −t, the ‘transverse’ n-particle phase space reads

dΩn = (2π)2δ2

q−
n∑
j=1

kj

 n∏
j=1

d2kj
(2π)2

, (A.5)

with kj , j = 1, . . . n, denoting the transverse momentum of the j-th cut gravi-Reggeon.

Furthermore, the product of all signature factors gives [40]:

Γ{βj} = (−1)n−1 cos
[
π
2

∑
i βi
]∏

i cos[π2βi]
, (A.6)

with βj(−k2
j ) = α(−k2

j )− 1 and α(tj = −k2
j ) the jth gravi-reggeon trajectory.

The vertex functions Aa,bn represent the coupling of the external particles a, b to n

Reggeons and depend on the process and the theory under consideration.

– 24 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
1

Figure 6. The 2→ 2 amplitude with n-gravi-reggeons exchanged is parted in two Aa,b
n subampli-

tudes, diagrammatically schematizing the integral (A.4).

As a result, the contribution of n gravi-Reggeons to the amplitude is given by

Aabn (s, t) =

∫
dω

2i
ζ(ω)s1+ωdisc(n)

ω Fab(ω, t) = π

∫
dΩn

n!
Γ{βi}ζ(

∑
i

βi)s
1+

∑
βiAanAbn . (A.7)

Let us note, at this point, that the combination Γ{βi}ζ(
∑

i βi) appearing in (A.7) takes

the simple factorized form

Γ{βj}ζ(
∑
j

βj) = −i
n∏
j=1

−e−i
π
2
βj

cos(π2βj)
= −i

n∏
j=1

(−1 + i tan(
π

2
βj)) . (A.8)

In the eikonal approximation, the vertex functions Aa,bn factorize, i.e. Aa,bn = (Aa,b1 )n

and the expression (A.7) simplifies further if one goes over to impact parameter space by

the Fourier transform:

Aabn (s, b) =

∫
d2q

(2π)2
e−ib·q

1

s
Aabn (s, t = −q2) . (A.9)

We easily obtain:

iAabn (s, b) =
1

n!

(
i

∫
d2k

(2π)2
Aa1Ab1sβ(−k2)(i+ tan(

π

2
β(−k2))

)n
. (A.10)

Summing finally over n and adding 1 to go over to the S-matrix we recover the well-

known eikonal exponentiation:

Sab(s, b) = 1 + i
∞∑
n=1

Aabn (s, b)

= exp

{
i

∫
d2k

(2π)2
Aa1Ab1sβ(−k2)

[
i+ tan

(π
2
β(−k2)

)]}
≡ e2iδ(s,b) . (A.11)

Let’s now come to the AGK cutting rules. Since Γ{βi} is real, the full imaginary part

of (A.7) is simply given by replacing ζ by 1. The AGK rules tell us how this full imaginary

part is built up by individual contribution in which the imaginary part of a subset of

Reggeon signature factors is taken (i.e. in which a subset of k gravi-reggeons is “cut” out

of the total number n).

– 25 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
1

discs[Aabn (s, t)] =

n∑
k=0

ank(s, t) , (A.12)

where

ank = 2πi

∫
dΩns

2+ω(FAGK)nkAanAbn , (A.13)

with

(FAGK)nk =
2n

n!
(−1)n +

1

n!
Γ{βj} for k = 0 , (A.14)

(FAGK)nk = (−1)n−k
2n

(n− k)!k!
for n ≥ k > 0 . (A.15)

Clearly the sum in (A.12) reproduces the total discontinuity.

Also for the AGK rules we can go over to impact parameter. Under the eikonal

approximation leading to (A.10) we get,14

(SS†)nk = (−1)n−k
(4Imδ)n

(n− k)!k!
for n ≥ k > 0 . (A.16)

Keeping k fixed and summing over n ≥ k we get:

(SS†)k = e−4Imδ (4Imδ)k

k!
. (A.17)

Finally, summing over k ≥ 1 and adding the elastic cross section σel ≡ |Sel|2 = e−4Imδ we

recover (s-channel) partial wave unitarity.

Expression (A.17) is interpreted as the probability of having k cut gravi-Reggeons

at impact parameter b. A Poisson distribution of CGR is obtained. The mean and the

variance are given by

〈k〉(s,b) = Var[k(s,b)] = 4Imδ . (A.18)

B Building the B0 factor

In this appendix, we will derive the B0-factor in the general case of (identical) massive par-

ticles, take the massless limit and then show that it is extremized in particular kinematical

regimes.

B.1 Derivation of B0 for massive and massless particles

For massless particles, the individual integrals, for fixed i and j, are logarithmically diver-

gent. They are given by

Im−less(pi, pj) =

∫
d3q

|q|qpiqpj
=

∫
d3q

|q|3EiEj(1− nni)(1− nnj)
(B.1)

=
1

EiEj

∫ Λ

λ

d|q|
|q|

∫
dΩn

(1− nni)(1− nnj)
,

14A more intuitive direct derivation of (A.16) was given already in section 2.2 starting from a more

detailed cutting formula.
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where λ is an IR regulator and Λ is the upper limit for the validity of the leading soft

behaviour. The angular integral is also logarithmically divergent and reads

Jm−less(pi, pj) =

∫
dΩn

(1− nni)(1− nnj)
=

∫ 1

0
dα

∫
d cos θdφ

[1− cos θ|αni + (1− α)nj |]2

=

∫ 1

0

2πdα

|αni + (1− α)nj |

[
1

1− |αni + (1− α)nj |
− 1

1 + |αni + (1− α)nj |

]
=

∫ 1

0

4πdα

1− |αni + (1− α)nj |2
=

∫ 1

0

2πdα

α(1− α)(1− ninj)
=

2π log µ

(1− ninj)
.

In order to regulate the logarithmic divergence of the angular integral, it is convenient

to treat the ‘hard’ particles as massive (with a common mass m) and later on take the

massless limit. In practice the only difference is that ni is replaced by vi = pi/Ei with

|vi| < 1 i.e.

Jm−ive(pi, pj) =

∫
dΩn

(1− nvi)(1− nvj)
=

∫ 1
2

− 1
2

dγ

∫
d cos θdφ

[1− cos θ|(γ + 1
2)vi + (1

2 − γ)vj |]2

= 4π

∫ 1
2

− 1
2

dγ

1− 1
4(vi + vj)2 − γ2((vi − vj)2

=
4π

|vi − vj |
√

1− 1
4(vi + vj)2

log


√

1− 1
4(vi + vj)2 + 1

2 |vi − vj |√
1− 1

4(vi + vj)2 − 1
2 |vi − vj |


=

2π

|vi − vj |
√

1− 1
4(vi + vj)2

log

1− vi · vj + |vi − vj |
√

1− 1
4(vi + vj)2

1− vi · vj − |vi − vj |
√

1− 1
4(vi + vj)2

 ,

where in the last equation we have squared the argument of the log. The above result can

also rewritten as:

Jm−ive(pi, pj) =
2π

|vi − vj |
√

1− 1
4(vi + vj)2

log

(
1 + βij
1− βij

)
=

2πEiEj
βijpi · pj

log

(
1 + βij
1− βij

)
where

β2
ij =

(vi − vj)
2(1− 1

4(vi + vj)
2)

(1− vi · vj)2
=

(pi · pj −m2)(pi · pj +m2)

(pi · pj)2
=

(
1− m4

(pi · pj)2

)
is the square of the relative velocity of the ith and jth particles. Including the overall

(q-independent and thus unintegrated) factors

8πGηiηj
[
(pi·pj)2 − 1

2m
4
]

2(2π)3EiEj
=
Gηiηjpipjm

2(1 + β2
ij)

(2π)2EiEj(1− β2
ij)

1/2
,

and summing over i and j, leads to Weinberg’s celebrated result (4.5) [41] and to its

massless limit, used in the present investigation:

B0 =
G

2π

∑
i,j

ηiηjm
2

1 + β2
ij

βij(1− β2
ij)

1/2
log

(
1 + βij
1− βij

)
→ 2G

π

∑
i,j

ηiηjpipj log
pipj
µ2

. (B.2)
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B.2 Special kinematics for massless particles

Analyzing the first order constrained variation of B0 in the massless case around collinear

and orthogonal kinematical configurations, we here show that they extremize B0.

First of all, let us rewrite the eq. (4.6) as

B0 =
2Gs

π

{
−
∑
i

wi [(1−nni) logwi(1−nni) + (1+nni) logwi(1+nni)]

+
1

2

∑
i,j

2wiwj(1−ninj) log 2wiwj(1−ninj)

 . (B.3)

In fact, using momentum conservation, one can further simplify the above expression and

arrive at

B0 =
2Gs

π

{
−
∑
i

wi

[
(1−nni) log

1−nni
2

+ (1+nni) log
1+nni

2

]

+
∑
i,j

wiwj(1−ninj) log
1−ninj

2

 , (B.4)

which can be more compactly written as in eq. (4.6)

Let us then consider the first order constrained variation of the B0-factor. In general,

keeping N as well as p1 and p2 fixed and varying the momenta of the outgoing particles,

one has pi → pi + δpi with pi·δpi = 0 (p2
i = 0) and

∑
i δpi = 0. Setting δpi = (ui,vi) =

ui(1,ni) + (0,qi) = δp
‖
i + δp⊥i with ui = vini and qi = v⊥i = vi − uini so that qini = 0.

The (constrained) first order variation of B0,

δB0 =
∑
i

∂B0

∂pi
δpi

∣∣∣∣∣
constrained

=
2G

π

{
−
∑
i

[p1δpi(log p1pi + 1) + p2δpi(log p2pi + 1)]

+
1

2

∑
i,j

(pjδpi + piδpj)(log pipj + 1)

 ,

the terms with 1 drop thanks to momentum conservation
∑

i δpi = 0, so that

δB0 =
2G

π

−∑
i

[p1δpi log p1pi + p2δpi log p2pi] +
1

2

∑
i,j

(pjδpi + piδpj) log pipj

 .

Near-collinear kinematics. Let us further specialise to the case of a near-collinear

kinematical scattering. For a collinear configuration ni = σin. As a result, δp⊥i does not

contribute and one has p1,2δpi = p1,2δp
‖
i = Eui(1−σi) and pjδpi = pjδp

‖
i = Ejui(1−σjσi).
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Plugging into δB0 one finds a vanishing result

δB0 =
2GE

π

{
−
∑
i

ui

[
(1− σi) log 2wi

1−σi
2

+ (1 + σi) log 2wi
1+σi

2

]

+
∑
i

(wjui + wiuj)(1− σiσj) log 4wiwj
1−σiσj

2

}
= 0 ,

since the constant terms with log 2 vanish due to the constraints
∑

i ui = 0 =
∑

i uiσi, the

terms with ui logwi cancel each other and the terms (1 ± σ) log(1± σ/2) = 0 for σ = ±1.

This proves that collinear configurations extremize B0. The second order variations along

the longitudinal directions yield a vanishing result: the particles remain collinear and any

choice of wi and σi such that
∑

iwi = 1 and
∑

iwiσi = 0 produces B0 = 0. Variations of

collinear configurations along δ⊥pi produce a positive result: Bcoll
0 = 0 is a local infinitely

degenerate minimum and Bnear−coll
0 > 0.

Near-orthogonal kinematics. Let us consider the case of a near-orthogonal kinematical

scattering. For a configuration with two back-to-back jets perpendicular to the direction

of the incoming particles ni = σim with nm = 0. As before δpi = δp
‖
i + δp⊥i = so that

pjδpi = pjδp
‖
i = Ejui(1− σjσi) while p1δpi = E(ui −mqi) and p1δpi = E(ui + mqi). The

(constrained) first order variation of B0,

δB0 =
2G

π

−∑
i

E logwi[(ui−mqi) + (ui+mqi) logwi]

+
∑
i,j

(Ejui + Eiuj)
1− σjσi

2
log 4wiwj

1− σjσi
2

 =
2G

π

−∑
i

2Eui logwi

+
∑
i,j

(Ejui + Eiuj)
1− σjσi

2
[log 4 + logwi + logwj + log

1− σjσi
2

 = 0 ,

since the constant terms with log 4 vanish due to the constraints
∑

i ui = 0 =
∑

i uiσi,

the terms with ui logwi cancel each other and the terms (1 ± σ) log(1 ± σ/2) = 0 for σ =

±1. This proves that ‘orthogonal’ configurations extremize B0 but are highly degenerate.

The second order variations of the outing particles along the direction of the two jets

(orthogonal to the beam-line) yield a vanishing result: and any choice of wi and σi such

that
∑

iwi = 1 and
∑

iwiσi = 0 produces B0 = 2Gs
π log 2. This is to be expected, since

the two jets of collinear particles behave as two particles with energy E and momentum p

orthogonal to p1,2.
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